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We introduce a quasistatic particle-in-cell (PIC) code—WAND-PIC—which does not suffer from some of
the common limitations of many quasistatic PICs, such as the need for a predictor-corrector method in
solving electromagnetic fields. We derive the field equations under quasistatic (QS) approximation and find
the explicit form of the “time” derivative of the transverse plasma current. After that, equations for the
magnetic fields can be solved exactly without using the predictor-corrector method. Algorithm design and
code structure are thus greatly simplified. With the help of explicit quasistatic equations and our adaptive
step size, plasma bubbles driven by the large beam charges can be simulated efficiently without suffering
from the numerical instabilities associated with the predictor-corrector method. In addition, WAND-PIC is
able to simulate the sophisticated interactions between high-frequency laser fields and beam particles
through the method of subcycling. Comparisons between the WAND-PIC and a first-principle full PIC code
(VLPL) are presented. WAND-PIC is open-source, fully three-dimensional, and parallelized with the in-house
multigrid solver. Scalability, time complexity, and parallelization efficiency up to thousands of cores are
also discussed in this work.
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I. INTRODUCTION

Plasma-based accelerators represent one of the most
exciting concepts in high-gradient particle acceleration.
Plasmas with density n0 can sustain a high accelerating
gradient Ek ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0=1018 cm−3p

½GV=cm�, thereby enabling
compact particle accelerators that are much smaller than the
present-day conventional accelerators. Accelerating struc-
tures are excited either by ultraintense laser pulses for a
laser wakefield accelerator (LWFA) [1–3] or by relativistic
electron bunches for a plasma wakefield accelerator
(PWFA) [4]. GeV-level electron accelerations have been
demonstrated in recent experiments for both LWFA [5–9]
and PWFA [10–13].
In LWFA, the energy gain of the witness bunch over a

dephasing distance Ld ∝ n−3=20 [14–16] can be estimated as
ΔWLWFA ¼ EkLd ∝ n−10 which favors the use of low
density plasma and long propagation distance. Plasma
densities n0 ∼ 1017 cm−3 are employed in recent experi-
ments [9] with energy gain reaching 8 GeV over an

acceleration distance of 20 cm. In PWFA, the energy gain
of the witness bunch is largely governed by the transformer
ratio [17] and the initial energy of the driver beam γbmc2,
where γb is the relativistic factor of the driver particles. The
maximum energy gain of an accelerated (witness) electron
beam is limited to ΔWPWFA ¼ 2γbmc2. Energy doubling of
42 GeV electrons in a meter-scale plasma has been
demonstrated [18]. Therefore, either in LWFA or PWFA,
increasing the energy gain would inevitably require more
energy in the driver and a longer propagation distance. With
the rapid development of ultraintense multi-petawatt laser
systems [19–21] and ultrashort, high-current compact
electron beam sources [22,23], one can anticipate an
increasing number of LWFAs and PWFAs with per-stage
lengths on the order of a meter. However, simulating
meters-long propagation distances of plasma-based accel-
erators currently presents a computational challenge.
Numerical challenges escalate even further when hundreds
of meter-scale stages required for developing TeV-scale
linear lepton colliders [24] must be accurately modeled.
Generally speaking, there are two major approaches to

simulating plasma-based accelerators: the first-principles
and the reduced-description (quasistatic) particle-in-cell
(PIC) simulations. The first-principles PIC approach
[25,26] is based on explicitly solving driven Maxwell’s
equations for the electric and magnetic fields on a staggered
Yee grid [27] using a finite-difference time-domain (FDTD)
method. Electric currents carried by charged macroparticles
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are interpolated onto the grid; they serve as driving source
terms for Maxwell’s equations. In turn, the macroparticles
are advanced in time using the calculated electromagnetic
fields. A crucial constraint of the first-principles PICs is the
Courant–Friedrichs–Lewy (CFL) condition [28] that must
be satisfied to avoid numerical instabilities: the product of
the time step Δt and the speed of light c must be smaller
than the spatial step size, which must be chosen to be much
smaller than the smallest length scale ΔLmin in the
simulation domain.
For example, the smallest length scale for simulating an

LWFA is typically determined by the laser wavelength:
ΔLLWFA

min ¼ λ0. Therefore, a time step size δt ≪ ω−1
0 is

required, where ω0 ¼ 2πc=λ0 is the laser frequency.
Therefore, the CFL condition imposes severe constraints
on faithful 3D simulations of LWFAs: more than 104 core
hours are required to simulate a propagation distance of just
a few millimeters assuming that λL ∼ 0.8 μm. Likewise, for
a PWFA operating in the strongly nonlinear regime
characterized by a complete blowout of plasma electrons
from the path of the driver bunch, the smallest length scale
normally equals the sharpness of the nonlinear wakefield:
ΔLPWFA

min ≪ c=ωp, where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2n0=m

p
is the plasma

frequency, −e and m are the electron charge and mass,
respectively. It is worthwhile to mention that ΔLPWFA

min
approaches zero when wave-breaking happens in a cold
plasma [29,30]. This density singularity can be prevented
by adding finite temperature [31–33]. However, for typical
PWFA parameters, the ΔLPWFA

min remains small. Another
approach that drastically reduces the simulation time of
first-principles PIC simulations is a boosted frame method
[34] which is being implemented in codes such as WarpX

[35] and HiPACE [36].
These complications, despite some workarounds, make

the quasistatic approach a valuable alternative to EM-PIC
codes. The quasistatic approach emerges from a simple
observation that in many realistic scenarios, the character-
istic evolution times ΔTdr of the drivers are much longer
than their corresponding durations: ΔTLWFA ∼ ω0=ω2

p ≫
τLWFA and ΔTPWFA ∼

ffiffiffiffiffi
2γ

p
=ωp ≫ τPWFA for the laser and

beam drivers, respectively. Therefore, great savings of
computational time could be achieved if these two distinct
time scales could be explicitly separated in a code. This is
done using the so-called quasistatic approximation (QSA)
proposed by Sprangle et al. [37] and originally imple-
mented in a PIC code by Mora and Antonsen [38,39] and
Whittum [40]. The QSA assumes that the envelope of the
driver is “frozen” during the time when cold plasma
electrons are passed over by the driver and enables a time
step size Δt ∼ ΔTdr which is much longer than the one
imposed on any first-principles PIC code by the CFL
condition. Indeed, several quasistatic PIC codes, such as
WAKE [38,39], LCODE [41,42], QuickPIC [43–45], HiPACE

[36], HiPACE++ [46], and QPAD [47] have demonstrated

computational time reductions of over 2 orders of magni-
tude over their first-principles counterparts. The WAKE and
LCODE are two-dimensional (2D) codes with cartesian or
cylindrical geometry, and QuickPIC, QPAD, HiPACE, and
HiPACE++ are fully-3D and fully parallelized.
However, such impressive computational time savings

are accompanied by several additional numerical compli-
cations. Unlike the FDTD method, where the fields are
naturally discretized in time and space on a Yee grid and
can be locally updated from the previous time step, a
quasistatic PIC code must regenerate new wakefields at
every time step because the calculations of the wakefields
and drivers are decoupled. Yet a bigger challenge is that in
some equations of wakefields under QSA, the source
contains a time derivative of the transverse current, which
is not explicitly expressed [39]. Specifically, the equation
for the transverse magnetic field of the wakefields is not
expressed in a closed and explicit form and is usually
solved using the so-called predictor-corrector method [48].
To our knowledge, this approach is taken in all the widely
used quasistatic codes (WAKE, LCODE, QuickPIC, and HiPACE)
except the most recent HiPACE++, which uses the explicit
solver derived in the present paper. While an improved
iteration loop [45] has been developed to improve the
stability and convergence of the predictor-corrector
method, current quasistatic codes are still challenged in
simulating extremely nonlinear wakefields that exist, for
example, inside a fully evacuated plasma bubble that
develops in the full blowout regime [49,50]. The reason
is that the predictor-corrector method often fails to con-
verge at the back of the large bubble, where plasma
electrons are highly relativistic and the wakefields are
sharp [41]. This long-standing issue of quasistatic codes,
which we address and resolve in this work, has prevented
rapid and accurate investigations of the accelerating struc-
tures driven by the most powerful beam and laser drivers.
In this work, we describe a fully 3D massively parallel

quasistatic code, WAND-PIC (Wakefield AcceleratioN and
Direct laser acceleration), which does not use the predictor-
corrector method. New WAND-PIC is a major update to the
nonparallelized azimuthally symmetric version of WAND-PIC

[51] that cannot capture important beam- and laser-plasma
phenomena such as hosing [52,53]. A newly derived set of
quasistatic field equationswith fully explicit source terms are
applied to simulate large plasma bubbles. The massively
parallel WAND-PIC can now be run on distributed computer
clusters comprising thousands of computational cores.
Adaptive longitudinal step size refinement and nonuniform
transverse grids enable efficient simulations of large evolving
plasma bubbles containing regions with different spatial
scales. For the first time, an accurate simulation of the direct
laser acceleration (DLA) of electrons with a quasistatic code
is enabled by implementing subcycling in WAND-PIC.
The rest of the paper is organized as follows: First, we

summarize the advanced features of WAND-PIC in Sec. II.
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The quasistatic equations for fields and particles are
described in Sec. III. The implementation of different
drivers and their interactions are presented in Sec. IV. In
Sec. V, we compare the results of the WAND-PIC and the
first-principles 3D PIC code VLPL [54]. Then in Sec. VI, we
present a simulation example where a DLA-induced phase-
dependent bubble undulation is modeled. The algorithm
design and parallelization efficiency are discussed in
Sec. VII, followed by a brief discussion of future code
development and conclusions.

II. SUMMARY OF THE ARCHITECTURE AND
KEY FEATURES OF WAND-PIC

In this section, we briefly introduce the four advanced
features of WAND-PIC.
1. Explicit source terms for all wakefield equations. In

quasistatic codes, the particles’ distribution and the fields
depend on t and z only through a “time-like” variable
ξ ¼ ct − z. Therefore, the full 3D domain consists of a
stack of 2D planes (slices) propagated in ξ with step dξ.
Electromagnetic fields are computed at every 2D ξ-slice
as explained in Sec. III. Macroparticles are pushed
from one slice to the next with the same variable
ξ-step because they propagate strictly in the positive
ξ-direction: dξ=dt ¼ c − vz > 0. Therefore, when solving
for the fields at a given ξ step, information only at the
current (ξ) step and the previous (ξ − dξ) steps is known.
Ideally, the source terms of all field equations are explicitly
expressed, i.e., no “future” information at (ξþ dξ) step is
needed. Detailed derivations of Maxwell equations under
the QSA are available [36,39,41,45], and the results are
largely similar: the equations for at least some electromag-
netic field components are given in the implicit form. For
example, the source term ∂j⊥=∂ξ is implicitly expressed in
the equations for either the transverse components of the
magnetic (QuickPIC and HiPACE) or electric (LCODE) fields

B⊥ and E⊥, or for the wakefield potential ψ (WAKE).
In contrast, the same source term is explicitly expressed in
WAND-PIC. Therefore, all field equations are expressed in a
closed “static” form (since ξ functions as a time-like
variable) and can be solved just once for each ξ-slice
using any optimized Poisson solver. No predictor-corrector
iterations of the field solver are necessary: see Sec. III for
more details.
2. Adaptive step size refinement. With an increasing

need for simulating plasma wakefield driven by the tightly
focused laser pulses with peak powers exceeding PL ∼
1 PW and beam drivers with peak currents exceeding
Ib ∼ 10 kA, it is imperative to ensure that the nonlinearity
of wakefield/bubble structure is accurately modeled over
tens of centimeters (or even meters for a PWFA). In WAND-

PIC, we have implemented the technique of adaptive step
size refinement in the longitudinal (ξ) direction to handle
the steep wakefield structure at the back of the bubble [see
Fig. 2(b) for a typical example]. As shown in Fig. 1, the
longitudinal step sizes dξ (red ticks) are automatically
adjusted based on the speeds of plasma trajectories: a finer
mesh is used near the back of the bubble, where plasma
electrons are the fastest. More details and simulation exam-
ples can be found in Sec. VA.
3. Full description of driver particles in high-frequency

laser fields. A delicate situation can occur when two
copropagating drivers—a laser pulse and an electron
bunch—are employed to drive a plasma wake. Such a
situation can occur, for example, in a Laser-Pulse and
Electron-Bunch Plasma-Wakefield Accelerator [55].
Unlike the ambient plasma electrons, those comprising
the driver bunch cannot be described within either the QSA
framework or the ponderomotive (phase-independent)
approximation. Therefore, we improved the modeling of
the driver bunch particles by incorporating the high
(optical) frequency laser fields into their equations of
motion. This can be done because even within the QSA

FIG. 1. (a) The 3D simulation domain in WAND-PIC. The 2D transverse plane is partitioned into square subdomains. In the longitudinal
direction, the adaptive step size is shown by the red ticks which are denser at the back of the bubble. (b) The multigrid approach shown is
a hierarchy of grids in one subdomain with different mesh sizes.
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description, both the envelope and the phase of the laser
pulse are calculated at each time step of the laser advance.
Using the subcycling method [56], the particles are
advanced with a sufficiently small time step which is much
smaller than that of the laser advances. More details and
specific examples are presented in Secs. IV and V B.
4. Parallel geometric multigrid solver on nonuniform

grids. In a quasistatic code, fields are solved at every 2D
ξ ¼ const slice, and particles are advanced in the positive ξ-
direction from one ξ slice to the next. For the fields, a 2D
Poisson solver that uses grid-interpolated particle densities
and currents as sources for computing the electromagnetic
fields of the plasma wake must be utilized. In order to make
WAND-PIC compatible with the present-day high-perfor-
mance computing systems, we parallelized the transverse
space r≡ ðx; yÞ by applying a square partitioning on it. As
shown in Fig. 1, the transverse plane is divided into square-
shaped subdomains. An in-house parallel multigrid (MG)
solver [57,58] is developed alongside WAND-PIC. This
geometric MG solver naturally accommodates the 2D
partitioning of the computational domain; it employs
iterative relaxation of the solution on a hierarchy of grids
with different grid sizes. As a result, residual errors with
different spatial scales are effectively smoothed out at
different layers. This MG solver is also compatible with
nonuniform transverse grids, i.e., WAND-PIC can use finer
grids at the area of interest to improve the modeling
accuracy and reduce the computational cost at the same
time. For example, finer grids can be deployed at the bubble
region, and coarse grids are used for the plasma outside.
Details of the implementation of nonuniform grids are
discussed in Sec. VII B and the performance evaluation of
the parallel MG solver is presented in Sec. VII.

III. QUASISTATIC EQUATIONS FOR
WAKEFIELDS AND PLASMA PARTICLES

The quasistatic equations used in WAND-PIC were origi-
nally derived in [51] for azimuthally symmetric wakes.
General 3D equations that do not make any symmetry
assumptions are very similar, and their derivation is briefly
describedbelow. Inwhat follows,weusedimensionlessunits
normalizing time toω−1

p , length tok−1p , andvelocities toc.We
also normalize the electron kinetic momentum p to mc, the
fieldsE andB tomcωp=e, the potentials ϕ andA tomc2=e,
the plasma density to n0, and the current density j to−en0c.
We start with deriving, under the QSA, the time-

evolution equation for the electron distribution function
feðt;R;PÞ in the three-dimensional phase space ðR;PÞ,
where R ¼ ðr; zÞ and P are the 3D position and momen-
tum, respectively. In general, fe traces the following phase
space trajectory:

∂fe
∂t

þ ∂H
∂P

·
∂fe
∂R

−
∂H
∂R

·
∂fe
∂P

¼ 0; ð1Þ

where H ¼ ½1þ ðPþAÞ2�1=2 − ϕ is the relativistic
Hamiltonian normalized to the electron rest energy mc2.
The trajectory of an individual plasma electron is deter-
mined by Hamilton’s equations of motion:

dP
dt

¼ −
∂H
∂R

;
dR
dt

¼ ∂H
∂P

¼ p
γ
; ð2Þ

where p ¼ PþA and γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
are, respectively, the

kinematic momentum (normalized to mc) and the relativ-
istic factor of a plasma electron.
Equations (1) and (2) can now be simplified because,

under the QSA, all electromagnetic fields are assumed to be
dependent on time t and coordinate z through their
combination ξ ¼ t − z, where the speed of light c is
normalized to 1: ϕ≡ ϕðr; ξÞ and A≡Aðr; ξÞ. This crucial
simplification is based on the assumption of a relativistic
plasma wake, i.e., it assumes that all plasma fields are
excited by a driver—laser pulse, electron bunch, or both—
that is moving through the plasma with highly relativistic
velocity vdrðtÞ (in general, time-dependent) satisfying
c − vdr ≈ c=ð2γ2drÞ, where γdr ≫ 1. Naturally, this limits
the applicability of the QSA to the plasma wakes excited by
an ultrarelativistic charged bunch (in which case, γdr ¼ γb,
where γbmc2 is the energy of the bunch particles) or by a
laser pulse propagating through tenuous plasma (in which
case γdr ∼ ω0=ωp). However, as we demonstrate in
Sec. VA through comparisons with full-PIC simulations,
the structure of the wakefield is quantitatively accurate
when modeled within the QSA framework that takes the
γdr → ∞ limit. On the other hand, the process of self-
injection and subsequent trapping of plasma electrons into
the plasma wake is highly sensitive to γdr. While some
progress has been made in modeling such processes with
quasistatic codes [59,60], those are presently outside of the
scope of WAND-PIC. In the rest of this section, we separately
discuss the equations of motion for plasma electrons,
wakefields, and the driver (charged bunch and laser pulse).

A. Description of plasma electrons motion

Under the QSA, plasma electron dynamics can be
described as a 2D motion in the ðx; yÞ plane as a function
of a time-like parameter ξ.While the electron HamiltonianH
is not conserved as a function of ξ because it is a function of ξ-
dependent scalar and vector potentials ðϕ;AÞ, it possesses
one integral of motion. Specifically, from dH=dt ¼
∂H=∂t ¼ ∂H=∂ξ and dPz=dt ¼ −∂H=∂z ¼ ∂H=∂ξ, we find
the following conserved quantity: H − Pz ¼ const.
Assuming that all electrons comprise a cold homogeneous
plasma, i.e., H ¼ 1 and P ¼ 0 for every plasma electron
prior to the arrival of the driver, the integral of motion takes
the form: H − Pz − 1 ¼ 0. Therefore, the electron distribu-
tion function fe can be expressed in the following form:
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feðt;R;PÞ ¼ f�ðξ; r;P⊥ÞδðH − Pz − 1Þ; ð3Þ

where P ¼ ðP⊥; PzÞ, and f� represents a distribution func-
tion of macroparticles moving in the transverse plane ðx; yÞ.
Substituting Eq. (3) into (1), we find that f� satisfies the
following Vlasov-like equation:

∂f�
∂ξ

þ ∂H�
∂P⊥

·
∂f�
∂r

−
∂H�
∂r

·
∂f�
∂P⊥

¼ 0; ð4Þ

where

H� ¼
1þ ðP⊥ þA⊥Þ2 þ ð1þ ψÞ2

2ð1þ ψÞ − ψ − Az ð5Þ

is the Hamiltonian for the two-dimensional motion in the
ðx; yÞ-plane and ψ ¼ ϕ − Az is the wakefield potential. The
trajectory of an individual particle, as it advances in ξ through
the ðr;P⊥Þ phase space, is obtained from Eq. (2). Recalling
that P⊥ ¼ p⊥ −A⊥, these equations can be recast in the
following form:

d
dξ

r≡ V⊥ ¼ 1

1þ ψ
p⊥ ð6Þ

d
dξ

p⊥ ¼ γ∇⊥ψ
1þ ψ

þ ½ez × V⊥�Bz þ ½ez ×B⊥�

−
∇⊥ðjÂ⊥j2=4Þ

1þ ψ
; ð7Þ

where γ ¼ ½1þ p2⊥ þ ð1þ ψÞ2 þ jÂ⊥j2=2�=2ð1þ ψÞ is the
relativistic factor, V⊥ ≡ p⊥=ð1þ ψÞ is the effective particle
“velocity” in the ðx; yÞ-plane as it advances in ξ, and the last
term inEq. (7) is theponderomotive forceproduced by a laser
pulse with transverse vector potential given by Ã⊥ ¼
Â⊥ exp½−ik0ξ� [38,39]. Note that ψ , Bz, and B⊥ are the
only plasma wakefields that are needed to advance plasma
electrons under theQSA.These fields are functions of ðξ; r⊥Þ
and are updated at each step ξ as described below. The
complex-valued laser envelope Â⊥ is advanced in time t as
described in Sec. VA.

B. Description of plasma wakefields under the QSA

Below, we describe the calculation of field quantities,
such as electromagnetic fields, as well as plasma fluid
quantities such as density, velocity, and pressure tensor.
Integration of Eq. (4) over the transverse momenta Px and
Py yields the continuity equation:

∂

∂ξ
n� ¼ −∇⊥½n�hV⊥i�; ð8Þ

where n�ðr; ξÞ ≡ R
dPxdPyf� and hV⊥iðr; ξÞ ¼

n−1�
R
dPxdPyf�V⊥ are the surface electron density and

average transverse velocity, respectively. We note that this
is analogous to the computation of the zeroth moment of
the Vlasov equation [61]. As seen from Eq. (8), the total
particle number N ¼ R

d2rn� is ξ-independent. The 3D
number ne and current j⊥ densities of plasma electrons can
be expressed as follows:

ne ¼
n�hγi
1þ ψ

; j⊥ ¼ n�hV⊥i; jz ¼
n�hpzi
1þ ψ

; ð9Þ

where hpzi¼hγi−ψ−1¼½1þhp2⊥i−ð1þψÞ2þjÂ⊥j2=2�=
½2ð1þψÞ�. Note that ne − jz ¼ n�.
We now show that the wakefield potential ψ and the

fields Ez, Bz at the same slice position ξ are determined
only by electrons’ positions and momenta at the same slice,
i.e., by f�ðξ; r;P⊥Þ. Under the QSA, Maxwell’s equations
in dimensionless variables take the following form:

∇ ×E ¼ −
∂

∂ξ
B; ð10Þ

∇ ×B ¼ ∂

∂ξ
E − j: ð11Þ

Combined with Gauss’s law∇ ·E ¼ −ne þ 1, and using
the transverse Coulomb gauge∇⊥ ·A⊥ ¼ 0 [39], we obtain
the following set of equations:

∇2⊥ψ ¼ n� − 1; ð12Þ

∇2⊥Ez ¼ −∇⊥ · j⊥; ð13Þ

∇2⊥Bz ¼ ez · ½∇⊥ × j⊥�; ð14Þ

∇2⊥B⊥ ¼ −½ez ×∇⊥jz� −
�
ez ×

∂

∂ξ
j⊥

�
: ð15Þ

We note that, while the Ez field is not explicitly used in
Eqs. (6) and (7) describing plasma electrons motion, it is
nevertheless important for simplifying the rhs of Eq. (15).
Specifically, while Eqs. (12)–(14) are local in ξ (i.e., solving
them only requires that we calculate electrons’ positions and
momenta at the 2D slice of interest), Eq. (15) contains a ξ-
derivative which is not local. From a computational stand-
point, accurate calculation of this term requires that we know
the value of j⊥ at several ξ-slices. Traditionally, the ∂j⊥=∂ξ
term has been calculated using the predictor-corrector
approach [48]. As shown below, calculating an additional
quantity Ez enables us to replace Eq. (15) containing a
nonlocal source with another one that does not contain any
nonlocal quantities.
To obtain a local (i.e., free of derivatives in ξ) form of

Eq. (15), we establish an additional relationship between
the ξ-derivative of the transverse current and the electro-
magnetic fields in a manner similar to the way it was done
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for an azimuthally symmetric problem [51]. We multiply
Eq. (4) by the “velocity” V⊥ ¼ ∂H=∂P⊥ and integrate it
over momentum, which is analogous to computing the first
moment in the context of Vlasov equations [61] and
establish the following relativistic fluid equation for the
transverse current density:

∂

∂ξ
j⊥ ¼ n�ha⊥i − ∇⊥ · ðn�hV⊥V⊥iÞ; ð16Þ

where TðrÞ≡ n�hV⊥V⊥i is the pressure tensor, and a⊥ ≡
d2r=dξ2 is the transverse relativistic acceleration:

a⊥ ¼ ½ez ×B⊥�
1þ ψ

þ ½ez × V⊥�Bz

ð1þ ψÞ þ γ∇⊥ψ −∇⊥ðjÂ⊥j2=4Þ
ð1þ ψÞ2

−
V⊥

1þ ψ
ðEz þ V⊥ · ∇⊥ψÞ: ð17Þ

Note that, while Ez does not explicitly enter Eq. (7) for
the transverse kinematic momentum p⊥, it enters the
expression for the transverse relativistic acceleration a⊥.
For brevity, we have also suppressed the implicit depend-
ence of T, n�, and jz, and hV⊥i on the slice index ξ.
After substituting ∂j⊥=∂ξ from Eq. (16) into Eq. (15), we

obtain a Helmholtz-like inhomogeneous equation for the
transverse magnetic field:

∇2⊥B⊥ −
n�

1þ ψ
B⊥ ¼ −½ez × S�; ð18Þ

where the rhs contains a source S given by

S ¼ ∇⊥jz − ∇⊥ · ðn�hV⊥V⊥iÞ þ
n�ez × hV⊥i

1þ ψ
Bz

þ n�ðhγi∇⊥ψ −∇⊥ðjÂ⊥j2=4ÞÞ
ð1þ ψÞ2 −

n�hV⊥i
1þ ψ

Ez

−
n�hV⊥V⊥i
1þ ψ

· ∇⊥ψ ð19Þ

After substituting the source term S, which does not
contain any time-like ξ derivatives, from Eq. (19) into
Eq. (12), we find that under the QSA, all fields are
calculated at each slice ξ from a 2D (“local”) nonlinear
equation. The details of solving the equation for an
expanded field vector Ψ ¼ ðψ ; Ez; Bz;B⊥ÞT in terms of
the electron densities n�, fluid velocities hV⊥i, and pressure
tensor T calculated in the same ðx; yÞ plane as the Ψ-vector
are presented in Sec. VII. Although equations similar to
Eqs. (12)–(15) were presented earlier [36,45], no explicit
form of ∂

∂ξ j⊥ has been presented. We further note that while
the Ez component of the expanded field vector does not
explicitly enter into the equations of motion of the
quasistatically treated plasma electrons, it does enter the
equations of motion of the driver bunch as explained below.

IV. DESCRIPTION OF DIFFERENT PLASMA
WAKE DRIVERS AND THEIR INTERACTIONS

Several types of drivers are implemented in WAND-PIC:
laser pulses, charged beams, or both. For a laser driver with
the carrier frequency ω0 ¼ k0c and a vector potential
Ã⊥ ¼ Â⊥ exp½−ik0ξ�, we solve the following paraxial
equation for the complex-valued envelope Â⊥:

�
ik0

2∂

∂t
−

2∂2

∂t∂ξ
þ∇2⊥

�
Â⊥ ¼ k2pχÂ⊥; ð20Þ

where the effective plasma susceptibility averaged over the
laser period, χ ¼ hne=γi2π=ω0

¼ n�=ð1þ ψÞ, is a local-
averaged quantity [62].
For the charged bunch drivers, several types of charged

macroparticles are enabled in WAND-PIC, including elec-
trons and a variety of ions. Driver particles are different
from plasma trajectories in two respects: (i) driver particles
are not subject to quasistatic approximation, i.e., their [xðtÞ,
yðtÞ, zðtÞ] trajectories are calculated; (ii) in those cases
where both the charged beam and the laser pulse drivers are
present (e.g., in the context of LEPA [55]), we go beyond
the ponderomotive (frequency-averaged) approximation
and include the full high-frequency laser fields (ẼL; B̃L)
to advance the driver beam particles. As an example,
consider a tightly focused laser pulse polarized primarily
in the x direction. The vector potential of such a laser pulse
has two components: Ãx and Ãz satisfying jÂxj ≫ jÂzj.
From the vector potential, we obtain the following electric
and magnetic field components that are retained in the
code:

ẼL
x ¼ −

∂Ãx

∂t
¼ −

��
∂Âx

∂t
þ ∂Âx

∂ξ

�
− ik0Âx

�
expð−ik0ξÞ;

ð21Þ

B̃L
y ¼ ∂Ãx

∂z
−
∂Ãz

∂x
≈
�
−
∂Âx

∂ξ
þ ik0Âx

�
expð−ik0ξÞ; ð22Þ

ẼL
z ≈

�
−
∂Âz

∂ξ
þ ik0Âz

�
expð−ik0ξÞ ¼ −

∂Âx

∂x
expð−ik0ξÞ;

ð23Þ

B̃L
z ¼ −

∂Âx

∂y
expð−ik0ξÞ: ð24Þ

In deriving the above equations for the laser components,
we have used the Coulomb gauge ∇Ã ¼ 0 and assumed
that the laser spot size is larger than k−10 . Such an
approximation enables us to drop the negligibly small
ẼL
y and B̃L

x while retaining the small but finite ẼL
z and B̃L

z

laser field components. Therefore, for a linearly polarized
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(in x direction) laser pulse, two electric and two magnetic
components are determined from one dominant envelope
Âx. If an orthogonal polarization component Ây exists, we
simply need to solve an additional envelope equation for
that component. For every particle of the driver bunch, we
calculate and interpolate the four (for a circularly polarized
laser: six) laser field components and six wakefield
components onto its location. We then use a Boris-like
pusher to advance the driver particles while using the
subcycling method to ensure that the high-frequency fields
are properly resolved in time. Thus, when we have both
laser driver and beam driver overlapped inside the bubble,
i.e., in the case of the DLA of a witness bunch [63–69] or a
LEPA scheme [55], the interaction between the laser and
the driver (or witness) particles can be accurately modeled
by WAND-PIC.
For completeness, we list the full equations of motion for

a jth particle of the driver bunch under the influence of the
laser and wakefields:

d
dt

RjðtÞ ¼
PjðtÞ
γj

; ð25Þ

d
dt
PjðtÞ ¼

Qj

Mj
½ẼLðRjðtÞ; tÞ þEWðRjðtÞ; tÞ�

þ Qj

Mj

PjðtÞ
γj

× ½B̃LðRjðtÞ; tÞ þBWðRjðtÞ; tÞ�;

ð26Þ

where γj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

jðtÞ
q

, Qj andMj are normalized charge

and mass of the jth driver particle, respectively. Wakefields
EW ¼ ezEz þ E⊥ and BW ¼ ezBz þ B⊥. The Ez, Bz, and
B⊥ components of the wakefield are contained in the
expanded wakefield vector Ψ, and the transverse electric
field is calculated as E⊥ ¼ −∇⊥ψ þ ez ×B⊥.

V. COMPARISON WITH FULL 3D PIC
SIMULATIONS

In this section, we compare the performance of WAND-PIC

—in terms of accuracy and computational efficiency—with
that of the full PIC code VLPL. Because WAND-PIC is based
on several key assumptions and approximations, the
following questions will be answered. First, we will test
the efficacy of iterative step size refinement by modeling
the wakefield in the back of a plasma bubble driven by a
luminal (vb ¼ c) nonevolving high-charge electron bunch
(see Sec. VA). Then, we will validate the efficacy of using
the subcycling algorithm to accurately model DLA effects
in the bubble, where an electron bunch and a laser pulse
driver copropagate in the plasma.

A. Plasma bubble driven by a beam
driver with large charge

Below we assess the performance of WAND-PIC in
simulating the wakefield driven by an electron beam driver
with a large charge q, defined according to Q≡
k3pq=ð4πen0Þ ≫ 1 [51,70]. It has been well established
[51,71] that the back of the bubble contains highly
relativistic electron trajectories and a steeply profiled
wakefield. The maximum momenta of an electron with a
trajectory along the bubble’s edge have been estimated [72]
as pr ≈Q and pz ≈ p2

r=2 ¼ Q2=2. This analytic estimate
illustrates the challenge of simulating such a bubble
with a quasistatic code: the longitudinal “velocity” vξ ¼
1 − pz=γ ≈ 2=Q2 of such a particle in the reference frame
comoving with the bubble is much smaller than its trans-
verse velocity vx ≈ 2=Q. Therefore, the longitudinal step
size δξ should be smaller than the transverse one δx, thus
suggesting that δξ ≤ δx=Q can be chosen to accurately
capture the steepness of the back regions of the bubble.
To make the calculation more efficient, we calculate
the required δξ adaptively at every ξ step according to
the maximum transverse velocity of all trajectories:
δξ ∝ 1=maxðjV⊥jÞ, in this way, we make sure that finer
meshes are deployed only near the back of the bubble.
In the following simulation, we choose a uniform

plasma density n0 ¼ 6.5 × 1017 cm−3and a 10-GeVelectron
beam with Gaussian charge density distribution: nb ¼
10n0e−r

2=σ2r−z2=σ2z , where σr ¼ 6.6 μm and σz ¼ 8 μm.
The total q ¼ 2 nC charge of the electron beam corresponds
to the normalized charge Q ¼ 5.34 and the peak current
I ¼ 45.5 kA. Such a beam is not beyond the reach ofmodern
accelerators because electron beams with q ∼ 2 nC and I ∼
15 kA are already available at the FACET-II facility at SLAC
National Accelerator Laboratory [23], and electron beams
with currents of 50–150 kA and durations of 3 fs will be
available in the near future [22].
We simulate this beam-plasma configuration with

WAND-PIC and VLPL-3D and compare their results in Fig. 2.
The simulation box sizes in both codes are chosen as
Lx × Ly × Lz ¼ 4λp × 4λp × 2.7λp, and the spatial resolu-
tion is chosen as 0.01λp in all three dimensions. In Fig. 2(a),
the plasma bubbles generated by WAND-PIC and VLPL-3D are
compared side-by-side in the x-z plane. The two simulations
are clearly in good agreement in terms of the bubble length
and radius, aswell as the location and steepness of the bubble
closure in its back region. Some small differences can be
observed: for example, the bubble-bounding electron sheath
is narrower in WAND-PIC, and the beginning of the second
bubble in WAND-PIC is slightly larger.
One of the most important features of a large bubble is its

highly nonlinear wakefield that must be accurately calcu-
lated because the peak accelerating field is essential for
accurate estimates of the final energy gain and quality
of the witness bunch. Therefore, ξ-dependent step size
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δξ≡ δξðξÞ must be used, with a much smaller δξ near the
back of the bubble than the initial step size δξð0Þ at the front
of the bubble. To demonstrate the effect of step size
refinement, we define the refinement level k as follows:
the smallest step size δξmin of the simulation satisfies
δξmin ≥ δξð0Þ=k. In Fig. 2(b), we compare the on-axis Ez
from VLPL-3D and four different WAND-PIC simulations with
different step size refinement levels labeled as WAND-PIC

(k). For example, WAND-PIC (1) means that the step size
refinement is turned off, and δξ always equals the initial
step size δξð0Þ.
From Fig. 2(b) and its inset, we can see that WAND-PIC

with step size refinement level k ≥ 4 and VLPL-3D produce
close results (difference ≈5%). Lower refinement level
(k ¼ 2) generates 15% smaller peak Ez, and WAND-PIC

without step-size refinement (k ¼ 1) generates 40% smaller
peak Ez. A higher refinement level enables calculating
electrons’ speeds and the wakefields more accurately, and
convergence is eventually reached for increasing k: the
WAND-PIC with k ¼ 4 and k ¼ 8 generate the same results
as observed in Fig. 2(b). Empirically, we find that k ¼ 4–8

is sufficient for most of the PWFA simulations. Because
trajectories only acquire relativistic speed at the back of the
bubble, step size refinements are primarily required in a
small region in the back of the bubble, where the electron
sheath is very narrow. Therefore, the wakefields every-
where other than at the back of the bubble are accurately
solved even without step-size refinement. As shown in
Fig. 2(c), the focusing fields F⊥x ¼ Ex − By at the bubble
center obtained from VLPL-3D and WAND-PIC are near-
identical regardless of the step size refinement. For the
same reason, the overall runtime of the code does not
significantly increase even for Q ≫ 1 as we increase the
level of step size refinement. The runtime of WAND-PIC with
different k plotted in Fig. 2(d) shows that most of the
runtime increase (by ≈20%) takes place between k ¼ 1 and
k ¼ 2. As k increases from k ¼ 2 to 14, the runtime barely
increases.
This example shows that the adaptive step size refine-

ment in WAND-PIC is a useful and necessary technique for
simulating large plasma bubbles in PWFAs. The effective-
ness of using adaptive step size refinement is particularly
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FIG. 2. Comparison of the simulation results from VLPL-3D and WAND-PIC. (a) Plasma bubbles from VLPL-3D (upper half) and WAND-
PIC (lower half). (b) Longitudinal on-axis wakefield Ezðξ; r ¼ 0Þ from VLPL-3D and WAND-PIC (k). Maximum step size refinement level
k: step size refinement proceeds until the adaptive step size dξ is reduced by k from the original step size. (c) Transverse focusing
wakefields F⊥xðxÞ ¼ Ex − By at the center of the bubble in the x-z plane. (d) Normalized runtime of WAND-PIC (k) for different levels of
step size refinement k.

WANG, KHUDIK, KIM, and SHVETS PHYS. REV. ACCEL. BEAMS 25, 104603 (2022)

104603-8



high when all wakefield equations are local in ξ, i.e., do not
contain any sources containing ∂ξ: straightforward integra-
tion of plasma electron trajectories in the ξ-direction is
always stable as long as the step size is appropriately
refined. In contrast, nonlocal quasistatic codes utilizing the
predictor-corrector approach often exhibit unstable perfor-
mance for large bubbles driven by the Q ≫ 1 charges.
In fact, it is not uncommon to encounter physical

situations where predictor-corrector codes fail to converge
due to numerical instability at the back of the bubble even
for very small step sizes dξ and a large number of predictor-
corrector iterations. One common approach is to use a fairly
large dξ and the first-order predictor-corrector scheme to
work around this issue. However, such an approach under-
estimated electron speeds at the back of the bubble.
Another work-around frequently used in combination with
the predictor-corrector approach is to add a speed limitation
on plasma electrons or to avoid simulating the back of the
bubble altogether by truncating the size of the computa-
tional domain. Unfortunately, none of these methods
produce sufficiently accurate wakefields at the back of
the bubble as long as the normalized drive charge Q is
large. On the other hand, driver charges corresponding
to Q ∼ 100 have been successfully simulated with
WAND-PIC [51].

B. Modeling direct laser acceleration
of electrons with WAND-PIC

Next, we used WAND-PIC to simulate the direct laser
acceleration (DLA) of electrons in the bubble regime and
compare the results with the full PIC code VLPL-3D. In the
context of LWFA, the electrons inside a plasma channel
or plasma bubble can gain energy directly from the

wake-generating (pump) laser pulse [65,66] or an addi-
tional trailing (DLA) pulse [63,64,67] added to the location
of the electron bunch preinjected into the back of the
plasma bubble produced by the pump pulse. The DLA
mechanism can happen in a long plasma channel where the
longitudinal wakefield is zero [73], in the accelerating
portion of the bubble [63,65], or even in the decelerating
portion of the bubble [68], as long as the Doppler-shifted
frequency ωD ¼ ωLð1 − vz=vphÞ of the laser field matches
the electrons’ betatron frequency ωβ ¼ ωp=

ffiffiffiffiffi
2γ

p
in the

channel/bubble. Here ωL and vph are the laser frequency
and phase velocities, respectively, and vz is the longitudinal
electron velocity. The actual description is complicated by
the fact that the hωDi ¼ hωβi relationship is only satisfied
on average [65,73] because of the rapid nonlinear variation
of vz during one betatron period Tβ ¼ 2π=ωβ. The result of
such relativistic nonlinearity of the laser-particle interaction
is an irregular (stochastic) motion of the accelerated
electrons [74]. On the modeling side, the energy W⊥
gained by the electrons directly from the laser is highly
sensitive to the spatial-temporal resolution of the PIC code
used to model the DLA process [56]. This places serious
constraints on the length of DLA-based schemes that can be
modeled using full PICs and creates opportunities for
reduced-description modeling using quasistatic codes such
as WAND-PIC.
The accuracy of modeling DLA in the bubble regime

with WAND-PIC was tested using the following two-pulse
setup [63]. A leading pump and a trailing DLA pulses
polarized in x direction and separated by the time delay of
Δτ ¼ 33 fs are launched into a tenuous plasma, see Fig. 3
caption for laser and plasma parameters. The two pulses
copropagate through the plasma over a dephasing distance

FIG. 3. Direct laser acceleration of an injected electron bunch by a leading (pump) and trailing (DLA) pulses: comparison between
VLPL-3D [top of (a) and (b) panels] and WAND-PIC [bottom of (a) and (c) panels]. (a) Densities of the plasma electrons and externally
injected electrons (red). (b) and (c) Distribution of the injected electrons in the ðWk;W⊥Þ space of the work done by the longitudinal
(Wk) and transverse (W⊥) electric fields. Color-coding: by relativistic factor γ, insets: electron energy spectra. The dashed black
curve in (b) encloses the ðWk;W⊥Þ space from the lower-resolution VLPL-3D simulation. Laser parameters: peak powers
Ppump ¼ PDLA ¼ 21 TW, wavelengths λpump ¼ λDLA ¼ 0.8 μm, durations τpump ¼ 16.6 fsand τDLA ¼ 9.4 fs, spot sizes wpump ¼
8.7 μm and wDLA ¼ 5.5 μm. Plasma parameters: density n0 ¼ 7.7 × 1018 cm−3 and length z ¼ 1.15 mm. Grid/step size for high
(low) VLPL-3D resolutions: δx ¼ δy ¼ λL=5; δz ≈ cδt ¼ λL=100 (δx ¼ δy ¼ λL=5; δz ≈ cδt ¼ λL=50).
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z ¼ Ldeph ≈ 1.15 mm with a short electron bunch prein-
jected into the center of the DLA pulse. The initial
momentum of the bunch is pz ¼ 15 mc. The bunch
duration τb ¼ 4 fs and transverse size wbunch ¼ 3 μm are
chosen, and its total electric charge is assumed to be
negligible. The energy gains of the accelerated electrons
from the longitudinal (Wk) and transverse (W⊥) electric
fields are calculated and plotted in Fig. 3(b) for VLPL-3D
and in Fig. 3(c) for WAND-PIC simulations. Two separate
VLPL simulations were carried out: the high-resolution
(δx ¼ δy ¼ λL=5; δz ≈ cδt ¼ λL=100) and the low-
resolution (δx ¼ δy ¼ λL=5; δz ≈ cδt ¼ λL=50). For the
WAND-PIC simulations, themesh and step sizes are as follows:
δx ¼ δy ¼ λL=6.28; δξ ¼ λL=16.7; cδt ¼ λL=2, and the
subcycling number Nsub ¼ 50 for the witness bunch. We
note that δξ and δt inWAND-PIC are significantly larger than δz
and δt in VLPL-3D.
This set of laser-plasma parameters is particularly

interesting because the tightly focused/guided DLA pulse
in the back of the bubble has a nonvanishing longitudinal
electric field component: jEL

k j ∝ xjEL⊥j=ðk0R2Þ [69,75],
where x is the transverse coordinate. For the bubble radius
R ∼ k−1p and a relativistic laser pulse aL≡ejEL⊥j=mcω0>1,
the electrons undulating with betatron amplitude ∼R can
experience comparable longitudinal electric fields from
the wake and the laser pulse. An accurate simulation of
DLA in such a regime contributes to a better under-
standing of the energy transfer to the accelerated electrons
from the wake and laser fields. We note that separating the
two contributions to electron energy is much more
challenging for the full PIC codes because all electric
fields, including those of the wake and the laser, are
combined. On the other hand, WAND-PIC separates the two.
Figure 3(a) presents a side-by-side comparison of the

plasma bubbles and preinjected electron bunches simulated
by the high-resolution VLPL-3D and WAND-PIC code in the
upper- and lower halves of the figure, respectively. We
observe that the bubble sizes are very similar in both
simulations. However, while a small quantity of self-
injected electrons can be observed at the back of the
bubble simulated with VLPL-3D, self-injection falls outside
of the QSA and is not allowed in WAND-PIC. One conse-
quence of this is that the bubble boundary is more clearly
defined in WAND-PIC simulations. We further observe good
agreement between VLPL-3D and WAND-PIC simulations of
the externally injected electron bunches in which they have
similar transverse sizes (approximately doubled from their
original size under the action of the DLA) and have both
advanced to the same positions inside the bubble. The
electron bunch in WAND-PIC is also found to be less
stretched in the longitudinal direction.
To evaluate the energetics of the DLA process in both

codes, the energy transfer phase space ðWk;W⊥Þ for
the externally injected electrons is plotted in Figs. 3(b)
and (c) for the simulations by high-resolution VLPL-3D and

WAND-PIC, respectively. The energy transfers Wk, and W⊥
are defined as follows:

Wk ≡ AL
z þ AW ¼ −e

Z
ðEL

z þ EW
z Þvzdt; ð27Þ

W⊥ ≡ AL⊥ ¼ −e
Z

E⊥ · v⊥dt ≈ −e
Z

EL
xvxdt; ð28Þ

where EL
z and EL

x are the longitudinal and transverse laser
electric fields, respectively, and EW

z is the longitudinal
wakefield. Similarly, AW is the work done by the wakefield,
and AL⊥;z is the work done by the transverse (longitudinal)
components of the laser field. Note that, while the work AW

done by the wake and the work AL ¼ A⊥ þ Az done by the
laser are of considerable theoretical interest, only the Wk
and W⊥ quantities can be cross-checked for the two codes
because AW and AL cannot be separately calculated by the
VLPL-3D.
As shown in Figs. 3(b) and 3(c), the results from VLPL-

PIC and WAND-PIC are in excellent agreement with each
other. Not only the absolute gains in longitudinal and
transverse directions are close in the two code but also the
phase space distributions are in good agreement. This
indicates that the WAND-PIC is accurately modeling the
field components of the laser, as well as the interaction
between the laser and electrons through the subcycling
method. The insets in Figs. 3(b) and 3(c) show that the
energy spectra of all electrons obtained from VLPL-3D and
WAND-PIC are in good agreement in terms of the energy
range and their spectral shapes (e.g., three-peak features
from both codes). Note that the black-dashed contour in
Fig. 3(b) encloses the phase space ðWk;W⊥Þ obtained from
the low-resolution VLPL-3D. In that simulation, the energy
gain from the transverse electric field of the laser is
underestimated by 30%; this would influence the final
energy distribution of the electrons, as well as the radiation
output associated with betatron oscillation. Therefore,
Fig. 3(b) informs us that, in order to accurately capture
the complex interactions between electrons and laser fields,
a full PIC code needs a longitudinal/time resolution around
δz ∼ λL=100. However, the WAND-PIC is able to simulate the
bubble evolution and DLA mechanism separately by using
a coarser resolution for the laser and subcycling for the
electrons. For the specific example shown in Fig. 3, the
WAND-PIC uses 2 orders of magnitude fewer computer
resources (as measured in core hours) than the high-
resolution VLPL-3D.

VI. EXAMPLE SIMULATION: DESCRIPTION OF
PHASE-DEPENDENT NONAXISYMMETRIC
BUBBLE UNDULATIONS WITH WAND-PIC

In this section, we demonstrate the ability of WAND-PIC to
capture subtle three-dimensional phase-dependent effects
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produced by the laser pulse. In general, laser phase- and
polarization-related phenomena arise in the context of
relatively dense plasmas (e.g., ωL=ωp ∼ 10), where the
carrier envelope phase (CEP) offset becomes important
because of the difference between group and phase veloc-
ities of the laser pulse [76–80]. However, it is easy to
imagine other accelerator-relevant circumstances where the
phase of the laser pulse becomes relevant. For example, an
ultra-short bunch with duration τb < λL externally injected
at the laser intensity peak can undergo DLA-induced
transverse undulation. Because such undulation is phase-
dependent, it produces a phase-controlled asymmetric
deflection of plasma electrons [80], thereby inducing
phase-dependent undulations of a bubble (PUB) [79] along
the direction of laser polarization. Numerical description of
such PUBs within the QSA framework requires a fully 3D
description of the plasma wake and accurate modeling of
the interaction between an electron bunch propagating with
subluminal longitudinal velocity βbz ≡ vbz=c ≈ 1 − K2

b=γ
2
b

and the electromagnetic field of the laser pulse character-
ized by superluminous phase velocity vph ≡ cð1þ γ−2ph Þ.
Here we demonstrate that such nonaxisymmetric phase-
dependent plasma wakes are accurately described by
WAND-PIC.
We simulated the following scenario shown in Fig. 4(a):

A linearly-polarized CO2 laser pulse with wavelength λL ¼
9.2 μm and peak a0 ¼ 4.0 copropagates with an ultrashort
electron bunch placed at the peak of the laser intensity
envelope (z − ct ≈ 60λL) through tenuous plasma with the
density n0 ¼ 1.46 × 1016 cm−3. The following laser pulse
and electron bunch parameters were assumed: laser (bunch)
duration τL ¼ 550 fs (τb ¼ 15 fs), spotsize (radius) wL ¼
132 μm (rb ¼ 3λL), peak laser power PL ¼ 142 TW, and
the electron bunch charge qb ¼ 2.3 nC and energy
γb0mc2 ¼ 15 MeV. In normalized units, τL ∼ 18λL=c,
τb ∼ λL=2c, ωp ¼ ωL=30, and the normalized bunch
charge isQ ¼ 0.92. Laser self-steepening in such a tenuous
plasma is insufficient to produce a wavelength-sharp

FIG. 4. 3D nonaxisymmetric WAND-PIC simulation of an ultrashort bunch interacting with a laser pulse in a phase-dependent manner.
(a) Color-coded plasma and electron bunch densities at the start of the interaction (ct ¼ 0 mm). Red curve: laser pulse envelope.
(b) Same as (a), but at ct ¼ zfin ¼ 24.2 mm, with a purple curve denoting the position where the transverse wake Wx ¼ 0 and black
dashed line denoting the axis of laser propagation. (c) Bunch electrons in the (Wk; W⊥) space at ct ¼ zfin. Inset: electron energy
spectrum at z ¼ zfin. (d) Solid lines: transverse wakefields Fx;y at the back of the plasma bubble (ðz − ctÞ=λL ¼ 30) as a function of the
propagation distance ct. Different colors represent different initial CEPs ϕ0 ≡ ϕCEPðt ¼ 0Þ: ϕ0 ¼ 0 (black), ϕ0 ¼ π=2 (blue), and
ϕ0 ¼ π (red). Laser pulse, electron bunch, and plasma parameters: see text. Simulation parameters: δx ¼ δy ¼ δz ¼ cδt ¼ 0.1k−1p ,
subcycling number Nsub ¼ 50.
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intensity shock, thus ruling out any self-induced undula-
tions of the laser-produced plasma bubble [79,81].
On the other hand, the externally injected ultrashort

bunch can induce phase-dependent bubble undulation
through its direct interaction with the electromagnetic
fields of the laser pulse. Although the bunch electrons
are placed at the decelerating phase of the bubble, they gain
energy from the laser through the DLA mechanism that
overcomes the deceleration by the plasma wakefield
[55,68]. Since the bunch duration is about half of the laser
wavelength, bunch electrons retain finite phase coherence
during DLA. Therefore, finite oscillations of the bunch
centroid, approximately with the betatron frequency
ωβðtÞ ¼ ωp=

ffiffiffiffiffiffiffiffiffiffiffiffi
2γbðtÞ

p
, can periodically “shake” the bubble

and induce its undulations. Such plasma bubble undula-
tions clearly break the original axisymmetric geometry
shown in Fig. 4(a), and this symmetry breaking is captured
by WAND-PIC.
The DLA is captured accurately by our particle pusher

with the subcycling technique. At the final propagation
distance ct ¼ zfin ¼ 24.2 mm [see Figs. 4(b)–4(d)], bunch
electrons have gained significant energy from the laser as
shown in Fig. 4(c). The average gain from the laser pulse
hW⊥i ≈ 400 MeV, and the average loss to the longitudinal
field hWki ≈ 300 MeV (longitudinal laser field and the
wakefield, combined). The DLA also results in the broad-
ening of the bunch in the laser polarization direction (x) as
shown in Fig. 4(b). The oscillation triggers the undulation

of the bubble in the x-direction, and this undulation is
phase-dependent, i.e., it is a function of the initial CEP
offset ϕ0. When measuring the transverse wakefields Fx ¼
Ex − By and Fy ¼ Ey þ Bz at the back of the bubble, we
see from Fig. 4(d) that Fx (solid lines) exhibits periodic
oscillations with the amplitude Fx ≈ 0.72 GeV=m. On the
other hand, the magnitude of Fy (dashed lines) is negli-
gible. Different colors in Fig. 4(d) correspond to the
different initial phases of the laser: ϕ0. The oscillation of
the transverse wake Fx clearly shows a strong correlation
with the laser phase ϕ0. Together with the polarized
undulation direction, these results demonstrate that this
effect is indeed DLA-induced and phase-dependent.
This particular setup shows the importance of the full

3D geometry and the modeling of DLA in WAND-PIC. In
the presence of both laser pulse and electron bunch, the
phase-dependent effect is captured through the correct
modeling of sophisticated electron-laser interactions, and
the visualization of this effect is facilitated by the non-
axisymmetric plasma flows in the full 3D geometry.

VII. ALGORITHM, EFFICIENCY, AND SCALING

In this section, we discuss the algorithm design and the
benchmarking of the WAND-PIC. First, the global routine of
WAND-PIC is discussed. Then, we briefly present the
implementation of the nonuniform transverse grids in
our MG solver and show one sample application of this

Algorithm 1: WAND-PIC’s global algorithm.

1: Initialization()
2: for each time step t ¼ ti do
3: for each ξ step ξ ¼ ξj do
4: Collect_Source()
5: Solve_Wakefield() ▹ depending on the pushing method, particle pusher

and field solver can be intertwined.
6: Push_Trajectory()
7: Step_Size_Refinement()
8: end for
9: Push_Driver()
10: end for

1: function Step_Size_Refinement()
2: Vmax ¼ maxðjV⊥jof all trajectoriesÞ
3: V0 ¼ δx=δξð0Þ

4: if Vmax > V0 then
5: δξ ¼ δξð0Þ � V0=Vmax ▹ this makes sure trajectories never cross more

than one transverse grid.
6: else
7: δξ ¼ δξð0Þ

8: end if
9: end function
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feature. At last, we discuss the efficiencies and scalings of
WAND-PIC on the distributed parallel computing system.

A. WAND-PIC’s global algorithm

The algorithm design and the code structure of WAND-PIC

is greatly simplified by the local in-ξ method of calculating
the wakefield components as described by Eqs. (12)–(19)
which are solved without using predictor-corrector
schemes. Therefore, the entire algorithm consists of two
main loops: (i) the time loop in t for the driver(s), and
(ii) the slicing loop in ξ for the plasma electrons and
wakefields, as shown in pseudocode (1):
Since the time loop is relatively straightforward, we now

focus on the slice loop in ξ. At every time step t ¼ ti, the
drivers are assumed “frozen” in the moving frame, and
plasma flows—macroparticles and wakefields—are
advanced in the positive ξ-direction. The routine at one
ξ slice consists of main three steps: (i) collecting source,
(ii) solving fields, and (iii) advancing particles. At every ξ
slice, the source terms—currents hV⊥i, number densities
n�, and pressure tensor components T of the plasma
electrons—are deposited onto the transverse grids, and
wakefields are solved. Then wakefields are interpolated to
macroparticles’ positions, and macroparticles are pushed to
the next slice according to Eqs. (6) and (7).
A Boris-like pusher [82] is used to advance macro-

particles. Specifically, we solve for the electric wakefield
first, advance the particle by half ξ-step, and advance the
momentum by half ξ-step only via the electric wakefield.
Afterward, we solve for the magnetic wakefield and push
momentum using the magnetic wakefield by a full ξ-step.
Finally, we solve the electric wakefield and perform
another half ξ-step push on position and momentum.
These steps are performed for the transverse position
and momentum using ξ as a time-like variable. Because
there exists an integral of motion, pz ¼ γ − ψ − 1, the
variables pz; γ can be calculated from the constant of
motion. Other particle pushers such as first-, second-,
and fourth-order Runge-Kutta are also available.
The fields are obtained by solving a 2D nonlinear elliptic

equation for the earlier introduced expanded wakefield
vector Ψ. The equation takes the following form:

∇2⊥Ψ þM1 · Ψ þM2x · ∂xΨ þM2y · ∂yΨ

¼ JðΨ ; n�; hV⊥i;TÞ ð29Þ

where M1 and M2x;2y are 5 × 5 matrices that depend on Ψ
and hV⊥i. J is an expanded current source vector defined
by the electron densities n�, fluid velocities hV⊥i, and
pressure tensor T, all calculated in the same ðx; yÞ plane as
the Ψ -vector. The expressions for Ψ, M1;2x;2yðr; ξÞ, and
Jðr; ξÞ are as follows:

Ψ ¼

2
666664

ψ

Ez

Bz

Bx

By

3
777775
;

J ¼

2
666666664

n� − 1

−∇⊥ · j⊥
ez · ½∇⊥ × j⊥�

∂yðjz − n�hTyyiÞ − ∂xðn�hTxyiÞ − n�
∂yjÂ⊥j2
4ð1þψÞ2

∂xðn�hTxxi − jzÞ þ ∂yðn�hTxyiÞ þ n�
∂xjÂ⊥j2
4ð1þψÞ2

3
777777775
;

M1 ¼ n�

2
666666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
hVyi
1þψ − hVxi

1þψ 0 − 1
1þψ

0 − hVxi
1þψ − hVyi

1þψ 0 − 1
1þψ

3
777777775
; ð30Þ

M2x ¼ n�

2
666666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
hTxyi
1þψ 0 0 0 0

− hTxxi
1þψ þ hγi

ð1þψÞ2 0 0 0 0

3
777777775
;

M2y ¼ n�

2
6666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
hTyyi
1þψ − hγi

ð1þψÞ2 0 0 0 0

− hTxyi
1þψ 0 0 0 0

3
7777775
: ð31Þ

For simplicity, the parametric dependences of Ψðr; ξÞ and
Jðr; ξÞ on the time-step label ti is suppressed. When solving
Eq. (29), ψ , Ez, and Bz are solved first, then their values
enter M1 and M2x;2y matrices to solve the B⊥.
While the inhomogeneous Eq. (29) can be solved using

a variety of numerical solvers (including the commonly
used FFT solver implemented in QuickPIC and HiPACE),
WAND-PIC uses an MG solver. The potential advantages of
the multigrid (MG) solvers over the FFT solvers are as
follows: First, an MG solver naturally fits into the 2D
square partitioning of the ðx; yÞ computational domain,
and the communications between different subdomains
are all local: each subdomain only communicates with the
four neighboring ones as shown in Fig. 1. This lends MG
solvers to efficient parallelization. On the contrary, a 2D
FFT solver requires global communications between
subdomains, resulting in considerable efficiency loss
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under parallelization. Second, MG solvers have poten-
tially better scaling of the computational time (also known
as time complexity) with the problem size n: OðnÞ for the
MG vs O½nlogðnÞ� for the FFT method. While FFT-based
solvers show advantages at smaller number of cores, our
test with MG solvers show advantage at larger number of
cores. Third, because MG is an inherently iterative
method, a good initial guess of the solution can be applied
to accelerate the convergence. For example, in WAND-PIC,
we use the fields from the previous ξ step (or from the
previous time step when solving Eq. (20) for the laser
pulse envelope) as the initial guess. We found that an MG
solver with an appropriate initial guess is 2 times faster
compared with a trivial (Ψ ¼ 0) initial guess. Con-
sequently, a MG solver may be a useful alternative to
an FFT solver depending on the size and type of the
problem.
Once the wakefields are solved and macroparticles are

advanced, we run the step size refinement to determine the
appropriate step size dξ used in the next ξ slice. The step
size refinement function is explained in the pseudocode (1).
After the completion of the ξ-loop at t ¼ ti, the time loop

then advances the driver macroparticles from t ¼ ti to t ¼
tiþ1 according to Eqs. (25) and (26) using a volume-
preserving algorithm (VPA) [83]. The currents and den-
sities of the driver particles are then collected and deposited
onto the grid similar to the way it was done for the plasma
macroparticles, and they also enter the source terms J.
When a laser driver is present, its envelope equation (20) is
rearranged to a Poisson-like equation and solved using the
same MG solver.

B. Multigrid solver with nonuniform grids

In addition to the adaptive step size refinement in the ξ
direction, WAND-PIC also implemented the nonuniform
grids at the transverse plane. To make sure the convergence
of our MG solver, the second-order operators used in
Eq. (29) need to be properly approximated on the nonuni-
form grids. Figure 5(a) shows a nine-points stencil of
nonuniform 2D grids. Consider the general form of wake-
field equations: ∇2⊥ΨþMΨ ¼ J and apply Taylor expan-
sion around the central point Ψi;j, the 2D Laplacian can be
approximated with the following:

�
∂
2

∂x2
þ ∂

2

∂y2

�
Ψ i;j ¼

2

h−x hþx hax
ðhþx Ψ i−1;j − haxΨ i;j þ h−xΨ iþ1;jÞ þ

hbx
3

∂
3Ψ i;j

∂x3

þ 2

h−y hþy hay
ðhþy Ψ i;j−1 − hayΨ i;j þ h−yΨ i;jþ1Þ þ

hby
3

∂
3Ψ i;j

∂y3
þOðh2Þ; ð32Þ

where h is the local characteristic grid size. hax ¼ hþx þ h−x , hbx ¼ hþx − h−x , and same for those in the y direction. In the case
of uniform grids: h−x ¼ hþx ¼ h−y ¼ hþy ¼ h, Eq. (32) will be reduced to a five-point difference operator:

�
∂
2

∂x2
þ ∂

2

∂y2

�
Ψ i;j ¼

1

h2
ðΨ i−1;j þ Ψ iþ1;j þ Ψ i;j−1 þ Ψ i;jþ1 − 4Ψ i;jÞ þOðh2Þ: ð33Þ

FIG. 5. Nonuniform grids and its application. (a) A nine-points stencil of a nonuniform 2D grids. (b) A common beam-driven
simulation. A Gaussian driver bunch is used: σdx ¼ σdy ¼ 0.5k−1p , σdz ¼ 2.5k−1p , and peak density¼ 20n0. (c) Grid size δx as a function of
x (same for the δy). There are three main regions: (I) plasma region, (II) bubble region, and (III) beam region. (d) 2D electron density
distribution at kpðz − ctÞ ¼ 8, overlaid with the transverse grids. To make the grids visually clear, we enlarged the grid size by 5 times,
the actual grids used in the simulation are 5 times denser everywhere.
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This five-point difference scheme is commonly used in
codes with 2D uniform grids. However, if we still use the
second-order approximation for Eq. (32), the additional
truncation error ðhbx∂3Ψ i;j=∂x3 þ hby∂3Ψ i;j=∂y3Þ will enter,

and that increases with local grid nonuniformity. Therefore,
the third-order difference must be kept in Eq. (32), to make
sure the convergence of the multigrid solver. Luckily, one
can approximate the third-order terms:

hbx
∂
3Ψ i;j

∂x3
þ hby

∂
3Ψ i;j

∂y3
¼

�
hbx

∂

∂x
þ hby

∂

∂y

��
∂
2Ψ i;j

∂x2
þ ∂

2Ψ i;j

∂y2

�
−
�
hbx

∂
3Ψ i;j

∂x∂y2
þ hby

∂
3Ψ i;j

∂y∂x2

�

≈
�
hbx

∂

∂x
þ hby

∂

∂y

�
ðJi;j −Mi;jΨ i;jÞ − hbx

�
2

h−y hþy hay

∂

∂x
ðhþy Ψ i;j−1 − hayΨ i;j þ h−yΨ i;jþ1Þ

�

− hbx

�
2

h−x hþx hax

∂

∂y
ðhþx Ψ i−1;j − haxΨ i;j þ h−xΨ iþ1;jÞ

�
; ð34Þ

where the first-order difference operator can be approxi-
mated with three points, for example:

∂Ψi;j

∂x
¼ h−x

haxhþx
ðΨ iþ1;j − Ψ i;jÞ þ

hþx
haxh−x

ðΨ i;j − Ψ i−1;jÞ: ð35Þ

By plugging Eq. (34) into Eq. (32), we approximate the
transverse Laplacian operator with all nine points. This
numerical scheme is used in the relaxation process of our
MG solver and the inclusion of third-order correction:
Eq. (34) ensures a good converge rate even with a large
local grid nonuniformity. The restriction and elongation
processes of the MG solver are also slightly modified to
take into account the different weights of adjacent cells on a
nonuniform grid [84]. This feature of WAND-PIC enables us
to efficiently simulate large domains by deploying finer
grids only at the area of interest, for example, the bubble
region and the region with driver/witness bunches.
Combined with the adaptive step size refinement in the
longitudinal direction, we have achieved nonuniform grids
in all three directions to take care of the structures with
different spatial scales.

Figure 5(b) shows a simple simulation setup in which the
nonuniform grids are applied. In this setup, a long driver
electron bunch drives the bubble. While the vast area outside
of the plasma bubble does not deserve a high resolution, the
bubble boundaries are sharp and thus need to be resolved
with denser grids. Furthermore, the near-axis region needs an
even higher resolution to accurately model the bunches’
phase space evolutions, e.g., emittance and potential hosing
instabilities. Therefore, we divide the transverse plane into
three regions: (I) the tranquil plasma region that uses coarse
grids: δx ¼ δy ¼ 0.15k−1p , (II) the bubble region that uses
dense grids: δx ¼ δy ¼ 0.07–0.1k−1p , and (III) the beam
region that uses more-dense grids: δx ¼ δy ¼ 0.05k−1p . The
variation of grid size δxðxÞ can be found in Fig. 5(c) and the
visualization of transverse grids is plotted in Fig. 5(d) at
position z − ct ¼ 8k−1p , together with the electron densities.
With the nonuniform grids, WAND-PIC uses 3 times denser
grids near the axis and 2 times denser grids for the bubble
boundary comparedwith the largest grid.Overall, 250 × 250
cells are seeded in the transverse plane. If uniform grids are
used: δx ¼ δy ¼ 0.05k−1p , 500 × 500 cells and quadrupled
runtime are expected.
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FIG. 6. Benchmarking of WAND-PIC on Lonestar 5 Architecture (Xeon E5-2690 v3). (a) Strong scaling of WAND-PIC, transverse
problem size (number of cells) is fixed at Ngrid ¼ 1000 × 1000. (b) The algorithm time complexity of WAND-PIC: the number of cores
fixed at Nc ¼ 64, the problem size Ngrid ¼ n × N0 is varied (N0 ¼ 320 × 320). (c) Weak scaling of WAND-PIC for fixed
Ngrid=Nc ¼ 20 × 20.
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C. Benchmarking

To assess the overall performance of the WAND-PIC under
parallelization, benchmarking is conducted and the stan-
dard computational quantities, such as strong scaling, weak
scaling, and time complexity, were extracted and presented
in Fig. 6. When talking about the scalings and complexity,
the transverse slices are the main subject of study since the
ξ direction is not currently parallelized and it has linear time
complexity. Note that the scalings and efficiency can be
problem dependent. For example, a linear regime and a
blowout regime would generate different loads on the
computational cores due to the different movements of
trajectories. Therefore, we concentrate on one specific
physical scenario: a spherical bubble with a complete
blowout driven by an intense laser pulse. We chose the
domain size to be 3 times the bubble size—the character-
istic length of the solution is fixed when we vary computa-
tional cores and transverse grids. Laser and domain
parameters are presented in Table I. For this specific
physical setup, approximately 80% of the runtime is
consumed by the MG solver.
Figure 6 and Tables II and III illustrate the strong scaling,

weak scaling, and the time complexity of WAND-PIC. The
raw time in the table is the time it took to generate one time
step of plasma. Figure 6(a) shows the strong scaling, where
the finest transverse grid size (referred to as the problem
size) is fixed to be Ngrid ¼ 1000 × 1000 cells. Therefore,
Ngrid determines the transverse resolution. WAND-PIC shows
excellent linear speedup up to Nc ¼ 3000 cores (note some
run-to-run variance due to hardware issues). The overall
time complexity of the WAND-PIC is plotted in Fig. 6(b). The
number of cores was fixed at Nc ¼ 64, and the normalized

problem size n was defined as n ¼ Ngrid=N0, where N0 ¼
320 × 320 is the base problem size corresponding to n ¼ 1.
The time complexity of WAND-PIC exhibit a OðnÞ scaling at
a smaller problem size but deviates from OðnÞ for larger
problem sizes. Overall, the time complexity of WAND-PIC

falls between OðnÞ and O½nlogðnÞ�. Finally, Fig. 6(c)
shows the weak scaling where the problem size per core
is fixed: Ngrid=Nc ¼ 20 × 20. The parallel efficiency
remains 83.3% at Nc ¼ 500 cores and falls to 62% at Nc ¼
3000 cores. Clearly, the parallel efficiency somewhat
decreases when more cores are added, mostly due to
increased overheads. Sources of overheads include (i) fast
trajectories crossing more subdomains when the physical
size of a subdomain decreases, thus requiring more send/
receive operations; (ii) increased communication between
hardware nodes (Lonestar 5 has 24 cores per node). Yet,
considerable room for improving WAND-PIC still remains,
for example, by implementing load balancing.

VIII. FUTURE CODE DEVELOPMENT
AND CONCLUSIONS

Since the first release of WAND-PIC in 2019 [85], it has
been under continuous improvement. The new features we
are developing now include (i) parallelization in the
longitudinal dimension through the pipeline technique
[36,44] which would extend our scalability to hundreds
of thousands of cores; (ii) automatic load balancing which
would reduce the overheads and improve the efficiency;
(iii) transverse local mesh refinement which would improve
the level of details in the physical region we are interested
in, for example, the back of the bubble and witness beam;

TABLE I. Simulation parameter.

Domain size (x − y − z) δξð0Þ a ω0=ωp a0 Particle per cell Laser size (σx, σy, σz) Laser center (x0, y0, z0)
b

ð25 × 25 × 25Þk−3p 0.08k−1p 20 5 4 × 4 ¼ 16 (3.2, 3.2, 2.1) k−1p (0, 0, 5)k−1p
aAdaptive step size is used.
bCenter of transverse plane is (0,0) and ξ coordinate starts with 0.

TABLE II. Strong and weak scaling.

Number of processors 122 ¼ 144 162 ¼ 256 202 ¼ 400 242 ¼ 576 302 ¼ 900 362 ¼ 1296 422 ¼ 1764 482 ¼ 2304 542 ¼ 2916

Strong scaling time (s) 3.316 1.526 0.991 0.581 0.348 0.267 0.213 0.201 0.192
Weak scaling time (s) 0.210 0.230 0.248 0.259 0.292 0.313 0.317 0.337 � � �

TABLE III. Complexity scaling.

Problem size 1 2 3 4 5 6 7 8 9 10

Time (s) 0.140 0.256 0.394 0.568 0.765 1.034 1.277 1.523 1.718 1.942
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and (iv) better multigrid cycles and smoothers which would
improve the MG solver performance. These changes will be
applied in the near future and released to the open-source
community.
In conclusion, a new quasistatic 3D parallel PIC code:

WAND-PIC has been introduced in this work. With the
advanced quasistatic equations which are fully explicit
and static, wakefields driven by the relativistic beams or
laser pulses are solved without using the predictor-corrector
method. WAND-PIC has implemented different types of
drivers as well as the interactions between the drivers
and is able to simulate various scenarios in the plasma-
based accelerators. Comparison between the results of
WAND-PIC and a 3D full PIC code (VLPL) shows that
the WAND-PIC is efficient and accurate in modeling the large
bubble driven by a large beam charge and the direct laser
acceleration of electrons in the bubble. Good parallel
scalings and time complexity are achieved by the use of
a parallel MG solver and simplified explicit field-solving
procedures.
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