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Coherent electron cooling is a promising technique to cool high-intensity hadron bunches by imprinting
the noise in the hadron beam on a beam of electrons, amplifying the electron density modulations, and
using them to apply cooling kicks to the hadrons. The typical size for these perturbations can be on the μm
scale, allowing us to extend the reach of classical stochastic cooling by several orders of magnitude.
However, it is crucial to ensure that the electron and hadron beams are longitudinally aligned within this
same μm scale. In order to provide fast feedback for this process, we discuss the extension of signal
suppression to coherent electron cooling and show in both theory and simulation that certain components of
the spectral noise in the hadron beam will be predictably modified at the several percent levels, which may
be detected by observations of the radiation of the hadron beam.
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I. INTRODUCTION

In high-intensity hadron storage rings, intrabeam scatter-
ing (IBS) and beam-beam effects will degrade the beam
emittance over the length of the store, limiting machine
luminosity. In particular, at the plannedElectron-IonCollider
(EIC), the IBS times are expected to be at the timescale of a
couple of hours, and so some formof stronghadron cooling is
necessary to achieve the physics goals [1].
The proposed method in this case is microbunched

electron cooling (MBEC), a particular form of coherent
electron cooling (CeC). This was first introduced in [2], and
the theory has since been developed extensively in [3–6].
The premise of MBEC is that the hadron beam to be cooled
copropagates with an electron beam in a straight “modu-
lator” section, during which time the hadrons will provide
energy kicks to the electrons. The two beams are then
separated, and the electrons pass through a series of
amplifiers to change this initial energy modulation into a
density modulation and amplify it. The hadrons travel
through their own chicane before meeting the electrons
again in a straight “kicker” section. Here, the amplified
density modulations in the electron beam provide energy

kicks to the hadrons. By tuning the hadron chicane so that
the hadron delay in traveling from the modulator to the
kicker is energy-dependent, we may arrange it so that the
energy kick that the hadron receives in the kicker tends to
correct initial energy offsets. If the chicane also gives the
hadrons a delay dependent on their transverse phase-space
coordinates and if there is nonzero dispersion in the kicker,
then the transverse emittance of the hadron beam can also
be cooled. In the current design of an MBEC Cooler for the
EIC, the typical scale of the electron density modulations at
the top energy will be∼1 μm [7]. This corresponds to about
4 orders of magnitude higher bandwidth than can be
achieved with microwave stochastic cooling [8,9], allowing
the cooling of dense hadron bunches, but also making
alignment a challenge.
It is important that the hadron arrives in the kicker at the

same time as the density perturbations that it had induced in
the electron beam or else it will receive entirely uncorre-
lated energy kicks [10]. Comparing the ∼100 m distance
between modulator and kicker to the ∼1-μm density
perturbations in the electron beam, we see that the transit
times of the electrons and hadrons must be maintained at a
level of ten parts per billion. In order to commission and
operate such a system, it is necessary to have some way to
quickly measure the relative alignment of the electron and
hadron beams at the submicron scale. Directly observing
cooling would require waits on the timescale of hours,
which would make commissioning painful and prevent any
sort of fast feedback during operations. The method
proposed here is to make use of “signal modification,”
an extension of the well-known signal suppression of
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microwave stochastic cooling [11–14] in the case of MBEC
cooling. The principle of this method is that after the
hadron beam has received its cooling kicks, it will
propagate to a “detector” where the power of the hadron
beam at particular wavelengths may be measured. If the
hadron beam is well aligned with the electron beam, this
will produce a predictable change in the spectral content of
the hadron beam on a single-pass basis.
As our model, we assume that the cooling section

consists of a modulator, where the hadron beam imprints
on the electrons; a kicker, where the electrons provide an
energy kick back to the hadrons; and a detector, where we
will observe the density spectrum in the hadron beam
(see Fig. 1).
In Sec. II, we provide a theoretical derivation of signal

modification. In Sec. III, we discuss simulation tools to
model this process and find good agreement with the
theoretical predictions. In Sec. IV, we discuss what will be
needed to measure such a signal experimentally. We present
our outlook in Sec. V and conclude.
Note that, although this paper focuses on MBEC, the

general form of these results will hold for coherent electron
cooling with other amplification mechanisms.

II. THEORY

We derive here the theory of signal modification by
directly propagating the particles themselves from the
modulator to the detector with arbitrary six-dimensional
transfer matrices. Alternative derivations using the longi-
tudinal Vlasov equation are presented in Appendix A. In
Sec. II A, we comment on the decoherence of the signal
when observing a range of frequencies and in Sec. II B, we
discuss an extension where the kicks are distributed
throughout the length of the kicker.
We use phase-space coordinates x, x0, y, y0, z, and η,

where the first four are the transverse positions and angles,
z is the particle’s longitudinal position in the bunch, with
positive z values corresponding to the head of the bunch,
and η is the fractional energy offset of the particle.
In order to characterize the cooling process, we follow

[3] and define a longitudinal wake function in the 1D
approximation, such that the energy kick a hadron receives
in the kicker is the convolution of this wake function with
the longitudinal distribution of hadrons in the modulator.

Explicitly, the fractional energy kick, Δη, received by a
hadron at longitudinal position z within the bunch at the
kicker is given by

ΔηðzÞ ¼ q2

E0

Z
∞

−∞
wðzþ Δz − z0Þnðz0Þdz0; ð1Þ

where q is the hadron charge, E0 is the nominal hadron
energy, nðzÞ is the longitudinal hadron density in the
modulator, and Δz is the difference in modulator-to-kicker
longitudinal delay between the hadron and electron beams.
We also identify a corresponding impedance

ZðkÞ ¼ −
1

c

Z
∞

−∞
wðzÞe−ikzdz: ð2Þ

In order for these simple longitudinal wakes to hold, we
require coherent oscillation of the beams, and therefore the
electric field at our frequency of interest must be large
compared to the beam sizes. In particular, we require [15]

Σ⊥ ≲ βγλ

2
; ð3Þ

where Σ⊥ is the transverse beam size, β is the relativistic
beta, γ is the relativistic gamma, and λ is the beam
oscillation wavelength. Examining the values in Table I,
we see that the largest beam size is that of the protons in the
modulator and kicker (0.95 mm), and the gamma factor is
293, so our approximation is good for wavelengths above
∼6.5 μm. As we will see, we will be interested mainly in
wavelengths of 6 μm, at the limit of applicability of the
above. However, we note that the requirement of Eq. (3) is
likely not a strict one—as it was shown in [16], in the case
when there is no amplification, the 3D theory gives exactly
the same result as the 1D model which we employ here.
In order for us to neglect Landau damping in the electron

beam amplifiers, one usually requires [17]

k ≪ kD; ð4Þ

where k is the wave number of our signal, kD ≡ ωp=cσβ is
the Debye wave number, and σβ is the spread in relativistic
beta. This electron beam has kD ¼ 4 × 106 m−1 in the
amplifiers, larger than the k ¼ 106 m−1 of our micro-
bunching. One also has to keep in mind that the concept
of Landau damping, with the condition of Eq. (4), is only
valid asymptotically, after many plasma oscillations, which
is not the case of the microbunching coherent cooling
where the electron beam executes 1

4
of the plasma oscil-

lation in the amplifier sections. A more accurate analysis of
when one can ignore the Landau damping for this case was
carried out in Sec. IV of [4].
In order to ensure that the microbunching is not washed

out by the energy spread and divergence of the beam within
any of the straight sections, we require [17,18]:

FIG. 1. A schematic of the MBEC cooling section, including
the usual modulator and kicker necessary for cooling, as well as
the diagnostic detector where signal modification may be
observed.
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λ ≫
2L
β3γ2

ση ð5Þ

and

λ ≫
L
β2

σ2x0 ; ð6Þ

where ση is the fractional energy spread of the beam, σx0 is
the beam divergence, and L is the length of a drift.
Comparison with the parameters in Table I shows that
these are met for both the electrons and hadrons in all the
straight sections.
We assume that there is no transverse correlation in the

electron or hadron beam. Further discussion of the effects
which this might have is available in [19].
We focus our attention on the peak region of the electron

and hadron beams and take the limit of a longitudinally
infinite and uniform plasma. Since the typical wake wave-
length is on the order of a few microns, and the typical
bunch lengths are a few mm or longer, this is a reasonable
approximation. Finally, we assume that the hadron beam
enters the modulator with no correlated structures on the
scale of the wake wavelength. Although such structures
will be generated within the kicker, their characteristic size
is on the micron scale, much less than the millimeter scale
longitudinal motion per turn, washing out any memory of
the kick by the time the beam enters the modulator again.
As illustrated in Fig. 1, we take the hadrons to have

transfer matrix MMK between modulator and kicker and
MKD between kicker and detector, with the transfer matrix
between modulator and detector given by MMD.
We treat our particles as existing in a region of length L,

much larger than any length scale associated with the wake
function, and assume periodic boundary conditions so that
we may arbitrarily shift the limits of integration in our
integrals. In this model, we also consider the full six-
dimensional evolution of the hadron beam and ignore any
collective effects during beam transport except for the
electron-hadron interactions characterized by the wake
function, as discussed above. We write the evolution of
a hadron’s position between modulator and detector as

zðiÞd ¼ zðiÞm þMMD
5u x⃗ðiÞu

þMKD
56

X
j

q2

E0

wðzðiÞm þMMK
5u x⃗ðiÞu þ Δz − zðjÞm Þ; ð7Þ

where zðiÞm is the longitudinal position of particle i in the

modulator, zðiÞd is its position within the detector, and x⃗ðiÞ

are the phase-space coordinates of particle i in the modu-
lator. We use the convention that the repeated “u” subscript
refers to sums over the five phase-space coordinates
excluding the longitudinal position. The summation over
j is over all particles within the hadron beam. The first two
terms of this equation describe the modulator to kicker
beam evolution by a simple transfer matrix, while the final
term gives the contribution to delay due to the extra energy
kick our particle receives in the kicker due to the wakes of
all particles in the beam, including itself.
At the detector, the longitudinal density of the hadron

beam is

TABLE I. Parameters for longitudinal and transverse cooling.

Geometry
Modulator length (m) 45
Kicker length (m) 45
Number of amplifier straights 2
Amplifier straight lengths (m) 37

Proton parameters
Energy (GeV) 275
Protons per bunch 6 .9 × 1010

Average current (A) 1
Proton bunch length (cm) 6
Proton fractional energy spread 6.8 × 10−4

Proton emittance (x/y) (nm) 11.3=1
Horizontal/vertical proton betas
in modulator (m)

39=39

Horizontal/vertical proton dispersion
in modulator (m)

1=0

Horizontal/vertical proton dispersion
derivative in modulator

−0.023=0

Horizontal/vertical proton betas in kicker (m) 39=39
Horizontal/vertical proton dispersion
in kicker (m)

1=0

Horizontal/vertical proton dispersion
derivative in kicker

0.023=0

Proton horizontal/vertical phase advance (rad) 4.79=4.79
Proton M56 between centers of modulator
and kicker (mm)

−2.26

Electron parameters
Energy (MeV) 150
Electron bunch charge (nC) 1
Electron bunch length (mm) 7
Electron peak current (A) 17
Electron fractional slice energy spread 1 × 10−4
Electron normalized emittance (x/y)
(mm-mrad)

2.8=2.8

Horizontal/vertical electron betas
in modulator (m)

40=20

Horizontal/vertical electron betas in kicker (m) 4=4
Horizontal/ vertical electron betas
in amplifiers (m)

1=1

M56 in first electron chicane (mm) 5
M56 in second electron chicane (mm) 5
M56 in third electron chicane (mm) −11

Cooling Times
Horizontal/vertical/longitudinal IBS
times (hours)

2.0/–/2.9

Horizontal/vertical/longitudinal
cooling times (hours)

1.8/–/2.8
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nðzÞ ¼
X
i

δðz − zðiÞd Þ; ð8Þ

with corresponding density in Fourier space

ñðkÞ ¼
Z

∞

−∞

X
i

e−ikzδðz − zðiÞd Þdz

¼
X
i

e−ikz
ðiÞ
d : ð9Þ

The power in the hadron spectrum at a given wave
number is then given by

jñðkÞj2 ¼
X
i;a

e−ik½z
ðiÞ
d −zðaÞd �

¼ N þ
X
i≠a

e−ik½z
ðiÞ
m −zðaÞm þMMD

5u ðx⃗ðiÞu −x⃗ðaÞu Þ�

× e−ikM
KD
56

q2=E0

P
j
wðzðiÞm þMMK

5u x⃗ðiÞu þΔz−zðjÞm Þ

× eikM
KD
56

q2=E0

P
j
wðzðaÞm þMMK

5u x⃗ðaÞu þΔz−zðjÞm Þ; ð10Þ

where we have substituted in the expression for zðiÞd given in
Eq. (7) and used the fact that the i ¼ a terms in the sum are
all equal to 1, giving us the N out front, where N is the
number of particles in the length-L section of the beam.
Typically, the kick from the wake is small, and so we

may Taylor-expand the final two exponentials above to
linear order. We thereby obtain

jñðkÞj2 ¼Nþ
X
i≠a

e−ik½z
ðiÞ
m −zðaÞm þMMD

5u ðx⃗ðiÞu −x⃗ðaÞu Þ�

×

�
1− ikMKD

56

q2

E0

X
j

wðzðiÞm þMMK
5u x⃗ðiÞu þΔz− zðjÞm Þ

þ ikMKD
56

q2

E0

X
j

wðzðaÞm þMMK
5u x⃗ ðaÞ

u þΔz− zðjÞm Þ
�
;

ð11Þ

with the effect of second-order terms considered in
Appendix B.
We now wish to take the expectation value of the beam

power, requiring integrals over the 12 phase-space coor-
dinates of particles i and a and the longitudinal position of

particle j. However, note that the dependence on zðjÞm

appears only in the argument of the wake functions. If
the total integral of the wake is zero, then, if particle j is
distinct from both particles i and a, this integral will
evaluate to 0. We then need only consider the terms j ¼ i
and j ¼ a in those sums. The beam power can then be
written as

jñðkÞj2 ¼ N þ
X
i≠a

e−ik½ziaþMMD
5u ðx⃗ðiÞu −x⃗ðaÞu Þ�

×

�
1 − ikMKD

56

q2

E0

wðMMK
5u x⃗ðiÞu þ ΔzÞ

þ ikMKD
56

q2

E0

wðMMK
5u x⃗ðaÞu þ ΔzÞ

− ikMKD
56

q2

E0

wðzia þMMK
5u x⃗ðiÞu þ ΔzÞ

þ ikMKD
56

q2

E0

wð−zia þMMK
5u x⃗ðaÞu þ ΔzÞ

�
; ð12Þ

where we have made the definition zia ≡ zðiÞm − zðaÞm . Since

we assume a homogeneous hadron bunch, zðiÞm and zðaÞm ,
themselves are irrelevant and zia has the same probability
distribution as them.
We note in the above formula that the first three terms

have their only zia dependence in the leading exponential
and so performing an average over all zia will be zero. We,
therefore, need only focus on the fourth and fifth terms.
Approximating the NðN − 1Þ terms in the above sum as
N2, the relevant integral for the fourth term is

− N2ikMKD
56

Z
L=2

−L=2
dzia=L

Z
∞

−∞
d5x⃗ðiÞd5x⃗ðaÞρðx⃗ðiÞÞρðx⃗ðaÞÞ

×
q2

E0

wðzia þMMK
5u x⃗ðiÞu þ ΔzÞe−ik½ziaþMMD

5u ðx⃗ðiÞu −x⃗ðaÞu Þ�; ð13Þ

where ρðx⃗Þ is the hadron phase-space density in the
modulator within the five phase-space coordinates exclud-
ing longitudinal position.
Approximating the longitudinal integral as extending from

−∞ to ∞, using the impedance of Eq. (2), and making an

appropriate change of variables to z0 ≡ zia þMMK
5u x⃗ðiÞu þ Δz,

the longitudinal integral in Eq. (13) may be evaluated,
leaving us with

N2ikMKD
56

q2c
E0

1

L
ZðkÞeikΔz

×
Z

∞

−∞
d5x⃗ðiÞd5x⃗ðaÞρðx⃗ðiÞÞρðx⃗ðaÞÞ

× e−ik½M
MD
5u ðx⃗ðiÞu −x⃗ðaÞu Þ−MMK

5u x⃗ðiÞu �: ð14Þ

To perform the remaining integrals, we write the evo-
lution of the phase-space coordinates explicitly in terms of
action-angle variables and Courant-Snyder parameters at
the start of the transfer matrix [20], finding
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M5ux⃗u ¼ M51ð
ffiffiffiffiffiffiffiffiffiffiffiffi
2Jxβx

p
cosðϕxÞ þDxηÞ þM52ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx=βx

p
½sinðϕxÞ þ αx cosðϕxÞ� þD0

xηÞ
þM53ð

ffiffiffiffiffiffiffiffiffiffiffiffi
2Jyβy

q
cosðϕyÞ þDyηÞ þM54ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jy=βy

q
½sinðϕyÞ þ αy cosðϕyÞ� þD0

yηÞ þM56η

¼
�
M51 −

αx
βx

M52

� ffiffiffiffiffiffiffiffiffiffiffiffi
2Jxβx

p
cosðϕxÞ −M52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx=βx

p
sinðϕxÞ

þ
�
M53 −

αy
βy

M54

� ffiffiffiffiffiffiffiffiffiffiffiffi
2Jyβy

q
cosðϕyÞ −M54

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jy=βy

q
sinðϕyÞ

þ ðDxM51 þD0
xM52 þDyM53 þD0

yM54 þM56Þη≡ M̂51x̂þ M̂52x̂0 þ M̂53ŷþ M̂54ŷ0 þ M̂56η̂ ð15Þ

with

M̂51 ≡M51 −
αx
βx

M52

M̂52 ≡M52

M̂53 ≡M53 −
αy
βy

M54

M̂54 ≡M54

M̂56 ≡DxM51 þD0
xM52 þDyM53 þD0

yM54 þM56: ð16Þ

For a Gaussian beam, the x̂, x̂0, ŷ, ŷ0, and η̂ are normally
distributed with

σx̂ ¼
ffiffiffiffiffiffiffiffiffi
ϵxβx

p
σx̂0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
ϵx=βx

p
σŷ ¼

ffiffiffiffiffiffiffiffiffi
ϵyβy

q

σŷ0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ϵy=βy

q

ση̂ ¼ ση; ð17Þ

where the ϵ are the horizontal and vertical emittances and
ση is the fractional energy spread. In this case, the
remaining ten integrals in Eq. (14) may be performed,
yielding

ikMKD
56

q2c
E0

N2

L
ZðkÞeikΔz

× e−
k2
2

P
u≠5

σ2x̂u ½ðM̂
MD
5u Þ2þðM̂MD

5u −M̂MK
5u Þ2�: ð18Þ

A similar procedure may be applied to the fifth term of
Eq. (12), resulting in

− ikMKD
56

q2c
E0

N2

L
Zð−kÞe−ikΔz

× e−
k2
2

P
u≠5

σ2x̂u ½ðM̂
MD
5u Þ2þðM̂MD

5u −M̂MK
5u Þ2�. ð19Þ

Making use of the fact that, for real wakes,
Zð−kÞ ¼ Z�ðkÞ, and defining n0 ≡ N=L as the mean linear
density of the hadrons, we may sum Eqs. (18) and (19) and
incorporate them back into Eq. (12), obtaining

jñðkÞj2 ¼ N − 2Nn0
q2c
E0

kMKD
56

× fRe½ZðkÞ� sinðkΔzÞ þ Im½ZðkÞ� cosðkΔzÞg
× e−

k2
2

P
u≠5

σ2x̂u ½ðM̂
MD
5u Þ2þðM̂MD

5u −M̂MK
5u Þ2�: ð20Þ

Then, the fractional change in beam power as a function
of electron/hadron misalignment is

ΔjñðkÞj2
jñðkÞj2 ¼ −2n0

q2c
E0

kMKD
56

× fRe½ZðkÞ� sinðkΔzÞ þ Im½ZðkÞ� cosðkΔzÞg
× e−

k2
2

P
u≠5

σ2x̂u ½ðM̂
MD
5u Þ2þðM̂MD

5u −M̂MK
5u Þ2�: ð21Þ

Note that if Re½ZðkÞ� ¼ 0 and Im½ZðkÞ� > 0 [which is the
case considered below, see Eq. (28)], and ifMKD

56 > 0, then
perfect alignment of the hadrons and electrons, i.e.,
Δz ¼ 0, results in ΔjñðkÞj2 < 0, corresponding to noise
suppression below the shot noise in the beam. Such noise
suppression has been previously studied theoretically in
[18,21] and observed experimentally in [22–24]. Our result
[Eq. (21)] is in agreement with the theoretical analysis
of [21].

A. Decoherence

The above posits that the amount of signal modification
has a purely sinusoidal dependence on the electron/hadron
misalignment, i.e.,

ΔjñðkÞj2
jñðkÞj2 ¼ AðkÞ cosðkΔzþ θ0Þ; ð22Þ

where A is some amplitude and θ0 is a phase, equal to 0 for
an antisymmetric wake.
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However, the above derivation assumes an observation at
a pure single frequency. If we take the more realistic case
that we sample some range of frequencies with bandwidth
Δk, the signal amplitude will be

ΔjñðkÞj2
jñðkÞj2 ≈ AðkÞ 1

Δk

Z
kþΔk=2

k−Δk=2
cosðk0Δzþ θ0Þdk0

¼ AðkÞ cosðkΔzþ θ0Þ
sinðΔkΔz=2Þ
ΔkΔz=2

ð23Þ

so that the amplitude of the oscillations will decay over
lengths of ∼1=Δk.

B. Integrated kicker

The above analysis assumes that the full kick to the
hadrons takes place at a single point in the kicker. However,
in the more realistic case where the kick is applied over the
full length of the kicker, we may change Eq. (7) to

zðiÞd ¼ zðiÞm þMMD
5u x⃗ðiÞu

þ 1

Ns

XNs

s¼1

MKsD
56

X
j

q2

E0

wðzðiÞm þMMKs
5u x⃗ðiÞu þΔz− zðjÞm Þ;

ð24Þ

where we now split our kick in the kicker into Ns fractional
kicks at locations Ks.
The rest of the analysis may be carried through in the

same way as before, and we arrive at

ΔjñðkÞj2
jñðkÞj2 ¼ −2n0

q2c
E0

1

Ns

XNs

s¼1

kMKsD
56

× fRe½ZðkÞ� sinðkΔzÞ þ Im½ZðkÞ� cosðkΔzÞg
× e−

k2
2

P
u≠5

σ2x̂u ½ðM̂
MD
5u Þ2þðM̂MD

5u −M̂MKs
5u Þ2�: ð25Þ

However, we have not observed any significant differ-
ence numerically between using the above equation and
Eq. (21), with the single kick taken at the kicker center.

III. SIMULATION

In order to check the validity and limits of the above
theory, we make use of simulation. We first examine the
case of a perfectly linear simulation, where the fractional
energy kick to a given hadron in the kicker is simply the
convolution of the wake function with the longitudinal
hadron distribution in the modulator. We then turn our
attention to a more detailed simulation, where the electrons
and hadrons are tracked with a particle-in-cell code in order
to incorporate saturation effects. In this and future sections,
we consider the cooling parameters currently planned for
275 GeV protons in the EIC, listed in Table I. The electron

optics are assumed to be kept roughly constant within the
modulator, kicker, and amplifiers through the use of
focusing. Due to their much higher energy, the hadrons
see the modulator and kicker as drifts, with the optics
parameters specified at the center. Electron chicanes are
defined from the end of one straight section to the start of
the next one, while the proton M56 and phase advances are
evaluated from the modulator center to the kicker center.

A. Linear simulation

We simulate a 50-μm length of the hadron beam at peak
electron and hadron beam currents. Since the bunch lengths
of the hadron and electron beams are a few cm and mm,
respectively, we may assume constant longitudinal beam
densities in our region of interest and take periodic
boundary conditions. We start by seeding 1 million hadron
macroparticles in the modulator, representing 23 million
real hadrons. In order to match the noise statistics in the real
beam at both the modulator and detector, we perform the
seeding with sub-Poisson noise, as follows. We create a
two-dimensional grid in the hadron phase space. One
coordinate represents the hadron’s longitudinal position
at the center of the modulator, and the other represents its
delay in traveling from the modulator center to the detector.
Using the notation of Eq. (16), this delay may be expressed
as [25]

σ2Δz ¼ M̂2
51βxϵx þ M̂2

52ϵx=βx þ M̂2
53βyϵy

þ M̂2
54ϵy=βy þ M̂2

56σ
2
η: ð26Þ

This grid extends in 32,768 uniform steps over the
50-μm length of the beam to be simulated, and in 100
uniform steps between �5σΔz in the hadron delay. We
assume that the hadrons are distributed uniformly longi-
tudinally and that they have a Gaussian distribution
(mean 0, standard deviation σΔz) with respect to the delay.
Multiplying this distribution by the total number of hadrons
expected within a 50-μm slice of the beam, we arrive at the
expected number of hadrons in each bin. We then add on
appropriate pseudorandom Poisson noise to obtain the
number of real hadrons in each bin.
To assign the macroparticles, we iterate over all the bins,

with the loop over position nested inside the loop over
delays. We assign each bin in turn a number of macro-
particles equal to the number of real hadrons in that bin
divided by the number of real hadrons represented by each
macroparticle. Each macroparticle is given a position and
delay distributed uniformly within the bin. Underflow and
overflow are carried to the next bin. Each macroparticle is
assigned a horizontal angle (a pseudorandom number
between 0 and 2π) and a horizontal action (a pseudorandom
number drawn from an exponential distribution of mean
ϵx). Similar procedures are used to obtain the vertical action
and angle. The fractional energy error is chosen to provide
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the hadron with its assigned delay. The actions, angles, and
energy errors, together with the optics at the center of the
modulator, allow the construction of the particle phase-
space coordinates [20].
In the case where the modulator-to-detector transfer

matrix is an identity matrix, we assign the hadron fractional
energy offset directly, replacing σΔz in the above with ση.
We obtain the position of each hadron macroparticle in

the kicker by using the modulator-to-kicker transfer matrix
in the design optics and save this prekicker distribution. We
then apply a longitudinal shift to all hadrons equally,
corresponding to a longitudinal electron-hadron misalign-
ment. We assign an energy kick to each macroparticle by
convolving the ideal wake function with the longitudinal
hadron density distribution in the modulator. The ideal
wake function is computed using the procedures of [3–5]
for the case of two amplification straights and unmatched
Gaussian electron and hadron beams with arbitrary hori-
zontal and vertical beam sizes. A plot of this idealized wake
is shown in black in Fig. 2. Note that this wake is
antisymmetric, which means that Re½ZðkÞ� ¼ 0, and the
first term in the curly brackets on the right-hand side of
Eq. (21) vanishes. We then translate the hadrons to the
detector element using a kicker-to-detector transfer matrix
equal to the inverse of the modulator-to-kicker transfer
matrix. We chose this matrix because we had found
empirically that it gives a sizable signal and thereby reduces
the impact of numerical noise. This will be further justified
in Sec. IVA. Finally, we perform a fast Fourier transform
(FFT) on the hadron linear density distribution to obtain the
amplitude of the spectrum. Squaring these values gives us
the spectral power, and we compute the fractional change
from the initial spectral power of the hadrons. We repeat
this process from the saved prekicker distribution but apply
different longitudinal misalignments. Finally, we repeat this
whole procedure from the beginning for 100 different
random noise seeds and take the average fractional change
in spectral power for each delay value.

We plot these simulated results and the theory prediction
in Fig. 3, finding excellent agreement. Note that the
theoretical wake has a constant vertical shift of ∼0.04
due to higher-order terms, as discussed in Appendix B.

B. Nonlinear simulation

As a more realistic model, we explicitly track the
hadrons and electrons step-by-step through the modulator,
kicker, and amplifiers. Much of the process for the hadrons
is the same as in the linear case, described in Sec. III A. The
main difference is that, rather than simply convolve the
wake with the hadron density distribution, we explicitly
include the electron beam and model its interactions with
itself and the hadrons in a custom particle-in-cell (PIC)
code. This is described in [26], and a summary of its
operation and changes is given below. The electrons are
initialized analogously to the hadrons with ten real elec-
trons per macroparticle but with only their longitudinal
coordinates described. As such, the binning is done as a
function of the electron longitudinal position and its frac-
tional energy offset. The hadrons are initialized at the center
of the modulator as described in Sec. III A using the
modulator optics of Table I, and then back-propagated to
the start of the modulator so as to have the correct initial
distribution. We track the electrons and hadrons through the
modulator in two and six phase-space dimensions, respec-
tively, using a simple kick-drift model. We model the
interparticle interactions using the disc model of [3–5] and
convolve the associated force function with the hadron and
electron longitudinal density distributions to obtain the
kicks to each species. We then apply the transfer matrix of a
short drift length to update the particle positions. This
process is repeated through the length of the modulator.
The electron and hadron chicanes are modeled as simple
transfer matrices. In bringing the hadrons to the kicker, the
modulator-to-kicker transfer matrix is multiplied by the
inverse transfer matrices of half the modulator and kicker

FIG. 2. Wake functions both from linear theory (without
saturation) and simulated by our PIC code (with saturation).

FIG. 3. Fractional change in the spectral power in the hadron
beam at the 6.25 μm wavelength for the linear case. Excellent
agreement between theory and simulation is observed.
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drifts, so as to have the correct transfer matrix between the
element centers, while the electrons are explicitly tracked
through the amplification section (three chicanes and two
straights), using the same PIC code. In the kicker, both
species are again tracked with the PIC code to get accurate
kicks to the hadrons. In bringing the hadrons to the
detector, we multiply the kicker-to-detector transfer matrix
by half the inverse transfer matrix of the kicker drift in order
to have the correct transfer matrix from the kicker center to
the detector. Using the transfer matrix from the center of the
kicker is justified by the fact that this is the average location
where the kick will take place.
In comparison with theory, we reduce the wake amplitude

to account for saturation in the electron beam, as described in
[26], and shown in red in Fig. 2. We incorporate the ∼0.01
offset of Appendix B into Eq. (21) and compare with the
simulation results, as shown in Fig. 4. A good agreement is
observed.

IV. DETECTION OF THE SIGNAL

So far, we have focused on the derivation and validation
of the signal modification theory. However, for this to be
useful, we must be able to physically detect it. We,
therefore, look for the optimal kicker-to-detector transfer
matrix and wavelength at which to observe the signal and
then examine the possibility of detecting the hadron beam
density modulation in the radiation of an EIC dipole.

A. Optimal parameters

In order to perform the optimization, it is helpful to make
use of a simplified, analytic form for the wake function. In
[27], it was proposed to approximate the wake using a
simple fit function equal to a sine wave with Gaussian
decay. Making slight changes to the parameters, we may
write

wðzÞ ¼ A sinðκzÞe−z2=2λ2 ; ð27Þ

whereA, κ, and λ are fit parameters roughly corresponding to
the wake amplitude, wave number, and falloff distance,
respectively. We find that this function fits our wake with
saturation fairly well, as shown in Fig. 5, and we arrive at
values ofA¼78.4MV=pC, κ¼1.031=μm, and λ¼2.768μm.
The corresponding impedance of the simplified wake of

Eq. (27) is given by

ZðkÞ ¼ −
Aλi
2c

ffiffiffiffiffiffi
2π

p
½e−λ2ðkþκÞ2=2 − e−λ

2ðk−κÞ2=2�: ð28Þ

Putting the above into Eq. (21), we obtain an expression
for signal modification amplitude:

Δjñ2ðkÞj2
jñ2ðkÞj2 ¼ q2

E0

Aλn0kMKD
56

ffiffiffiffiffiffi
2π

p
cosðkΔzÞ

× ½e−λ2ðkþκÞ2=2 − e−λ
2ðk−κÞ2=2�

× e−
k2
2

P
u≠5

σ2
x̂u
½ðM̂MD

5u Þ2þðM̂MK
5u −M̂MD

5u Þ2�: ð29Þ

Examining the above, we see that once we have fixed the
cooling parameters, including the transfer matrix from the
modulator to the kicker, the only variables that we can alter
which will have any impact on the signal modification are
the wave number of the density modulation we wish to
observe and the M5u transfer elements from the kicker to
the detector. (Note that these parameters alone are also
sufficient to specify the M5u transfer matrix elements from
the modulator to the detector.) If we have no vertical
dispersion, MMK

53 ¼ MMK
54 ¼ 0, and it is easy to see from

Eq. (29) that the corresponding elements in the kicker-to-
detector transfer matrix should also be equal to 0. The
magnitude of the signal amplitude in Eq. (29) may be easily

FIG. 4. Fractional change in the spectral power in the hadron
beam at the 6.25-μm wavelength for the fully nonlinear case. A
good agreement between theory and simulation is observed.

FIG. 5. Fit of the simulated wake (with saturation) to a function
of the form given in Eq. (27): wðzÞ ¼ A sinðκzÞe−z2=2λ2 . We find
fit parameters of A ¼ 78.4 MV=pC, κ ¼ 1.031=μm, and λ ¼
2.768 μm and see that this matches the data fairly well.
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maximized with respect to k, MKD
51 , MKD

52 , and MKD
56 ,

obtaining values of MKD
51 ¼ −8.44 × 10−4, MKD

52 ¼
−3.00 × 10−2 m, MKD

56 ¼ 2.36 × 10−3 m, and k ¼ 1.04×
106=m, with Eq. (29) taking on the numerical value
Δjñ2ðkÞj2
jñ2ðkÞj2 ¼ −0.22 cosðkΔzÞ. (For comparison, the simula-

tions in Sec. III, setting MKD to the inverse of MMK , were
made with near-optimal parameters MKD

51 ¼ −7.93 × 10−4,
MKD

52 ¼ −2.86 × 10−2 m, MKD
56 ¼ 2.26 × 10−3 m, and k ¼

1.06 × 106=m.)

B. Drift plus dipole

In the current design of the cooler, it is useful to have as
much space as possible dedicated to the modulator, kicker,
and amplifiers, making it difficult to also fit in an optimized
transfer line between the kicker and detector to achieve
optimal signal modification. We, therefore, consider the
case where we simply have a drift after the kicker plus a
main arc dipole (field strength of 3.782 T and bending
radius of 243 m [1]). We assume a hard-edge dipole model
and that the beam path is normal to the pole face so that
edge effects may be ignored. We also use the fit wake of
Fig. 5. For convenience, we define the amplitude of signal
modification so that positive values correspond to a
reduction in intensity when the electrons and hadrons
are aligned. We take an observation point at the start of
the dipole and perform a scan of the amplitude of signal
modification as a function of the M56 value of a drift
transfer matrix between the kicker center and the obser-
vation point for several wavelengths of hadron density
perturbations, as shown in Fig. 6. We find an optimal

wavelength of ∼6 μm, but the 1.2 mm M56 value corre-
sponds to over 100 m of drift, which is too long for the
available space. We therefore focus on more reasonable
parameters and scan the signal modification amplitude as a
function of moderate kicker-to-dipole drift lengths and
observation wavelengths, as shown in Fig. 7. Note that
these drifts are defined between the end of the kicker and
the start of the dipole, and so an extra M56 contribution
from half the kicker length is also included in the transfer
matrix. We find an optimal observation wavelength of 6 μm
over a range of drift lengths. We then fix a 6-μm
observation wavelength and scan the signal modification
amplitude as a function of drift length and bend angle
within the dipole, as shown in Fig. 8. We find that it is ideal
to observe the radiation near the start of the dipole and that,
within the region of interest, increased drift lengths result in
increased signal modification, with amplitudes of a few
percent.
Note that the inclusion of theM51 andM52 terms is vital

to the correct understanding of signal modification.
Figure 9 shows the result of scanning the amplitude of
signal modification as a function of the M56 term between
the kicker center and observation point. It would appear
that we could use a dipole to generate negativeM56 and see
about half the signal modification we could obtain with a
drift. However, the dipole will also generate nontrivial M51

and M52 terms. Performing a scan with the more realistic
dipole generates the plot seen in Fig. 10. Virtually no signal
modification is observed, and even then only for the small
positive M56 values generated near the very start of the
dipole.

FIG. 6. Fractional signal modification as a function of M56

between the kicker center and detection point for a variety of
observation wavelengths. We find an optimal observation wave-
length of 6 μm with anM56 of 1.2 mm. This would correspond to
a total drift of over 100 m, which would not be feasible in the
available space.

FIG. 7. Fractional signal modification expected at the start of
the dipole if we observe the hadron density modulations of a
specified wavelength after traversing a specified drift length after
the kicker. We find an optimal observation wavelength of roughly
6 μm over a range of drift lengths, giving a few percent signal
modification amplitude.
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C. Fringe fields

Since we are focused on the radiation at the start of the
dipole, careful consideration of the fringe fields is impor-
tant. We take a model of a dipole consisting of two
magnetized poles of uniform magnetization B0=μ0 sepa-
rated by a distance 2w and of longitudinal length L which
extend infinitely far in the x direction and are each semi-
infinite in y. See Fig. 11. It can be analytically shown that,
with the origin defined as the dipole center, the fields
visible to the beam are given by:

Byðy; zÞ ¼
B0

2π

�
tan−1

�
L=2þ z
wþ y

�
þ tan−1

�
L=2 − z
wþ y

�

þ tan−1
�
L=2þ z
w − y

�
þ tan−1

�
L=2 − z
w − y

��
ð30Þ

FIG. 8. Fractional signal modification of 6-μm wavelength
hadron density perturbations after traversing a drift of specified
length after the kicker and a bend within a dipole of specified
angle. We find that moderate drift lengths will produce signal
modification amplitudes of a few percent at the start of the dipole.

FIG. 9. Fractional signal modification of various wavelengths
as a function of M56 between the kicker center and observation
point, including negative values. We see signal modification with
both signs of M56.

FIG. 10. Fractional signal modification of various wavelengths
as a function of bend angle in the dipole, assuming only a real
dipole between the center of the kicker and the observation point.
The corresponding range of M56 values is between −4 cm and
þ9 μm. The inclusion of nonzero M51 and M52 terms from the
dipole destroys the signal modification. Note the horizontal
log scale.

FIG. 11. Model of dipoles used to extract analytic fringe field
expressions. The origin is at the center of the gap between the
pole faces, with the y axis pointing up and the z axis to the right.
The poles are assumed infinite in x and semi-infinite in y.
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Bzðy; zÞ ¼
B0

4π

�
ln

�ðwþ yÞ2 þ ðL=2þ zÞ2
ðw − yÞ2 þ ðL=2þ zÞ2

�

þ ln

�ðw − yÞ2 þ ðL=2 − zÞ2
ðwþ yÞ2 þ ðL=2 − zÞ2

��
: ð31Þ

We choose the dimensions of the RHIC dipoles, withw ¼
4 cm and L ¼ 9.441 m [1,28]. As before, B0 ¼ 3.782 T.
Although this is not an exact fit to any particular dipole, it
provides a proof-of-principle study. In order to counteract the
fringe fields, so that we arrive at a reasonable transfer matrix
inside the main arc dipolewhere the field is strong enough to
produce detectable radiation, we also include a 1-m long
screen dipole with w ¼ 4 cm and a weak field opposite to
that of the main arc dipole (B0 ¼ −0.40 T).
We check that this produces reasonable results by

altering the simulation used in Sec. III A to bring the
hadrons from the kicker center to a point 5 m after the end
of the kicker through the use of a 27.5-m drift transfer
matrix, then track them with the realistic fields through a
drift of 4 m, the 1 m screen dipole, and 91.5 mm into the
main arc dipole. The total integrated field seen by the
proton making this journey is 0.13 T-m, corresponding to a
bend of 0.14 mrad. Due to the longer computation time,
only eight random seeds are used. We compare this to the
theoretical prediction of a 32.5 m drift after the kicker
center (corresponding to 10 m past the end of the kicker)
plus a 0.14 mrad bend in the main arc dipole. The results
are shown in Fig. 12. A good agreement is observed.

D. Radiation

So far, we have focused entirely on the changes to the
hadron density spectrum. However, this cannot be observed

directly. Instead, we will monitor the radiation produced by
the hadron beam as it moves through a dipole. In the far-
field approximation, the electric field from an accelerated
charge is given by [29]

E⃗ðx⃗; t0Þ ¼
q

4πϵ0c

�
1

jr⃗0 − r⃗j
n̂ × ½ðn̂ − β⃗Þ × _

β⃗�
ð1 − β⃗ · n̂Þ3

�
t

ð32Þ

where the observation point is r⃗0, the observation time is t0,
and the hadron position, r⃗, relativistic beta, β⃗, and its

derivative, _
β⃗, are evaluated at the retarded time, t,

with t0 ¼ tþ jr⃗0 − r⃗j=c.
Since we had seen in Sec. IV B that it is useful to observe

the signal modification immediately at the start of the
dipole, we consider the edge radiation [30]. We write the
frequency-space electric field

E⃗ðx⃗;ωÞ ¼
Z

∞

−∞
E⃗ðx⃗; t0Þeiωt0dt0

¼ q
4πϵ0c

Z
∞

−∞

�
1

jr⃗0 − r⃗j
n̂ × ½ðn̂ − β⃗Þ × _

β⃗�
ð1 − β⃗ · n̂Þ2

�
t
eiωt0dt;

ð33Þ
where we have simplified using the fact that dt0=dt ¼
1 − β⃗ · n̂.
The intensity of the radiation is given by [30]

S ¼ α
Δω
ω

Ih
q

�
2ϵ0c
e

�
2

ℏωjE⃗ðx⃗;ωÞj2; ð34Þ

where α is the fine-structure constant, Δω is the bandwidth,
and Ih is the average hadron beam current (1 A for the EIC).
We track a test charge through the dipole fields

described in Sec. IV C and use its path to integrate
Eq. (33) at various locations on a transverse grid 10 m
downstream of the entrance pole face of the main arc
dipole, where we might place a camera to detect the
emitted radiation. We assume a 10% bandwidth for this
detector. The result of this is shown in Fig. 13. We see that
we may achieve intensities of ∼700 μW=m2.
We repeat the above procedure but model the effect of sig-

nalmodification bymultiplying the field amplitude produced
by each step of the tracker by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ AðsÞσz;e=σz;h

p
, where

AðsÞ is the amplitude of signal suppression fromEq. (21).We
assume 6-μm light and use the fit wake of Fig. 5 (which
includes saturation effects) and a transfer matrix through the
relevant drift and concatenated dipole fields to reach an
arbitrary location after the kicker. We assume 10 m between
the end of the kicker and the start of the main arc dipole, with
a 1-m screen dipole immediately in front of the main arc
dipole. σz;e=σz;h is the ratio of the electron to hadron bunch
lengths since only the central hadronswill see the effect of the
cooling. We subtract the intensity shown in Fig. 13 from that
of this modified simulation in order to obtain the intensity of

FIG. 12. Fractional signal modification at a wavelength of
6.25 μm in theory and simulation for a 10 m drift after the end of
the kicker plus a 0.14 mrad bend in a 3.782 T dipole. The
simulation includes realistic fringe fields, partially corrected by a
weak screen dipole to achieve the same total bend angle as
expected in theory. Both theory and simulation make use of the
idealized black wake in Fig. 2.

SCHOTTKY SIGNAL MODIFICATION AS A … PHYS. REV. ACCEL. BEAMS 25, 094401 (2022)

094401-11



our signal. This is shown in Fig. 14. The fractional change is
∼0.3%. Integration over 1 mm2 for 1 sec on axiswill provide
2.0 × 1010 photons from the full bunch, while signal modi-
fication in the core protons will reduce this number by
7.1 × 107. The error on the former should follow Poisson
statistics,with a numerical value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2.0 × 1010

p
≈ 1.4 × 105

so that we obtain a signal-to-noise ratio of ∼500. However,
inefficiencies in the detector will reduce this, sowemay need
to integrate for a longer time or over a wider area.
We must also contend with background thermal radia-

tion, whose intensity is given by the well-known blackbody
radiation formula

S ¼ ℏ
4π2c2

ω3

eℏω=kBT − 1
Δω: ð35Þ

Within this same 10% bandwidth at a temperature of
300 K, we have a thermal intensity of 10 W=m2, which

would swamp our signal. It is therefore necessary to
operate at liquid nitrogen temperature (77.29 K), where
the thermal background is only 1 nW=m2.

V. CONCLUSION

We have derived an expression for signal modification
for the case of a CEC cooler. We have also performed
simulations of this process, finding good agreement with
theoretical expectations. Finally, we have shown that such a
signal may be experimentally observed at the few parts-per-
thousand levels with a cryocooled infrared camera set up to
observe existing dipole radiation. As the design of the
cooler matures, it will be necessary to incorporate the needs
of this radiation diagnostic, at least ensuring the existence
of a sufficient drift length between the end of the kicker and
the first downstream dipole. We will also investigate the
possibility of separating the radiation from the core protons
from that of the rest of the bunch, which would increase the
fractional change in radiation power by a factor of nearly
10, corresponding to the ratio of hadron to electron bunch
lengths. This may require operation at a shorter wave-
length. Although we have provided a compelling proof-of-
principle argument, we will also need to more carefully
consider the details of the fringe fields of the dipole and
appropriate compensation.
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APPENDIX A: ALTERNATIVE DERIVATIONS
OF SIGNAL MODIFICATION

We present two alternative derivations of the theory of
signal modification in the purely longitudinal case. In
Sec. A 1, we adopt a hybrid approach where we integrate
the Vlasov equation in the time domain and make use of
single-particle statistics. In Sec. A 2, we back-propagate
the phase-space density from the detector to the modu-
lator, in line with the conventions of [3]. In the limit where
the hadron delay depends only on its energy offset, i.e.,
M51 ¼ M52 ¼ M53 ¼ M54 ¼ 0, these results agree with
Eq. (21).

1. Integration of time-domain Vlasov equation

We consider the hadron beam entering the modulator as a
constant background current, I0, with a random Schottky
signal, Isðs; tÞ, overlaid on top, where s is the longitudinal
position within the cooler and t is the time of measurement.
After passing through the kicker, the beam will pick up a

FIG. 13. Intensity of radiation from all protons in the beam seen
10 m downstream of the dipole entrance within a 10% bandwidth.
Units are μW=m2.

FIG. 14. Change in radiation intensity at a detector 10 m
downstream of the dipole entrance expected from signal modi-
fication with no hadron/electron misalignment. Units are μW=m2.
We see a ∼0.3% reduction in intensity.
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coherent response current, Icðs; tÞ, due to the action of the
wake, so that the total beam current at position s and time t
is given by

Iðs; tÞ ¼ I0 þ Isðs; tÞ þ Icðs; tÞ: ðA1Þ

Since we assume only random noise in the hadron beam
when it enters the modulator, we take Icðs; tÞ ¼ 0 for
s < sK , the kicker location. We also consider the respective
phase-space densities, ψðη; s; tÞ, of these three currents,
with

Iðs; tÞ ¼ q
Z

∞

−∞
_sðη; sÞψðη; s; tÞdη; ðA2Þ

where _sðη; sÞ is the local speed of the hadrons as a function
of fractional energy deviation, η, and longitudinal position
in the cooler.
The fluctuating part of the Schottky current can be

written as

Isðs; tÞ ¼
X∞
k¼−∞

qδ½t − tk − τ0ðsÞ − ηkτ1ðsÞ� − I0; ðA3Þ

where tk is the time that particle k arrives at the modulator,
at position s ¼ 0, τ0ðsÞ is the time for an on-energy particle
to travel from the modulator to point s, τ1ðsÞ is the energy-
dependence of this transit time, and ηk is the fractional
energy deviation of particle k.
We define a frequency-space version of the Schottky

current, Ĩsðs;ωmÞ, with the forward and inverse Fourier
transforms

Ĩsðs;ωmÞ ¼
1

T

Z
τ0ðsÞþT=2

τ0ðsÞ−T=2
eiωmtIsðs; tÞdt

Isðs; tÞ ¼
X∞

m¼−∞
e−iωmtĨsðs;ωmÞ; ðA4Þ

where T is chosen to be large compared to typical values of
ηkτ1ðsÞ and the wake wavelength divided by βc, so that we
may ignore the precise behavior at the endpoints, and
where ωm ¼ 2πm=T. Particular particles near the edges
of this time interval may enter or leave it during the
passage through the cooler, but the relatively large size of T
ensures that they are a negligible fraction of the total, and
can be safely ignored. If we assume N particles arriving
in the cooling system within time T at times ta, we obtain
for m ≠ 0

Ĩsðs;ωmÞ ¼
q
T

XN
a¼1

eiωm½taþτ0ðsÞþηaτ1ðsÞ�: ðA5Þ

In the kicker, each particle receives a kick, defined by a
time-dependent voltage

VðtÞ ¼
Z

∞

−∞
wtðt − τ − τ̂0ÞIsð0; τÞdτ; ðA6Þ

where τ̂0 is the delay of the electron beam in traveling
between modulator and kicker and wtðtÞ is related to the
wake function of Eq. (1) by

wtðtÞ ¼ wð−βctÞ ðA7Þ

and has an impedance, ZtðωÞ, related to the impedance of
Eq. (2) by

ZtðωÞ ¼
Z

∞

−∞
wtðtÞeiωtdt ¼ −

Zðω=βcÞ
β

: ðA8Þ

After passing through the kicker, the hadron phase-space
density also includes a perturbation described by the
coherent response function, obeying the linearized
Vlasov equation:

0 ¼ ∂ψcðη; s; tÞ
∂t

þ ∂

∂s
½_sðη; sÞψcðη; s; tÞ�

þ qVðtÞδðs − sKÞ_sðη; sÞ
E0

∂

∂η
½ψ0ðηÞ� ðA9Þ

where we have explicitly written the _η as a delta function
kick from the kicker voltage. We have also pulled the factor
of _s out of the derivative with respect to energy since we
operate in the ultrarelativistic regime and so assume that _s is
independent of particle energy within the kicker straight
section.
Since there is no coherent response for s < sK, integrat-

ing the above equation from s−K to sþK yields

ψcðη; sþK; tÞ ¼ −
qVðtÞ
E0

dψ0ðηÞ
dη

; ðA10Þ

which may be transformed to frequency space as

ψ̃cðη; sþK;ωmÞ ¼ −
qṼðωmÞ

E0

dψ0ðηÞ
dη

; ðA11Þ

where we have defined a frequency-space voltage, ṼðωmÞ,
and phase-space density, ψ̃cðη; s;ωmÞ, using the same
procedure as in Eq. (A4).
Integration of Eq. (A9) to arbitrary s > sK yields

ψ̃cðη; s;ωmÞ ¼ ψ̃cðη; sþK;ωmÞ
× eiωm½τ0ðsÞþητ1ðsÞ−τ0ðsKÞ−ητ1ðsKÞ�: ðA12Þ

Integrating over particle energy to get the coherent
current response, we find
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Ĩcðs;ωmÞ ¼ −
q2ṼðωmÞ_s0

E0

×
Z

∞

−∞

dψ0ðηÞ
dη

eiωm½τ0ðsÞþητ1ðsÞ−τ0ðsKÞ−ητ1ðsKÞ�dη

¼ q2ṼðωmÞ_s0
E0

iωm½τ1ðsÞ − τ1ðsKÞ�
Z

∞

−∞
ψ0ðηÞeiωm½τ0ðsÞþητ1ðsÞ−τ0ðsKÞ−ητ1ðsKÞ�dη

¼ Ĩsðs ¼ 0;ωmÞZtðωmÞeiωm τ̂0
q2 _s0
E0

iωm½τ1ðsÞ − τ1ðsKÞ�
Z

∞

−∞
ψ0ðηÞeiωm½τ0ðsÞþητ1ðsÞ−τ0ðsKÞ−ητ1ðsKÞ�dη; ðA13Þ

where we have assumed that the change in _sðη; sÞ due to the
beam energy spread is small relative to the speed of an on-
energyparticle, _s0, andmadeuseofEqs. (A5), (A6), and (A8)
to write the voltage in the kicker in terms of the frequency-
domain Schottky current in themodulator and the impedance
ZtðωmÞ. We use the above to define an effective gain
function, Ĩcðs;ωmÞ ¼ Gðs;ωmÞĨsðs ¼ 0;ωmÞ. For m ≠ 0,
we may ignore the base current, I0, allowing us to write the
total current as

Ĩtðs;ωmÞ ¼ Gðs;ωmÞĨsðs ¼ 0;ωmÞ þ Ĩsðs;ωmÞ: ðA14Þ

We define the signal modification by computing

hjĨtðs;ωmÞj2i ¼ hjĨsðs;ωmÞj2ið1þ jGðs;ωmÞj2Þ
þ 2RehGðs;ωmÞĨsðs ¼ 0;ωmÞĨ�sðs;ωmÞi;

ðA15Þ

where the angle brackets denote the ensemble average and
the star refers to complex conjugation.
Using Eq. (A5), we can evaluate

hĨsðs ¼ 0;ωmÞĨ�sðs;ωmÞi

¼ q2

T2

XN
a¼1

XN
b¼1

eiωm½ta−tb−τ0ðsÞ−ηbτ1ðsÞ�

¼ q2

T2
Nhe−iωm½τ0ðsÞþητ1ðsÞ�iη; ðA16Þ

where we only kept the diagonal terms due to the
uncorrelated nature of the initial particle distribution.
Similarly, we find

hjIsðs;ωmÞj2i ¼
q2

T2
N: ðA17Þ

We can now write the fractional signal modification as

hjItðs;ωmÞj2i
hjIsðs;ωmÞj2i

¼ 1þ jGðs;ωmÞj2 þ 2Re½Yðs;ωmÞ�; ðA18Þ

with

Gðs;ωmÞ ¼ iZtðωmÞωm
qI0
E0

½τ1ðsÞ − τ1ðsKÞ�

× eiωm½τ̂0þτ0ðsÞ−τ0ðsKÞ�heiωmη½τ1ðsÞ−τ1ðsKÞ�iη; ðA19Þ

and

Yðs;ωmÞ ¼ Gðs;ωmÞe−iωmτ0ðsÞhe−iωmητ1ðsÞiη; ðA20Þ

where the mean current I0 ¼ q_s0
R∞
−∞ ψ0ðηÞdη.

Since the kick from the wake is expected to be small, we
ignore the second-order jGðs;ωmÞj2 term. We also assume a
Gaussian energy distribution in the beam, with rms energy
error ση. This allows us to perform the energy averages
explicitly, and we obtain the relative signal modification

hjItðs;ωmÞj2i
hjIsðs;ωmÞj2i

− 1 ¼ 2ReðiZtðωmÞeiωm½τ̂0−τ0ðsKÞ�Þ

× ωm
qI0
E0

½τ1ðsÞ − τ1ðsKÞ�

× e−
σ2ηω

2
m

2
½τ2
1
ðsÞþ½τ1ðsÞ−τ1ðsKÞ�2� ðA21Þ

We note that τ1ðsÞ ¼ −1=βc times theM56 element from
the modulator to point s, τ̂0 − τ0ðsKÞ ¼ Δz=βc, and
I0 ¼ qn0βc, where n0 is the mean longitudinal hadron
density. We identify the wave number k ¼ ωm=βc and use
Equation (A8) to translate ZtðωÞ → −ZðkÞ=β. This trans-
lates the fractional signal modification above to

hjItðs;βckÞj2i
hjIsðs;βckÞj2i

−1

¼−2n0
q2c
E0

kMKD
56 fIm½ZðkÞ� cosðkΔzÞþRe½ZðkÞ�sinðkΔzÞg

×e−
σ2ηk

2

2
½ðMMD

56
Þ2þðMKD

56
Þ2� ðA22Þ

This agrees with Eq. (21) in the purely longitudinal limit.

2. Theory from back-propagation
of phase-space density

We now approach the problem of signal modification
using the formalism described in [3], except using the
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wake and impedance formalism from Eqs. (1) and (2). This
involves back-propagating the beam through the cooler to
describe the phase-space distribution of the beam at the
detector in terms of the known distribution at the modulator.
This gives us a longitudinal phase-space density at the
detector equal to

fðz; ηÞ ¼ n0F0½η − Δηðz −MKD
56 ηÞ�

þ δfðmÞ½z −MMD
56 η − ΔzþMMK

56 Δηðz −MKD
56 ηÞ;

η − Δηðz −MKD
56 ηÞ�; ðA23Þ

where F0ðηÞ is the energy dependence of the base longi-
tudinal phase-space density, n0 is the mean longitudinal
beam density, and δfðmÞ is some perturbation at the modu-
lator. Note that z and η are evaluated at the detector so that the
above equation is just writing the original phase-space
density, n0F0ðηðmÞÞ þ δfðmÞðzðmÞ; ηðmÞÞ, in terms of the
detector z, η coordinates.
We use Eqs. (1) and (2) to write

ΔηðzÞ ¼ 1

2π

Z
∞

−∞
eikzΔη̃ðkÞdk

¼ −
q2c
2πE0

Z
∞

−∞
eikzZðkÞδñðmÞ

k dk; ðA24Þ

where ZðkÞ is the wake impedance and δñðmÞ
k is the Fourier

transform of the hadron longitudinal density perturbation in
the modulator, with a general definition

δñk ¼
Z

∞

−∞
dηδf̃kðηÞ

¼
Z

∞

−∞
dη

Z
∞

−∞
dzδfðz; ηÞe−ikz: ðA25Þ

If we Taylor expand F0 to first order about the energy
kick from the kicker and ignore the Δη dependence in the
expression for δfðmÞ, since it is already assumed to be a
small correction to F0, we find the perturbation to the
phase-space density at the detector

δfðz; ηÞ ¼ −n0F0
0ðηÞΔηðz −MKD

56 ηÞ
þ δfðmÞðz −MMD

56 η − Δz; ηÞ: ðA26Þ

The power of signal modification is given by the
correlator

hδñkδñk0 i ¼
Z

∞

−∞
dηdη0hδf̃kðηÞδf̃k0 ðη0Þi: ðA27Þ

We split the right-hand side of Eq. (A26) into two parts:

δfð1Þðz; ηÞ≡ −n0F0
0ðηÞΔηðz −MKD

56 ηÞ
δfð2Þðz; ηÞ≡ δfðmÞðz −MMD

56 η − Δz; ηÞ ðA28Þ

Taking the Fourier transform of the first term, we find

δf̃ð1ÞðkÞ ¼ −n0F0
0ðηÞ

Z
∞

−∞
e−ikzΔηðz −MKD

56 ηÞdz

¼ −n0F0
0ðηÞe−ikM

KD
56

η

Z
∞

−∞
e−ikz

0Δηðz0Þdz0

¼ n0F0
0ðηÞ

q2c
E0

ZðkÞe−ikMKD
56

ηδñðmÞ
k ; ðA29Þ

where we have made use of Eq. (A24) in the last step.
The Fourier transform of the second term in Eq. (A28)

yields

δf̃ð2Þ ¼
Z

∞

−∞
e−ikzδfðmÞðz −MMD

56 η − Δz; ηÞdz

¼ e−ikM
MD
56

ηe−ikΔz
Z

∞

−∞
e−ikz

0
δfðmÞðz0; ηÞdz0

¼ e−ikM
MD
56

ηe−ikΔzδf̃ðmÞ
k ðηÞ: ðA30Þ

Calculating the correlator in Eq. (A27), we see that it
involves the sum of three terms: hδf̃ð1Þk ðηÞδf̃ð1Þk0 ðη0Þi,
hδf̃ð2Þk ðηÞδf̃ð2Þk0 ðη0Þi, and hδf̃ð1Þk ðηÞδf̃ð2Þk0 ðη0Þ þ δf̃ð2Þk ðηÞ×
δf̃ð1Þk0 ðη0Þi. The first of these is quadratic in the wake
impedance, and so we will ignore it since we assume that
the kick from thewake is small. The second term is evaluated
using Eq. (4) of [3]:

hδf̃ð2Þk ðηÞδf̃ð2Þk0 ðη0Þi ¼ 2πn0F0ðηÞδðkþ k0Þδðη − η0Þ ðA31Þ

and integration over energy deviations yields

hδñð2Þk δñð2Þk0 i ¼ 2πn0δðkþ k0Þ ðA32Þ

For the third term, hδf̃ð1Þk ðηÞδf̃ð2Þk0 ðη0Þþδf̃ð2Þk ðηÞδf̃ð1Þk0 ðη0Þi,
we note that the two parts become identical if we swap
k ↔ k0. (We integrate over η and η0, so the switch of these
variables does not matter.) We then focus on the first of these

Z
∞

−∞
dηdη0hδf̃ð1Þk ðηÞδf̃ð2Þk0 ðη0Þi

¼ n0
q2c
E0

ZðkÞ
Z

∞

−∞
F0
0ðηÞe−ikM

KD
56

ηe−ik
0MMD

56
η0e−ik

0Δz

× hδñðmÞ
k δf̃ðmÞ

k0 ðη0Þidηdη0: ðA33Þ

The correlator hδñðmÞ
k δf̃ðmÞ

k0 ðη0Þi is the integral of
Eq. (A31) over η, yielding
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Z
∞

−∞
dηdη0hδf̃ð1Þk ðηÞδf̃ð2Þk0 ðη0Þi ¼ 2πn20

q2c
E0

ZðkÞδðkþ k0Þ
Z

∞

−∞
dηdη0F0

0ðηÞe−ikM
KD
56

ηe−ik
0MMD

56
η0e−ik

0ΔzF0ðη0Þ

¼ 2πikMKD
56 n20

q2c
E0

ZðkÞδðkþ k0Þ
Z

∞

−∞
dηdη0F0ðηÞe−ikMKD

56
ηeikM

MD
56

η0eikΔzF0ðη0Þ: ðA34Þ

If we take the particular case of a Gaussian energy distribution with rms ση, the integrals yield

Z
∞

−∞
dηdη0hδf̃ð1Þk ðηÞδf̃ð2Þk0 ðη0Þi ¼ 2πikMKD

56 n20
q2c
E0

ZðkÞδðkþ k0ÞeikΔze−σ2ηk2½ðMKD
56

Þ2þðMMD
56

Þ2�=2: ðA35Þ

As noted above, the correlator corresponding to hδf̃ð2Þk ðηÞδf̃ð1Þk0 ðη0Þi is the same as what we have just computed, with the
interchange k ↔ k0. Noting that the delta function sends k0 ↔ −k and that ZðkÞ is the Fourier transform of a real-valued
function, so that Zðk0Þ ¼ Zð−kÞ ¼ Z�ðkÞ, we sum the two halves of this correlator to obtain

2πikMKD
56 n20

q2c
E0

½ZðkÞeikΔz − Z�ðkÞe−ikΔz�e−σ2ηk2½ðMKD
56

Þ2þðMMD
56

Þ2�=2δðkþ k0Þ

¼ −4πkMKD
56 n20

q2c
E0

fRe½ZðkÞ� sinðkΔzÞ þ Im½ZðkÞ� cosðkΔzÞge−σ2ηk2½ðMKD
56

Þ2þðMMD
56

Þ2�=2δðkþ k0Þ: ðA36Þ

Adding in the result from Eq. (A32)

hδñkδñk0 i ¼ 2πn0δðkþ k0Þ
�
1 − 2kMKD

56 n0
q2c
E0

fRe½ZðkÞ� sinðkΔzÞ þ Im½ZðkÞ� cosðkΔzÞge−σ2ηk2½ðMKD
56

Þ2þðMMD
56

Þ2�=2
�
: ðA37Þ

The fractional signal modification is then

hδñkδñk0 i
hδñðmÞ

k δñðmÞ
k0 i

− 1 ¼ −2kMKD
56 n0

q2c
E0

fRe½ZðkÞ� sinðkΔzÞ þ Im½ZðkÞ� cosðkΔzÞge−σ2ηk2½ðMKD
56

Þ2þðMMD
56

Þ2�=2: ðA38Þ

We see that, in the absence of transverse motion, this is identical to Eq. (21).

APPENDIX B: QUADRATIC TERM

In the simplification of Eq. (10), we only kept the terms linear in the wake amplitude. If we instead keep terms to second
order, we arrive at a corrective term equal to

�
kMKD

56

q2

E0

�
2X
i≠a

e−ik½z
ðiÞ
m −zðaÞm þMMD

5u ðx⃗ðiÞu −x⃗ðaÞu Þ�X
j;l

�
−
1

2
wðzðiÞm þMMK

5u x⃗ðiÞu þ Δz − zðjÞm ÞwðzðiÞm þMMK
5u x⃗ðiÞu þ Δz − zðlÞm Þ

−
1

2
wðzðaÞm þMMK

5u x⃗ðaÞu þ Δz − zðjÞm ÞwðzðaÞm þMMK
5u x⃗ðaÞu þ Δz − zðlÞm Þ

þ wðzðiÞm þMMK
5u x⃗ðiÞu þ Δz − zðjÞm ÞwðzðaÞm þMMK

5u x⃗ðaÞu þ Δz − zðlÞm Þ
�
: ðB1Þ

If the integral of the wake is zero, taking the average of this quantity over all possible zðjÞm will yield zero unless j ¼ i, a,
or l. Similarly, the only values of l which yield nontrivial results are i, a, or j. Since there are four ways to pick j and l
equal to some combination of i and a and ∼N ≫ 4 ways to pick them equal to one another and not equal to i or a, we only

focus on the latter case. Of the three wake cross-terms, only the last one survives, since the others have either zðaÞm or zðiÞm
appearing only in the complex phase, which would average to zero.
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Doing the sums over the three free parameters, i, a, and j, we find this is equal to

N3

�
kMKD

56

q2

E0

�
2
Z

L=2

−L=2
dzðiÞm dzðaÞm dzðjÞm =L3

Z
∞

−∞
d5x⃗ðiÞd5x⃗ðaÞρðx⃗ðiÞÞρðx⃗ðaÞÞe−ik½zðiÞm −zðaÞm þMMD

5u ðx⃗ðiÞu −x⃗ðaÞu Þ�

× wðzðiÞm þMMK
5u x⃗ðiÞu þ Δz − zðjÞm ÞwðzðaÞm þMMK

5u x⃗ðaÞu þ Δz − zðjÞm Þ ðB2Þ

Approximating the longitudinal integrals over zðiÞm and zðaÞm as extending from −∞ to ∞, making the change of variables

z0 ≡ zðiÞm þMMK
5u x⃗ðiÞu þ Δz − zðjÞm and z00 ≡ zðaÞm þMMK

5u x⃗ðaÞu þ Δz − zðjÞm , and using Eq. (2), we obtain

N

�
n0kMKD

56

q2c
E0

�
2
Z

L=2

−L=2
dzðjÞm =L

Z
∞

−∞
d5x⃗ðiÞd5x⃗ðaÞρðx⃗ðiÞÞρðx⃗ðaÞÞe−ik½ðMMD

5u −MMK
5u Þðx⃗ðiÞu −x⃗ðaÞu Þ�ZðkÞZð−kÞ

¼ N

�
n0kMKD

56

q2c
E0

�
2

jZðkÞj2
Z

∞

−∞
d5x⃗ðiÞd5x⃗ðaÞρðx⃗ðiÞÞρðx⃗ðaÞÞe−ik½ðMMD

5u −MMK
5u Þðx⃗ðiÞu −x⃗ðaÞu Þ�

¼ N

�
n0kMKD

56

q2c
E0

�
2

jZðkÞj2e−k2
P

u≠5
σ2x̂u ðM̂

MD
5u −M̂MK

5u Þ2 ðB3Þ

where we have used the fact that Zð−kÞ ¼ Z�ðkÞ for real wakes, the definition n0 ¼ N=L, and the transformed transfer
matrices and beam sizes of Eqs. (16) and (17). This yields a corrected version of Eq. (21)

ΔjñðkÞj2
jñðkÞj2 ¼ −2n0

q2c
E0

kMKD
56 fRe½ZðkÞ� sinðkΔzÞ þ Im½ZðkÞ� cosðkΔzÞg

× e−
k2
2

P
u≠5

σ2x̂u ½ðM̂
MD
5u Þ2þðM̂MD

5u −M̂MK
5u Þ2� þ

�
n0kMKD

56

q2c
E0

�
2

jZðkÞj2e−k2
P

u≠5
σ2x̂u ðM̂

MD
5u −M̂MK

5u Þ2 : ðB4Þ

Similar results are seen in the derivations of Appendix A if we keep the jGj2 term of Eq. (A18) or the hδf̃ð1Þk ðηÞδf̃ð1Þk0 ðη0Þi
term of Appendix A 2.
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