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We compute a spectrum of parametric x-ray radiation inside a crystal from a bunch of electrons, which is
periodically modulated in density. We consider that the bunch of electrons is exiting from an x-ray free-
electron laser (XFEL) channel. We demonstrate that in the case of a resonance between the frequency of
parametric x-ray radiation and a frequency of modulation of an electron bunch, the sequence of strong
quasimonochromatic x-ray pulses is formed—superradiant parametric x-ray emission (SPXE) with
frequencies that are multiples of the modulation frequency. The number of photons in the pulse of
SPXE in the case of extremely asymmetric diffraction is comparable with the photon number in the pulse of
an XFEL. Moreover, the SPXE is directed under the large angle to the electron velocity and every harmonic
in the spectrum is emitted under its own angle.
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I. INTRODUCTION

Parametric x-ray radiation (PXR) is a well-known
mechanism of radiation from charged particles propagating
in a periodic medium [1–8]. Its qualitative properties are the
emission of quasimonochromatic x-ray beams under the
large angle to the electron velocity and the possibility to
continuously tune the frequency of the radiation by simply
rotating a crystal. As was first demonstrated in the work [9],
when the electron density in the bunch reaches a critical
value, the parametric beam instability can arise in analogy
with the self-amplified spontaneous emission (SASE) in the
undulator of an XFEL. This process leads to a spatial
modulation of an electron beam and the generation of a
coherent x-ray radiation under the scale of the crystal
length, which is much smaller than the typical XFEL
undulator lengths. However, under the currently experi-
mentally accessible electron-beams densities, the length
under which the parametric instability can be achieved is
substantially larger than the x-ray absorption length in the
crystal. Therefore, when an electron beam initially does not
contain any modulation, it is almost impossible to realize
the SASE mechanism inside a crystal.

Before discussing the superradiant parametric x-ray
emission (SPXE), let us briefly revise how the undulator
is used in the XFEL case [10]. On one hand, due to the
SASE mechanism, the electron bunch, whose density was
initially uniformly distributed, is transformed into a
sequence of minibunches that leads to the spatial modu-
lation of the electron density with the period d0. This period
is directly defined by the period of the undulator and
defines the typical size of the minibunch. For the typical
parameters of an XFEL, the size of the minibunch
d0 ≈ 10−8 cm. Therefore, for the total bunch length
Lb ≈ 10−4 cm, the total number of minibunches
K ≈ 104 ≫ 1. Later when the bunch propagates inside
the undulator, coherent radiation is formed (superradiant
emission [10]) with the frequency ω0 ¼ 2π=d0 [11] and
with the intensity proportional to the square of the number
of electrons in the bunch. The coherent radiation is
propagated in a small cone along the electron velocity.
The coincidence (resonance) between the modulation
frequency of the bunch and the frequency of the emitted
photons happens automatically since the beam modulation
and the emission frequency are determined by the same
undulator radiation mechanism.
We also mention here that the secondary use of a

modulated beam from an XFEL was analyzed in the work
of the backward Compton scattering [12] and prebunched
beam for XFEL [13].
Now let us consider the SPXE case when we suppose

that an electron beam becomes modulated in density inside
the undulator and in the end enters the crystalline target,
where the PXR is generated with the frequency ωB
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dependent on the crystal structure and the angle θB between
the crystallographic planes and the electron velocity. As
was recently demonstrated in the work [14], the highest
intensity of PXR is reached when the electrons propagate in
the grazing geometry, i.e., in a thin layer inside the crystal
parallel to the crystal-vacuum interface and the x-ray
photons are emitted under the large angle 2θB to the
electron velocity (PXR-EAD). The angle θB can be chosen
in such a way that the resonant condition ω0 ≈ ωB is
fulfilled. As a result, in addition to the main XFEL pulse, a
generation of SPXE will happen with the intensity also
proportional to the square of the number of electrons in the
bunch. According to Ref. [1], the spectral density of PXR
photons emitted by a single electron can be larger than the
corresponding density of the undulator radiation.
Consequently, the number of SPXE photons can exceed
the corresponding number of the XFEL ones. Besides, the
SPXE photon pulse is directed under the large angle to the
electron velocity, which enlarges the applicability of the
XFEL by the creation of the additional exiting channels of
x rays. Figure 1 presents the qualitative picture of processes
that lead to the SPXE pulses in the XFEL channel.
It is important to notice that the bunch of electrons

remains modulated while it moves within the electromag-
netic field of the XFEL pulse. For this reason, the crystal
should be located directly near the exit from the undulator.
At the same time, a part of XFEL photons will be reflected
from the crystallographic planes of the crystal in the same
direction as SPXE. The relative number of such photons
with respect to the number of SPXE photons is determined
by the reflection coefficient. This coefficient can be esti-
mated as the ratio of the angular width of theDarwin step [15]
(∼10−5) to the angular width of the XFEL pulse (∼10−3).
In our work, we describe a generation mechanism of

SPXE and theoretically study characteristics of this new
type of coherent x-ray radiation pulse that is emitted at a
large angle to the direction of the electron velocity. The
intensity of this pulse is proportional to the square of the
number of electrons in the bunch and its characteristics are
comparable with the parameters of the main XFEL pulse,
which is directed along the electron velocity. SPXE pulses
can be used for the creation of additional windows for
XFEL with analogous applications [12]. Moreover, the
higher harmonics of SPXE can be used for the generation

of the pulses of harder x rays and they do not require
changing the energy of the electron bunch.
The paper is organized as follows: In Sec. II, we provide a

qualitative analysis of the process of the formation of SPXE
within a kinematic approximation,which is applicable to thin
crystals. In Sec. III, we employ a dynamical theory of
diffraction and demonstrate that the intensity of SPXE
reaches its maximum when the electron bunch propagates
the crystal with a length larger than the extinction length.

II. QUALITATIVE ANALYSIS

A. Method of the equivalent photons

We start the analysis of SPXE from its qualitative
estimation by means of a simple and effective method
of the description of electromagnetic processes of rela-
tivistic charged particles interacting with the medium,
namely the method of equivalent photons (pseudo-
photons, Weizsacker-Williams approximation) [16–18].
This approach is based on the observation that the self-
field of a relativistic charged particle is equivalent in its
characteristics to the beam of pseudophotons with a
spectral-angular distribution nðkÞ and a narrow angular
divergence ≈γ−1, which is determined by the relativistic
gamma factor of the particle γ ¼ E=m [11]. As a result, the
differential cross section dσeif of a transition i ⇒ f between
the initial i and final state f of a charged particle moving
with a velocity v and interacting with the medium is
represented as

dσeif ¼ nðkÞdσphif ðω; k⊥Þdωdk⊥; ð1Þ

where dσphif is the cross section of the same transition
for a photon with the frequency ω and the wave vector
k ¼ ðωv=v; k⊥Þ.
In this framework, PXR can be considered a diffraction

of a beam of pseudophotons on the crystallographic planes.
The spectral-angular distribution nðkÞ of pseudophotons
for a single charged particle is well known [16–18] and is
given by a smooth function of the frequency of the
pseudophotons. For relativistic particles, the wave vector
k of a pseudophoton can be approximated as k ≈ k0 ¼
ωv=v with jk⊥j ≪ k0. As a result, PXR peaks are deter-
mined by the frequencies ωB when the wave vector k0

FIG. 1. Qualitative scheme of the processes which lead to the generation of SPXE pulses in the XFEL channel.
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satisfies Bragg’s condition. Consequently, the emitted
photons are propagating in the directions of k0 þ g, where
g is one of the reciprocal lattice vectors of a crystal. As was
demonstrated in Ref. [14], PXR will have the highest
intensity when an electron moves in a crystal in a thin layer
near the crystal surface, EAD geometry, and the emitted
radiation can exit the crystal without absorption, see Fig. 2.
When we now consider an electron bunch consisting of

N electrons uniformly spread in space, the total field will be
given by an incoherent sum of fields from each electron.
Therefore, the spectral-angular distribution of the pseudo-
photons is simply defined by the sum of contributions from
each particle and equals NnðkÞ.
However, if the electron beam was moving through

the undulator due to the SASE mechanism, it became
modulated. Accordingly, its density becomes a periodic
function of the longitudinal coordinate with the period d0.
Consequently, this suggests that we might expect the
coherent summation of individual fields from every elec-
tron. This results in the substantial modification of the total
spectral distribution of pseudophotons in which we expect
to see peaks with the amplitude proportional to the square
of the number of particles in the beam. The frequencies of
these spikes are harmonics of the frequency ω0. If the
frequency of one of the peaks coincides with the frequency
ωB, we should expect to see the resonant increase in the
intensity of diffracted pseudophotons. This corresponds
exactly to the SPXE pulse. The SPXE emission happens
when Bragg’s condition 2k0d sin θB ¼ 2π for the reflec-
tion of pseudophotons from the crystallographic planes is
simultaneously fulfilled with the coherence condition of
the radiation from electrons of different minibunches
k0d0 ¼ 2π, that is,

2d sin θB ¼ d0 ð2Þ

see Fig. 2.

B. Electromagnetic field of the electron bunch

Let us now investigate this process in more detail. In the
range of frequencies, which are much smaller than the
particle energy E, i.e., ω ≪ E the spectrum of pseudopho-
tons can be obtained via classical description [16]. The
vector Aðr; tÞ and scalar φðr; tÞ potentials from a beam of
particles with charge e0 that move uniformly in vacuum are
defined by the Maxwell equations

□A ¼ −4πe0
XN
a

vaδðr − vat − raÞ; ð3Þ

□φ ¼ −4πe0
XN
a

δðr − vat − raÞ; ð4Þ

where □ is the d’Alembert operator □ ¼ ∂
2=∂t2 −∇2, the

sum runs over all particles and each particle is located at the
initial position ra and has the velocity va.
The Fourier transform of Eqs. (3) and (4) allows one to

find the potentials and calculate the electromagnetic fields.

Eðr; tÞ ¼
XN
a

Eaðr; tÞ; ð5Þ

Eaðr; tÞ ¼ −
ie0
2π2

Z
dk

k − vaðkvaÞ
k2 − ðkvaÞ2

eikðr−vat−raÞ; ð6Þ

Hðr; tÞ ¼
XN
a

va × Eaðr; tÞ: ð7Þ

Now we estimate the fields in Eq. (5). For this, we
consider that the electron beam has a small angular
divergence, such that the velocity of each particle can be
presented as

FIG. 2. Scheme of the photon generation in the case of PXR-EAD geometry. Lb ∼ 10−4 cm is the modulated bunch length,
Labs ∼ 10−2 cm is the radiation absorption length.

SUPERRADIANT PARAMETRIC X-RAY EMISSION PHYS. REV. ACCEL. BEAMS 25, 120702 (2022)

120702-3



va ¼ vþ v0a; v0a ≪ v; ð8Þ

1 − v2 ¼ m2

E2
≡ γ−2 ≪ 1: ð9Þ

We direct the x axis along the mean velocity v of the
bunch and suppose that the particle angular divergence
is small with respect to this axis, i.e., θa < γ−1, where
the angle θa defines this angular divergence. The
fluctuations of the absolute value of the velocity are
related to the nonmonochromaticity ΔE of the beam
jva − vj ≈ γ−2ΔE=E ≪ γ−2. Taking this into account, we
can represent the components of the fluctuation vector v0a of
the particle velocity with the accuracy up to γ−2 as

v0a ¼ θa −
θ2a
2
ex; θ2a ¼ θ2az þ θ2ay; ð10Þ

θa ¼ θazez þ θayey; ð11Þ

where ex, ey, ez are the unit vectors (see Fig. 2).
In this approximation, the denominator of the field

amplitude in Eq. (6) equals to

k2xγ−2 þ ðk⊥ − kxθaÞ2 ð12Þ

and demonstrates that the main contribution to the field
amplitude comes from the values

θa ≃
k⊥
kx

≃ γ−1: ð13Þ

For these angles, the field to an accuracy γ−1 becomes
transverse since jExj ≃ γ−1jE⊥j and reads

E⊥ðr; tÞ ¼
XN
a

Ea⊥ðr; tÞ; ð14Þ

Ea⊥ðr; tÞ ¼ −
ie0
2π2

Z
dk

ðk⊥ − θakxÞeikðr−vat−raÞ
k2xγ−2 þ ðk⊥ − kxθaÞ2

;

Hðr; tÞ ¼ v × E⊥ðr; tÞ: ð15Þ

C. Spectral density of the equivalent photons

The projection of the energy flux of the electromagnetic
field on the x axis is determined by the following
expression [16]:

Π ¼ 1

4π

Z
∞

−∞
dzdydt½EH�x ¼

Z
∞

−∞
dxdydtjE⊥j2

≈
e20

2π2v

X
a

X
b

Z
dk

ðk⊥ − θakxÞðk⊥ − θbkxÞeikðrb−raÞeixkðv0a−v0bÞ
ðk2xγ−2 þ ðk⊥ − kxθaÞ2Þðk2xγ−2 þ ðk⊥ − kxθbÞ2Þ

; ð16Þ

which can be split into the sum of two parts

Π ¼ Πsp þ Πcoh: ð17Þ

The incoherent (spontaneous) flux Πsp is given by the part
of the sum when the summation indices coincide, i.e.,
a ¼ b. After integration of this part over the variable
ðk⊥ − θakzÞ ⇒ k⊥, the standard expression of the spectral
density of pseudophotons for the homogeneous electron
beam is obtained [16]

Πsp ¼
e20

v2π2
N
Z

dk
k2⊥

½k2xγ−2 þ k2⊥�2
¼

Z
ωnspðωÞdω;

nspðωÞ ¼ N
2e20
πω

ln
mγ

ω
; ð18Þ

where jk⊥ − θaj ≤ ωγ−1, N is the total number of electrons
in the beam, and m is the mass of the electron.

The coherent part is given via the following expression:

Πcoh ¼
e20

2vπ2

Z
dkjFðkÞj2;

FðkÞ ¼
XN
a

ðk⊥ − θakxÞ
k2xγ−2 þ ðk⊥ − kxθaÞ2

e−ikraeixkv
0
a ; ð19Þ

where v0a ¼ vθa. To compute the form factor FðkÞ of the
beam, we need to average the obtained expression over
the distribution on the coordinates ra and the angles θa of the
electrons in the beam. For this, we can employ the theory of
the SASE mechanism of the XFEL, which yields the
following expression for the desired distribution [10,19]:

ρðθÞ ¼ 1

πσ2a
e−ðθ2zþθ2yÞ=σ2a ; ð20Þ

fðrÞ ¼ 1

πσ2b
e−ðz

2þy2Þ=σ2b 1
K

XK
l¼0

1ffiffiffi
π

p
σc

e−ðx−ld0Þ2=σ2c : ð21Þ
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Here the quantity σa defines the angular spread of the
direction of the velocity, σb is the variance of the
distribution over the transverse coordinates, d0 is the
period of the oscillations of the modulated bunch of
length Lb ¼ Kd0. It is also assumed that the parameter σc
that defines the fluctuations of the period of the oscil-
lations σc ≪ d0 and the number of the minibunches
K ≫ 1. In addition, the distribution functions are nor-
malized to unity.
Having this distribution, we can approximately substi-

tute the summation over the discrete index a by the
integration over the continuous variables

XN
a

⇒ N
Z

drdθfðrÞρðθÞ: ð22Þ

Let us now compute the integrals over the coordinates
and angles. The coordinate part is simple and is given via
the Fourier transform of the Gaussian integral

Z
dr fðrÞe−ikr ¼ e−ðk

2
zþk2yÞσ2b=4 1

K

XK
l¼0

e−ikxld0e−k
2
xσ

2
c=4

¼ e−ðk
2
zþk2yÞσ2b=4 1 − eiLbkx

Kð1 − eid0kxÞ e
−k2xσ2c=4: ð23Þ

The averaging over the angular spreads is reduced to the
following integral:

I ¼
Z

dθ
e−θ

2=σ2a

kx

1

πσ2a

ðθk − θÞeixkxvθk·θ
ðγ−2 þ ðθk − θÞ2Þ ; ð24Þ

where θk ¼ k⊥=k. To compute this integral, we first note
that the characteristic angular spread of pseudophotons
is determined by the parameter θk ≈ γ−1. Consequently,
if the condition θ ≈ σa ≪ γ−1 is fulfilled, we can ignore
the influence of the angular spread of the electron on the
angular spread of pseudophotons. This condition can be
fulfilled for realistic emittances of electron beams [20].
As a result, in this approximation, the desired integral is
given by

I ¼ 1

kx

θk
ðγ−2 þ θ2kÞ

e−ðxkvÞ
2σ2aθ2k=4: ð25Þ

As a result, we can find the expression for the coherent part
Πcoh of the pseudophotons flux

Πcoh ¼
N2e20
2vπ2

Z
∞

0

dkx

Z
dθk

θ2ke
−ðxkvÞ2σ2aθ2k=2−θ2kk2σ2b=2

ðγ−2 þ θ2kÞ2

×

���� 1 − eiLbkx

Kð1 − eid0kxÞ
����
2

e−k
2
xσ

2
c=2: ð26Þ

We first evaluate the integral over the angles

J ¼
Z

dθk
θ2k

ðγ−2 þ θ2kÞ2
e−a

2θ2k ; ð27Þ

with a2 ¼ 1=2½ðxkvÞ2σ2a þ k2σ2b�. The evaluation of this
integral is done in the following way:

J ¼ π

Z
∞

0

du
u

ðγ−2 þ uÞ2 e
−a2u

¼ π

�Z
∞

0

du
e−a

2u

ðγ−2 þ uÞ −
Z

∞

0

dx
γ−2e−a

2u

ðγ−2 þ uÞ2
�

¼ π½−ea2γ−2Eið−a2γ−2Þð1þ γ−2a2Þ − 1�: ð28Þ

In this equation, EiðxÞ is the integral exponential func-
tion [21].
Thus, the coherent part of the spectral density of the

pseudophotons is represented in the following way
(kx ¼ ω=v;K ¼ Lb

d0
):

ncohðωÞ ≈
N2e20
2πωv2

d20
L2
b

½−ea2γ−2Eið−a2γ−2Þð1þ γ−2a2Þ − 1�

×

���� 1 − eiLbω=v

ð1 − eid0ω=vÞ

����
2

exp½−ω2σ2c=2v2�: ð29Þ

The spectral density ncohðωÞ of coherent pseudophotons
has sharp maximums when the frequency ω ¼ 2πl=d0, l ¼
1; 2;… and the result can be represented in the following
form:

ncohðωÞ ≈
N2e20
2πωv2

d20
L2
b

½−ea2γ−2Eið−a2γ−2Þð1þ γ−2a2Þ − 1�

×
XK
l¼1

sin2½Lbðω − 2πl=d0Þ=2v�
sin2½d0ðω − 2πl=d0Þ=2v�

e−2π
2l2σ2c=d20 :

ð30Þ

The factor e−2π
2σ2c=d20 ≤ 1 as we supposed that fluctuation

of the modulation period defined by the parameter
σc < d0=2π. These fluctuations are conditioned by the
stochasticity inherent to the SASE mechanism.
Let us compare the contributions from the coherent

ncohðωÞ and incoherent nspðωÞ parts of the spectral den-
sities in Eq. (18). For this, we choose the distribution of the
pseudophotons of the LCLS XFEL [20] facility. The typical
electron energy is E ¼ 6.7 GeV which corresponds to the
electron gamma factor of γ ≈ 13111. The parameters σa ¼
10−4 and σb ¼ 2 × 10−5 cm, parameter a2γ−2 ≈ 0.2. Let the
bunch charge be Q ¼ 0.2 nC that corresponds to N ¼
1.2 × 109 electrons. The duration of the photon pulse
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we can choose to be 25 fs, which corresponds to the
modulated bunch length of Lb ¼ 8.3 × 10−5 cm and the
period of the modulation d0 ¼ 10−8 cm with the parameter
σc ¼ 10−9 cm. In Fig. 3, we plot the incoherent and two
harmonics of the coherent spectral densities of the pseu-
dophotons of a modulated beam with these parameters.
Finally, the typical frequency spread for the XFEL pulse

Δω=ω0 ≈ 10−3 and the frequency ω0 ¼ 6.28 × 108 cm−1.
By using a spectral density nspðωÞ from Eq. (18), we can
evaluate the number of the incoherent pseudophotons in

this interval as the integral Nsp ¼
R ω0þΔω

2

ω0−Δω
2

nspðωÞdω≈
nspðω0ÞΔω. Thus, we can estimate the number of incoher-
ent photons in the following way:

Nsp ¼ nspðω0ÞΔω ¼ N
2e20
π

Δω
ω0

ln
E
ω0

¼ 1.1 × 105; ð31Þ

where E ¼ mγ is the energy of the electron.
This number is significantly smaller than the correspond-

ing number of photons emitted by the XFEL pulse [20].
At the same time, the integration of the coherent

distribution in the vicinity of the resonant frequency ωl ¼
2πl=d0 can be fulfilled by means of the formula

sin2½Lbðω − 2πl=d0Þ=2v�
sin2½d0ðω − 2πl=d0Þ=2v�

≈ 2πv
Lb

d20
δðω − 2πl=d0Þ;

Lb ≫ d0: ð32Þ

The usage of Eq. (32) in Eq. (30) and integration of Ncoh ¼Rω0þΔω
2

ω0−Δω
2

ncohðωÞdω ≈ 2πvLb=d20ncohðω0Þ yield the number

of pseudophotons in the first harmonic (l ¼ 1)

Ncoh ¼
N2e20
ω0Lb

�
ln

1

a2γ−2
− C − 1

�
≈ 5.9 × 1011;

a2γ−2 ≪ 1: ð33Þ

Here C ≈ 0.577 is the Euler constant. The number Ncoh is
comparable with the number of photons in the undulator
XFEL pulse. In addition, the number of pseudophotons,
corresponding to the second harmonic (l ¼ 2) is 10
times less.
As was discussed above, the reflection from the crys-

tallographic planes leads to the conversion of the pseudo-
photons into real photons and corresponds to the SPXE
process. The reflection coefficient of the pseudophotons
from the crystallographic planes is a function of the
pseudophoton frequency. Consequently, the intensity of
the SPXE will reach its maximum when the maximum of
the spectral density of the pseudophotons coincides with
the maximum of their reflection coefficient. If the position
of a crystal is chosen as shown in Fig. 2, the pseudophotons
whose wave vectors k satisfy Bragg’s condition with one of
the reciprocal lattice vectors g of the crystal will have
maximal reflection coefficient, i.e.,

2k0 · gþ g2 ¼ 0; ð34Þ

where k0 ¼ ω0v=v.
This means that the crystal should be oriented in such a

way to the electron bunch that the angle between the
electron velocity and the reflection plane equals

θB ¼ arcsin
g

2ω0

ð35Þ

and the SPXE pulse will propagate in the direction of
k0 þ g under the angle 2θB with respect to the electron
velocity, see Fig. 2.

III. DYNAMIC THEORY OF SPXE

A. Electromagnetic field of SPXE

The analysis conducted in the previous sections is valid
for the situation when the crystal is thin enough and the
diffraction can be investigated in the framework of the
kinematic theory. However, the intensity of SPXE reaches
its maximum value when the electron propagates the
distances in the crystal larger than the corresponding
extinction length and consequently, the field created by
the particles should be investigated in the framework of the
dynamical diffraction theory [15].
This case for regular PXR was investigated in many

works and the spectral-angular distribution of the emitted
number of PXR quanta was obtained (see [1] and the
references therein). The direct generalization of that results
for the case of modulated beam leads to the following
general expression for the spectral-angular distribution of
the emitted number of quanta of SPXE photons:

FIG. 3. The incoherent and two harmonics of the coherent
pseudophotons spectral densities. The inset demonstrates the
zoomed-in peak structure.
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∂
2Nnωs

∂ω∂Ω
¼ e20ω

4π2
XN
a

XN
b

Z
EðþÞ
ks ðraðtÞ;ωÞvaeiωtdt

×
Z

EðþÞ�
ks ðrbðt0Þ;ωÞvbe−iωt0dt0;

raðtÞ ¼ ra þ vat; k ¼ −k0; k0 ¼ ωn; ð36Þ

where k0 is the wave vector of the photons emitted in the

solid angle dΩ, EðþÞ
ks ðr;ωÞ is the solution of the Maxwell

equations, which describes the diffraction of the plane
wave eseik·r with the polarization es on the crystal and
possesses the asymptotic of the plane wave and an
outgoing spherical wave. The use of the wave vector

k ¼ −k0 and the field EðþÞ
ks is related to the fact that for

the radiation exited from the crystal, one should exploit
the reciprocity theorem of optics [22] that relates the

waves with different asymptotics, i.e., EðþÞ
ks ¼ Eð−Þ�

−ks . In
addition, it was recently demonstrated that the intensity
of the PXR reaches maximal values in the so-called
grazing geometry when extremely asymmetric diffrac-
tion (EAD) happens. In this geometry, an electromag-
netic wave is incident on the crystal under a small angle
toward the crystal surface. For this reason, in addition to
the diffractional reflection, we need to take into account
a specularly reflected wave [15]. For the case of PXR,
this means that the bunch of electrons is moving along
the crystal surface inside the crystal and the vector kg ¼
kþ g is antiparallel to the electron velocity, i.e., kgkð−vÞ
(see Fig. 4).
To find the field created by the particle inside a crystal,

we can use the results from Ref. [23] where a two-wave
approximation [1,15] of the dynamical diffraction theory
was employed according to which the field within the
crystal is expressed as

EðþÞ
ks ðr;ωÞ ¼ esEkseikr þ e1sEkgse

ikgr; ð37Þ

kg ¼ kþ g: ð38Þ

Here es and e1s (s ¼ 1, 2) are the polarization vectors of the
incident and the diffracted waves (Fig. 4). Their amplitudes
satisfy the algebraic system of homogeneous equations

�
k2

k20
− 1 − χ0

�
Eks − csχ−gEkgs ¼ 0;

�
k2g
k20

− 1 − χ0

�
Ekgs − csχgEks ¼ 0; ð39Þ

where k0 ¼ ω, χ0, and χg are the Fourier components of the
crystal susceptibility χðrÞ

χðrÞ ¼
X
g

χgeig·r: ð40Þ

The coefficient cs ¼ 1 for the σ polarization (s ¼ 1) and
cs ¼ cos 2θB for the π polarization (s ¼ 2) of the incident
and diffracted waves, respectively. In addition, we note that
the waves of different polarizations propagate independ-
ently if we neglect terms of the order of ∼jχ0j2 in the
Maxwell equations [14,15,24].
The field amplitudes in vacuum and in crystal should

satisfy the boundary conditions on the crystal-vacuum
interface such that the total field intensity is continuous.
Additionally, one needs to take into account in vacuum not
only an incident wave but also a specularly reflected

diffracted wave EðspÞ
kgs

¼ e1sE
ðspÞ
kgs

exp½iðkk þ gkÞ · rþ ik0gzz�,
k0gz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − ðkk þ gkÞ2

q
, where kk and gk are the projec-

tions of the vectors on the crystal surface. As a result, the
following expressions for the field inside and outside the
crystal were found [23]

EðþÞ
ks ¼ eseik·r þ e1sE

ðspÞ
s eiðkkþgkÞ·reik0gzz; z > 0; ð41Þ

FIG. 4. The geometry for the dynamical diffraction theory of SPXE.
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EðþÞ
ks ¼ eik·r

X
μ¼1;2

e−ik0zϵμsðesEμs þ e1sEgμseig·rÞ; z < 0;

ð42Þ

where the x axis is directed along the propagation direc-
tion of the electron bunch and the z axis is directed
perpendicular to the crystal surface. The coordinate x is
changing in the limits 0 < x < L, with L being the crystal
length, Fig. 2, and the point z ¼ 0 denotes the crystal
surface with z < 0 as the crystal and z > 0 as vacuum. The
quantities ϵμs define the wave vector inside the crystal and
are determined from the condition that the system of
homogeneous equations (39) has a nontrivial solution.
The Q is normal to the crystal surface. The field amplitudes

EðspÞ
s , Eμs, and Egμs are found from the boundary con-

ditions. According to the boundary conditions, the in-plane
component kk of the wave vector is conserved. Finally, it
was found that the main contribution to the number of
emitted photons is given by the amplitude Eg1s which reads

Eg1s ¼
csχg

αB þ χ0
; ð43Þ

αB ¼ ðkþ gÞ2 − k20
k20

: ð44Þ

Here the coefficient αB defines the deviation from the
Bragg’s condition.

B. The radiation spectral-angular distribution

As in the case of kinematic theory, we can split the total
intensity in Eq. (36) into coherent and incoherent parts. The
latter part corresponds to the situation when in the double
sum we select only the terms with identical indices, i.e.,
a ¼ b. This contribution is proportional to the number of
electrons in the bunch N and corresponds to the sponta-
neous parametric x-ray radiation (PXR):

∂
2Nsp

nωs

∂ω∂Ω
¼ N

e20ω
4π2

����
Z

EðþÞ
ks ðrðtÞ;ωÞveiωtdt

����
2

;

rðtÞ ¼ r0 þ vt: ð45Þ

The integral over the electron trajectory was computed in
Ref. [23], which yields the

∂
2Nsp

nω

∂θx∂θy
¼ N

e20
4πℏc

½ðθy − θayÞ2 þ ðθx − θazÞ2cos22θB�jχgj2
½γ−2 þ ðθy − θayÞ2 þ ðθx − θazÞ2 − χ00�2

×
ð1 − e−Lk0χ

00
0
jθazjÞ

χ000jθazj
e−χ

00
0
k0jz0j: ð46Þ

In this equation, the angles θa; θ are the angular variables
of the electron and the emitted photon correspondingly
(Fig. 4). They define small deviations of the electron

velocity and the photon wave vector from the ideal values.
Therefore, we can introduce the following quantities:

va ¼ v

�
1 −

θ2a
2

�
ex þ θa; ðexθaÞ ¼ 0;

k ¼ k0

�
1 −

θ2a
2

�
þ k0θ; ðk0θÞ ¼ 0;

ωþ ðk0 þ gÞ · v ¼ 0; 2ðk0gÞ þ g2 ¼ 0: ð47Þ
The integral over θ and averaging over the electron

angles were computed in Ref. [23]. For example, for Si
crystal, the characteristic value of the photon number for
PXR in EAD geometry is

Nsp
PXR ≈ 2.2 × 10−5 × N ≈ 0.3 × 105; ð48Þ

for the bunchwith chargeQ0 ¼ 0.2 nC, i.e.,N ¼ 1.3 × 109.
A detailed comparison of the theoretical and experimen-

tal results for the spontaneous PXR in the EAD geometry
has been considered in the paper [25].
This value is comparable with the value of spontaneous

pseudophotons defined by Eq. (31) that is the crystal is
working as the reflective mirror for this interval of the
pseudophoton spectrum.
Now let us come back to compute the coherent part of the

distribution. We also perform the same substitution from
the summation over the discrete index by the integration
over the electron distribution. In this case, the calculation is
reduced to the calculation of the following averaging with
the distribution functions of the bunch:

∂
2Ncoh

n;ωs

∂ω∂Ω
¼ N2

e20ω
4π2

jFsðkÞj2 ð49Þ

FsðkÞ ¼
1

N

Z �XN
a

EðþÞ
ks ðraðtÞ;ωÞvaeiωt

	
dt; ð50Þ

va ¼ v

�
1 −

θ2a
2

�
þ vθa; v · θa ¼ 0: ð51Þ

Here we considered that the electron velocity has devia-
tions from the x axis and these deviations are described by the
θa. The vector v is the mean velocity of the electron bunch
and is directed along the x axis (Fig. 4).
As was already discussed, the SPXE emission is related

to the motion of the bunch of electrons in a thin layer inside
the crystal parallel to the crystal-vacuum interface. In this
case, the electron velocity is perpendicular to the normal Q
to the crystal surface, i.e., v · Q ¼ 0. We are interested in
the diffracted wave, that is the wave which is propagating in
the direction kg ¼ kþ g. Consequently, the main contri-
bution is given by the Eg1s amplitude. Therefore, the field
which is entering into the desired averaging reads
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EðþÞ
ks ðraðtÞ;ωÞeiωt ¼ e1sEg1s expfiðωþ kg · v − ωQ · θϵ1sÞt

þ ivkg · θat − ikg · vtθ2a=2

þ ikg · ra − ik0ra · Qϵ1sg: ð52Þ

According to the results of Ref. [23], the SPXE peak is
located near the direction defined by the conditions Bragg’s
diffraction condition

αB ¼ ðkþ gÞ2 − k20
k20

¼ 0: ð53Þ

The Cherenkov radiation condition

ðkþ gÞ · v ¼ −k0 ¼ −ω: ð54Þ

The condition that extremely asymmetric diffraction hap-
pens, i.e., the diffracted wave is propagating in the direction
of kg, which lies in the crystal plane defined by the normal
to the crystal surface Q

ðkþ gÞ · Q ¼ 0: ð55Þ

Taking into account these considerations, we can re-
present the vector kg in the following way:

kg ¼ −
ω

v2
v

�
1 −

θ2

2

�
þ ωθ; θ · v ¼ 0: ð56Þ

With this, the form factor of the bunch is defined by the
following integral with the accuracy ∼θ3:

Fsðω; θÞ ¼
Z

L

0

dte1s · v
csχg

αB þ χ0
eiðωþkg·v−ωQ·θϵ1sÞtJ;

J ¼
Z

dradθafðraÞρðθaÞ exp


iωθθatþ

iωtθ2a
2

þ iωð−xa þ θraÞ
�

ð57Þ

The evaluation of the integral J over electron angle and
coordinates with the Gaussian distribution [Eqs. (20) and
(21)] yields

J ¼ exp



−

ω2t2θ2σ2a
4ð1þ iωtσ2aÞ

−
ω2θ2σ2b

4
−
ω2σ2c
4

�

×
1 − eiLbω

Kð1 − eid0ωÞ : ð58Þ

The maxima of J as a function of ω are located on the
frequencies ω of the radiation, which is proportional to the
frequencies of the modulation of the electron beam, i.e.,
ω ¼ ω0n, where ω0 ¼ 2π=d0. In addition, it follows from
Eq. (58) that the major contribution to the coherent pulse of
SPXE comes from the part of an electron trajectory and

scattering angles for which the following conditions are
fulfilled:

ωtθσa < 1; ð59Þ

ωθσb < 1: ð60Þ

Since the angular spread σa of ultrarelativistic electrons
in the beam of XFEL is significantly smaller than the
angular spread of PXR photons, for which θ ≃

ffiffiffiffiffiffiffijχ00j
p

[1],
the terms ωtσ2a in Eq. (58) can be neglected. In this case,
one can perform the integration over time t in an analytical
form. This gives

Fsðω; θÞ ¼
csðe1s · vÞχg
αB þ χ0

1 − eiLbω

Kð1 − eid0ωÞ

× e−
ω2σ2c
4

−
ω2θ2σ2

b
4 e−

q2s
δ2

ffiffiffi
π

p
δ

×

�
Φ
�
Lδ
2

þ i
qs
δ

�
−Φ

�
−i

qs
δ

��
; ð61Þ

where ΦðxÞ ¼ 2ffiffi
π

p
R
∞
x e−y

2

dy is the complementary error

function, δ ¼ ωθσa, qs ¼ ωþ kg · v − ωQ · θϵ1s.
According to Ref. [23] when Eqs. (55) and (54) and the

additional condition θ ≫ σa are satisfied, the quantity αB is
expressed through the angular variables of a photon as

αB ≈ −ðγ−2 þ θ2Þ: ð62Þ
As a result, we obtain an expression for the spectral-

angular distribution of photons in the coherent part of the
SPXE pulse, which for the first harmonic u ¼ ω − 2π=d0

∂
2Ncoh

nωs

∂ω∂Ω
¼ N2

e20ω
4π2

c2sðe1s · vÞ2jχgj2
ðγ−2 þ θ2 − χ00Þ2

sin2 Lbu=2
K2 sin2 d0u=2

× exp



−
2π2σ2c
d2

−
ω2θ2σ2b

2
− 2

q2s
δ2

�

×
π

δ2

����Φ
�
Lδ
2

− i
qs
δ

�
−Φ

�
−i

qs
δ

�����
2

: ð63Þ

C. Characteristics of the SPXE pulse

Now we compute the total number of quanta in the
coherent part of SPXE. For this, we need to integrate the
spectral-angular distribution (63) over the angles and
frequencies. To compute the integral over the frequencies,
we make use of the following relation:

sin2 Lbu=2
K2 sin2 d0u=2

≈ 2π
1

Lb
δðω − ω0Þ; ð64Þ

which is valid when K ¼ Lb=d0 ≫ 1. Here ω0 ¼ 2π=d0.
Consequently, the integration over the frequency becomes
trivial
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∂
2Ncoh

nωs

∂Ω
¼ N2

e20ω0

2Lb

c2sðe1s · vÞ2jχgj2
ðγ−2 þ θ2 − χ00Þ2

× exp



−
2π2σ2c
d2

−
ω2
0θ

2σ2b
2

− 2
q2s
δ2

�

×
1

δ2

����Φ
�
Lδ
2

− i
qs
δ

�
−Φ

�
−i

qs
δ

�����
2
����
ω¼ω0

: ð65Þ

When an electron bunch moves in the crystal, its angular
divergence increases due to the multiple scattering on the
atoms of the crystal. As was demonstrated in Ref. [26] for
PXR from ultrarelativistic electrons, it can be taken into
account with the help of the substitution

γ−2 ⇒ γ̃−2 ¼ γ−2 þ θ2s ;

θ2s ¼
�
Es

E

�
2 L
LR

; ð66Þ

where LR is the radiation length [17] and Es ≈ 21 MeV.
Let us now investigate this expression for the case of an

ideal electron beam for which the following conditions are
fulfilled:

2π2σ2c
d20

< 1; ð67Þ

ω2θ2σ2b ≈ ω2jγ̃−2 − χ00jσ2b; ð68Þ

δ2L2 ¼ ðωθσaÞ2L2 ≈ ðωLσaÞ2jγ̃−2 − χ00j < 1: ð69Þ

The first condition means that the fluctuations of the
modulation period are rather small. The analogous con-
dition should be also fulfilled for the formation of the
XFEL pulse based on the undulator radiation [10,19]. As
well as for XFEL pulses, the stochasticity inherent to the
SASE mechanism gives rise to chaotic SPXE pulses with
strong fluctuations in their amplitudes and phases which
vary from shot to shot.
The meaning of the remaining ones is that the relative

transverse width and the angular spread of the particles in
the bunch are less than the angular divergence of the
photons in the PXR pulse [23]. These conditions restrict the
exploited electron beams only to the high quality ones with
a low emittance. For example, if we consider electrons with
the energy of 6.7 GeV, propagating through a silicon crystal
of a thickness L ¼ 1 cm and generating photons with the
energy of 10 KeV (jχ00j ≈ 10−5), then we get the following
estimation for the beam emittance (under these conditions
γ̃−2 < jχ00j and the restrictions on the emittance are weakly
dependent on the electron energy):

σ2b < 10−11 cm; σ2a < 10−9 rad;

ϵ ¼ σbσa < 10−10 cm × rad; ð70Þ

which is sizable for the LCLS facility.
Under the assumptions of Eqs. (67)–(69), we can further

simplify the expression for the number of emitted photons.
For this, we notice that for large x, the complementary error
function can be replaced by its asymptotic representation
ΦðxÞ ≈ 1=

ffiffiffi
π

p
e−x

2

=x and Eq. (65) is further simplified

∂Ncoh
ns

∂Ω
¼ N2

e20ω0

2Lb

c2sðe1s · vÞ2jχgj2
ðγ̃−2 þ θ2 − χ00Þ2

×
1

π

���� 1 − eiqsL

qs

����
2

: ð71Þ

Now taking into account that when ω0L ≫ 1, we
replace [1]

1

π

���� 1 − eiqsL

qs

����
2

¼ 4

π

sin2 Lqs=2
q2s

≈ 2LδðqsÞ ð72Þ

and integrate over the angle θx in the plane, defined by the
vectors v and g with the value

qs ¼ ω0 þ ðkg · vÞ − ω0ϵ1sθx

≈ ω0 þ ðk0 þ gÞ · v − ω0θx sin 2θB ¼ 0;

θx ¼
ðk0 þ gÞ · v
ω0 sin 2θB

¼ 0: ð73Þ

As a result, the photons are emitted with the polarization
proportional to θy and directed along the vector v × g
(Fig. 4). Thus, we get

∂Ncoh
θy

∂θy
¼ N2

e20jχgj2θ2y
ðγ̃−2 þ θ2y − χ00Þ2

L
Lb sin 2θB

: ð74Þ

We pay attention here to the fact that the SPXE pulse has
an asymmetric angular distribution in comparison with the
XFEL pulse. According to Eq. (74), the angular widths of
the SPXE pulse in the directions of x and y axes are
determined by the following:

Δθx ≈ Δω=ω ≈ 1=K ∼ 10−4;

Δθy ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃−2 − χ00

q
∼ 10−3: ð75Þ

Finally, after the integration over the remaining angle θy,
one obtains the total number of the SPXE photons:

NSPXE ¼ N2
e20jχgj2π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃−2 − χ00

p L
Lb sin 2θB

: ð76Þ

This result provides a clear qualitative interpretation if
we relate NSPXE with the number of the coherent
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pseudophotons Ncoh, defined by Eq. (33). With logarithmic
accuracy, one obtains

NSPXE ≈
π

2 sin 2θB

jχgj2ω0Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃−2 − χ00

p Ncoh: ð77Þ

The reflection coefficient R of x-ray radiation on the
crystallographic planes is defined by the equation [24]

R ≈ jχgj2ðω0LÞ2

Here the Bragg’s condition is fulfilled.
If one takes into account the ratio of the angular width of

the Bragg’s peak ΔθB ≈ ðω0LÞ−1 to the angular spread of
the pseudophotons Δθps ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃−2 − χ00

p
, then Eq. (77) takes

the following form:

NSPXE ≈
π

2 sin 2θB
R
ΔθB
Δθps

Ncoh: ð78Þ

This relation demonstrates that the SPXE emerges as a
result of the reflection of coherent pseudophotons from the
crystallographic planes. The frequencies of these pseudo-
photons are located near the frequency of the reso-
nance ω0 ¼ 2π=d0.
The real photons are emitted under the large angle 2θB to

the electron velocity. Thus, by choosing the orientation of
the crystal, the photons can be directed in any desired
location. This allows one to obtain additional experimental
windows in the XFEL experiments.
In order to get a quantitative estimation, we consider

that an electron bunch has a charge of 0.2 nC and the
length Lb ¼ 8.3 × 10−5 cm.
For the crystal parameters, we will employ the values

taken from the x-ray database [27] for the SPXE radiation
generated in a Si crystal by the reflection (400) and
θB ¼ π=4

ℏωB¼6.45 keV; k0¼3.27×108 cm−1;

E¼6.7GeV; jχgj¼0.12×10−4; χ00¼−0.24×10−5;

L¼1.0 cm; γ̃−2¼7.5×10−7 ð79Þ

The crystal surface is defined by the plane h110i. The
photons will be emitted under the angle π=2 to the electron
velocity.
As a result, we obtain the number of photons in the

coherent part of SPXE

NSPXE ≈ 5.7 × 1012 quanta ð80Þ

with the angular spread δθ and spectral width Δω=ω of the
order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃−2 − χ00j

p
≈ 0.51 × 10−3, which are comparable

with the XFEL values.

Also, we pay attention to the fact that according to
Eq. (2), the higher harmonics of SPXE will be generated
(for the harmonic n, the condition πnσc < d should be
satisfied). Moreover, they all will be directed under differ-
ent angles with respect to the electron velocity. For
example, for the same crystal parameters, the photons with
energy ℏωB ¼ 12.9 keV will be generated under the angle
40.5° to the electron velocity. This allows one to obtain also
intensive pulses of the harder x rays without the need to
change the electron energy which is not possible for XFEL.
It is important to notice that the heating of the crystal and

the losses of the energy by the electron beam inside the
crystal in the SPXE are governed by the same processes as
in the case of PXR, which were recently analyzed in the
work [8].

IV. CONCLUSIONS

In the present paper, a new application of the modulated
electron bunches is considered. It is supposed that such
bunches are formed in the XFEL undulator due to the
SASE mechanism and it is shown that the spectrum of the
self-electromagnetic field (pseudophoton spectrum) of such
bunches essentially transforms and includes intense peaks
at the frequencies proportional to the modulation fre-
quency. When such a bunch goes through the crystal
disposed at the undulator exit, the superradiant parametric
x-ray emission (SPXE) is generated. Electrons move in the
thin layer along the crystal surface and generate an x-ray
pulse that is emitted at a large angle to the direction of the
electron velocity. The intensity of this pulse is proportional
to the square of the number of electrons in the bunch and its
characteristics are comparable with the parameter of the
main XFEL pulse, which is directed along the electron
velocity. SPXE pulses can be used for the creation of
additional windows for XFEL. Moreover, the higher
harmonics of SPXE can be used for the generation of
the pulses of harder x rays and they do not require changing
the energy of the electron bunch.
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