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Plasma accelerators sustain extreme field gradients and potentially enable future compact linear
colliders. Although tremendous progress has been achieved in accelerating electron beams in a plasma
accelerator, positron acceleration with collider-relevant parameters is challenging. A recently proposed
positron acceleration scheme relying on the wake generated by an electron drive beam in a plasma column
has been shown to be able to accelerate positron witness beams with low emittance and low energy spread.
However, since this scheme relies on cylindrical symmetry, it is possibly prone to transverse instabilities
that could lead, ultimately, to beam breakup. In this article, we show that the witness beam itself is subject
to various damping mechanisms and, therefore, this positron acceleration scheme is inherently stable
toward the misalignment of the drive and witness beams. This enables stable, high-quality plasma-based
positron acceleration.

DOI: 10.1103/PhysRevAccelBeams.25.091304

I. INTRODUCTION

The ability to build the next, TeV-class linear particle
collider is severely constrained due to its high construction
costs and power consumption. Providing extreme accel-
erating gradients, plasma-based accelerators potentially
enable compact linear colliders, promising drastic cost
reductions [1,2]. In a plasma-based accelerator, either
an intense laser pulse [3] or an ultrarelativistic, high-
charge particle bunch [4] drives a plasma wake, which
can sustain accelerating gradients on the order of tens to
hundreds of GV=m. Although high-energy-gain [5,6],
high-efficiency [7], and low-energy-spread [8] electron
acceleration was demonstrated experimentally, positron
acceleration with collider-relevant parameters is signifi-
cantly more challenging.
Several concepts have been proposed, including utilizing

positron drive beams [9], use of hollow-core drive beams
[10] or lasers pulses [11], a combination of particle and
laser drivers [12], or use of the rear portion of a blowout
bubble wake [13]. Unfortunately, these concepts lack low
emittance, low energy spread, or reasonable efficiency.

Hollow core plasma channels have been a promising
candidate [14,15], but they suffer from instabilities due
to the absence of focusing fields for the drive beam [14,16].
Using asymmetric drive beams provides stability in at least
one transverse direction [17], but only positron beams with
large beam emittances (>50 μm rad) could be accelerated,
which is too large for collider applications. It was found
that the wake generated in a thin, warm, quasi-hollow
plasma channel provides accelerating fields for positrons
while being robust against instabilities [18]; however, this
scheme was demonstrated for a positron beam with several
μm rad emittance and several percent relative energy spread
only, i.e., beam quality too poor for a collider.
In Ref. [19], a concept was proposed that utilizes an

electron drive beam and a plasma column to generate
positron-accelerating and focusing wakefield structures
and has shown sub-μm rad emittance and sub-percent
energy spread positron acceleration [19,20]. Since the
scheme relies on cylindrical symmetry, one might expect
it to be prone to beam breakup instabilities similar to the
ones affecting the hollow core plasma channel. In a recent
study [21], the electron driver was found to propagate
stably in a plasma column for initial misalignments
smaller than the beam size. Still, neither the effect of a
misaligned drive beam on the witness beam nor the
stability of a misaligned witness beam itself has been
investigated so far.
In this article, we demonstrate by means of theory and

particle-in-cell (PIC) simulations the stability of a positron
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witness beam in the plasma column configuration in the
case of a misaligned drive beam or when the witness beam
itself is misaligned, and we discuss the corresponding
witness beam quality deterioration in presence of such
asymmetries. We show that the witness beam is subject
to various damping mechanisms and, therefore, this posi-
tron acceleration scheme is inherently stable with respect to
the misalignment of both the drive and witness beams.
These results pave the path for a stable acceleration of low-
emittance, low-energy-spread positron beams, a critical
step toward the realization of a plasma-based electron-
positron collider.
The article is organized as follows: In Sec. II, we

recapitulate positron acceleration in a plasma column. In
Sec. III, the stability of the positron beam in the presence of
initial misalignments is investigated. In Sec. IV, the effect
of initial misalignments on the positron beam quality (e.g.,
deterioration of emittance and energy spread) is deter-
mined. Sec. V concludes this work.

II. POSITRON ACCELERATION IN A
PLASMA COLUMN

As was first discussed in Ref. [19], if an electron beam
drives a wake in a plasma column with a column radius
smaller than the blowout radius, the transverse wakefields
are reduced outside the column due to the lack of ions.
The reduced focusing fields induce a spread in the
background plasma electron trajectories moving near
the boundary of the blowout wake, which return to the
propagation axis over an elongated longitudinal region,
forming a high-density electron filament at some distance
behind the drive beam. The filament creates a wakefield
suitable for acceleration and transport of a trailing wit-
ness positron bunch, as shown in the left column (a)–(c)
of Fig. 1, where we plot the plasma charge density (a),
normalized to en0, where e is the elementary charge and
n0 is the ambient plasma density, respectively, and the
accelerating (b) and focusing (c) fields, normalized to the
cold, nonrelativistic wave-breaking field E0 ¼ mec2kp=e,
in the x-ζ-plane. Hereby, kp ¼ ð4πn0e2=mec2Þ1=2 is the
plasma wave number, e is the electron charge, me is the
electron mass, c is the speed of light in vacuum, x is
the transverse coordinate, ζ ¼ z − ct is the longitudinal
comoving variable, with z and t being the longitudinal
coordinate and the time, respectively. We use a bi-
Gaussian electron drive beam with a peak current
Id=IA ¼ 1, and root-mean-square (rms) sizes σz;d ¼
1.41 k−1p (longitudinal) and σx;d ¼ σy;d ¼ 0.05 k−1p (trans-
verse), with IA ¼ mec3=e ≃ 17 kA being the Alfvén
current. The plasma column has a radius Rp ¼ 2.5 k−1p .
For simplicity, a column with a transverse steplike profile
is used, however, the scheme also works for realistic,
smooth profiles like the ones obtainable via optical field
ionization [22–26].

In the presented configuration, a helium plasma ionized
to the first level is assumed within the column radius
and neutral helium gas outside of the column radius.
Helium is optimal owing to its high ionization threshold.
The usable density range for the plasma column scheme is
limited by the wakefield-induced ionization at the boun-
dary of the column. Since the wakefield amplitude scales
as E ∼ E0 ∝ n1=20 , if the density is too high, the wakefield
within the blowout radius (which exceeds the column
radius) ionizes the neutral gas outside of the column,
causing the column to expand and perturb the positron
accelerating and focusing fields. Additionally, the
space charge fields of the drive beam can further ionize
the plasma in the column to a higher ionization level
and disturb the wakefield. For the above drive beam
parameters, the maximum densities in a helium
plasma and hydrogen plasma are ≃1×1017 cm−3 and
≃ 5 × 1016 cm−3, respectively.
A transverse displacement of the drive beam centroid by

one rms size, Xd;0 ¼ σx;d, modifies the electron trajectories
asymmetrically, perturbing the wake centroid hWi at the
back of the blowout. The effect of a misaligned drive beam

FIG. 1. Wakefield generated in a plasma column by an aligned
(left column) and misaligned (right column) drive beam. The
normalized plasma charge density, the accelerating field, and the
focusing field in the x-ζ-plane are shown for the case with aligned
drive and witness beams (a)–(c) and for misaligned drive and
witness beams with offsets of Xd;0 ¼ Xw;0 ¼ 0.05 k−1p (d)–(f). As
shown in (f), an offset of the drive beam of Xd;0 > 0 results in a
wake centroid of hWi < 0.
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is shown in the right column (d)–(f) of Fig. 1. The stable
propagation of a misaligned electron drive beam has been
shown in a recent study [21]. There, the transversely
displaced drive beam was found to be attracted to the
center of the plasma column. Although an initial misalign-
ment was found to seed the hosing instability [27], the
induced oscillation is damped by various well-known
mechanisms such as ion motion [28], energy spread [29],
and others [30,31]. Thus, transversely displaced drive
beams undergo damped oscillations and drift toward the
plasma column axis. For the drive beam parameters
presented in this work, and assuming a background density
of 1 × 1017 cm−3, a positional alignment at the μm level
and an angular alignment on the ≲10 μrad-level are
required for stable drive beam propagation in meter-scale
plasma columns.
The effect of a misaligned drive beam on the positron

witness bunch is discussed in the next sections.

III. STABILITY OF THE WITNESS BEAM

Based on the premise that the drive beam is stable,
we now investigate the witness beam stability and the
witness beam quality degradation in the presence of a
misaligned drive or witness beam using 3D PIC simulations
with the quasistatic code HiPACE++ [32]. In the simulations,
the computational domain is ð−16; 16Þ × ð−16; 16Þ ×
ð−14; 6Þ k−3p in x × y × ζ, where x and y are the transverse
coordinates. The mesh resolution is 0.0078 × 0.0078×
0.001 k−3p . The same drive beam and helium plasma
column parameters, as in Sec. II, are used. The helium
plasma is modeled by electrons and ions with 16 macro-
particles per cell each. The drive beam has an initial energy
of 5 GeV, no energy spread, and a normalized emittance
of ϵ0 ¼ 0.18 k−1p , which is matched to the focusing field
provided by the background ions in the column. The drive
beam is sampled with 107 macroparticles. The simulation
is propagated for 1000 time steps with a constant time step
of Δt ¼ 5ðckpÞ−1.
The witness beam has a transversely Gaussian and a

longitudinally tailored profile. To preclude hosing sup-
pression due to the presence of a slice-dependent energy
chirp along the positron beam [29] (the energy spread
required to suppress the instability is several percent, and
this might be incompatible with collider applications), we
use a witness beam current profile that optimally loads the
wake, minimizing the development of a correlated energy
spread. As shown in Ref. [20], the current profile that
flattens the accelerating wakefield by optimal beamload-
ing is nontrivial for the nonlinear positron-accelerating
wake. To approximately flatten the wakefield, we consider
a current profile that captures the salient features of the
one described in Ref. [20]. This is obtained by linearly
combining two Gaussian distributions centered in ζ0;w1 ¼
−11.57 k−1p and ζ0;w2 ¼ −11.3 k−1p , and with a length of

σz;w1 ¼ 0.5 k−1p and σz;w2 ¼ 0.2 k−1p , respectively. The
corresponding peak densities are nw1=n0 ¼ 260 and
nw2=n0 ¼ 44.6. The transverse size of the witness
bunch is σx;w ¼ σy;w ¼ 0.029 k−1p , its initial energy is
1 GeV, it has no initial energy spread, and the initial
normalized emittance is ϵx ¼ ϵy ¼ 0.1 k−1p (corresponding
to 0.75 μm rad for n0 ¼ 5 × 1017 cm−3). The witness
bunch is sampled with 1.25 × 108 macroparticles.
After presenting the basic numerical setting, we now

analyze the evolution of the witness beam in the case of
various misalignments of the witness beam centroid, the
drive beam centroid, or both with respect to the plasma
column axis. The evolution of the witness bunch centroid
Xw is shown in Fig. 2(a), where we plot the difference

(a)

(b)

(c)

FIG. 2. (a) Difference between witness beam centroid Xw and
focusing wake centroid hWi for different initial witness and/or
drive beam offsets as a function of the propagation distance. The
witness beam centroid quickly converges to the wake centroid
within a few damped oscillations, demonstrating the stability of
the scheme versus initial offsets. The cases of a misaligned driver
(b) and both a misaligned driver and misaligned witness beam
(c) are also shown for higher witness energies of 5 and 10 GeV,
respectively. Inset in (c): Xw along the propagation axis. Despite
an increased damping length, the evolution is still stable, i.e., Xw
converges to hWi.
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between the witness beam centroid Xw and the wakefield
centroid, which we define as the zero crossing of the
transverse focusing field, at the phase location of the
witness bunch hWi. In the next paragraphs, different beam
configurations are reviewed in detail.
First, the setup of an on-axis drive beam and a mis-

aligned witness beam is considered. In this configuration, a
small initial transverse witness beam offset (Xw;0¼ 0.2σx;w,
solid blue line) and a larger witness beam offset (Xw;0 ¼
σx;w, dash-dotted red line) are tested. For both offsets, the
witness beam centroid quickly converges to the wake
centroid via a strongly damped oscillation. For the small
initial transverse beam offset, we also test higher initial
witness beam energies, namely 5 GeV (dashed red line) and
10 GeV (dash-dotted green line) as shown in Fig. 2(b). To
keep the witness beams quasimatched [19], their transverse
rms sizes are reduced σx;w ¼ σy;w ¼ 0.017 k−1p and σx;w ¼
σy;w ¼ 0.0135 k−1p for 5 GeVand 10 GeV, respectively. The
initial offset is kept constant relative to the reduced beam
size with Xw;0 ¼ 0.2σx;w. As shown in Fig. 2(b), a higher
witness beam energy results in a longer damping length.
Second, the setup of a misaligned drive beam and an on-

axis witness beam is considered. For initial displacements
of Xd;0 ¼ 0.2σx;w and Xw;0 ¼ 0 [dashed green line in
Fig. 2(a)], the witness beam centroid again quickly con-
verges to the wake centroid in a damped oscillation. Small
deviations of the witness beam centroid from the wake
centroid are caused by small asymmetries of the wakefield
around the zero crossing so that the bunch equilibrium
distribution in that wake is itself slightly asymmetric,
implying a small offset of the centroid. Notably, the witness
beam centroid stays aligned with the wake centroid, even if
the wake centroid is changing due to the evolution of the
drive beam.
Finally, the same behavior is also observed in the most

challenging setup of a misaligned drive beam and a
misaligned witness beam, where both the drive and the
witness beams are misaligned by Xd;0¼ 0.2σx;w and Xw;0 ¼
0.2σx;w, respectively [dotted orange line in Fig. 2(a)].
Hereby, we chose the most challenging case, where both
beams are displaced in the same direction, which increases
the offset between Xw and hWi, see Fig. 1. Due to its lower
energy, the witness beam adjusts to the (slowly) evolving
wake centroid driven by the 5-GeV drive beam. Thus, we
also tested quasimatched, higher witness beam energies of
5 GeV [dashed red line in Fig. 2(c)] and 10 GeV [dash-
dotted green line in Fig. 2(c)] to verify the stability even in
cases where the witness beam is evolving at a slower rate
compared to the drive beam. Despite the increased damping
length due to the higher witness beam energy, the witness is
still able to follow the wake centroid. The inset in (c) shows
the corresponding witness beam centroids Xw along the
propagation distance without the subtraction of the wake
centroid. In the presented cases, the witness beam centroids
are displaced from the column axis. Since the attraction of

the drive beam toward the column center is rather slow (see
Ref. [21]), the initial drive beam offset is not fully corrected
during the propagation. The resulting nonzero wake cent-
roid leads to a displacement of the witness beam centroids.
We also considered cases where the drive and witness

beams are offset in orthogonal directions (results not
shown), but we did not observe any detrimental coupling
between the motion in the two planes.
In all presented cases, the oscillation of the positron

witness beam centroid is quickly damped and the witness
centroid converges to the wake centroid. The damping is
caused by two effects that result in high stability of the
witness beam toward transverse displacements: first, the
oscillation is damped due to the longitudinally varying
focusing fields (see Fig. 1), which has also been observed
in other positron acceleration schemes [18]. This effect is
similar to the Balakin-Novokhatsky-Smirnov (BNS) damp-
ing mechanism [33] in conventional accelerators and has
been discussed in the context of quasilinear wakefields in
Ref. [31]. Second, the nonlinear transverse wakefields
cause phase mixing within a single slice of the beam that
ultimately leads to a damping of the witness beam centroid
motion.
The scaling of the damping due to the nonlinear

transverse wakefields can be obtained from a simplified
theoretical model, described in Appendix A. In the
simplified model (see also Ref. [19]), we consider a flat
beam (i.e., σx ≫ σy) in a steplike confining wakefield,
namely ðEx − ByÞ=E0 ¼ −α sgnðxÞ, where x is the trans-
verse coordinate, α is the strength of the wakefield, and
sgnðxÞ is the sign function. The evolution of the drive
beam is neglected (i.e., the confining wake is constant),
we neglect head-to-tail effects (i.e., we consider damping
in a slice at a given longitudinal location along the beam),
and we assume the acceleration to be slow (i.e., the
particle energy changes significantly over distances longer
than the characteristic betatron period). Finally, we
assume the centroid displacement is small compared to
the characteristic beam size, namely Xw;0 ≪ σx;w. With
these assumptions, the evolution of the beam centroid Xw
is found to be a damped oscillation with a damping length
Sdamp scaling as

kpSdamp ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpσx;wγ

α

r
: ð1Þ

Notably, and confirmed by the simulations, the damping
length does not depend on the initial offset (at least for
small displacements). The scaling of the damping length
with γ, α, and σx;w is in good agreement with the
simulation results.
Since the damping is caused by phase mixing, the

damping length is linked to the spread of the betatron
frequencies within the bunch. In the case of a Gaussian
betatron wave number distribution, the damping length is
proportional to Sdamp;Gauss ∝ 1=σkβ , where σkβ is the rms
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spread of betatron wave numbers. Although the wave
number distribution within the bunch is not Gaussian in
this case, their distribution can be used to quantify which
mechanism dominates the damping process between
(i) BNS damping due to the longitudinally varying focusing
strength resulting in a ζ-dependent betatron period for
particles in different bunch slices, and (ii) nonlinear focus-
ing wakefield resulting in an amplitude-dependent betatron
period for the particles in a beam slice. Therefore, we
examine the distribution of betatron frequencies within the
witness bunch. Using the example with the misaligned
witness beam with an initial offset of Xw;0 ¼ 0.2σx;w, the
betatron frequencies are extracted from 1D test particles
simulations by employing a second-order particle pusher
and using the initial focusing field of the PIC simulation
along x at various slices in the beam. Note that it is possible
to obtain the betatron frequencies directly from the PIC
simulation, but it is impractical due to the acceleration of
the particles and the required data intensity as a short output
period is needed for reasonable accuracy.
The distribution of the wave numbers of the test particles,

kβ=kp, along the bunch is shown in Fig. 3. The red dots and
bars denote the per-slice average hkβi and the per-slice rms
spread σkβ of the betatron wave number, respectively. We
define the head and the tail of the bunch as the slices at
ζ ¼ σz and ζ ¼ −σz. Then, the head-to-tail wave number
spread is obtained as the difference between the mean
betatron wave numbers at the head and at the tail and is
visualized in the plot as a black bar. As shown, the head-to-
tail wave number spread, which is caused by the longi-
tudinal variation of the focusing field, is approximately 4
times larger than the average intraslice wave number spread
caused by the transverse nonlinearity of the focusing field.

Thus, the variance of the focusing field along the bunch
dominates the damping of the positron bunch. Note that the
longitudinal variance strongly depends on the beamloading
of the witness bunch.

IV. EFFECT OF MISALIGNMENT ON WITNESS
BEAM QUALITY

Having discussed the positron stability, we now address
the effect of an initial misalignment on the beam quality.
For the cases described in Fig. 2(a), the effect of the
misalignment on the emittance, energy gain, and relative
energy spread of the positron witness beam are shown
in Figs. 4(a)–4(c). For a small witness beam offset (solid
blue line), the emittance grows only by a few percent in
comparison to the aligned case (solid gray line). A large
witness beam offset (dash-dotted red line), a drive beam
offset (dotted green line), or both (dashed orange line)
degrade the emittance due to the larger initial difference
between wake centroid and beam centroid. Nevertheless,
the emittance growth saturates as soon as the beam centroid
converges to the wake centroid. This is also the case for
the misaligned drive beam, where the wake centroid is
evolving. The energy and the relative energy spread are not
sensitive to initial misalignments of the beam centroids, and

FIG. 3. Distribution of betatron wavenumbers kβ=kp along the
comoving variable ζ. The rms wave number spread per slice σkβ is
depicted by the red bars. The head-to-tail wave number spread,
defined as the difference between the mean wave number at the
head of the bunch (located atþ1σz) and the tail (located at −1σz),
is depicted by the black bar. The head-to-tail spread is larger than
the average of the intraslice spread.

(a)

(b)

(c)

FIG. 4. (a)–(c) Emittance, energy gain, and relative energy
spread as a function of the propagation distance. Depending on
the offset, emittance growth can be observed, which saturates
as soon as the beam is aligned with the wake centroid. Only
marginal differences in energy gain and energy spread are
observed.
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results differ only marginally from the aligned case.
Notably, no positrons are lost during the stabilization
process in all studied cases.
To gain a further understanding of the effect of an initial

offset of the witness beam centroid on the emittance,
we use the model for the emittance growth at saturation
presented in Ref. [19]. In the model, the same general
assumptions as in the previous section are made. Then,
assuming a small relative initial offset of the witness beam
Δx ¼ Xw;0=σx ≲ 1, the emittance growth at saturation is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihu2xi

p
σxσux

≈
�

8

45

��
1þ 4

π

�
ð1þ Δ2

xÞ þ
ffiffiffi
2

π

r
η−1ð2þ 3Δ2

xÞ

þ 5

2

ffiffiffi
2

π

r
η

�
1þ Δ2

x

2

�
þ 3

4
η2
��

1=2
; ð2Þ

with

η ¼ σ2ux
kpσxγα

: ð3Þ

A detailed derivation of Eq. (2) is presented in
Appendix B.
We now compare the emittance growth obtained from the

model with results from the PIC simulations. The emittance
growth at saturation is estimated using Eq. (2) with an
energy of γ ¼ 2000, an initial transverse beam size of
σx ¼ 0.029 k−1p , an initial emittance of ϵ0 ¼ 0.1 k−1p , and a
field strength of α ¼ 0.5, which is extracted from the PIC
simulation with aligned beams with respect to the column
axis. For the aligned case with Δx ¼ 0, the small offset case
with Δx ¼ 0.2, and the large offset case with Δx ¼ 1, the
predicted emittance growth is 6%, 8%, and 50%, respec-
tively. While the emittance growth predicted by the
simplified model is in reasonable agreement with the
simulation in the aligned and small offset cases, it is
significantly underestimated in the large offset case. A
reason for the underestimation is that the beamloading
effect on the transverse wakefield of a high-charge, strongly
misaligned witness beam is not captured by the model. In
the case of a large offset, the transverse focusing field is
asymmetrically altered, thus the assumption of a simple
steplike wake in the model is not fulfilled anymore.
Therefore, the model provides a reasonable scaling only
for small offsets. Additionally, some of the assumptions
(flat beam, neglect of head-to-tail effects) made in the
model are not fulfilled in the full PIC simulation, so the
model should be used for qualitative purposes only.
In summary, the nonlinearity of the focusing field

transversely provides stability as initial offsets are quickly
damped due to the phase mixing of the particles. However,
this mechanism comes at a cost, since the phase mixing
increases the witness beam size and the emittance.

V. CONCLUSION

In this paper, positron acceleration in a plasma column is
shown to be inherently stable: in case of misalignments
between the drive and witness beams with respect to the
plasma column, the witness beam centroid is attracted to
the centroid of the focusing wake and the witness beam is
not susceptible to the hosing instability due to a longitu-
dinally varying and transversely nonlinear focusing field in
the region of the positron bunch. The initial misalignment
is corrected via a damped oscillation, which affects the
witness beam quality. A scaling for the damping length of
the oscillation and the induced emittance growth is pre-
sented. By analysis of the betatron wave numbers distri-
bution within the bunch, the variation of the focusing field
along the bunch is identified to be the dominating effect in
the damping. To achieve high-quality positron acceleration,
the alignment of drive and witness beam with respect to the
plasma column is essential, but, in principle, achievable due
to the intrinsic stability, which allows for the implementa-
tion of active feedback loops. Plasma columns enable
stable, low-emittance, low-energy-spread positron acceler-
ation as required for a linear collider. Initial experiments of
this configuration may be performed at beam test facilities,
such as FACET-II [34].

Data availability.—The input scripts for the PIC simu-
lations used in Figs. 2 and 4 are available online [35]. The
data that support the other figures are available upon
reasonable request from the corresponding author.
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APPENDIX A: DAMPING LENGTH OF THE
POSITRON WITNESS BEAM CENTROID

OSCILLATIONS

Here we derive an expression for the characteristic
damping length of the positron witness beam centroid
oscillations. In the derivation, the following assumptions
are made: (1) The transverse wakefield close to the axis is
approximately steplike (see Fig. 4 in Ref. [19]) and is
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described by ðEx − ByÞ=E0 ¼ −α sgnðxÞ, with sgnðxÞ
being the sign function, and the field strength α > 0 a
constant, respectively. (2) The drive beam evolution is
neglected and the transverse wakefield is constant in time.
(3) The beam is considered to be flat, i.e., σw;x ≫ σw;y and
σux ≫ σuy , with σux and σuy being the transverse rms
momentum spreads in x and y direction, respectively.
(4) The acceleration process is adiabatic (i.e., the single
particle action is conserved). (5) A small centroid offset is
considered, namely Xw;0 ≪ σx;w.
The damping length depends on the spread in betatron

frequencies of the particles in the beam and this, in turn,
depends on the beam’s initial phase-space distribution.
Analytical calculations for the damping length are tractable
in the case of an initial phase-space distribution that is
perfectly matched (in the case without centroid displace-
ment) in the idealized steplike wakefield (i.e., the unper-
turbed phase-space distribution is a stationary solution of
the Vlasov equation for the system). Note that, as explained
in Ref. [19], the Gaussian distribution that is used as the
initial condition in all the simulations presented in this
work is not a stationary solution of the Vlasov equation.
Hence, in our calculations, we will consider an exponential
distribution (see below for details on its definition). We
verified numerically that the damping length for an
exponential distribution is comparable to that of a quasi-
matched initial Gaussian distribution with the same rms
size (the exponential distribution is a good proxy for a
Gaussian distribution). Extension of the results to other
types of matched initial distributions is straightforward.
The calculation of the beam centroid evolution requires

first determining the centroid motion for a displaced beam
with a Kapchinskij-Vladimirskij (KV) [37] phase-space
distribution (KV beamlet, note that an undisplaced KV
beam is also a stationary solution of the Vlasov equation,
see Sec. A 1). Then, the centroid evolution for the whole
beam is obtained by considering that a generic matched
beam can be decomposed into a sum of KV beamlets (see
Sec. A 2).

1. Evolution of the beam centroid of a
single KV beamlet

The KV phase-space distribution is defined as [37]

fKVðx; uxÞ ∝ δ½Hðx; uxÞ −H0�; ðA1Þ

where δ is the Dirac delta distribution,Hðx; uxÞ is the single
particle Hamiltonian for a particle in a steplike wakefield,
and it is given by [19]

Hðx; uxÞ ¼
u2x
2γ

þ αkpjxj; ðA2Þ

with x, ux, and γ being the position, the momentum, and the
Lorentz factor of the particle, respectively. Finally, H0 is a

parameter that depends on the initial condition and sets the
characteristic size of the beamlet. We also introduce the
parameter X0, defined as

kpX0 ¼
H0

α
: ðA3Þ

Since the phase-space distribution depends on the coor-
dinates via the Hamiltonian, then it is, by construction,
a stationary solution of the Vlasov equation and so the
beamlet is matched (i.e., all the beam moments are constant
in time). In a KV beamlet, all the particles satisfy, at all the
times, the condition Hðx; uxÞ ¼ H0 or, equivalently,

u2x
2γ

þ αkpjxj ¼ αkpX0: ðA4Þ

Thus, the particle momentum is a function of the position
according to

ux ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γαkpðX0 − jxjÞ

q
: ðA5Þ

We see that jxj ≤ X0, and so X0 represents the maximum
coordinate for a particle in a KV beamlet. The betatron
periodLβ of a single particle in the steplikewake is obtained
by integrating the equation of motion dx=ds ¼ ux=γ, with
uðxÞ given by Eq. (A5), over a closed orbit, yielding

Lβ;KV ¼ 2

Z
X0

−X0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

2αkpðX0 − jxjÞ
r

dx ¼ 8

ffiffiffiffiffiffiffiffiffiffi
γX0

2αkp

s
: ðA6Þ

All the particles in a KV beamlet have the same betatron
period that depends on the beamlet size, X0. The betatron
wave number is then given by kβ;KV ¼ 2π=Lβ;KV, or

kβ;KVðX0Þ≡ k0β ¼
π

4

ffiffiffiffiffiffiffiffiffiffi
2αkp
γX0

s
: ðA7Þ

We now consider a KV beamlet whose centroid is
initially displaced by Xw;0 (in the following, we assume
Xw;0 > 0 for illustration purposes). The particles in such
beamlet satisfy

u2x
2γ

þ αkpjx − Xw;0j ¼ αkpX0: ðA8Þ

Notably, a displaced KV beamlet is not an equilibrium
distribution anymore, as shown in Fig. 5, which displays
the phase space of the unperturbed KV beam (gray solid
line) and that of the displaced KV beamlet (blue-red-black
solid line). The particles in the displaced beamlet can be
categorized into three subsections: first, the particles with
x < 0 (solid red line, we denote this set of particles with the
symbol C−) that satisfy
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u2x
2γ

þ αkpjxj ¼ αkpðX0 − Xw;0Þ: ðA9Þ

Second, the particles with x > Xw;0 (solid blue line, Cþ)
that satisfy

u2x
2γ

þ αkpjxj ¼ αkpðX0 þ Xw;0Þ; ðA10Þ

and third, the remaining particles with 0 < x < Xw;0 (solid
black lines, C0). When comparing Eqs. (A9) and (A10)
with Eq. (A4), one can see that the particles in C− and Cþ
are effectively part of KV beamlets with parameters
X0 − Xw;0 and X0 þ Xw;0, respectively. Thus, during evo-
lution, the particles initially in C− and Cþ remain in their
respective perturbed KV orbits with sizes X0 ∓ Xw;0, as
indicated by the dashed lines in the corresponding colors in
Fig. 5. The particles in C0 fill the space area between the
red and the blue orbits (filamentation), but the fraction of
such particles is small for small centroid displacements.
Hence, we see that we can represent a displaced KV
beamlet as the sum of two half KV beamlets of different
characteristic sizes. From Eq. (A7), the betatron wave
numbers for the particles in C� are k�β ¼ kβ;KVðX0 � Xw;0Þ,
which reduce, for small offsets Xw;0=X0 ≪ 1, to

k�β ¼ k0β

�
1 ∓ 1

2

Xw;0

X0

�
: ðA11Þ

To calculate the evolution of the centroid of the full,
displaced KV beamlet Xw;KV, the centroids and the fraction

of particles in C−, Cþ, and C0 must be computed. Starting
with the latter, we define f−, fþ, and f0 as the fraction of
particles in C−, Cþ, and C0, respectively. We have
f− þ fþ þ f0 ¼ 1. For small offsets, Xw;0=X0 ≪ 1, we
can neglect the fraction of particles in C0, and we modify
Cþ by adding the particles in 0 < x < Xw;0 along the
dashed blue orbit. In this case, we have f− þ fþ ¼ 1. The
fraction in C� is obtained by integrating the corresponding
phase-space distribution over the suitable domain. For
instance, we have

f− ¼ 1

N

Z
0

−∞
dx

Z
∞

−∞
duxδ

�
u2x
2γ

þ αkpðjxj − X0 þ Xw;0Þ
�
;

ðA12Þ

with the normalization

N ¼
Z

∞

−∞
dx

Z
∞

−∞
duxδ

�
u2x
2γ

þ αkpjxj − αkpX0

�
: ðA13Þ

We obtain f− ¼ ð1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Xw;0=X0

p
, and assuming

Xw;0=X0 ≪ 1, we have

f− ≃
1

2

�
1 −

1

2

Xw;0

X0

�
; ðA14Þ

and so

fþ ¼ 1

2

�
1þ 1

2

Xw;0

X0

�
: ðA15Þ

The centroid of the KV beamlet at any time is given by

Xw;KVðsÞ ¼ f−X−ðsÞ þ fþXþðsÞ; ðA16Þ

with X�ðsÞ being the centroids of C�, respectively. Note
that since particles in C� will rotate clockwise following
the respective orbits with betatron periods k�β , we can
assume that the corresponding centroids are performing a
harmonic motion with the same betatron periods, hence

X�ðsÞ ¼ X�ð0Þ cos k�β s: ðA17Þ

Here X�
w ð0Þ is the initial C� centroid computed by

averaging x over the corresponding initial distributions,

X�ð0Þ ¼ � 2

3
ðX0 � Xw;0Þ: ðA18Þ

Inserting Eqs. (A14), (A15), (A17), and (A18) into
Eq. (A16), we have

FIG. 5. Phase-space of an unperturbed (solid gray line) KV
beamlet and of a KV beamlet with an initial offset Xw;0 > 0 (solid
blue-red-black line). The KV beamlet with an initial offset is not
an equilibrium distribution anymore: the particles that are initially
on the blue (Cþ) and red (C−) arch continue their trajectories
on the blue and red dashed lines, respectively. Thus, they are
effectively part of KV beamlets with sizes X0 þ Xw;0 (blue) and
X0 − Xw;0 (red), respectively. The particles that are initially on the
black arches (C0) fill trajectories in between the red and blue
orbits (filamentation).
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Xw;KVðsÞ ¼ −
X0

3

�
1 −

3

2

Xw;0

X0

�
cos k−β s

þ X0

3

�
1þ 3

2

Xw;0

X0

�
cos kþβ s: ðA19Þ

Keeping only first order terms in Xw;0=X0, the expression
for Xw;KVðsÞ can be further simplified to

Xw;KVðsÞ ¼
2

3
X0 sin

�
k0β
2

Xw;0

X0

s

�
sin k0βsþ Xw;0 cos k0βs:

ðA20Þ

We see that, as a consequence of the beating between the
betatron frequencies k�β associated with the particles in C�,
the centroid of a perturbed KV beamlet performs transverse
oscillations with an amplitude that changes periodically
in time. The periodicity of the modulation is determined
by Xw;0.
Finally, we can further simplify Eq. (A20) for early

times, ðXw;0=X0Þk0βs ≪ 1, to

Xw;KVðsÞ ≃ Xw;0

�
cos k0βsþ

k0βs

3
sin k0βs

�
: ðA21Þ

2. Evolution of the centroid for a beam with an
exponential phase-space distribution

We now compute the centroid motion for a displaced
beam with an exponential phase-space distribution. The
exponential phase-space distribution, including the correct
normalization (i.e., such that ∬ fðx; uxÞdxdux ¼ 1), is
defined as

fðx; uxÞ ¼
αffiffiffiffiffiffiffiffiffiffiffiffi
8πγh30

q exp

�
−
Hðx; uxÞ

h0

�
; ðA22Þ

where h0 is a parameter setting the width of the beam. The
rms size of the bunch is given by σexp ≡

ffiffiffiffiffiffiffiffi
hx2i

p
¼ ffiffiffi

2
p

h0=α.
A beam with an exponential phase-space distribution can

be decomposed into a sum of different KV beamlets of
different sizes. From geometric considerations, we have
that the fraction of particles in KV beamlets with sizes
between X0 and X0 þ dX0 is given by

dNðX0Þ ¼
27=4ffiffiffi
π

p
σ3=2exp

ffiffiffiffiffiffi
X0

p
exp

�
−

ffiffiffi
2

p X0

σexp

�
dX0: ðA23Þ

The motion of the centroid for the whole beam, Xw, in
case of an initial centroid displacement is calculated by
superimposing the centroids of different KV beamlets,
Eq. (A21), taking into account the weighting given by
Eq. (A23), we obtain

XwðsÞ ¼
Z

∞

0

Xw;KVðs;X0ÞdNðX0Þ; ðA24Þ

where we explicitly indicated the dependence of Xw;KV

on X0. After some algebra, we obtain the following
expression for the evolution of the whole beam centroid:

XwðsÞ ¼ Xw;0
4

π

Z
∞

0

�
cos ðψ0tÞ þ

ψ0t
3

sinðψ0tÞ
�
e−

1

t2

t4
dt;

ðA25Þ

with

ψ0 ¼ ψ0ðsÞ ¼
π

4

�
2

ffiffiffi
2

p
α

kpσexpγ

�1
2

kps: ðA26Þ

For short propagation distances, kps≪ð4 ffiffiffi
2

p
kpσexpγ=αÞ1=2=

π (i.e., when ψ0 ≪ 1), the solution Eq. (A25) can be
approximated as

XwðsÞ
Xw;0

≃ 1 −
ψ2
0

3
¼ 1 −

π2
ffiffiffi
2

p
α

24σexpγ
kps2: ðA27Þ

For longer propagation distances, ψ0ðsÞ grows, and for
large enough values of ψ0, the fast oscillating trigonometric
functions in Eq. (A25) will cause the integral to vanish.
Hence, Eq. (A25) describes the damping of the centroid
oscillations. A numerical study of Eq. (A25) shows that
this occurs for ψ0 ≳ 2π. From this, and using Eq. (A26),
we derive the following expression for the characteristic
distance over which damping of the centroid oscillations
occurs:

kps≳ kpSdamp ¼ 4

� ffiffiffi
2

p
kpσexpγ

α

�1
2

: ðA28Þ

Since the damping length was derived for a beam with an
exponential phase-space distribution, while all the simu-
lations in this work use an initial Gaussian phase-space
distribution, we verified numerically that the damping
length agrees with that of a Gaussian beam to a reasonable
level. For the comparison, we assumed that σexp ¼ σx;w,
with σx;w being the rms size of the Gaussian witness beam.
The evolution of the centroid is obtained with test-particles
simulations (using a second-order particle pusher) for
beams in a steplike wakefield. Results are shown in
Fig. 6, where we compare the centroid evolution from test
particles simulations for an exponential beam (red dashed
line), and for a Gaussian beam (green dash-dotted line) to
the numerical solution of Eq. (A25) (blue solid line). The
physical parameters used in this example are α ¼ 0.5,
γ ¼ 2000, σx;w ¼ 0.029 k−1p , Xw;0 ¼ 0.005 k−1p , and an
emittance of the Gaussian beam of ϵx ¼ 0.1 k−1p . We find
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that the solution of Eq. (A25) is in excellent agreement with
the simulation results for an exponential beam and in good
agreement with that of a Gaussian beam. We also see that
the envelope of the damped centroid oscillations can be
well approximated by the exponential � expð−s=SdampÞ,
with Sdamp given by Eq. (A28) (gray dotted lines).
Note that in the full PIC simulations presented in this

work, many of the assumptions discussed here are only
approximately fulfilled (e.g., round beams are used instead
of flat beams, the actual confining wakefield is not an exact
steplike function, the drive beam is evolving, etc.) and thus
we expect the damping length derived here to be only
qualitatively correct.

APPENDIX B: EMITTANCE GROWTH AT
SATURATION WITH INITIAL OFFSET

Under the assumptions of the model described in Sec. III,
the emittance growth at saturation is calculated similarly
to Refs. [19,38]. The Hamiltonian for a particle in a
steplike transverse wakefield, ðEx − ByÞ=E0 ¼ −αsgnðxÞ,
is given by

Hðx; uxÞ ¼
u2x
2γ

þ αkpjxj: ðB1Þ

The maximum of any particle trajectory xmax is obtained
by setting ux ¼ 0 for a given initial condition ðx0; ux0Þ,
yielding

xmax ¼ Hðx0; ux0Þ=α: ðB2Þ

Using Eqs. (B1) and (B2), the momentum ux for any given
initial condition is

ux ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γαkpðxmax − jxjÞ

q
; ðB3Þ

with jxj ≤ xmax.
Following Ref. [38], the time average of phase-space

moments over a closed particle orbit is given by

x2ðx0; ux0Þ ¼
∂hP2

∂hP0

				
h¼Hðx0;ux0 Þ¼αkpxmax

ðB4aÞ

u2xðx0; ux0Þ ¼
γP0

∂hP0

				
h¼Hðx0;ux0 Þ¼αkpxmax

; ðB4bÞ

with

PlðhÞ ¼
Z

xmax

0

xlðh − αkpjxjÞ1=2dx: ðB5Þ

Evaluating Eq. (B4) with the given Hamiltonian yields

x2ðx0; ux0Þ ¼
8

15
x2max ðB6aÞ

u2xðx0; ux0Þ ¼
2

3
γαkpxmax: ðB6bÞ

The second-order phase-space moments for the beam
are obtained by averaging over the initial Gaussian
phase-space distribution. In contrast to Ref. [19], the
Gaussian distribution used for the averaging has an initial
offset of Xw:

hx2i ¼ 1

2πσxσux

Z
∞

−∞

Z
∞

−∞
x2ðx0; ux0Þ

× exp

�
−
ðx0 − XwÞ2

2σ2x
−

u2x0
2σ2ux

�
dx0dux0 ðB7aÞ

hu2xi ¼
1

2πσxσux

Z
∞

−∞

Z
∞

−∞
u2xðx0; ux0Þ

× exp

�
−
ðx0 − XwÞ2

2σ2x
−

u2x0
2σ2ux

�
dx0dux0 : ðB7bÞ

Solving the integrals in Eq. (B7) gives the second-order
phase-space moments

hx2i ¼ 8

15

�
σ2x þ X2

w þ σ2ux
γαkp

�
σxe−Δ

2
x=2

ffiffiffi
2

π

r

þ XwErf

�
Δxffiffiffi
2

p
��

þ 3

4

σ4ux
γ2α2

�
ðB8aÞ

hu2xi ¼
1

3

�
σ2ux þ 2γαkp

�
σxe−Δ

2
x=2

ffiffiffi
2

π

r
þ XwErf

�
Δxffiffiffi
2

p
���

;

ðB8bÞ

FIG. 6. Damping in a steplike transverse focusing field during
propagation time s. The numerical solution of Eq. (A25) agrees
well with the reduced modeling of an exponential beam and with
an exponential decay assuming the damping length Sdamp. The
damping of a Gaussian beam in the reduced model takes slightly
longer but the physical scaling was found to be the same.
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with Δx¼Xw=σx and the error function ErfðxÞ¼
2ffiffi
π

p
R
x
0 e

−t2dt. Finally, the relative emittance growth is given

by the emittance at saturation ϵf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihu2xi

p
divided by

the initial emittance ϵi ¼ σxσux :ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihu2xi

p
σxσux

¼
�
8

45

�
1þ4

π
e−Δx þΔ2

x

þ4e−Δx=2

ffiffiffi
2

π

r
ΔxErf

�
Δxffiffiffi
2

p
�
þ2ΔxErf

�
Δxffiffiffi
2

p
�

2

þ2η−1
�
½1þΔ2

x�
� ffiffiffi

2

π

r
e−Δ

2
x=2þΔxErf

�
Δxffiffiffi
2

p
���

þ5

2
η

� ffiffiffi
2

π

r
e−Δ

2
x=2þΔxErf

�
Δxffiffiffi
2

p
��

þ3

4
η2
��

1=2
;

ðB9Þ

with

η ¼ σ2ux
kpσxγα

: ðB10Þ

A second-order Taylor expansion for Δx ≪ 1 yields

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihu2xi

p
σxσux

≈
�
8

45

��
1þ 4

π

�
ð1þ Δ2

xÞ þ
ffiffiffi
2

π

r
η−1ð2þ 3Δ2

xÞ

þ 5

2

ffiffiffi
2

π

r
η

�
1þ Δ2

x

2

�
þ 3

4
η2
��

1=2
: ðB11Þ

The Taylor expansion is accurate for Δx ≲ 1 and under-
estimates the emittance growth at saturation by less than
1% and 5% for Δx ¼ 0.5 and Δx ¼ 1, respectively.
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