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When using the harmonic cavity to stretch the beam in electron storage rings, we expect the beam can be
lengthened effectively and also stably. Semianalytical approaches can be used to obtain the equilibrium
distribution but generally failed in the prediction of its stability. In this work, a novel perturbation method is
proposed to check whether the calculated equilibrium solution can survive from the l ¼ 1 mode
perturbation. For the case of uniform beam filling, we derive a simple formula that can determine the
threshold of l ¼ 1 mode instability under specific parameters, which is well verified with tracking
simulation for the Hefei Advanced Light Facility storage ring.
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I. INTRODUCTION

This study can be regarded as a follow-up to the previous
one [1]. In that study, with the high efficiency tracking
program-STABLE [2] and a semianalytical calculation
approach [3], we are able to use the parameter scanning
method to investigate the characteristics of a new beam-
loading effect for the Hefei Advanced Light Facility
(HALF) storage ring [4], i.e., periodic transient beam-
loading (PTBL) effect [1] or called slow moving transient
instability [5] or mode 1 instability [6] by other researchers.
This PTBL should be avoided, otherwise, it will severely
deteriorate the bunch lengthening performance of a har-
monic cavity (HC). Besides HALF, the PTBL has also been
observed in simulations for SOLEIL-U [5] and Diamond-II
[7] and even experimentally at MAX-IV [6]. We believe
that the PTBL is also an important common problem for
other ultralow emittance storage rings with high average
current and employing HC for bunch lengthening.
We find that the semianalytical method originally pro-

posed for the equilibrium solution can also predict the
PTBL threshold well, and even the resulting bunch profiles
are in good agreement with that obtained by tracking
simulation [1]. This inspires us to go deep into the semi-
analytical method [3] and thus leads us to find a novel
perturbation method. Based on this method, we could
derive a threshold formula that clearly specifies the

condition that the PTBL will occur. We will show that
the PTBL is actually derived from the l ¼ 1 mode phase
perturbation. When satisfying that condition, this l ¼ 1
mode perturbation will continue to grow and eventually
evolve into PTBL. We call it PTBL to focus on its final
behavior while we call it mode 1 instability to focus on its
cause. In the following, we will not distinguish between the
two statements.
It is worth mentioning that as early as 2018, Venturini

used the perturbation-theory mode analysis method to
investigate this l ¼ 1 mode instability based on the equi-
librium distribution and concluded that this instability is
driven by the imaginary part of the impedance rather than
the real part [8]. The perturbation method proposed here is
quite different from that method and can be regarded as a
steady-state time-domain perturbation method. That is
because we assume the phase perturbation applied to the
equilibrium distribution can exist for a long time and then
judge whether the perturbation is growing or decaying. For
simplicity, this paper only focuses on the case of uniform
filling with only the fundamental mode beam-loading effect
of the passive HC.
The content of the paper is summarized as follows: In

Sec. II, we briefly review the semianalytical method to
obtain the equilibrium distribution for the case of uniform
beam filling. Sections III A and III B give introductions to,
respectively, the main idea of the perturbation method and
the exact form of this perturbation. In Sec. III C, we show
how to express the steady-state harmonic voltage seen by
one bunch. Then in Sec. III D, we derive a formula to obtain
the new perturbation phase distribution. In Sec. III E, we
define an amplification factor to judge the stability of the
equilibrium solution. The dependence of the amplification
factor on the HC detuning is discussed in Sec. III F. More
details about the derivations can be found in the
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Appendixes. In Sec. IV, the threshold formula is well
verified through tracking simulation. We make more
discussions on the threshold formula in Sec. V. The final
conclusion is given in Sec. VI.

II. EQUILIBRIUM SOLUTION

For the case of uniform filling, if there is no instability,
the harmonic voltage excited by the beam can be given as

Vhc ¼ −2FI0R cosðψhÞ sinðnφþ π=2 − ψh þ φFÞ; ð1Þ

where I0 is the average beam current, n is the harmonic
number of HC, R is the HC shunt impedance, and ψh is the
detuning angle defined in the range of 90°–180°, which can
be determined by the below formula

tanðψhÞ ¼ −
2QΔω
ωr

; ð2Þ

with Q, Δω, and ωr being the quality factor, angular
detuning frequency, and resonant frequency of HC, respec-
tively. F and φF are the amplitude and phase of the bunch
form factor, respectively. For a bunch with a given density
distribution λðτÞ, its bunch form factor can be calculated by

F̃ ¼
Z

∞

−∞
λðτÞ expð−jωrτÞ dτ: ð3Þ

If the distribution is symmetric at τ ¼ 0, F̃ is a scalar with
φF ¼ 0, otherwise, F̃ is a complex.
For the passive HC, its detuning can be adjusted to make

its voltage reach a required ratio relative to that of the main
cavity, in order to obtain the required bunch lengthening.
Here we denote the required HC voltage amplitude as ξVrf ,
with ξ, the ratio, and Vrf , the main voltage amplitude. Then
the corresponding detuning is

Δω ¼ ωrfn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
FI0R=Q
ξVrf

�
2

−
1

4Q2

s
: ð4Þ

To lengthen the bunch, we should limit Δω ¼ ωr − nωrf in
the range of 0−ω0=2, with ω0 the angular revolution
frequency and ωrf , the rf fundamental frequency.
The main cavity voltage can be written as Vmc ¼

Vrf sinðφþ φsÞ, with φs, the synchronous phase. The total
cavity voltage of the double rf system can thus be given as

VT ¼ Vrf sinðφþ φsÞ þ ξVrf sinðnφþ φhÞ; ð5Þ

where ξ¼−2FI0R cosðψhÞ=Vrf and φh ¼ π=2−ψhþφF.
Ignoring the effect of short-range wake, Eq. (5) can be
used to calculate the potential ΦðφÞ and then the density
distribution λðφÞ (φ ¼ ωrfτ).

ΦðφÞ ¼ eVrf

2πhαcE0σ
2
δ

�
cosðφsÞ − cosðφþ φsÞ

þ ξ

n
½cosðφhÞ − cosðnφþ φhÞ� −

U0φ

eVrf

�
; ð6Þ

λðφÞ ¼ exp½ΦðφÞ�R
∞
−∞ exp½ΦðφÞ�dφ ; ð7Þ

where e is the elementary charge, h is the harmonic
number, αc is the momentum compaction, E0 is the design
beam energy, and σδ is the relative energy spread. The
equilibrium distribution can be obtained by iterative cal-
culation with the above equations [9]. It should be noted
that this method based on Eq. (1) can only be suitable for
the uniform filling case. Hence we call it a simple semi-
analytical method which is different from the advanced
semianalytical methods that can cover the case of the
arbitrary filling pattern [10] and arbitrary short-range
wake [3,11].
Using this simple semianalytical method, we will find

that in order to reach the flat potential (or called optimum
lengthening) condition which requires that the first and
second derivatives of the total cavity voltage are zero [12],
it needs to be put forward requirements only for the value of
R instead of R=Q under specific beam current. This case is
common when using normal conducting HC. However, for
the case of superconducting HC, the flat potential condition
is generally impossible due to the very large R. Second
best, we can pursue the near-flat potential (or called near-
optimum lengthening) condition, that is, to keep the first
derivative of the total voltage zero [5].
It should be emphasized that the simple semianalytical

method, which defaults that the HC voltage excited by the
beam can be expressed as Eq. (1), is incomplete. In fact,
the beam may encounter instability, resulting in Eq. (1) that
does not hold anymore. It is known that the possible
instability is heavily dependent on the value of R=Q but
not R. Therefore, after obtaining the equilibrium solution, it
is necessary to further analyze whether it can exist stably
in order to optimize the design parameters of HC. The
conventional approach is to solve the linearized Vlasov
equation with perturbation-theory mode analysis [8].
Alternatively, we can also investigate the instability
directly by using tracking simulation or a semianalytical
approach [1]. Inspired by the semianalytical approach
raised in [3], we propose a novel perturbation approach
as another complementary approach. It will be shown later
that this approach can allow us to derive a simple formula
that determines the threshold of l ¼ 1 mode instability
which can help us efficiently judge whether the parameters
of HC are feasible.
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III. PERTURBATION METHOD

A. The general philosophy

Suppose we have obtained the equilibrium solution
based on the equilibrium assumption, an artificial pertur-
bation phase is then applied to each bunch. This perturba-
tion is small enough and will not cause changes in bunch
profiles but will only cause changes in bunch-centroid
positions. What we need to do is to solve the new
perturbation phase and then compare the two perturbations.
If the new one has a larger amplitude, instability will occur,
otherwise, it will not.

B. Sinusoidal-perturbation phase distribution

For the case of m bunches uniformly distributed in h
buckets (so h=m is an integer), all bunches are identical at
equilibrium. We label these bunches as 1; 2;…; m to
distinguish them. Since they are identical, the initial
perturbation phase distribution can be set starting from
any one of them, particularly from the bunch labeled as 1.
We set that the perturbation phase distribution is sinusoidal
and exhibits a coupling mode l ¼ 1. We emphasize that it
should be done due to the fact that the l ¼ 1 mode
instability has already been generally verified via numerical
solution of linearized Vlasov equation [8], semianalytical
calculation, and macroparticle tracking simulation [1].
Certainly, we can also set the perturbation with other
coupling modes l > 1. This paper focuses on the instability
relevant to the l ¼ 1mode. The corresponding perturbation
phase distribution can be given in discrete form as

Δφi ¼ ϵ sin

�
ði − 1Þ 2π

m

�
ði ¼ 1; 2;…; mÞ; ð8Þ

where ϵ represents the perturbation amplitude, which is a
very small quantity, e.g., ϵ ¼ 10−10. Note that in Eq. (8),
bunch 1 is at phase zero by default.

C. Harmonic voltage at equilibrium

For an electron bunch with charge q and complex form
factor F̃ ¼ F expðjφFÞ, the harmonic voltage phasor
excited by its first pass through HC is known as F̃ qωrR

Q .
After its second pass, the voltage phasor becomes
F̃ qωrR

Q ð1þ exp½ðj − 1=2QÞωrT0�Þ [3]. By analogy, after
its kth pass, the voltage phasor can be written as

Ṽ0 ¼ F̃
qωrR
Q

Xk
i¼0

exp½ðj − 1=2QÞωrT0i�: ð9Þ

When k is large enough, the harmonic voltage tends to a
convergent, which can be given by simplifying Eq. (9) as

Ṽ0 ¼ F̃
qωrR
Q

1

1 − exp½ðj − 1=2QÞωrT0�
; ð10Þ

where R=Q is the characteristic parameter of HC,
fully determined by the cavity shape, and T0 is the
revolution time. Considering the angular detuning Δω ¼
ωr − nωrf and ωrf ¼ 2πh=T0, so qωr ≈ 2πnI0h=m
and exp½ðj − 1=2QÞωrT0� ¼ expðjΔωT0Þ expð− ωrT0

2Q Þ.
Substituting both into Eq. (10) (see Appendix A for more
details), we can finally get

Ṽ0 ¼
2πnFhI0R=Q

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 − 2a cosðθÞ

p exp

�
j

�
π − θ

2
− Δθ þ φF

��
;

ð11Þ

where a ¼ expð− ωrT0

2Q Þ, θ ¼ ΔωT0 ∈ ½0; π� and Δθ ¼
arcsin½ 1−affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þa2−2a cosðθÞ
p cosðθ

2
Þ�. It should be noted that the

value of φF depends on how to set the reference phase
(φ ¼ 0). Even if the bunch distribution is completely
Gaussian, φF will not be zero as long as its axis of
symmetry is not at φ ¼ 0. In order words, we can select
a special reference phase so that φF ¼ 0 for arbitrary bunch
distribution. Actually, this reference phase is close to that of
a bunch centroid. In the following, we take the bunch
centroid as the reference, then Eq. (11) can be reduced as
(see Appendix B for more details)

Ṽ0¼
2πnFhI0R=Q

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2−2a cosðθÞ

p exp

�
j

�
π−θ

2
−Δθ

��
: ð12Þ

Let us now consider the steady-state harmonic voltage
phasors contributed by all other bunches, as shown in
Fig. 1, these contributions can be treated as that of Ṽ0 after
rotating counterclockwise for certain angles and having
amplitudes attenuated somewhat. For example, the rotation
angles of the adjacent bunches before (bunch m) and after

FIG. 1. Schematic of steady-state harmonic voltage phasors
contributed by all bunches at the reference phase for bunch 1.
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(bunch 2) bunch 1 are 1
m θ and m−1

m θ, respectively, and
the corresponding amplitude attenuation coefficients are
expð− ωrT0

2Q
1
mÞ and expð− ωrT0

2Q
m−1
m Þ, respectively. In this way,

the contributions of other bunches are not difficult to be
drawn from Fig. 1. For the sake of simplifying the
following calculations, we reselect the virtual axis shown
in Fig. 1 as the reference and rearrange the phasors in
counterclockwise order. Then the rotation angles and
amplitude attenuation coefficients can be written in the
following discrete forms:

θk ¼
θ

2
þ Δθ −

k − 1

m
θ; ð13Þ

dk ¼ exp

�
−
ωrT0

2Q
k − 1

m

�
; ð14Þ

where k ¼ 1; 2;…; m. With Eqs. (13) and (14), the total
steady-state harmonic voltage seen by one bunch can be
written as

Vhc ¼ jṼ0j
Xm
k¼1

dk sinðθkÞ: ð15Þ

D. Influence of the perturbation phase

When the sinusoidal-perturbation phase distribution is
imposed on the bunch centroids and it is assumed that this
perturbation exists for a long time, the existence of the
perturbation will change the phase of the harmonic voltage
phasor and make it rotate at a slight angle. The rotation
direction depends on the relative value of the perturbation
phases of the two bunches. For the ith bunch, its harmonic
voltage considering the influence of the perturbation can be
expressed as

Vhc;i ¼ jṼ0j
Xm
k¼1

dk sin½θk − nðΔφi − ΔφkÞ�; ð16Þ

where Δφk ¼ ϵ sin½ði − kÞ 2πm �, which is given in the order
consistent with Eqs. (13) and (14).
Comparing Eqs. (15) and (16), it is easy to obtain the

variation of the harmonic voltage caused by the applied
perturbation phase, which is

ΔVhc;i ¼ −jṼ0jnϵ
Xm
k¼1

ϵki dk cosðθkÞ; ð17Þ

where ϵki ¼ sin½ði − 1Þ 2πm � − sin½ði − kÞ 2πm �.
Because the bunch centroid is chosen as the reference,

the main voltage at the bunch centroid should be expressed
as (see Appendix B for more details)

Vmc ¼ Vrf sinðφs − φF=nÞ; ð18Þ

where φs and φF can be obtained directly from the
equilibrium solution.
The change of harmonic voltage will drive the bunch

centroid toward a new perturbation phase, denoted by Δφ0
i.

As a consequence, the corresponding change of main
voltage using the new perturbation phase can be written as

ΔVmc;i ¼ Vrf cosðφs − φF=nÞΔφ0
i: ð19Þ

The change of main voltage should be equal to that of
harmonic voltage, then the new perturbation phase can be
obtained as

Δφ0
i ¼

ΔVhc;i

Vrf cosðφs − φF=nÞ

¼ jṼ0jnϵ
P

m
k¼1 ϵ

k
i dk cosðθkÞ

Vrf jcosðφs − φF=nÞj

¼ 2πn2FhI0R=Qϵ

Vrf jcosðφs − φF=nÞj
fðθ; m; iÞ; ð20Þ

where fðθ; m; iÞ has the form

fðθ; m; iÞ ¼
P

m
k¼1 ϵ

k
i dk cosðθkÞ

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 − 2a cosðθÞ

p : ð21Þ

E. Amplification factor

Given the initial perturbation phase distribution and
assuming that it remains for a long time, we can obtain
a new perturbation phase distribution using Eqs. (20)
and (21). Obviously, if the new perturbation phase dis-
tribution has a larger amplitude than the original one, it
indicates that the perturbation will continue to grow and
eventually lead to an instability. Conversely, it will be
suppressed. For the case where m is an integral multiple of
4, it is found that the bunch at the initial perturbation phase
of π=2 (corresponding to i ¼ m=4þ 1) or 3π=2 (corre-
sponding to i ¼ 3m=4þ 1) has the largest perturbation
growth (see Appendix C for more details). Thus, either
one of the two bunches can be chosen as the marker to
evaluate the l ¼ 1 mode instability. According to this,
we can introduce an amplification factor for the initial
perturbation as

η ¼ maxðΔφ0
iÞ

maxðΔφiÞ

¼ Δφ0
m=4þ1

Δφm=4þ1

¼ 2πn2FhI0R=Q
Vrf jcosðφs − φF=nÞj

fðθ; mÞ; ð22Þ
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where the bunch corresponding to i ¼ m=4þ 1 is chosen
as the marker and thus fðθ; mÞ has the form

fðθ; mÞ ¼
P

m
k¼1 ϵ

k
m=4þ1dk cosðθkÞ

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 − 2a cosðθÞ

p ; ð23Þ

where ϵkm=4þ1 ¼ sinðπ=2Þ − sinðπ
2
− k 2π

mÞ. It is evident that
for the l ¼ 1 mode perturbation to be stable, one must
have η < 1.

F. Effect of Q and m on f ðθ;mÞ
As can be seen from Eq. (23), fðθ; mÞ is determined by

bunch number m, detuning frequency, and Q value of HC.
Here we take the HALF storage ring as an example to
analyze the dependency of fðθ; mÞ on these three param-
eters. The HALF parameters [4] are listed in Table I. Two
different Q values are taken into account: one is 5 × 105

corresponding to superconducting HC and the other is
3 × 104 corresponding to normal conducting HC. Keeping
the average current at 350 mA, three different m values are
also considered. The results calculated with Eq. (23) are
shown in Fig. 2, where the top plot illustrates the values of
fðθ; 800Þ as a function of the detuning Δf ¼ Δω=2π, and
the bottom plot shows the relative deviations of fðθ; 8Þ and
fðθ; 80Þ to fðθ; 800Þ, respectively.
From the top plot of Fig. 2, it can be seen that fðθ; 800Þ

decreases with the detuning, indicating that increasing the
detuning is conducive to avoiding the growth of l ¼ 1
mode perturbation. In other words, when reducing the
detuning to further stretch the bunch length, fðθ; 800Þ will
be significantly increased especially at lower detuning, thus
increasing the possibility of l ¼ 1 mode instability. It can
also be seen that when the detuning is large, increasing
detuning cannot effectively reduce fðθ; 800Þ anymore,
implying that there exists a possibility that the amplification

factor is always larger than 1 no matter how to adjust the
detuning. In this case, the l ¼ 1 mode is always unstable.
This possibility with the specific case will be verified by the
tracking simulation later.
We note that the effect of Q on fðθ; 800Þ is slight for the

detuning larger than 150 kHz. While the fðθ; 800Þ of
normal conducting Q is significantly smaller than that of
superconducting Q for the detuning lower than 100 kHz.
Nevertheless, this does not mean that the case of normal
conducting cavities is more beneficial to decrease the
amplification factor because it very likely has the larger
total R=Q-values. Here we take the HALF storage ring for
example. If the superconducting cavity is adopted, only one
cell is required, with R=Q of about 41 Ω and near-optimum
detuning of 57 kHz. However, if normal conducting
cavities are employed, at least four ALS-U-like cavities
[13] can meet the requirements of HALF, leading to the
total R=Q of about 82Ω and near-optimum detuning of
about 112 kHz. The amplification factor for the two cases
of superconducting and normal conducting can be obtained
as 0.974 and 0.994, respectively. Therefore, for HALF, the
superconducting cavity scheme is more beneficial to avoid
l ¼ 1 mode instability.
As can be seen from the bottom plot of Fig. 2, the

difference between the cases of m ¼ 8 and m ¼ 800
slightly increases with the detuning and always is less

TABLE I. HALF parameters with superconducting (SC)
or normal conducting (NC) cavity used for the following
calculations.

Parameter Symbol Value

Circumference C 480 m
Beam energy E0 2.2 GeV
Beam current I0 350 mA
Momentum compaction αc 9.4 × 10−5

Energy relative spread σδ 7.44 × 10−4

Harmonic number h 800
Main cavity voltage Vrf 1.2 MV
Energy loss with IDs U0 400 keV
HC harmonic number n 3
HC quality factor (SC/NC) Q 5 × 105=3 × 104

HC R=Q R=Q 41=82 Ω
HC near-optimal detuning Δf 57=112 kHz
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FIG. 2. The value of fðθ; 800Þ (top) and the relative deviations
of fðθ; 8Þ and fðθ; 80Þ to fðθ; 800Þ (bottom) as functions of
detuning.
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than 10−3. The difference between m ¼ 80 and m ¼ 800 is
even smaller than 10−7 over the entire detuning range. This
shows that for the l ¼ 1 mode perturbation, the resulting
amplification factors of the three cases are very close to
each other. It enlightens us that when we try to perform
tracking simulations to study this instability, we can use
fewer bunches without affecting the results.

IV. VERIFICATION ON EQ. (22)

A. Threshold of l = 1 mode perturbation growth

In order to verify the accuracy of Eq. (22), we intend to
compare the difference between the two threshold detun-
ings obtained by both Eq. (22) and tracking simulation with
the STABLE code. Using Eq. (22), it is easy to obtain the
threshold detuning of HC, which corresponds to η ¼ 1. In
tracking simulation, 80 equally spaced and equally charged
bunches are tracked for 500,000 turns and each bunch is
represented by 20,000 macroparticles. According to the
above analysis, using 80 instead of 800 bunches will not
affect the results. We can scan the detuning near the
threshold detuning obtained by Eq. (22) to determine the
tracking threshold detuning, below which corresponds to
the appearance of PTBL. We consider two Q values. For
the lower Q, other forms of coupled bunch instability may
occur when at large detuning, e.g., in general an l ¼ 1
mode coupled bunch instability combined with both dipole
and quadrupole Robinson instabilities [14] or an instability
with more complex behavior. In order to fully damp them,
the damping time in the tracking simulation is set to 0.1 ms.
The resulting threshold detunings are shown in Fig. 3.
Let us first look at the results of the larger Q (super-

conducting case). When higher than 60 Ω of R=Q, the
resulting threshold detunings given by both methods are in
very good agreement, generally with a difference of less
than 1 kHz. When lower than 60 Ω, the difference can
reach about 3–4 kHz. In that case, we can obtain more

bunch lengthening by tracking, with the corresponding
bunch profile nearly having double bumps (overstretching)
and a large bunch form factor phase, e.g., as shown in the
bunch profiles of Fig. 4 for the cases of the threshold
detuning obtained by Eq. (22) (Δf ¼ 55 kHz) and tracking
simulation (Δf ¼ 51 kHz). The overstretching regime may
cause our treatment method to be no longer accurate
enough.
For the lower Q (normal conducting case), the two

methods give threshold detunings in good agreement, with
a difference of less than 1 kHz. It should be noted that, even
above the threshold detuning of l ¼ 1 mode, the instability
of other modes possibly become a critical problem due to
the large R=Q, resulting in a complex instability. To obtain
the true threshold detuning of l ¼ 1 mode perturbation
growth, it is necessary to eliminate the interference of other
modes by setting the damping time to 0.1 ms. We
emphasize that under such a low damping time setting,
we still get the threshold detuning of l ¼ 1 mode pertur-
bation growth, which implies that this instability is hardly
suppressed by the existing feedback.
We note that for the cases of R=Q higher than 90 Ω, the

resulting threshold detunings of both Q-values nearly
coincide with each other. It means that in these cases,
the l ¼ 1 mode instability is very weakly dependent on the
Q-value. This conclusion can also be derived straightfor-
ward from Eq. (22) and the fðθ; 800Þ shown in the top plot
of Fig. 2 since both curves are close to each other at
detuning larger than 120 kHz.

B. The case of unavoidable l = 1
mode perturbation growth

We mentioned earlier that there exists a possibility that
η > 1 always no matter how to adjust the detuning. In that
case, the l ¼ 1 mode perturbation will finally grow into an
instability. For example, in the case of R=Q ¼ 170 Ω for
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the HALF storage ring, the amplification factors obtained
with Eq. (22) for both Q ¼ 5 × 105 and Q ¼ 3 × 104, as
shown in Fig. 5, are always larger than 1, predicting an
inevitable instability. This prediction has been verified
correctly by tracking simulations with the parameters listed
in Table I.

V. DISCUSSION ON EQ. (22)

Equation (22) defines clearly the dependence of the
amplification factor on relevant parameters. We point out
that a PTBL effect in the presence of passive super-
conducting HC is described in [1], which is exactly
developed from the l ¼ 1 mode perturbation. Some con-
clusions relevant to PTBL are drawn by parameter scanning
in [1]: (i) The PTBL threshold relies on the product of HC
R=Q and average current I0; (ii) the PTBL threshold
increases with the main voltage amplitude and the detuning
of HC; and (iii) the PTBL threshold does not depend on the
momentum compaction and relative energy spread sepa-
rately but rather only through their influence on the bunch
distribution. Now, these conclusions can be clearly derived
from Eq. (22). Besides, it can be found that the l ¼ 1 mode
threshold depends on the square of the harmonic number of
HC. Obviously, the lower harmonic number is more
beneficial to avoid PTBL.
Equation (22) provides us with a criterion to determine

the possibility of l ¼ 1 mode instability under specific
parameters. When selecting HC parameters, try to avoid
η > 1, otherwise it is difficult to achieve the required bunch
lengthening. Sometimes, if overstretching is necessary, we
should assure η < 1 as far as possible under near-optimal
(or optimum) lengthening condition, so as to leave a certain
margin for lower detuning.

For the case of overstretching scenario, we find, through
tracking simulations, that η > 1 is not a sufficient clear
indication for the l ¼ 1 mode instability. More precisely,
the threshold detuning obtained by Eq. (22) is generally
higher by 3–4 kHz than that by tracking. For the case
without overstretching, if we get η < 1 with Eq. (22), it
generally indicates that the l ¼ 1 mode perturbation can be
fully suppressed.
It should be noted that Venturini reported a critical R=Q

formula for the l ¼ 1 coupled bunch instability [15], which
was found by solving a system of linear algebraic equations
and is expected to be accurate for parameters in the
neighborhood of the ALS-U HC. This critical R=Q is a
very weak function of Q and approximately scales with
σδ
n2I0

ffiffiffiffiffiffiffiffiffiffiffiffi
E0αcVrf

Fh

q
. Using Eq. (22), we can also obtain a critical

R=Q formula, namely

ðR=QÞcrit ¼
Vrf jcosðφs − φF=nÞj
2πn2FhI0fðθ; mÞ : ð24Þ

Obviously, the two scaling laws exhibit the same
quantitative dependence of the critical R=Q on parameters
n and I0 but a different quantitative dependence on
parameters Vrf , F, and h. In addition, Venturini’s formula
explicitly includes σδ

ffiffiffiffiffiffiffiffiffiffi
E0αc

p
, while our formula implies

that this critical R=Q is not directly related to parameters
σδ, αc, and E0, unless they affect the bunch form factor F.

VI. CONCLUSION

By applying a sinusoidal-perturbation phase distribution
of l ¼ 1 mode to the equilibrium, we derive a threshold
formula, i.e., Eq. (22), which can be used to determine
whether the l ¼ 1 mode perturbation will increase or be
suppressed under specific parameters. This formula clearly
shows the dependence of the threshold condition of l ¼ 1
mode perturbation on relevant parameters, so it can help us
select the appropriate parameters to obtain the desired
bunch lengthening. Additionally, it predicts an inevitable
PTBL for the case of too large R=Q of HC, which has been
well verified with tracking simulation. In view of the good
verification of the threshold formula, it indicates that PTBL
is exactly originated from the l ¼ 1 mode perturbation.
Under specific parameters, this perturbation will inevitably
grow and eventually evolve into PTBL.
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APPENDIX A: SIMPLIFY EQ. (10) TO EQ. (11)

Figure 6 shows how to get Eq. (11) from Eq. (10), where
a ¼ expð− ωrT0

2Q Þ and θ ¼ ΔωT0. The green arrow repre-
sents 1 − exp½ðj − 1=2QÞωrT0�. Its amplitude can be
obtained using the Law of Cosines of triangle, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 − 2a cosðθÞ

p
, and its phase with respect to the

real axis is −ðπ−θ
2
− ΔθÞ. According to the Law of Sines, we

have

sinðΔθÞ
1 − a

¼
sin

	
π−θ
2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 − 2a cosðθÞ

p ; ðA1Þ

so

Δθ ¼ arcsin

�
1 − affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2 − 2a cosðθÞ
p cos

�
θ

2

��
; ðA2Þ

then we have

1 − exp

��
j −

1

2Q

�
ωrT0

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 − 2a cosðθÞ

p
exp½jðπ−θ

2
− ΔθÞ� ; ðA3Þ

so

1

1 − exp½ðj − 1
2QÞωrT0�

¼ exp½jðπ−θ
2
− ΔθÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2 − 2a cosðθÞ
p : ðA4Þ

Considering qωr ≈ 2πnI0h=m and F̃ ¼ F expðjφFÞ, we
finally have

Ṽ0 ¼
2πnFhI0R=Q

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 − 2a cosðθÞ

p exp

�
j

�
π − θ

2
−ΔθþφF

��
;

ðA5Þ

If Q ≫ 1 (for superconducting case), then a ≈ 1, Δθ ≈ 0
and the formula (A5) can be reduced to

Ṽ0 ¼
πnFhI0R=Q

m sin
	
θ
2


 exp

�
j

�
π − θ

2
þ φF

��
; ðA6Þ

APPENDIX B: TAKE THE BUNCH CENTROID
AS THE REFERENCE

For the equilibrium distribution obtained by the semi-
analytical approach, the bunch centroid generally deviates
from τ ¼ 0, e.g., the resulting distribution shown in Fig. 7.
This deviation causes the nonzero phase of the bunch form
factor, which can affect the beam-loading voltage and
should not be neglected. However, if we take the bunch
centroid instead of the synchronous phase as the reference
(shifting the time zero to the centroid), the corresponding
form factor phase is so small that the term φF can be
dropped in Eq. (12).
Accordingly, considering the influence of the centroid

deviation from the synchronous phase, the main voltage
seen at bunch centroid should be expressed as

Vmc ¼ Vrf sinðφs þ φhτiÞ: ðB1Þ

It is easy to know φhτi ≈ −φF=n. Substituting it into the
above formula, it yields

Vmc ¼ Vrf sinðφs − φF=nÞ: ðB2Þ

FIG. 7. Schematic of an asymmetric bunch distribution with
nonzero bunch form factor phase. The resulting distribution is
obtained with the HC parameters of R=Q ¼ 90 Ω, Q ¼ 5 × 105,
and Δf ¼ 125 kHz. The corresponding form factor phase is
0.08414 and the deviation phase of bunch centroid is
ωrfhτi ¼ −0.02834, which is negative since the centroid phase
is ahead of the synchronous phase. The form factor phase for the
reference of bunch centroid is φF þ nφhτi ¼ −8.8 × 10−4 ≈ 0.FIG. 6. Schematic diagram of simplifying Eq. (10) to Eq. (11).
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APPENDIX C: AMPLIFICATION FACTOR
DETERMINED WITH THE BUNCH AT

PERTURBATION PHASE OF π=2 OR 3π=2

When imposing the perturbation phase to the equilib-
rium, the influence of the phase difference among bunches
on the harmonic voltage phasor must be considered.
Specifically, it will slightly affect the phase of the voltage
phasor shown in Fig. 1. For the bunch at perturbation phase
of π=2 or 3π=2, the rotation directions of the voltage
phasors caused by the perturbation are the same.
Consequently, it has the largest harmonic voltage change,
which leads to the largest perturbation phase growth. Let us
take an example with four bunches to briefly explain that.
Their perturbation phases are shown in Fig. 8, and the

influence of the perturbation on their voltage phasors is
illustrated in Fig. 9. Obviously, for the first and third
bunches, the perturbation makes the voltage phasors
contributed by the second and fourth bunches rotate in
the opposite direction, causing their effects to partially or
even completely cancel each other out. Whereas for the
second or fourth bunch, the perturbation rotates the voltage
phasors contributed by the other three bunches in the same
direction, thus making their effects superimposed on each
other. Based on the above analysis, it can be seen that the
second (π=2) and fourth bunches (3π=2) have the largest
harmonic voltage change and thus have the largest pertur-
bation phase growth.
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