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The ALS-U is the upgrade of the existing Lawrence Berkeley National Laboratory Advanced Light
Source to a diffraction-limited soft x-ray light source. Here we present the lattice correction studies and
commissioning simulations demonstrating that the proposed machine design can be expected to deliver the
intended performance when realistic errors and perturbations are fully accounted for. Critical to this
demonstration are the high-fidelity, realistic simulations of the beam-based alignment process (both in turn-
by-turn mode during early commissioning and with stored beam) that are now made possible by the Toolkit
for Simulated Commissioning. In addition to presenting a statistical performance analysis based on a large
number of lattice error realizations, we also study the range of further improvements that can be obtained by
fine-tuning the correction chain to individual error seeds, mimicking the approach one would follow once
the machine is built.

DOI: 10.1103/PhysRevAccelBeams.25.110701

I. INTRODUCTION

TheAdvanced Light SourceUpgrade (ALS-U) project [1]
is underway at the Lawrence Berkeley National Laboratory
(LBNL) to replace the existing machine with a diffraction-
limited soft x-ray light source. The upgrade is part of the
ongoing trend toward a new generation of storage-ring light
sources initiated in 2016 with MAX-IV [2], now progressing
with the recent commissioning of ESRF-EBS [3] and
SIRIUS [4], and to be continued by a number of machines
currently under construction or design including, among
others, APS-U [5], SLS2 [6], DIAMOND-II [7], SOLEIL
upgrade [8], ELETTRA 2.0 [9], and PETRA-IV [10].
The ALS-U Storage Ring (SR) will be an approximately

100 pm natural emittance, 200 m circumference, and
2-GeV energy machine (see Table I). An accumulator ring
(AR) required for swap-out injection, similar in size to the
SR, will be installed and commissioned first. The AR
lattice error analysis and commissioning simulations were
reported in [11] using a newly developed simulation tool,
the Toolkit for Simulated Commissioning (SC) [12], built
on Accelerator Toolbox (AT) utilities [13]. In this paper, we
apply the Toolkit to the SR.
Arguably, lattice error analysis and correction are more

critical to the ALS-U SR than to any other new-generation
machine currently under consideration. The aggressive

emittance target is met with a nine-bend achromat lattice
in an unconventional configuration that enhances the par-
ticle-dynamics nonlinearities. Even before errors are factored
in, the large nonlinearities naturally result in a small dynamic
aperture and, in combination with the relatively low beam
energy, short lifetime. The lattice configuration is hybrid-like
with dispersion bumps at the two ends of each arc to
accommodate the chromatic sextupoles. The tight available
space, however, limits the number of chromatic sextupole
families to only two. This prevents the compensation of
certain higher-order nonlinearities, which would be enabled
by a more conventional hybrid or classical high-order MBA
design, and requires stronger sextupoles. The combination of
strong sextupole andquadrupolemagnetsmakes themachine
sensitive to lattice errors, a problem compounded by the low
beam energy, which makes insertion-devices (ID) perturba-
tions also important.
The error analysis presented in this paper builds upon

[11,14] and validates the lattice design adopted for the
ALS-U and demonstrates that, in spite of the beam-
dynamic challenges, effective error correction strategies
can be devised to reduce further erosion of the small
dynamic and momentum aperture and achieve the desired
beam quality and operational goals. Among the latter, the
goal of a 0.5 h minimum lifetime (set by user-radiation
stability requirements, hazard-radiation limitations, and the
existing injector-system capacity) is the most significant.
Lattice error modeling, analysis, and correction need to

be comprehensive, accurate, and realistic. By realistic, we
mean that correction procedures should simulate and
represent with fidelity the diagnostic signals available from
the control room and the actions that can be taken by the
operator. From the start, this was one of the principles that
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inspired the development of the Toolkit. The Toolkit has
undergone substantial updates since its initial publication
and application to AR [15]. New features include enhanced
capabilities to model fully 6D misalignments [16], more
flexible handling of the higher-order multipole field errors,
and more realistic correction algorithms.
Systematic multipoles can now be dynamically updated

each time the (main or corrector) coil excitation is changed.
For the ALS-U SR, this is particularly important since all
correctors are embedded in the main magnets and the
sextupole multipole errors associated with the correctors
are relatively large.
Regarding the correction algorithms, the most important

extension is a comprehensive beam-based alignment
(BBA) routine. The algorithm is able to perform BBA
with turn-by-turn BPM data with only two turns of beam
transmission which is critical in early commissioning in
order to achieve beam capture. Moreover, the optics
correction capability at ALS-U critically depends on the
ability to perform BBA on combined function quadrupoles.
For both cases, we present a comprehensive investigation
into the BBA requirements and capabilities.
After evaluating the commissioning simulation on a

large set of 500 error seeds, we study the effect of tailoring
the correction chain to individual error seeds and quantify
the final performance improvement in a statistically mean-
ingful way.
Besides the ALS-U project, the Toolkit is currently being

used in the design of ALBA-II [17], DIAMOND-II [18],
SOLEIL upgrade [19], ELETTRA 2.0 [20], NSLS-IIU [21],
and PETRA-IV [22].
The outline of the paper is as follows: In Sec. II, we give

an overview of the ALS-U SR and machine layout, present
the relevant error sources, and a first cursory assessment of
their effects. A detailed discussion of the BBA routines
used in the commissioning simulation is given in Sec. III.
The main results of the paper are in Sec. IV where the

complete start-to-finish commissioning process is simu-
lated in its logical order demonstrating the attainment of the
desired machine performance. The final Sec. V discusses
additional fine-tuning of the error-correction algorithms
that can lead to further improvements.

II. LATTICE AND MACHINE MODEL

A. Lattice and layout

With straight sections exactly overlapping those of the
present-day ALS, the SR layout has an approximate 12-fold
symmetry, mildly broken by three pairs of high-field
(3.2 T) “hard-bend” permanent-magnet dipoles, each pair
located in the middle of an arc every four sectors. All the
nine main bends in a “normal” (i.e., without hard bends)
sector are combined-function (defocusing) magnets;
reverse bending occurs in all the arc focusing quadrupoles
located between the main bends. In the sectors where they
are present, the single-function hard-bends replace the
normal bends no. 4 and 6 and each one is flanked by
two thin defocusing quadrupoles contained within the
footprint of the normal bend. By design, the betatron-phase
advances through all sector arcs are the same. The magnet
specifications can be found in Table II.
Injection into the SR is on axis with bunch-train swap-out.

During normal operations, 11 trains consisting of 25 or
26 bunches and separated by 10 ns (four empty rf buckets) are
stored. About every 30 s, a full train is extracted and replaced
with a fresh train from the AR. The extracted train is
transferred into the AR where it is replenished with a top-
off injection from the booster before the next swap-out cycle.
The studies presentedheredonot include tracking through the
AR-to-SR (ATS) transfer line and the simulations begin at the
SR injection point. Errors and imperfections accumulated by
the beam through theATS are accounted for by an appropriate
specification of the beam’s initial conditions at injection.
A schematic of the lattice including the position of

corrector magnets (CMs) and beam-position monitors
(BPMs) is shown in Fig. 1. There are 19 BPMs per sector,
all suitable for turn-by-turn evaluation. All sextupoles and
almost all quadrupoles are adjacent to a BPM. All quadru-
poles with the exception of QF1 and QD1 at the two ends of
each straight section contain horizontal/vertical dipole cor-
rectors and are slightly offset to provide reverse bending. The
distribution of girders can be seen in Fig. 2.
All main bending magnets (with the exception of the first

and last bend in each arc) have horizontal-dipole trim coils
to enable tuning of the quadrupole field strength in a �5%
range while maintaining the design bending angle. Note
that in the simulations the corresponding change of the
HCM (horizontal corrector magnet) for a given change in
the quadrupole main coil is calculated and applied appro-
priately each time the set points are changed while
realistically considering calibration errors.
In total, 25 horizontal and 18 vertical dipole corrector

coils per sector are available; of these, the two pairs on the

TABLE I. ALS-U storage-ring main parameters.

Electron energy, E 2.0 eV
Circumference, C 196.51 m
Tune, νx=νy 41.358=20.353
Natural chromaticity, ξ0x=ξ0y −64.3= − 64.8
Chromaticity during operation, ξx=ξy 2=1
Momentum compaction, αc 2.025 × 10−4
Bunch charge, Q 1.15 nC

Natural rms emittance, ϵx0 108 pm rad
Natural rms energy spread, σδ 1.02 × 10−3
Radiation energy loss/turn (no IDs), U0 245 keV
Damping times, τx=τy=τz 5.56=10.7=9.97 ms

Harmonic number, h 328
Main rf cavity frequency 500.390 MHz
Main rf cavity voltage 0.6 MV
Synchrotron tune (w/o 3HC, no IDs), νs 1.6 × 10−3
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two ends of each straight section (embedded in the
harmonic sextupoles) are designed for both slow and fast
orbit correction. Skew-quadrupole corrector coils are
embedded in all harmonic and chromatic sextupole mag-
nets. In addition, the chromatic sextupoles have normal-
quadrupole trim coils for BBA.
The physical aperture model adopted for the lattice-error

studies consists of a round chamber with a 6-mm radius
everywhere, except for the IDs and the injection/extraction
straight section. This is a conservative envelope not

crediting portions of the arc chamber and straight sections
where the inner aperture radius is 10 mm. A conservative
3-mminner-radius round chamber is assumed for all IDs. The
vacuum chamber in Sector 1 injection/extraction straight is
also slightly conservatively modeled as having a uniform
rectangular cross section with 6-mm vertical aperture and
[−2 mm, 3 mm] horizontal aperture. Generally, the physical
aperture details are not very important since the dynamic
aperture (DA) is substantially narrower. In this study,
collimators are not included.

B. Error sources

The approach to the lattice-error analysis is similar to the
one followed for the ALS-U AR [15]. The assumed error
tolerances are specified in Tables III and IV. Random errors
are generated following a Gaussian distribution with a 2σ
cutoff.
Misalignments. We consider transverse horizontal and

vertical offsets of sectors (full cells), girders, and magnets
within one girder as well as longitudinal magnet offsets and
girder rolls and magnet rolls around the beam axis. In
contrast to other error sources the transverse misalignments
of magnets and girders are truncated at 3σ.
The implementation of the misalignment modeling is

schematically illustrated in Fig. 3. Girder and sector start-
and end-points each have offset errors. The resulting magnet
pitch and yaw angles are calculatedwith the support structure
lengths by assuming a straight line between start end
endpoints. The roll error of a magnet is the sum of the
individual magnet roll and the roll of the girder on which it is
mounted. Similarly, the overall offset of a particular magnet
from the design axis is the sum of the offset of the sector
relative to its design position, the offset of the girder relative
to the sector, and theoffset of themagnet relative to thegirder.

TABLE II. Baseline-lattice normal sector specifications for the magnets’ effective length L, bending angle θ and field B0, quadrupole
and sextupole unnormalized B0, B00 and normalized K1, K2 (MAD convention) gradient-field components. All magnets have two counts
per sector, except for B3 (five counts per sector). A negative bending angle and B field indicate reverse bending.

Name L (m) θ (deg) B0 (T) Offset [mm] K1 (m−2) B0 (T/m) K2 (m−3) B00 (T=m2)

B1 0.34 3.333 1.141 · · · −3.000 −20.01 · · · · · ·
B2 0.5 3.646 0.849 · · · −7.057 −47.08 · · · · · ·
B3 0.5 3.763 0.876 · · · −7.057 −47.08 · · · · · ·

QF1 0.18 · · · · · · · · · 13.77 91.85 · · · · · ·
QF2 0.19 −0.0914 −0.056 −0.824 10.22 68.20 · · · · · ·
QF3 0.115 −0.0062 −0.006 −0.090 10.55 70.36 · · · · · ·
QF4 0.305 −0.429 −0.164 −1.609 15.28 101.95 · · · · · ·
QF5 0.305 −0.429 −0.164 −1.556 15.79 105.37 · · · · · ·
QF6 0.305 −0.429 −0.164 −1.560 15.76 105.16 · · · · · ·
QD1 0.14 · · · · · · · · · −13.43 −89.61 · · · · · ·

SF 0.28 · · · · · · · · · · · · · · · 1563. 10,430
SD 0.28 · · · · · · · · · · · · · · · −1280. 8,540
SHH 0.075 · · · · · · · · · · · · · · · 77.72 518.5
SHH2 0.075 · · · · · · · · · · · · · · · −1156. 7,712

FIG. 1. Lattice and magnet layout in a normal (i.e., without hard
bends) sector. Shown are the betatron and the dispersion
functions (top), the aperture model, and the distribution of
magnets (center) and the distribution of corrector magnets, skew
quadrupole correctors, and beam-position monitors (bottom). The
center figure emphasizes that all quadrupoles, except for the two
pairs at each end, provide some degree of bending.
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The chromatic sextupolemagnets include quadrupole trim
coils to allow for beam-based alignment, see Sec. III B.
While only one of the coils is poweredat a time and saturation
effects are limited, the magnetic centers of the quadrupole
and the sextupole field may vary. Simulations not reported
here show that this effect can be measured with a stretched
wire system on the bench for each magnet to an accuracy of
6 μm rms for each coil. Thus, after BBA is performed on the
quadrupole trim coils in the simulations (Sec. IVG), we add
this systematic static error to the BBA results.
Magnet strength. The main field components of all

magnets are assigned a 0.1% rms fractional error.
Furthermore, a 2 × 10−4 rms calibration relative error
between the set-point change and the actual field is

assumed. Horizontal and vertical CMs have a calibration
error of 5% rms. Additionally, multipole errors are included
as discussed below.
BPMs. BPM errors considered in the commissioning

simulation include calibration errors as well as rolls around
the beam axis, offsets, noise for a single pass, and the stored
beam reading. The value for the single pass noise presup-
poses a bunch charge of 0.4 nC, conservatively smaller than
the design 1.15-nC charge/bunch. The BPM noise with the
stored beam is assuming a beam current of 50 mA, thus
1=10 of the design current.
Similar to the magnet misalignments, the overall BPM

offsets and rolls are the sum of the misalignments of the
girder and the individual BPM. Nonlinearities or saturation
effects are not included. The BPM does not return an offset
reading if more than 60% of the injected beam particles are
lost and a calibration error of the sum signal of 20% is
assumed.

TABLE III. Magnet misalignments and other errors (rms). Typical error distributions applied in simulations are
truncated 2σ Gaussians, though magnet and girder transverse misalignments are truncated at �3σ.

Type rms Type rms

Sector transverse offset 100 μm BPM offset 500 μm
Girder transverse offset 35 μm BPM roll 4 mrad
Magnet transverse offset 35 μm BPM noise (TbT) 30 μm
Magnet roll/pitch/yaw 200 μrad BPM noise (CO) 1 μm
Girder rolls 100 μrad BPM calibration 5%
Magnet longitudinal offset 200 μm BPM sum signal 20%

CM calibration 5% rf voltage 0.1%
Magnet field strength 0.1% rf phase 180°
Magnet calibration 0.02% rf frequency 0.1 kHz
Circumference 0.2 mm

TABLE IV. Storage ring injected-beam rms systematic and
jitter errors and rms injected beam sizes.

Systematic Jitter Beam size

Δx 500 μm 10 μm σx 64 μm
Δx0 200 μrad 10 μrad σx0 31 μrad
Δy 500 μm 1 μm σy 7.8 μm
Δy0 200 μrad 0.5 μrad σy0 2.6 μrad
ΔE=E 1 × 10−3 1 × 10−4 σδ 1 × 10−3

Δϕ 0 0.1° σϕ 0°

FIG. 2. CAD drawing of a normal arc sector including the four
girders (or “rafts”) and their supports. The nine main bends are
depicted in blue (B1 type), cyan (B2), and pink (B3). The eight
sextupoles are in red. The focusing and defocusing quadrupoles
are in green and yellow/light-green, respectively. In the non-
normal sectors, normal bends no. 4 and 6 are replaced by
permanent-magnet hard bends.

FIG. 3. Illustration of how roll and offset errors stack up in the
implementation of the SR misalignment error model. Note that
each full sector is assigned an offset, girders in a sector are
assigned offsets relative to their sector, and individual magnets
are assigned offsets relative to the girder on which they are
mounted. The girder yaw and pitch angles are derived from the
specification of the offsets at the girder ends.
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Injection. The injected-beam static and jitter errors are
listed in Table IV, reflecting earlier and partly outdated
working assumptions. The beam-jitter error numbers, in
particular, are now expected to be noticeably larger than
those reported here. These are primarily driven by the
pulsed elements involved in the swap-out injection. Further
work will be needed to assess the effect of larger jitter
before the requirements for the pulsed elements’ shot-to-
shot stability are finalized.
The systematic phase error between the injected beam

and the cavity is accounted for by the rf phase error. The
injected beam size is calculated assuming a beam with a
transverse emittance of 2 nm and 1% coupling and a beta
function mismatch of 20%.
Higher-order multipole errors. Simulations include the

magnets’ systematic and random higher-order multipole-
field errors with 2D multipole expansion

By þ iBx ¼
X

n¼1

ðBn − iAnÞ
ðxþ iyÞn−1

Rn−1 ; ð1Þ

where R is the reference radius, with n ¼ 1; 2;… corre-
sponding to the dipole, quadrupole,..., components. The
systematic and random higher-order multipole errors asso-
ciated with the magnet primary coils are reported in
Tables V and VI. The multipole errors for the hard bends
and those associated with the corrector coils are reported in
the Appendix. The quantities in the tables, an ¼ An=Cdes;m,
bn ¼ Bn=Cdes;m, are the multipoles expressed relative to the
design-field component Cdes;m. For the quadrupole and

combined-function dipole magnets Cdes;2 ¼ B2; for the
sextupole magnets Cdes;3 ¼ B3; for the horizontal and
vertical dipole correctors Cdes;1 ¼ B1 and Cdes;1 ¼ A1;
and for the skew quadrupole correctors Cdes;2 ¼ A2. For
random errors, an and bn represent the error distribution
rms width. The coefficients in Eq. (1) are related to the AT
normalized field coefficients by AAT

n ¼ −An=ðRn−1BρÞ,
and BAT

n ¼ Bn=ðRn−1BρÞ.
The reference radius is R ¼ 5 mm for all magnets

(primary and corrector coils) except for the hard bends
for which R ¼ 3 mm. The multipoles of the main bending
magnets are calculated along the design curved orbit and
those of the other magnets along the (straight) magnet axis.
All systematic multipole errors are dynamically updated

according to the current excitation of the corresponding
main coil. In the simulations, we have no lower-order
random multipole errors, on the assumption that these will
be measured and corrected before magnet installation.

C. Performance of the uncorrected lattice

To start to gain some insight into the lattice performance,
we studied the particle dynamics in the presence of all the
errors included in our model (misalignments, calibration
errors, etc.) but before any correction to the orbit or linear
optics. This provides an interesting way to draw compar-
isons with other machines. The study scaled all the errors
from Table III by the same multiplicative scaling factor;
thus, an error scaling factor of 1 corresponds to the nominal
errors.
For each lattice realization, we calculated the rms closed-

orbit deviation (COD), the dynamic aperture, and the

TABLE V. Systematic higher-order multipole errors in units of
10−4 (primary coils).

Q B1 B2/B3 SHH SHH2 SF/SD

b3 0 15 −11 · · · · · · · · ·
b4 0 −4.7 −30 0 0 0
b5 0 −3.3 1.6 −4.9 −2.2 0
b6 −17 1.2 −4.8 0 0 0
b7 0 −1.6 2.4 0.8 0.63 0
b8 0 −2.1 −1.5 0 0 0
b9 0 0.96 0.41 −9.2 −11 −13

TABLE VI. Random higher-order multipole errors in units of
10−4 (primary coils).

Q B1 B2/B3 S

a3=b3 3=3 0.7=3.7 0.7=3.7 6.5=6.5
a4=b4 0.17=1.2 0.4=0.38 0.4=0.38 7=7
a5=b5 0.13=0.13 0.17=0.17 0.17=0.17 2.8=2.8
a6=b6 0.027=0.014 0.1=0.1 0.1=0.1 1.2=1.2
a7=b7 0=0 0.1=0.1 0.1=0.1 0.19=0.19
a8=b8 0=0 0.1=0.1 0.1=0.1 0.02=0.02

FIG. 4. Lattice properties before correction for different scaling
factors of the nominal error set. The plots are the fraction of
lattice realizations at which the closed orbit exists (upper left), the
rms dynamic aperture (upper right), and the rms closed orbit
deviation (lower left) and beta beat (lower right). The calculations
in the top images were done with (dashed) and without (solid)
physical apertures, but the results are indistinguishable. Note that
beta beat and orbit error are only calculated for the cases in which
the closed orbit exists.
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beta-function distortion Δβ=β. The evaluation was per-
formed with and without the physical aperture model.
Results for 500 error realizations are shown in Fig. 4. At
about 10% of the nominal error amplitude, the closed orbit
exists in nearly 100% of the cases (upper left plot)
and drops to virtually zero at an error scaling factor of
0.3. The closed orbit was deemed to exist if the AT
findorbit6() function successfully converged to a
solution. Note that, in the range of errors considered, the
presence of the physical aperture has no visible conse-
quence. Not surprisingly, a comparison with the AR results
(see Fig. 9 in [15]) shows a considerably larger sensitivity
to errors, emphasizing the importance of an effective orbit
and optics correction strategy. A larger sensitivity is also
observed in comparison to similar studies performed for
APS-U [23].

III. BEAM-BASED ALIGNMENT

Beam-based alignment (BBA) is a well-established
technique [24,25] to effectively calibrate BPMs at the
10s μm level, well beyond the accuracy made possible
by conventional calibration or physical alignment methods.
In a machine like the ALS-U SR, this level of accuracy is
crucial to achieve successful orbit and linear-optics cor-
rection and ultimately avoid DA and momentum aperture
(MA) degradation. To do BBA, a BPM is paired with an
adjacent quadrupole or sextupole magnet; through con-
trolled closed-orbit perturbations or trajectory steering, one
searches for conditions where the beam crosses the mag-
netic center of the magnet of interest and then registers the
reading of the adjacent BPM when that occurs. The BPM
readings so obtained will then provide the targets for
closed-orbit or trajectory correction.
The implementation details of trajectory and stored-beam

BBA are presented in Secs. III A and III B. Special consid-
eration is given to corrector-magnet calibration errors in the
reverse-bending quadrupoles (Sec. III C) and the algorithm
for automatic outlier detection (Sec. III D).Additional details
(e.g., the actual BPM-magnet pairings, etc.) can be found in
the commissioning simulation script made available on-
line [26].

A. Trajectory beam-based alignment

As shown in the next section, the assumed 500 μm rms
BPMmechanical/electrical alignment is adequate to achieve
beam transmission over a few turns, but further progress in
the commissioning requires that we know the BPM offset
relative to the adjacent magnets’ centers with much better
accuracy. Before stored-beamBBA (the standard method for
beam-aided alignment in storage rings) can be performed, a
BBA on the beam trajectory is required, akin to the approach
followed in single-pass systems [27].
In the model-independent version that we have adopted,

trajectory BBA requires beam transmission through at least

two turns and for simplicity assumes control of the
injected-beam trajectory spatial and angular offsets to
control the trajectory excursion at the targeted magnet.
Trajectory BBA is done with the sextupole magnets off.
To estimate the accuracy requirement for trajectory

BBA, we carried out a preliminary simulation of beam
transmission in early commissioning (see Secs. IVA–IV E)
corresponding to various levels of assigned BPM misalign-
ment ranging from 0 to 500 μm. The evaluation was done
at two stages of commissioning: the first was after the
sextupoles are fully powered; the second was after the rf
system is also turned on. The results, shown in Fig. 5,
indicate that after rf commissioning, with BPM offset errors
below 150 μm rms, about 85% of the cases exhibit at least
1000-turn beam transmission, while this is true for only 1%
of the cases with 500-μm rms offset, see Fig. 6.
In these figures (and other figures later on), each curve

represents a cumulative distribution function (CDF). The
horizontal axis reading corresponding to CFD ¼ 0.5 iden-
tifies the median of the distribution function. It can be
concluded that the BPM offset should be known to about
50 μm in order to reliably achieve beam capture. The
algorithm for trajectory BBA that we have developed and

FIG. 5. Beam transmission at two stages of commissioning as
described later in Secs. IVA–IV E, after ramping up the sextupole
magnets (left) and after rf commissioning (right), assuming
various levels of BBA accuracy for the trajectory-based BBA
procedure as indicated in the inset. Each curve is the CDF of 100
lattice realizations.

FIG. 6. Correction chain failure rate vs assumed accuracy of the
trajectory (left) and closed-orbit BBA (right). For trajectory, BBA
failure is defined as not achieving 1000 turns beam transmission
after rf commissioning; for closed-orbit BBA as nonconvergence
of the linear-optics correction as described in Sec. IV H.
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used in the commissioning simulations (Sec. IV B) is
described in the following.
BBA requires the ability to vary the trajectory offset at

the magnet/BPM of interest over a reasonable range. In
principle, the trajectory offset can be adjusted either by
powering correctors in the ring or steering the injected
beam emerging from the ATS transfer line. Steering is the
only option for BBA on the first BPMs past the injection
point since there are not enough usable correctors available
up to that point. We found that steering the beam at
injection remains effective for BBA on all the other
BPMs as well; therefore, in our simulations, we have
generally adopted this “steering and no-corrector” method.
We assume that we can control the x=y spatial and

angular offsets of the trajectory at the injection point over
�0.9 mm and �0.9 mrad ranges. These ranges are cen-
tered on the offset errors at injection, as reported in
Table IV. In our simulations, we steer the beam by varying
the initial spacial offset by ΔU (where U ¼ X or Y) and
assume that the initial angular offset varies proportionally
to ΔU with a set proportionality factor. We proceed by
injecting the beam with þΔU offset and monitoring the
beam transmission; we then repeat with −ΔU. If in either
case the beam gets lost before the BPM targeted for BBA,
we reduce ΔU by 10% and repeat until the beam reaches
the BPM when lunching with both �ΔU offsets; this
defines ΔUmax. If the trajectory excursion at the BPM and
the paired magnet is too small, we change the phase
advance between the injection point and BPM by tuning
one of the quadrupoles in between; the first available
quadrupole is QF1 (we assume an 80–105% operational
range.) We vary the quadrupole strength within the above
range until the difference in the trajectory excursions
observed at the BPM for þΔUmax and −ΔUmax is larger
than a preset target, typically on the order of 0.5 mm.
With this preparation work completed, we are ready to

gather the data for BBA. For this purpose, we choose ten
equally separated values Uj in the interval ½−ΔUmax;
ΔUmax�. We impart these values to the injected beam and
for eachUj,we record the readinguj of the targetedBPMand
the readings uj;i of the downstream BPMs, where i is the
BPM index.We repeat themeasurement with the quadrupole
adjacent to the targeted BPM set at 95% and 105% of its
nominal strength. The relevant quantity is the difference
Δuj;i of the BPM readings corresponding to the two quadru-
pole settings. For each BPM data set, we perform a linear
regressionΔuj;i vs uj of the j ¼ 1;…; 10 data points and the
zero crossing is identified; finally, we weigh the results from
all the available downstream-BPM data. The weighted zero-
crossing average is our best estimate of the targeted-BPM
readingwhen the beam trajectory crosses themagnetic center
of the adjacent quadrupole. For an illustration of BBA data
and analysis, see Fig. 7. BBA results within the correction
chain are shown later in Fig. 11. In theToolkit, data collection

and analysis are performed in an automatedway by the high-
level command SCBBA().

B. Stored-beam BBA

Once a stable closed-orbit is established, stored-beam
BBA can be carried out. We distinguish between quadru-
pole and sextupole magnet BBA.
BBA on sextupoles. While errors in the harmonic sextu-

poles have a relatively modest effect on the beam, ensuring
a small closed orbit deviation (COD) in the much stronger
chromatic sextupole magnets is crucial for good SR lattice
performance. This effect is illustrated in Fig. 8.
The DA and Touschek lifetime were evaluated after

performing the full correction chain up to the LOCO-based
linear optics correction (seeSecs. IVA to IVH) havingvaried
the range of physical misalignments assigned to the BPMs to
mimic the effective alignment that could be credited to BBA
(the various data-point colors). The realized COD in the
sextupoles scales with those ranges. A strong correlation
between the beam lifetime in the corrected lattice and the rms
COD in the sextupolemagnets is clearly visible in the figures.
A linear fit to the data yields about 1.5 min =μm.
For several reasons, BBA carried out only on the quadru-

poles would be inadequate to realize sufficiently small COD
in the sextupoles and we found direct sextupole BBA to be

FIG. 7. Illustration of trajectory BBA for the BPM-quadrupole
pair BPM4-QF2: data and analysis. The x axis shows the reading
of the BPM targeted for BBA; the y axis shows the index of the
downstream BPMs; and the z axis the difference in the trajecto-
ries as recorded at the downstream BPMs when changing the
quadrupole strength from 95% to 105% of the nominal. A black
dot represents the measurement for one of the ten steering offsets
imparted to the injected beam; the black lines are linear fits. The
red dots mark the zero crossing of these lines and the red diamond
shows the weighted mean. In this example, the weighted mean is
19 μm off the actual quadrupole center, much less than the
physical misalignment between BPM and quadrupole, about
−500 μm. Note that after 12 BPMs downstream of the BBA-
BPM, beam transmission decreases significantly when the
injected beam is steered too much and only five out of the ten
steered trajectories can be utilized; after 189 BPMs, no data could
be used for BBA due to beam loss. This figure is conveniently
created by switching on a plot flag in the SCBBA() routine.
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necessary. One reason is that BBA limited to quadrupoles
would require reliance on excessively tight magnet-to-
magnet magnetic/mechanical alignment. Another reason is
that the relevant BPM may be too far from the first usable
quadrupole.
We considered two possible BBA solutions: one using

the sextupole coils directly and the other using dedicated
trim quadrupole coils added to the sextupole magnet. Our
simulations show that the latter is preferable, see Table VII.
More in detail, the quadrupole trim coils are used to
perform BBA on four BPMs adjacent to the four chromatic
sextupole magnets per sector. During BBA data collection,
the sextupole coils of the targeted sextupole magnet are
switched off to avoid saturation effects [2]. The method
presupposes that we know the quadrupole-coils’ center
relative to that of the sextupole coils.

As described in Sec. II B, the magnetic centers of the
quadrupole and the sextupole field may differ and their
center is known with an accuracy of 6 μm rms. Thus, after
BBA is performed on the quadrupole trim coils in the
simulations, we account for that uncertainty by adding a
Gaussian error distribution with an rms value of 6 μm to
each BPM offset.
The BBA procedure is similar to that described in

Sec. III A but instead of injected-beam trajectory scans,
orbit feedback is used to create orbit bumps around the
BPM targeted for BBA and then adjust the orbit-bump
excursion as needed. It is worth noting that creating ideal
orbit bumps using three CMs with corrector settings based
on the ideal lattice did not work reliably due to lattice errors
and, more importantly, the CM limits.
We found that the most robust procedure to create a

usable orbit bump was to use the orbit feedback to zero the
orbit offset relative to the nominal centers of the non-BBA
BPMs while ignoring the BPMs nearest to the BBA-BPM
where the goal was to establish a 250-μm orbit offset. Once
the CM settings generating the intended orbit offset were
found, we generated a family of ten intermediate-amplitude
orbit bumps by scaling the settings of all the correctors by
ten scaling factors chosen in the �1 interval. For each
bump, the data are gathered with the quadrupole trim coils
switched between K1 ¼ �0.26 m−2, the maximum and
minimum of the accessible range. The data analysis is
analogous to that discussed in Sec. III A.
BBA on quadrupoles. All remaining BPMs are paired

with neighboring quadrupole magnets. Similar to the
previously described procedure, the orbit feedback with
weighting factors is applied to create ten different orbit
bumps at the considered BBA BPMwith a maximum offset
variation target of �250 μm. The quadrupole gradient is
varied to �5% of its nominal strength. In the case of
combined function bending magnets, the horizontal cor-
rector coil is used to compensate for the bending angle
variation as explained below.

C. Combined function magnets

The central-arc focusing quadrupoles are effectively
combined-function magnets, installed with a small (up to
1.6 mm) offset to provide reverse bending. In order to allow
for a �5% field-gradient tunability range to do optics
correction and BBA, these magnets are equipped with
horizontal dipole corrector coils (HCM) so that within that
range, the bending angle can always be restored to nominal.
However, both quadrupole and HCM calibration errors
limit the precision with which the bending angle can be
restored following a quadrupole-field adjustment. If the
compensation is not perfect and during the BBA procedure,
there is a residual bending angle error depending on the
quadrupole set point, BBA will suffer from a systematic
error in the horizontal plane.

FIG. 8. Scatter plots of DA (top) and Touschek lifetime
(bottom) vs rms closed-orbit distortion (COD) in the chromatic
sextupole magnets. Left and right plots show the horizontal and
vertical CODs, respectively. DA and lifetime are calculated after
performing LOCO-based linear optics correction (see Secs. IVA–
IV H) for various sets of BBA accuracy assumptions between 0
and 100 μm identified by colored circles. The black crosses are
calculated with 0-μm BBA accuracy and 10 μm magnet and
girder offsets. Each data point corresponds to one lattice and
appears in all four plots. The average lifetime is below the 0.5 h
requirement above 60 μm COD. Note that only cases where
LOCO converged are shown (see also Fig. 6).

TABLE VII. Achievable accuracy of simulated BBA on sextu-
pole magnets using either the sextupole or the quadrupole trim
coils.

Trajectory
BBA (μm)

Stored-beam
BBA (μm)

Sextupole coils 60 30
Quadrupole trim coils 25 15
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The impact of HCM calibration errors on the BBA
accuracy is shown in Fig. 9. The figure reports the beam-
based alignment of all the BPMs paired with the similar
magnets QF4, QF5, and QF6 after three iterations of stored
beam BBA in the commissioning simulation as explained
in detail in Secs. IV F–IV H vs the HCM calibration error.
Note that for this particular study, no CM or BPM
calibration correction is performed during LOCO.
While there is no impact on the vertical plane, the

correlation between the HCM calibration error and the
horizontal BBA error is significant. A linear fit gives
11.5 μm=%.
Judging from the results of Fig. 9, it can be concluded that

reliable correctionof theHCMcalibration factors is critical in
order to achieve <30 μm rms BBA accuracy in the central
arc. We also conclude that the HCM calibration errors will
dominate the bending-angle error over the 2 × 10−4 magnet
main-coil calibration error specified in Table III.

D. BBA outlier detection

For efficient statistical analysis, we need to be able to
perform BBA automatically on a large set of lattice
misalignment-error realizations. To this end, we found
reliable detection of outliers to be critical. Ideally, it would
reproduce a real-world machine operator’s ability to iden-
tify unfavorable BPM readings and BBA control param-
eters and repeat the measurements after introducing

suitable adjustments. As one can imagine, devising an
algorithm capable of substituting manual intervention
would be quite a challenge, perhaps something that may
be amenable to future applications of machine learning.
However, we successfully experimented with defining
simple rules to flag flawed BPM readings and introducing
plausible shortcuts to handle them.
We proceed in two steps. First, we identify a number of

sensitive quantities that we need to monitor. One is the
extent of the range over which the trajectory or orbit can be
scanned. For example, if the beam gets lost at all but two
preset amplitudes of injected-beam steering or close-orbit
bumps, the linear fitting to find the quadrupole center from
the downstream BPM data is prone to large errors. Another
parameter of interest is the standard deviation of the magnet
center as calculated from the downstream BPMs (red
circles in Fig. 7). A very large value indicates that the
signal-to-noise ratio is low; this can usually be circum-
vented by, e.g., a finer trajectory scan or modifying the
phase advance slightly. In total, seven sensitive parameters
are gauged to determine whether a BBA BPM can be
deemed a failure, see the SC manual entry for the BBA
routine for more details [12]. In particular, the BBA result is
ignored for a certain BPM if the calculated offset change
exceeds a user-defined threshold. The critical values of all
the sensitive parameters, as used for this paper’s simula-
tions, are documented in the example MATLAB® script [26].
The second step is applied after the BBA procedure for

all BPMs within one group has been completed (e.g., all the
BPMs paired with sextupole-magnet quadrupole trim
coils). For the BPMs at which the BBA procedure has
worked successfully, we take note of the rms value of the
BPM alignment relative to the magnet center calculated
using the simulated BBA. We then define the alignment to
be attributed to the failed BPMs using a 2σ-truncated
Gaussian distribution with the rms value as calculated
above. We conducted several spot-checks to verify that, for
a given lattice error realization, the BPMs that fail by the
criteria set by our outlier detection algorithm can indeed be
cured by intervening manually and fine-tuning the control
variables that affect the BBA outcome.

IV. COMMISSIONING SIMULATION

Commissioning simulations have two goals: to validate
the lattice design and correction schemes informing the error-
tolerance specifications and to help prepare for themachine’s
actual commissioning. The physics studies presented here
are the first step toward developing detailed commissioning
plans, which will be essential to meet the 1-year dark
time goal.
The commissioning and lattice correction simulations are

carried out using the Toolkit for Simulated Commissioning
[15]. After a methodical evaluation of alternate paths and
statistical analysis of outcomes, we have identified the
following sequence as yielding the best performance:

FIG. 9. Final BBA accuracy at combined function quadrupoles
as a function of the HCM calibration error for the horizontal (left)
and vertical (right) planes. The upper plots show the BPM offset
w.r.t. the magnet centers for all BPMs at QF [4–6] (see Table II)
for 200 error realizations in the commissioning simulation after
three iterations of BBA (see Sec. IV G), when no CM or BPM
calibration correction is applied. A clear correlation between the
HCM calibration error and the BBA error is noticeable. The lower
plots show the conditional CDFs of the BBA error for various
HCM calibration error intervals. The effect is negligible for the
vertical plane.
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(A) Improve initial transmission (Sec. IVA)
(B) Trajectory beam-based alignment (Sec. III A)
(C) Injected-beam static error correction (Sec. IV C)
(D) Sextupole ramp-up (Sec. IV D)
(E) rf correction (Sec. IV E)
(F) Closed-orbit correction (Sec. IV F)
(G) Closed-orbit beam-based alignment (Sec. IV G)
(H) LOCO-based optics correction (Sec. IV H)
(I) ID compensation (Sec. IV I)

Steps B) and C) are performed in a loop with two
iterations and steps F), G), and H) are repeated three times.
Each step will be described in detail in the following. The
implemented correction chain including all subroutines is
available as a MATLAB® script on the SC home page [12].
Our approach is to devise automated trajectory/orbit and

optics corrections that can be applied to a statistically
significant population of lattice-error realizations without
ad hoc intervention. The lattice performance is evaluated
by monitoring the DA and Touschek lifetime, typically
representing the results in terms of cumulative distribution
function (CDF) and range of likely outcomes.
In the simulations, the lattice and injected-beam trajectory

errors are assigned according to Tables III, V, VI, and XI–
XIII, with each error source following a Gaussian distribu-
tion truncated at�2σ. The injected bunch is represented by a
six-dimensional�3σ-truncated Gaussian distribution of 200
particles with rms sizes also reported in Table IV. The
statistics is over a population of 500 error realizations.
The automated correction chain was successful in 95% of
error realizations.
The DA is generally evaluated on the momentum by 4D

tracking over about 1000 turns. The quoted Touschek life-
time assumes a round beam and, unless otherwise stated, the
design 1.15-nC bunch charge and Gaussian bunch profile
with 4 times the natural rms bunch length to credit the
harmonic cavities. However, early commissioning and oper-
ation are anticipated to be carried out without tuning in the
harmonic cavities; therefore, the equivalent lifetime without
harmonic cavities presupposes bunches with 1=4 of the
design bunch charge (or ∼0.3 nC). Synchrotron radiation is
generally included in all relevant lattice elements.
The sequence of commissioning steps and correction

procedures is detailed below. Commissioning starts with
the rf cavities and sextupole magnets switched off.

A. Improve initial transmission

At the start of commissioning before any correction, on
average, the beam is not expected to get past the first arc.
This assumes that the beam follows the ideal trajectory
through the ATS transfer line and that systematic and
random errors are applied to the injected beam at the exit of
the swap-out kicker according to Table III. Indeed, the left-
hand image of Fig. 10, reporting the cumulative distribution

function of beam-loss locations over a number of lattice and
injected-beam error realizations, shows that almost cer-
tainly the beam will get lost within the first two sectors.
The first step in the correction chain is to establish

transmission through one turn using the same feedback-like
iterative trajectory correction approach proposed for the AR
commissioning and described in detail in Sec. IV B in [15].
Upon “stitching” the BPM readings in the second turn to
the readings of the first turn and progressively increasing
the number of BPM readings to be utilized in the trajectory
correction algorithm, the beam is found to survive about
60 turns on average (blue curve in the right-hand image
of Fig. 10).

B. Trajectory BBA

As shown in Fig. 5, decreasing the relatively large initial
BPM offsets considerably is critical for reliably achieving
stored beam.
At this stage of commissioning, the perturbed lattice

properties differ significantly from those of the ideal model.
With beam transmission safely exceeding two turns, as a
further step toward bringing the lattice to behave closer to
the design model, model-independent, trajectory-based
BBA on the quadrupoles as described in Sec. III A is
carried out.
A total of two iterations each followed by trajectory

feedback and static injection error correction as described
in Sec. IV C are carried out. The results of the BBA
simulation are shown in Fig. 11 and Table VIII. The
achieved determination of the BPM offset error relative
to the adjacent quadrupole magnets is about 60 μm and
40 μm rms in the horizontal and vertical planes, respec-
tively, which meets the 50-μm requirement identified in
Sec. III A.

C. Injected-beam static error correction

After the BPM offsets have been adjusted to credit
trajectory BBA, the static injection error can be corrected.

FIG. 10. Beam transmission at various steps of the correction
chain. The left-hand plot shows that on day 1 of commissioning
without any correction, the beam will almost certainly get lost
within the first two arcs. The colored lines in the right-hand plot
indicate the beam transmission after performing the correction
steps detailed in the inset.
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A periodicity-1 orbit is generated with the trajectory
feedback using the BPM readings of the first turn as a
reference trajectory for the second turn, with the algorithm
trying to force a BPM reading from the first turn to equal
the reading from the second turn. Once the procedure has
converged, the readings from the BPM immediately

upstream and the BPM immediately downstream of the
injection point are used to deduce the injected-beam
trajectory, thus allowing for its correction (using the
ATS transfer-line correctors and pulsed elements; this part,
however, has not been simulated yet). The injection error is
thereby decreased to 80 μm and 33 μrad for the horizontal
and 76 μm and 30 μrad for the vertical planes.

D. Sextupole ramp-up

At this point, the large natural chromaticities are limiting
the beam transmission and degrading the multiturn BPM
readings. Ramping-up the sextupoles in steps of 1=10 of
their nominal strength while applying the previously
described trajectory feedback after each step works reliably
and increases the overall beam transmission significantly
(see the yellow curve in the right-hand image of Fig. 10).

E. rf commissioning

The implemented rf cavity phase and frequency correc-
tion routines make use of the fact that a turn-by-turn (TBT)
energy variation will result in a TBT horizontal BPM
variation due to dispersion; these routines are described in
detail in Sec. IV-D in [15]. rf phase and frequency
correction are performed in a loop with three iterations,
starting with the phase. After the first phase correction, a
betatron-tune scan (see Sec. IV-E in [15]) is performed to
ensure at least 50 turns of transmission for the subsequent rf
frequency correction. This tune scan rarely comes into play
(typically ≤ 3=500 error realizations) and the quadrupole
set-point variation is less than 0.1%. It is worth noting,
however, that the tune scan is significantly more critical to
the overall correction chain success in the presence of
looser error tolerance specifications and therefore detri-
mental in order to explore the sensitivity of the correction
chain performance over a wider error range.
The energy and phase error between the closed orbit and

the injected beam throughout the rf correction loop are
plotted in Fig. 12.
Most lattice error realizations >95% are now consistent

with a stored beam surviving at least 1k turns (purple curve
in the right-hand image of Fig. 10), setting the stage for
more refined corrections.

F. Closed-orbit correction

At this point, the beam transmission is sufficient to allow
for the reliable measurement of the closed orbit. Therefore,
the simulation is switched from turn-by-turn to orbit mode.
Orbit feedback is applied including dispersion, thus with
the rf frequency as an adjustable parameter. Closed orbit
dispersion and the orbit response matrix are calculated from
the designed lattice. For better convergence, an appropriate
scaling factor is applied to weight the orbit response to rf
frequency variations vs the response to the correctors.

TABLE VIII. BBA results throughout the commissioning
simulation for BPMs paired with quadrupoles (upper table)
and chromatic sextupoles (lower table). Shown are the BPM
offsets with respect to the corresponding magnet centers after
various BBA procedures.

Name Horizontal [μm] Vertical [μm]

Initial 442 441
First trajectory 85 101
Second trajectory 61 56
First CO 50 30
Second CO 23 26
Third CO 17 23

Quad CO BBA 72 147
First CO trim coils 21 32
Second CO trim coils 20 15
Third CO trim coils 20 13

FIG. 11. BBA results after completing two trajectories and
three closed-orbit correction iterations, as indicated in the insets.
The figures show the statistical distributions of the BPM align-
ment errors for BBA conducted on the BPMs adjacent to
quadrupole (top) and sextupole (middle) magnets. The bottom
images report the rms of the distributions shown above at the
various correction stages (Index ¼ 1 corresponds to the initial
BPM mechanical misalignment errors; Index ¼ 2 to the errors
after the first trajectory-correction iteration, and so on). Left
(right) pictures are for alignment errors in the horizontal (vertical)
plane. Note that BBA on sextupoles (red curves) is done only on
stored-beam BBA, and hence Index ≥ 3 (see Sec. IV G).
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Aweighting factor of 107 Hz=rad between the rf frequency
and CM was found to provide good results.
The correction is performed in a loop successively

decreasing the parameter α in the Tikhonov regularization
used to calculate the pseudoinverse matrix [11]. The loop is
halted when the rms BPM reading stops decreasing.
Note that if orbit correction is applied within optics

correction (Sec. IV H) or ID compensation (Sec. IV I), a
weighting factor of 10∶1 is applied on the BPM readings
adjacent to the chromatic sextupole magnets vs all other
BPMs to enforce the orbit feedback to prioritize the orbit
correction in the sextupole magnets. Only when orbit
correction is applied before a BBA routine (Sec. IV G),
the weighting factors are equal for all BPMs.
The results reported in Fig. 13 show that the final rms

orbit variation in the sextupole magnets is about 32
and 26 μm rms for the horizontal and vertical planes,
respectively.

G. Closed-orbit BBA

Having established a closed orbit, the closed-orbit BBA
can now be carried out on both the quadrupole and the
sextupole magnets as described in Sec. III B.
It is well known that the accuracy of model-independent

BBA depends on the orbit error. Furthermore, as described
in Sec. III C, the BBA accuracy in the arcs depends
significantly on the calibration errors of the HCMs.
Since those can only be determined after the lattice optics
errors are sufficiently corrected, it is necessary that BBA,
orbit correction, and optics correction are applied in a loop
recursively. Typically, the algorithm converges reasonably
well after three iterations, as can be seen in Fig. 11 and
Table VIII.
As described above, the sextupole coils of the targeted

sextupole magnet are switched off during the BBA meas-
urement to minimize saturation effects. The resulting life-
time degradation is significant, but >1 min, as found in all
analyzed cases, would be sufficient for orbit measurements.
The lifetime here was calculated assuming a bunch pop-
ulation equal to 1=4 of nominal (and no HHC-induced
bunch lengthening).

H. LOCO-based linear optics correction

LOCO-based linear optics correction [28,29] is done
through a sequence of nine distinct steps. It is understood
that each LOCO step detailed below is followed by orbit
correction, using the algorithm described in Sec. IV F.
Initially, a response matrix (RM) is measured using all

available BPMs (226) and corrector magnets (294þ 216),
including the HCMs on the main combined-function
bending magnets (which have no vertical correctors).
The CM kick angles are assigned based on the ideal-lattice
RM so that on average the BPM readings vary in steps of
about 50 μm. For dispersion measurement, the rf frequency
is varied by 1500 Hz to produce about 50 μm BPM reading
differences.
Both the orbit RM and the dispersion are measured

bidirectionally with a total of three CM and rf steps. In the
optics correction steps where the dispersion is included, we
found that weighting it with a factor of 5 in both planes
gives the best results.
While in general, the orbit in all SC functions is

calculated with the AT function findorbit6(), which
finds the fixed point of the complete one-turn 6D-map,
LOCO determines the orbit RM based on the linear
approximation of the 4D transfer matrices between CMs
and BPMs. The LOCO approach has the advantage of
speeding up the calculation by 2 orders of magnitude.
However, it has to be noted that because the corrector
magnets in the ALS-U SR are not stand-alone but are
incorporated in the lattice magnets (quadrupoles and sextu-
poles), there is a significant dipole feed-down term from the
magnet main field when the trajectory through the magnet
changes in response to the embedded corrector. This effect

FIG. 13. Machine status after applying final orbit correction.
The lower plots show the CDFs of the number of required beam
injections (right) and the required corrector strength (left) of all
CMs of all error seeds. The upper plots show the rms value of the
BPM readings (solid) and COD in SF/SD magnets (dashed)
before and after applying three iterations of Secs, IV F–IV H (rms
over each error seed).

FIG. 12. Results of the rf commissioning procedure. Shown is
the difference between the closed orbit energy (left) and phase
(right) with respect to the injected beam, both initially (blue) and
after each of the three iterations. The rms values are shown in
the inset.
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is not included in the linear response matrix calculator of
the LOCO routine. The result is equivalent to an apparent
CM calibration error between the SC toolkit and LOCO.
Due to the large quadrupole magnet strengths, this cali-
bration offset can be as large as 30% and has to be
accounted for when performing LOCO, e.g., by using a
precalculated table of adjustments when applying the CM
calibration error fits to the toolkit lattice.
The first optics correction step includes all QF1 and QD1

quadrupole magnets while at first ignoring coupling (off-
diagonal response matrix blocks) and diagnostic errors. In
the second step the magnet families, QF4, QF5, and QF6
are added as fit parameters, while in the third step,
dispersion and coupling are included and all skew quadru-
pole correctors are engaged. Starting with the fourth step,
chromaticity correction is applied and will be repeated at
each subsequent step.
The fifth step does not involve any quadrupoles but only

the fitting of the BPM and CM calibration factors. In order
to get a better agreement, the orbit RM within LOCO is
calculated using findorbit6() for this step.
The calibration factors are fit in a five-substep process;

first, only the CM calibration errors are fitted, then only the
BPM calibration errors (second substep). This is repeated
(third and fourth substep) and only at the fifth substep, both
BPM and CM calibration errors are fitted simultaneously.
In most cases, this detailed process is not needed but it was
found to be very robust and therefore most suitable when
processing a large set of error seeds.
From this point on the BPM and CM, calibration factors

remain unchanged. After two more LOCO steps with the
settings as described for the fourth step, the two final steps
also include all B2 and B3 quadrupole gradients.
As described before, orbit correction, BBA, and optics

correction are applied in a loop with three iterations. The
end result is shown in Fig. 14. Beta beat is between 1% and
5%, the DA gets restored sufficiently well (see Fig. 15), and
the required normal and skew quadrupole strengths are
acceptable.

I. ID compensation

Together with orbit deviation and magnet errors, in a
relatively low-energy machine like the ALS, the IDs
represent an important source of undesired perturbations
to linear optics. These need to be effectively corrected to
avoid excessive DA and MA degradation.
While the ultimate goal is to represent each ID in the SR

with its appropriate model, the results discussed here are
based on a reduced model encompassing only the eight
strongest IDs: COSMIC, LEDA, TENDER, U114, XType,
EPU35, EPU90, and EPU50, see Table IX. The strongest
ID, U114, is modeled by a series of SBEND elements,
whereas all other IDs are represented by kick maps.
Because the ID settings vary by users’ demand, the

correction method should be practical and robust. After

FIG. 14. Visualization of LOCO results. Cumulative distribu-
tion functions (CDF) of beta beat, dispersion error, and emittance
each before (dashed) and after (solid) optics correction in the
upper four plots.. The lower two plots show the final relative
quadrupole set-point deviation from the design value (left) and
the required skew quadrupole strength (right).

FIG. 15. DA (top and center) and lifetime (bottom). The
comparison is between before (blue) and after (red) performing
optics correction, and after including and compensating for the
IDs (yellow). In the upper images, the solid curve is the ideal
lattice DA, and the purple ellipses indicate the injected beam size
(3σ). In the bottom image, the dashed curves are the CDF for the
Touschek lifetime only; the solid curves are the CDF for the total
beam lifetime (Touschek and vacuum).
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experimenting with various alternatives, the global correc-
tion method described in Ref. [30] was found to be the most
effective. The method seeks to minimize the betatron-
function errors at, and the betatron phase-advance errors
between, the chromatic sextupoles (the main sources of the
machine nonlinearities). The figure of merit is constructed
based on these errors: a weighting of 100∶1 between phase
advance and beta-beat, respectively, was found to provide
the best results.
The partial derivatives of the merit function with respect

to changes in every quadrupole magnet strength are
calculated and stored in a response matrix. Subsequently,
the IDs are inserted in the ideal lattice and an SVD-based
algorithm is used to determine the required quadrupole set-
point change to minimize the merit function. We studied
different regularization methods (cutting singular values
and Tikhonov regularization) and found that the Tikhonov
regularization with regularization parameter α ¼ 1 pro-
vided the best results.
The identified quadrupole set-point change is then

applied to the lattice including all errors. Subsequently,
three iterations of orbit feedback, tune, and chromaticity
correction are performed. As in Sec. IV H, it is hereby
assumed that the tune and chromaticity corrections at this
point of the commissioning will be straightforward to
perform. Therefore, it is not necessary to simulate the
beam-based correction process; instead, a MATLAB® based
fminsearch() with target precision of 1 × 10−3 is used
to realize the intended correction.
Results for the DA and total lifetime before and after ID

compensation are shown in Fig. 15. While the DA reduction
is modest, a significant lifetime reduction due to ID
perturbations of about 35% is notable. The total lifetime
is above the 0.5 h requirement in 98% of all cases with an
average value of 0.70 h (0.81-h Touschek lifetime only).

V. FINE-TUNING OF LATTICE CORRECTION

Our effort has so far focused on defining and tuning the
correction procedures that maximize performance and
minimize failure in a statistical sense when applied to a
wide range of error specifications. While this approach has

obvious advantages, it may imply an excessively con-
servative estimate of the most likely performance to be
expected of the built-machine lattice. Once the machine is
built, tailored correction procedures and further optimiza-
tion can be expected to improve its performance.
In this spirit, we investigate the effect of optimizing the

Touschek lifetime by choosing individual LOCO horizontal
and vertical dispersion weight factors for each error seed
and subsequently fine-tuning the harmonic sextupole fam-
ilies in the following sections.

A. LOCO dispersion weight scan

Common fine-tuning parameters for linear optics cor-
rection are the horizontal and vertical dispersion weights
with respect to the orbit response measurements. While a
mathematically meaningful way is to weigh the dispersion
with the square root of the numbers of CMs (thus about 20
for the ALS-U SR), the actual weight that yields the best
corrected lattice performance is not clear a priory. As
mentioned in Sec. IV H, we found that weighting factors of
5 in both planes tended to give the best results statistically.
However, for individual error realizations, these numbers
may differ.
In order to investigate the effect of individually fine-

tuned dispersion weights on the lattice correction capabil-
ity, we randomly picked 50 error realizations from the pool
described above and carried out the correction steps of
Secs. IV F to IV I with different horizontal and vertical
dispersion weights ranging from 0.1 to 20. For each error
realization, we evaluated the Touschek lifetime before and
after ID compensation for each pair of dispersion weights.
Results are shown in Fig. 16. While most of the error

realizations can be corrected best with dispersion weight

TABLE IX. Undulator parameters.

ID name
λu

(mm)
No. of
periods

Minimum
gap (mm)

EPU38 (COSMIC) 38 44.5 12.5
U15 (LEDA) 15 131 4.5
EPU35 35 52.5 12
EPU50 50 89 14
EPU90 90 20.5 14.5
U114 114 29 12.5

U19 (new) 19 210 4
X32 (new) 32 123.5 9.5

FIG. 16. Lifetime optimization using LOCO dispersion
weights. The histogram in the right plots shows the value of
horizontal and vertical dispersion weight yielding the best life-
time without IDs (upper row) and after ID compensation (lower
row). The black lines in the left and center plots show the lifetime
for each pair of dispersion weights, the red lines indicate the
lifetime when for each error realization the best value is chosen.
The optimum dispersion weights with and without IDs differ.
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≥5, for some error seeds, very small values yield better
performance. By choosing the dispersion weight for each
lattice individually, the lifetime can be improved by about
10% with and without IDs, respectively, compared to the
baseline. However, it is worth noting that dispersion
weights which produce the best results without IDs not
necessarily maximize the lifetime after IDs are included.
When optimizing with IDs, the rms lifetime increase is
about 11 min.

B. Harmonic sextupole scan

A subsequent optimization against specific error seeds is
carried out by tuning the two harmonic-sextupole families.
We use the 50 post-ID lattices with optimized LOCO

dispersion weight (red curve in the bottom right plot of
Fig. 16). For each lattice, the SHH and SHH2 harmonic
sextupole strength is varied on a [6 × 8] grid while applying
chromaticity, tune, and orbit correction. The Touschek
lifetime is calculated at each step.
An example of lifetime vs sextupole strength plot can be

found in Fig. 17. It is worth noting that the actual pattern
differs significantly for different error seeds and in some
cases, there was no lifetime improvement possible at all. As
indicated in Fig. 17, it might be possible to significantly
improve the performance by using a finer grid. On the
downside, however, the steep change of lifetime for small
changes in harmonic sextupole strength for some lattices
might point to potential operational difficulties maintaining
the optimum lifetime when the ID settings change.
For the grid points and error seeds used in this study, the

average lifetime can be increased by 6 min or 7% rms
compared to the dispersion weight optimization. The final
average Touschek lifetime is 0.97 h and significantly
exceeds 0.81-h result of Sec. IV I. It is worth noting that

the dynamic aperture did not degrade during the dispersion
weight and sextupole optimization procedures.

VI. CONCLUSIONS

In this paper, we described the development of a start to
finish commissioning simulation of the ALS-U Storage
Ring including a comprehensive and realistic set of errors
and correction steps. After demonstrating the importance of
minimizing closed-orbit deviations in the sextupole mag-
nets for the final machine performance, emphasis has been
placed on the development of a reliable BBA routine,
successfully reducing the BPM offset to the sextupole
magnets to ≤20 μm. We were able to show that the design
goal of a final beam lifetime ≥0.5 h can be achieved with
tailored linear-optics correction and ID compensation.
Finally, we showed that fine-tuning of the correction chain
based on specific lattice error realizations holds the
potential for further improvements.
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APPENDIX: ADDITIONAL MAGNET
PARAMETERS

For completeness in this Appendix. we report the magnet
parameters for the three sectors with hard bends, Table X,
the systematic and random multipole errors for the hard
bends, Table XI, and the systematic multipole errors
associated with the dipole and skew-quadrupole corrector
coils, Tables XII and XIII, respectively.
In Table X, QD2 and QD3 (with L ¼ 0.1325 m effective

length) is the pair of defocusing quadrupoles flanking each
hard bend. The hard bends’ effective length isL ¼ 0.135 m.

TABLE X. Magnet parameters for the three sectors with hard
bends (HB). Only the magnets with settings different from those
in the normal sectors are reported.

QF3/QF4/QF5/QF6 QD2/QD3

K1 (m−2) 10.54/15.39/16.34/16.31 −14.39= − 14.87
θ (deg) −0.0063= − 0.429=

−0.429= − 0.429
0=0

B2/B3 HB

K1 (m−2) −7.098= − 7.098 0
θ (deg) 3.648=3.763 3.763

FIG. 17. Touschek lifetime optimization by harmonic-sextu-
pole scans following the dispersion-weight optimization. The left
plot shows the lifetime as a function of the SHH and SHH2 set
points for one choice of error seed. In this example, the lifetime
can be increased from 0.94 to 1.12 h. The right plot shows the
distribution of Touschek lifetime after regular ID compensation in
blue for the selected error seeds (gray curve shows the distribu-
tion of all error seeds, see Sec. IV I), after optimizing the post-ID
lifetime using LOCO dispersion weights (red curve, see Sec. VA)
and after tuning the sextupole magnets (yellow curve).
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