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We study short-range geometric wakefields of a normal conducting third harmonic cavity, developed by
ALBA, which is currently under investigation for the BESSY II main storage ring upgrade. As is
commonly done to enhance the shunt impedance, the single cell cavity shape includes smooth nose-cone
transitions to the outside beam pipe, which significantly affects the wakefields. Utilizing the general
approach developed by the earlier work [B. Podobedov and G. Stupakov, Phys. Rev. STAccel. Beams 16,
024401 (2013)], a model of point-charge wakefield for cavities of this type is suggested. The wakefield
model consists of two parts: the singular part, inherently difficult for numerical codes, is found analytically,
and the nonsingular part, which could be retrieved from relatively nondemanding numerical wakefield
computations. Based on this hybrid approach, the wakefields due to arbitrary short bunches can be readily
obtained both efficiently and accurately. The model was cross-checked against direct numerical simulations
and a good agreement was found within the entire range of bunch lengths relevant to potential applications,
from sub-millimeter down to 1-μm rms. We also observed that the wakefield model of a single cavity
applies equally well to a small number of coupled cavities after some straightforward parameter scaling.
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I. INTRODUCTION

Collective effects often set performance limits for
modern storage rings as well as for other types of accel-
erators. At high beam intensity, they typically cause
significant deterioration of beam quality, instabilities, or
other effects leading to rapid beam loss and in some cases
could lead to damage of accelerator components. The most
important collective effects are often those driven by the
beam electromagnetic interaction with the vacuum chamber
components, usually quantified in terms of wakefields in
the time domain or (coupling) impedances in the frequency
domain. Calculations of wakefields and impedances and
the resulting collective effects they drive are therefore
indispensable for the design of modern accelerators.
Analytical theories of wakefields and impedances due to

various accelerator components have been developed over
the last few decades [1,2]. They provide extremely valuable

intuition and initial design guidance through the expres-
sions for point-charge wakefield (Green’s function wake)
available for some very basic geometries and with some
other simplifying assumptions. Nevertheless, due to the
complexity of real-life accelerator components, as well as
the high degree of confidence required for modern designs,
the bulk of the wakefield calculations is presently done with
3D electromagnetic (EM) codes. These, in a nutshell,
quantify the electromagnetic interaction of charged par-
ticles and the vacuum chamber from the first principles.
Despite the explosive growth in available computing
power, these calculations still require very substantial time
and effort, and one is often forced to a compromise between
accurately modeling a real-life structure (or a group of
coupled structures) and what is realistic given the available
time and resources.
The reason for this is threefold. First, for some accel-

erators, shorter and shorter bunches are becoming a reality,
while some other machines, such as free-electron lasers,
and, more recently, steady-state microbunching [3], inten-
tionally introduce microstructures on top of the main
bunch. Modeling single-bunch collective effects requires
knowledge of the wakefields due to a much shorter bunch
(or the microstructure) than the one envisioned for oper-
ations, e.g., due to the fact that single-bunch instabilities
could potentially induce much shorter substructures on top
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of the bunch. In practice, a factor of 10–15 between the
operating rms bunch length σ and the driving bunch length,
σ̂, utilized in the EM code, is considered sufficient to obtain
the wake (sometimes called pseudo-Green function) which
could be used for subsequent beam dynamics calculations
in place of an unknown point-charge wakefield [4,5].
Second, the short-range longitudinal wakefields are

typically dominated by singularities, such that in the short
bunch limit, they scale inversely to some power of the
bunch lengthWσ

kðsÞ ∝ σ−q, q > 0 [2]. This implies that the
wakefields for different bunch lengths are drastically
different and that straightforward extrapolation of the
wakefield effects toward shorter bunches does not work.
Finally, the required mesh size h used in EM codes must

be a small fraction of σ̂. Shorter bunches require progres-
sively finer mesh size and correspondingly a larger number
of mesh cells for a given structure volume. This translates to
a larger required memory as well as longer CPU time
needed to calculate the wakefield up to a fixed length smax.
The CPU time scales as 1=h3 and 1=h4 for 2D and 3D
structures, respectively [2].
Our present work was motivated by the need to evaluate

the wakefields for a prototype design of a 1.5 GHz, active,
third harmonic rf cavity planned to replace the existing aging
passive Landau cavities at BESSY II [6,7]. The new cavity
was originally developed by ALBA and is now undergoing
further development and testing under a collaboration among
CELLS, HZB, and DESY [8]. This new cavity design will
allow for stretching the bunch by a factor of 2–3 compared to
the presently available 20% lengthening; the beam lifetime
will lengthen proportionally. It will also provide an option of
significantly shortening the bunch at low currents, where the
final bunch length is expected to be well into the sub-
millimeter region. In the future, the same or similar cavity
design is envisioned forMLS,BESSY III, andMLS II [9,10],
and, in all cases, the short-bunch collective beamdynamics is
expected to be of great importance. Thismotivated us to seek
a point-charge wakefield model, so we could predict the
wakefields due to arbitrary short bunches.
For a fairly common case when multiple rf cavities are

installed next to each other, their short-range wakefields
interfere. Therefore, we have also studied this possibility.
Even for a single cavity, a brute force numerical calcu-

lation of short-bunch wakefields could be extremely
demanding. For the bunch length of a few millimeters, it
requires billions ofmesh cells in 3D geometry computations,
and for sub-mm bunches, they are not possible with our
available computing resources (Intel Xeon E5 with 12 core
and 256 GB RAM). This is why, in this paper, we follow the
general approach from [11,12], which outlined how to
accurately find point-charge geometric wakefields for arbi-
trary accelerator structures, utilizing some general analytical
results as well as numerical computations with EM codes for
relatively long bunches. Specifically, the short-range wake-
field is separated into two parts: the singular part, inherently

difficult for numerical codes, is found analytically, and the
nonsingular part, which is retrieved from relatively non-
demanding numerical wakefield computations by using low-
order polynomial fitting. Finally, at a longer range (which is
not the focus of this paper), where the wakefields weakly
depend on the bunch length, one could well approximate the
point-chargewakefields with those found numerically, again
with a relatively long drive bunch.
With the point-charge wakefield model in hand, one

could easily find the wake potential due to an arbitrary long
bunch by convolution with the charge density (assumed
Gaussian throughout this paper). To show that our point-
charge wakefield models in the longitudinal and transverse
planes are indeed accurate, we extensively cross-checked
the wakefields found from these models by convolution to
those calculated directly with EM codes.
In this paper, we stay within the usual ultrarelativistic

approximation, γ ≫ 1. Throughout the paper, we use SI
units. For wakefields and related quantities, we follow the
definitions from [2]. In particular, our sign convention is
that s < 0 is ahead of the bunch, a negative longitudinal
wakefield corresponds to the energy loss, and a positive
transverse wakefield is defocusing.
The rest of this paper is organized as follows: We first

present the analytical model of wakefield for our nose-cone
cavity in Sec. II. The model is validated and compared with
direct simulations in Sec. III, where the wakefield singular
behavior, parameter scaling, and the equivalent geometries
are also discussed. We conclude the paper in Sec. IV.

II. ANALYTICAL WAKEFIELD MODEL
FOR A NOSE-CONE CAVITY

The rf cavity under consideration is of the nose-cone
type (sometimes also called reentrant). It resembles a
pillbox cavity but with smooth nose cones to enhance
the shunt impedance of the fundamental mode with respect
to higher order modes. Our particular cavity geometry,
shown in Fig. 1, is a variant of [7] and it has an axial
symmetry for the cavity body under prototyping. The
cavity also possesses longitudinal midplane symmetry.
The cavity is 87 mm long and has two beam pipes of
23 mm in radius on each side. The radial profile of the nose
cones is an arc of a circle with 4 mm in radius, as marked in
the vicinity of points P0, Q0, P1, and Q1 in Fig. 1.
The bunch length σ within our application interests

ranges from 1 μm to sub-millimeter. In the following,
we will develop the point-charge wake function model,
which, in principle, allows one to reconstruct the wake
potential due to an arbitrary short bunch length.
The short-range wakefield is formed in the following

process: when a point charge, traveling with the speed of
light, traverses this cavity, its pancake field scatters at the
discontinuity points of the radial boundary derivative,
located along cross-sections P0-Q0 and P1-Q1. The scat-
tered spherical wave fronts eventually catch up with the
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charge and therefore define the wake function at s ¼ 0. By
causality, all other scattered fields must follow with some
delay, thus contributing to the wake function at some
distance s > 0 behind the charge.
As was pointed out in [11], there always exists a length

parameter λg > 0, which defines the s location of the
singularity in the wake function or its derivatives that
are closest to (but not at) the origin. The wake potential
calculated for a short enough bunch, σ̂ ≪ λg, contains
enough information to reconstruct the wake for arbitrarily
short bunch, including the point-charge wake.
The parameter λg can be easily found by analyzing the

critical points of the boundary and selecting the path which
results in the minimum nonzero delay. Reference [11]
provides instructive examples of calculating λg for typical
cavitylike or collimatorlike geometries. For any cavity of
the shape similar to that in Fig. 1, this parameter is given by

λg ¼ min

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2min þ g2

q
− g;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4fΔr − rnose½1 − cosðϕÞ�g2 þ ½g − 2rnose sinðϕÞ�2

q
þ 2rnoseϕ − g; 2g

�
ð1Þ

where Δr ¼ rmax − rmin and the angle ϕ < π=2 is

ϕ ¼ 2 arctan

0
B@− g

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δr2 − 2Δr rnose þ g2

4

q
Δr − 2rnose

1
CA: ð2Þ

Here, the first element in the set,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2min þ g2

p
− g, corre-

sponds to the delay acquired for the scattered field traveling
from point P0 to Q1, or, equivalently, from Q0 to P1. The
second element is due to the field path from P0 to the
nearest point in the cavity midsection, z ¼ 0, r ¼ rmax, and
then to P1 (or an equivalent path starting at Q0), with ϕ
being the angle of the path along the nose-cone surface.
This path would typically be the shortest for shallow
cavities. The last element of the set in Eq. (1), defining
λg for short cavities, is due to the reflections at the
beginning and the end of the cavity.
For the particular cavity dimensions shown in Fig. 1, the

first element in the set in Eq. (1) is the smallest, so

λg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2min þ g2

q
− g ¼ 11.4 mm: ð3Þ

Note that this equation is the same as for the λg parameter
for the straight cylindrical cavity with equivalent dimen-
sions, i.e., the nonlinear tapering due to the nose cones does
not affect this parameter. This is in contrast to the cavity
with a gradual linear taper [the case treated in Ref. [11], see
Eq. (17)], where the λg parameter is proportional to the
square of the tapering angle and would typically be much
smaller for similar cavity dimensions.

The longitudinal wake potential of the cavity shown in
Fig. 1, calculated with the code ECHO [13] for
σ ¼ 0.5 mmbunch, is shown in Fig. 2 with λg indicated
by the vertical dashed line. The figure also includes the
derivative of the wake potential plotted on the right axis. As
will be shown later, the singular behavior of the wakefield
at s ¼ 0 can be described by the diffraction model (see,
e.g., [1,2,14,15]) together with another singularity [16]
coming from the nonlinear transitions at the nose cones.
The location of the next “special” point in the wake

plotted in Fig. 2, at s ¼ λg ¼ 11.4 mm, is clearly identi-
fiable from the dip in the wake potential derivative. Here

FIG. 2. The rf cavity wake potential (solid black line), its
derivative (dash-dotted red line, right axis), and the s position
which corresponds to the λg parameter (dashed blue line).

FIG. 1. rf cavity geometry with key points and dimensions
labeled.
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the point-charge wake derivative is discontinuous, and
therefore the second derivative of the wake potential is
singular (divergent for σ → 0). However, apart from iden-
tifying the location of this point from Eq. (3), we will not be
relying on any knowledge of the wake behavior in the
vicinity.
Instead, we will concentrate on obtaining the short-range

wake potentials spanning up to 5σ in most cases, for σ
values from 1 μm to sub-millimeter. Following [11,12], to
calculate these, we will rely on numerical calculations with
the driving bunch length σ̂ much shorter than λg, even
though σ̂ ≫ σ will hold in most cases. These calculations
will also be used to construct the short-range point-charge
wake model. For our geometry and the corresponding
parameter λg ¼ 11.4 mm, we chose σ̂ ¼ 0.5 mm ≪ λg.

A. Longitudinal wakefield

Following [11], the analytical wake function is proposed
to be the sum of a nondivergent part, usually well
represented by a linear polynomial, αþ βs, and a singular
part. For the nose-cone cavity, we find that the singular part
contains not only the usual diffraction model ∝ s−1=2 but
also a term ∝ s−1=3. The longitudinal wake function thus
takes the form:

Wδ
kðsÞ ¼ αþ βsþ kds−1=2 þ kss−1=3ð0 < s < λgÞ; ð4Þ

where the parameters α, β, kd, and ks depend on the cavity
geometry. The coefficient kd is given by the diffraction
model (see, e.g., [1,2,14,15]),

kd ¼ −
Z0c
π2

ffiffiffiffiffiffiffiffi
g=2

p
rmin

; ð5Þ

The last term in Eq. (4) is due to the smooth transitions
from the nose cones to the straight pipe. We find that it is
critical to include this singular contribution in the cavity
model for an accurate short-range wake potential
reconstruction; otherwise, it overestimates the magnitude
of the wake. The s−1=3 singularity due to such type of
transition was first derived in Ref. [16] for a taper-in
geometry. For a slowly varying transition of parabolic
shape with the first derivative of the radial boundary
matched to zero at rmin, the s−1=3 singular part of the
point-charge wake has the coefficient

ktaps ¼ Z0c
2πrmin

ð6r00Þ−1=3; ð6Þ

where r00 stands for the second derivative of the parabolic
radial boundary with respect to the axial coordinate.
Close to the minimum radius, the nose cones are

essentially parabolic, with r00 ¼ 1=rnose, so one would
expect the expressions for ks and k

tap
s to be identical except

for a numerical coefficient on the order of 1. However,
because we lack the exact coefficient for the nose-cone
cavity geometry, in this paper, we obtained the parameter ks
in Eq. (4) by fitting the wake potentials as explained in the
next section. Note that, unlike kd, the coefficient ks is
positive, i.e., the s−1=3 singular term due to smooth nose
cones counteracts the dominant term due to the diffraction
model, reducing the total wake by absolute value.
The wake potential for a bunch distribution λðzÞ is given

by the convolution of λðzÞ and the wake function given

in Eq. (4). For a Gaussian bunch, λðzÞ ¼ 1ffiffiffiffi
2π

p
σ
e−

z2

2σ2 , this

convolution can be efficiently evaluated numerically and
can also be written in the closed form [11]:

Wσ
kðsÞ ¼

�
α

2
þ σ

βu
2

��
1þ erf

�
uffiffiffi
2

p
��

þ βσffiffiffiffiffiffi
2π

p e−u
2=2

þ kdσ−1=2f1ðuÞ þ ksσ−1=3f2ðuÞ; ð7Þ

where u ¼ s=σ is a normalized distance, erfð·Þ is the error
function, f1ð·Þ and f2ð·Þ are two auxiliary functions given
by

f1ðuÞ ¼ e−
u2
4

ffiffiffiffiffiffiffiffiffi
π

8
juj

r �
I−1=4

�
u2

4

�
þ signðuÞI1=4

�
u2

4

��

f2ðuÞ ¼ p

�
u1F1

�
2

3
;
3

2
;−

1

2
u2
�
þ q1F1

�
1

6
;
1

2
;−

1

2
u2
��

;

where p ¼ π−
1
22−

2
3Γð5

6
Þ, q ¼ π−12−

3
2Γð1

6
ÞΓð1

3
Þ, and Γð·Þ, the

gamma function, Ivð·Þ, the modified Bessel function of the
first kind with order and 1F1ð·Þ, the confluent hyper-
geometric function of the first order.
We can now establish how the wakes, as well as the

individual coefficients in Eqs. (4) and (7), scale with the
cavity dimensions. If we uniformly scale all cavity dimen-
sions as well as the bunch length by a factor η, then the
resulting wake potential will be related to the original
one by

Wσ·η
k;ηðs · ηÞ ¼

1

η
Wσ

k;η¼1
ðsÞ: ð8Þ

This scaling is exact for an arbitrary structure and bunch
length. The equivalent expression (with both superscripts
replaced by δ) also holds for the point-charge wakes.
Therefore, the coefficients α; β; kd; ks of the scaled struc-
ture relate to the original ones by factors of 1=η; 1=η2;
η−1=2; η−2=3, respectively. These relations could be useful
when cross-checking numerical codes.
Alternatively, if only the longitudinal cavity dimensions

are scaled by a factor κ, while the transverse dimensions
are left intact, and the bunch length is scaled by 1=κ, it
immediately follows from Eqs. (5)–(7) that, for short
bunches,
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Wσ=κ
k;κ ðs=κÞ ≈ κWσ

k;κ¼1
ðsÞ: ð9Þ

Here the equality is only approximate because we
neglected the nonsingular parts, which become progres-
sively small as the bunch gets shorter. This scaling law is
very useful for the numerical wake computations. If the
bunch is stretched by a factor of 1=κ > 1while the structure
is compressed longitudinally by a factor of κ < 1, this leads
to a drastic reduction of the number of required mesh cells
and thus the computational power. We will take advantage
of this relation in Sec. III when dealing with the direct
computation of wake potentials due to the shortest drive
bunch of σ̂ ¼ 1 μm.
It should be noted that Eq. (9) was derived previously

(under several assumptions with regard to the boundary
variation) for a wide range of accelerator structures
by means of parabolic equation approach to Maxwell’s
equations [17]. The same reference also pointed out the
utility of Eq. (9) for the numerical calculation of wake
potentials.

B. Transverse wakefield

The general form of the transverse wakefield could be
obtained by integrating the longitudinal one (and omitting
the constant term because Wδ⊥ð0Þ ¼ 0 [2]). Keeping all
signs positive, and introducing the first three terms con-
sistent with [12], it is proposed as

Wδ⊥ðsÞ¼α⊥sþβ⊥s2þ2kd;⊥s1=2þ
3

2
ks;⊥s2=3ðs>0Þ; ð10Þ

where the parameters α⊥, β⊥, kd;⊥, and ks;⊥ depend on the
cavity geometry. In contrast to the longitudinal case, the
transverse wake function shows no singular behavior
at s ¼ 0.
As usual, by the transverse wakefield for the axially

symmetric geometry, we mean the dominant m ¼ 1 dipole
mode. Therefore, we generally cannot rely on the
Panofsky-Wenzel theorem [18] to relate the coefficients
in the transverse wake in Eq. (10) and the m ¼ 0 longi-
tudinal wake in Eq. (4). To emphasize that the coefficients
in this section are different, they carry an added “⊥”
subscript. These coefficients need to be found separately
from the corresponding longitudinal ones.
The diffraction model term in Eq. (10) is, of course,

well known, and its coefficient is given by (see, e.g.,
Refs. [1,2,14,15])

kd;⊥ ¼ Z0c
π2

ffiffiffiffiffi
2g

p
r3min

: ð11Þ

The rest of the coefficients in Eq. (10) can be found by
fitting the wake potentials. Similar to the longitudinal
case, we find that kd;⊥ and ks;⊥ are of opposing signs
(i.e., ks;⊥ < 0), so the last term in Eq. (10) counteracts the

diffraction model term, somewhat reducing the magnitude
of the total wake.
Performing a convolution of Eq. (10) with a Gaussian

bunch distribution, we get the transverse wake potential

Wσ⊥ðsÞ ¼
α⊥sþ β⊥ðs2 þ σ2Þ

2

�
1þ erf

�
1ffiffiffi
2

p u

��

þ ðα⊥ þ sβ⊥Þσffiffiffiffiffiffi
2π

p e−u
2=2 þ kd;⊥σ

1
2

Z
u

−∞
f1ðuÞdu

þ ks;⊥σ
2
3

Z
u

−∞
f2ðuÞdu; ð12Þ

where u ¼ s=σ, f1ð·Þ, and f2ð·Þ are the same as in the
longitudinal definition given after Eq. (7). The integrals
above can be expressed as

Z
u

−∞
f1ðuÞdu¼e

−u2
4

ffiffiffiffiffiffiffiffi
π

8juj
r �

ðu2þ2ÞI1=4
�
u2

4

�
þu2I5=4

�
u2

4

�

þu2signðuÞ
�
I−1=4

�
u2

4

�
þI3=4

�
u2

4

���
;

Z
u

−∞
f2ðuÞdu¼

1

4
ffiffiffi
π

p
�
25=6Γ

�
1

3

�
u1F1

�
1

6
;
3

2
;−

1

2
u2
�

þ3×21=3Γ
�
5

6

�
1F1

�
−
1

3
;
1

2
;−

1

2
u2
��

:

According to Eq. (12), as the bunch gets shorter, the
transverse wake potential goes to zero as expected.
Similar to the longitudinal case, we can now establish

some useful scaling laws for the transverse wakes. The
transverse equivalent of Eq. (8), i.e., the exact relation of
the wake potentials before and after the scaling of all cavity
dimensions and the bunch length by the same factor η is
given by

Wσ·η
⊥;ηðs · ηÞ ¼

1

η2
Wσ⊥;η¼1ðsÞ: ð13Þ

Therefore the transverse coefficients, α⊥, β⊥, kd;⊥, and
ks;⊥, scale as 1=η3; 1=η4; η−5=2; η−8=3.
For longitudinal-only dimension scaling, the analog to

Eq. (9) in the transverse plane is given by

Wσ=κ
⊥;κðs=κÞ ≈Wσ⊥;κ¼1ðsÞ; ð14Þ

which again conforms to an earlier finding in Ref. [17].
Similar to its longitudinal equivalent, this scaling relation
provides significant computational benefits and will be
exploited later for the numerical calculations of wake
potentials due to the shortest drive bunch of σ̂ ¼ 1 μm.
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III. NUMERICAL SIMULATION AND
COMPARISON WITH WAKE MODEL

A number of numerical codes have been developed for
geometric wakefield computations, including ABCI [19],
ECHO [13], ACE3P [20], CST [21], GdfidL [22], and some
others. Most of them can handle realistic 3D geometries.
However, for our cavity, the components like various
dampers, the input power port, etc. that break the axial
symmetry do not contribute to the short-range wakefield
formation and therefore do not affect the short-range wake
potentials. The validity of this assumption has been cross-
checked with a 3D simulation of the full cavity for a bunch
of 2 mm rms length. On the other hand, by exploiting the
axial symmetry, we can reduce the required computing
power by orders of magnitude. Therefore, we stay with the
axially symmetric cavity geometry as shown in Fig. 1 and
utilize ECHOz1 and ECHOz2 [13]—the versions of ECHO that,
respectively, can efficiently calculate the longitudinal and
transverse wake potentials of axially symmetric structures.
As the bunch length decreases to the level of about

10 μm, even the 2Dmodel computations with ECHO take up
prohibitive memory and computing time. To proceed there,
we take advantage of the allowed volume-reducing mod-
ifications to the cavity geometry which preserve the point-
charge wake up to some maximum distance, as was
discussed in [11]. For instance, three different cavities
with the radial profiles shown in Fig. 3 must have exactly
the same point-charge wakefield up to some distance smax,
which is equal to the smallest λg parameter of the three
profiles. Therefore, the corresponding wake potentials due
to a bunch of finite length σ will also be equal up to the
same distance smax minus a few σ.
To illustrate this further, in Fig. 4, we show the wake

potentials due to 25-μm bunch calculated for the cavities
with profiles 1 and 2 shown in Fig. 3. As expected, the two
cavities share the same wake potential until the discrepancy
occurs near smax ¼ λgjprofile 1 ¼ 368 μm, where the param-
eter λg for profile 1 is defined by the second term in Eq. (1).
Similarly, the short-bunch wake potential of the cavity with
profile 3 will deviate from the original one (profile 2) only
at s positions greater than 11.4 mm, which is the λg value
for the original cavity (see Fig. 2).
Since the cavity with profile 1 has much less area to

mesh compared with the original cavity, and it results in the
same short-range wake, it has been used for the calculation
of the wake potentials due to σ̂ ¼ 10 μm bunch up to the
wake length up to 5σ̂ to be presented below.

A. Single cavity

As was mentioned earlier, ECHO-calculated wake
potentials for a bunch with σ̂ ¼ 0.5 mm are used to
construct the point-charge wake function models in the
longitudinal and transverse planes. Specifically, the dif-
fraction model wake potential is subtracted from the

FIG. 3. Three equivalent geometries with different outer wall
boundaries, which result in the same short-range wake up to some
distance smax. Profile 1 corresponds to a shallow cavity with the
radius rmax ¼ 27 mm. Profiles 2 corresponds to the original cavity
of Fig. 1 with rmax ¼ 68.4 mm. Profile 3 represents a cavity with
an arbitrary outer wall variation, and rmaxðsÞ > 68.4 mm.

FIG. 4. Wake potentials due to a bunch with σ ¼ 25 μm for the
cavities with profile 1 (solid blue) and 2 (dashed red). The black
dashed line indicates the value of λg parameter for the cavity with
profile 1.
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numerically calculated total wake potential. The residual,
taken in the s range of [−3σ̂, 3σ̂], is then used to fit
the model, Eqs. (7) and (12), and obtain the parameters
αð3.68 × 10−2Þ, βð−6.95 × 101Þ, ksð7.30 × 10−2Þ for the
longitudinal wake and α⊥ð−4.56 × 102Þ, β⊥ð−1.78 × 104Þ,
ks;⊥ð−1.83 × 102Þ for the transverse wake. Note that
including the term s−1=3 in Eq. (4) was important.
Performing the fit (and the reconstruction) without the
term would, for instance, at σ ¼ 100 μm, produce the
reconstructed wake potential about 15% higher in ampli-
tude than the actual one. Once we obtain these parameters,
the wake potentials for an arbitrary short bunch are readily
available from Eqs. (7) and (12).
The comparisons between the directly simulated wake

potentials and the reconstructed ones based on our wake
models are shown in Figs. 5 and 6 for the longitudinal and
transverse directions, respectively. Direct calculations of
the wake potentials due to a 100 μm drive bunch was
performed for the original cavity shape. To speed up the
computations, the wake potential due to a drive bunch of
10 μm was calculated for the cavity with profile 1 in Fig. 3.
In the 1 − μm case, we additionally relied on the scaling
laws from Eqs. (9) and (14). Specifically, we used the
scaling factor κ ¼ 1=5 so that the cavity with profile 1 was
compressed longitudinally by a factor of 5 while the drive
bunch was stretched to σ̂ ¼ 5 μm.
As evidenced by Figs. 5 and 6, the wake potentials from

our point-charge wake function models agree perfectly well
with the direct simulation results in both longitudinal and
transverse cases.
As a reminder, while studying the wake potentials due to

very short bunches, we assumed the infinite beam energy
(γ → ∞) throughout the paper. This assumption allows
for the impedance to extend to an infinite frequency,
corresponding to the wake singularity at s ¼ 0.

However, at finite beam energies, the geometric impedance
high-frequency cutoff occurs at ω ≈ γc=rmin, which, equiv-
alently, limits the wake potentials for bunches shorter than
rmin=γ [1].

B. Coupled cavities

We have two main motivations to study a structure with
multiple coupled cavities. First, it is intriguing to find out if
the s−1=3 singular form of the single cavity, still holds in this
case. Second, from a practical perspective, at least three
harmonic cavities will be needed in order to achieve the
optimal bunch lengthening for the BESSY II upgrade. We
thus consider the case where up to four cavities, as an upper
limit, are installed next to each other, which is the current
configuration for BESSY II. As will be shown later,
accounting for the cavities individually will overestimate
the wake potentials due to the interference of the short-
range wakefields, which are coupled via the connecting
beam pipe due to σ ≪ rmin.
A sketch of this structure where four cavities are coupled

via the beam pipe is shown in Fig. 7. The overall length of
the structure we consider is about 1 m.
To study the wakefields of this structure, we parameterize

them in exactly the sameway aswedid for the single cavity in
Eqs. (4) and (10) and then find the respective coefficient by

FIG. 5. Comparison of the reconstructed longitudinal wake
potentials (solid lines) with direct ECHO simulations (symbols)
performed at several rms bunch lengths, as indicated in the
legend.

FIG. 6. Comparison of the reconstructed transverse wake
potentials (solid lines) with direct ECHO simulations (symbols)
performed at several rms bunch lengths, as indicated in the
legend.

FIG. 7. Four-cavity structure. Each cavity is identical to the one
in Fig. 1 and the center-to-center spacing is 314.3 mm.
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fitting a numerically calculated wake potential. In contrast to
the single cavity case, where the analytical expression for kd
(kd;⊥) was readily available, here we also fit this parameter.
For this structure, the parameter λg is determined similarly as
for the single cavity, Eqs. (1)–(3), except the relevant critical
points,which are located at the nose cones at the entrance and
exit of the entire structure. Therefore, they are separated by
g ¼ 1030 mm. The corresponding parameter λg is now
smaller and according to Eq. (3), the new value is approx-
imately 1mm.We thus used a bunchwith σ̂ ¼ 0.2 mm ≪ λg
to construct the wake function models for the coupled cavity
structure.
The fitted parameters amount to 2.61×10−1,−2.31×103,

−3.24 × 10−1,3.48 × 10−2 forα; β; kd; ks in the longitudinal
model and for the transverse model 2.49×104,−4.92 × 106,
1.45 × 103, −1.54 × 103 for α⊥; β⊥; kd;⊥; ks;⊥, respectively.
The resulting longitudinal and transversewake potentials are
shown in Figs. 8 and 9, respectively. The solid lines show the
reconstructed wake potential, while the symbols represent
the wake potentials calculated directly for the four-cavity
structure. Similar to the single cavity case, we observe a
perfect agreement between the directly calculated wake
potentials and the ones found in our model. This argues
that our approach to finding the short-range wakes works
equally well for the case of coupled cavities and that the
models given by Eqs. (4) and (10) do not require any extra
terms in this case.
Also shown in Figs. 8 and 9 are the dash-dotted curves

representing four times the respective wake potentials due
to a single cavity. Clearly, a simple quadrupling of the wake
potential due to a single cavity overestimates the wake
potential of the four-cavity structure.

To illustrate this effect over a wide range of bunch
lengths, we have also looked at the loss factor κk and the
kick factor κ⊥. These quantities, frequently used in studies
of collective beam dynamics, are defined as

κσk;⊥ ¼
Z

∞

−∞
Wσ

k;⊥ðsÞλðsÞds: ð15Þ

For our wake models, they can be explicitly expressed as

κσk ¼
α

2
þ βffiffiffi

π
p σ þ 1

2
ffiffiffiffiffiffi
2π

p Γ
�
1

4

�
kdσ−1=2

þ 1

24=3
ffiffiffi
π

p Γ
�
1

3

�
ksσ−1=3; ð16Þ

κσ⊥ ¼ α⊥ffiffiffi
π

p σ þ β⊥σ2 þ
ffiffiffi
2

π

r
Γ
�
3

4

�
kd;⊥σ1=2

þ 3

24=3
ffiffiffi
π

p Γ
�
5

6

�
ks;⊥σ2=3: ð17Þ

These factors, calculated for the single cavity and the four-
cavity structure, are shown in Fig. 10.
Clearly, the single cavity model overestimates the loss

and kick factors per cavity compared to the four-cavity
model. The absolute discrepancy is more pronounced for
shorter bunches in the longitudinal case and for longer
bunches in the transverse case. The relative deviation,
over the range of σ shown, decreases with σ from about
25% to 15% for the longitudinal case while staying roughly
constant, at around 15%, for the transverse case. Note
that for very short bunches, the loss (kick) factor is

FIG. 8. Comparison of the reconstructed longitudinal wake
potential (solid lines) due to various σ (indicated in legend) with
direct simulation for the four-cavity structure (symbols). The
dash-dotted lines show four times the wake potential for a single
cavity at the indicated bunch length.

FIG. 9. Comparison of the reconstructed transverse wake
potential (solid lines) due to various σ (indicated in legend) with
direct simulation for the four-cavity structure (symbols). The
dash-dotted lines show four times the wake potential for a single
cavity at the indicated bunch length.
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dominated by the diffraction model and scales roughly as
∝σ−0.5(∝ σ0.5), see Ref. [15].
At a given bunch length, the loss and kick factors are

entirely defined by three geometric parameters: the mini-
mum radius rmin, the cavity length g, and the nose radius
rnose. Once these parameters are fixed, there is no chance to
optimize the loss and kick factors for short bunches.

IV. CONCLUSION

We presented a way to accurately calculate the short-
range wakefield of the third harmonic rf cavity, which is
currently being considered for BESSY II. Our method
produces a model of the point-charge wakefield and is,
therefore, capable to construct the wake potential due to an
arbitrarily short bunch. The point-charge wakefield model
has two singular terms that diverge at the origin as s−1=2 and
s−1=3, which result in the divergent terms σ−1=2 and σ−1=3 in
the wake potential. We showed that in spite of smooth nose-
cone transitions at the minimum cross section, the param-
eter λg for this cavity is the same as for a straight cylindrical
cavity of the same length. This is in contrast to the cavity
with a gradual linear taper (treated in Ref. [11]), where the
corresponding parameter is proportional to the square of the
tapering angle and would typically be much smaller for
similar cavity dimensions. A large λg parameter for the
nose-cone cavity allowed us to accurately find the point-
charge wakefield by fitting the numerically obtained wake
potential due to a relatively long bunch, σ̂ ¼ 0.5 mm. This
wakefield model was cross-checked against direct simu-
lations at various bunch lengths in the 1–100 μm range and
they were shown to agree well with each other.
Separately, we studied the case of a small number of

cavities of this type, which are coupled together. We
established that thewakefield model of a single cavity, given
by Eqs. (4) and (10), applies equally well to this case after

some straightforward scalingof thenumerical coefficients. In
agreement with the expectation from earlier works [1], the
total wakefield of this multicavity system ended up smaller
than the sum of the individual cavity wakefields, with this
effect becoming more pronounced for shorter bunches.
While we analyzed a particular cavity design, our point-

charge wake function models, Eqs. (4) and (10), should be
applicable to any other cavities that utilize smooth non-
linear transitions to the outside beam pipes. These are very
common, especially among superconducting “bell-shaped”
designs, used both in light sources and collider accelerators.
Multicell cavities or multiple single-cell ones placed close
together in a single cryostat are also common. As we
showed in Sec. III B, our point-charge wakefield models
are also applicable to these cases and the savings in
computational effort compared to direct wakefield calcu-
lations could be very substantial. For instance, one of the
presently considered main rf cavity arrangements for the
electron storage ring in the Electron-Ion Collider [23] is to
place each pair of 591 MHz cavities in a single cryostat. If
the two cavities are separated by about 1 m and each
directly transitions to a 75 mm radius beam pipe outside,
then the λg parameter is on the order of 1 cm. This implies
that a 1-mm rms long bunch is short enough to reconstruct
the point-charge wakefield for such a fairly large structure
and to avoid direct pseudo-Green function calculations
typically performed at 0.3 mm for this ring.
To conclude, we believe that the proposed model is quite

general and applicable to a large number of cavity designs.
We also believe that the method of calculating point-charge
wakefield for realistic cavities by fitting to this model is
rather powerful and could substantially save both computa-
tional and personal time and effort.
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