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Dielectric laser acceleration (DLA) achieves remarkable gradients from the optical near fields of a
grating structure. Tilting the dielectric grating with respect to the electron beam leads to deflection forces,
and the DLA structure can be utilized as a microchip undulator. We investigate the beam dynamics in such
structures analytically and by numerical simulations. A crucial challenge is to keep the beam focused,
especially in the direction of the narrow channel. An alternating phase focusing scheme is optimized for
this purpose and matched lattice functions are obtained. We distinguish synchronous operation with phase
jumps in the grating and asynchronous operation with a strictly periodic grating and well-designed
synchronicity mismatch. Especially, the asynchronous DLA undulator is a promising approach, since a
simple, commercially available grating suffices for the focusing lattice design. We pave the way toward
experiments of radiation generation in these structures and provide estimates of the emitted radiation
wavelength and power. The analytical models are validated by numerical simulations in the dedicated DLA
simulation tool DLAtrack6D and ASTRA, where the underlying laser fields are computed by CST STUDIO.
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I. INTRODUCTION

The working principle of large-scale accelerator light
sources relies on undulators transforming the energy of an
electron beam into short-wavelength photon radiation [1].
Facilities like the E-XFEL [2] and the Swiss-FEL [3] use
periodically alternating magnets with approximately 1 T
field strength to induce a transverse wiggling motion of the
particle beam. With a typical period length of about 1 cm,
magnetic undulators reach several tens to hundreds of
meters in total length. Active undulator designs use micro-
wave [4–6], terahertz [7], or optical [8] electromagnetic
fields to drive a wiggling motion of the electron beam. In
order to miniaturize accelerator light sources, especially
optical laser undulators are a promising concept since they
potentially reach GeV=m acceleration and deflection gra-
dients that allow realizing ultrashort undulator periods [9].
In contrast to Compton scattering sources [10–12] which
have a short interaction region and use a large beam current,
laser undulators have a long interaction region and, there-
fore, require a focusing scheme in order to transport the
electron bunch through their comparably small aperture.

Dielectric laser acceleration (DLA) utilizes the periodic
laser field distribution in a dielectric grating to accelerate
electrons in excess of 1 GV=m field strength [13]. Tilting
the grating with respect to the electron beam direction
induces transverse deflection forces such that the structure
effectively serves as a DLA undulator [14]. Thus, DLA
technology has the potential to reduce the dimensions of an
x-ray free-electron laser (FEL) to tabletop size [15].
Another application of a DLA in an FEL beamline intends
to increase the peak current and thus the peak power by
adding an optical DLA buncher [16] upstream of a conven-
tional undulator. Combined with a DLA undulator, the
optically bunched beam could attain superradiance.
However, owing to the tiny dimensions and the laser
induced defocusing forces, beam transport through a
DLA lattice remains challenging [17]. Magnetic quadru-
pole or solenoid lenses can neither mitigate the inherent
beam divergence within the aperture nor compensate for
the defocusing induced by the nonlinear laser fields. Thus,
DLA undulators require an entirely laser-based focusing
scheme as described in Refs. [18–20]. This article discusses
how such a focusing scheme, i.e., alternating phase focus-
ing (APF), can be adapted to DLA undulator structures,
where the reference particle moves on an undulating
trajectory. The ensemble of all other particles is then
supposed to execute stable betatron oscillations around
the reference particle. To achieve this, the APF for DLA
formalism [19,20] is generalized to periodically curved
reference trajectories. Moreover, borrowing from spatial
harmonic focusing [18], mismatch in the synchronicity
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condition leads to a drifting synchronous phase which is
modeled as an asynchronous APF scheme.
This design study is intended to pave the way for the

conceptual idea [9] toward a first experiment generating
radiation from DLA undulators. Therefore, the study adopts
machine parameters of the accelerator research experiment
(ARES) at the R&D facility for short innovative bunches and
accelerators at DESY (SINBAD) [21,22]. ARES generates
an E ¼ 107 MeV electron beam with Q ¼ 0.5 pC bunch
charge, σt ¼ 0.75 fs bunch length, and εx=y ¼ 1 nm trans-
verse geometric emittance. Furthermore, the silica grating
design assumes λ0 ¼ 2 μm drive-laser wavelength as com-
monly used for DLA experiments in the accelerator on a
chip (ACHIP) collaboration [16,23–25].
The structure of the paper is as follows: Section II

recapitulates the theory of tilted DLA structures from
Refs. [17,26] and provides an optimized grating design
for a high-gradient fused silica DLA undulator. Section III
discusses the single particle dynamics for both a synchro-
nous and an asynchronous DLA undulator lattice. The
investigation provides analytical formulas for the DLA
undulator parameter Kund. Section IV generalizes the DLA
alternating phase focusing scheme [19] to DLA undulators
which are shown to provide a FODO lattice with the same
periodicity as the undulator period. A subsequent beam-
matching study reveals the specifications and limitations
of the investigated DLA undulator designs. Finally, Sec. V
shows particle tracking simulations for the DLA design
parameters that were identified as most suitable with
respect to experimental prospects. The paper concludes
with an outlook on the feasibility of a DLA undulator
experiment at ARES and its potential implications for
future applications of DLA undulators in large-scale
facilities, such as the E-XFEL.

II. TILTED DLA GRATING CELL

Tilted gratings for deflection rather than an acceleration
in DLA have been proposed in various studies [9,14,17,26],
with the goal of creating an undulator-based light source.
Here, we briefly recapitulate and adopt the formalism
of [17], in order to address the problem of focusing in
the undulator. Figure 1(a) visualizes the laser field in one
tilted DLA grating cell simulated using CST STUDIO [27].
The working principle of DLA undulators relies either on
synchronous or on asynchronous grating structures. In a
synchronous structure, the beam particles travel along the
green line exactly one grating cell per laser period in the ẑ
direction. Thus, the beam velocity vz ¼ βc, the longitudinal
grating constant λz ¼ 2π=kz, and the laser wavelength
λ0 ¼ 2π=k0 fulfill the synchronicity condition

λz ¼ βλ0: ð1Þ

In an asynchronous structure, the laser wavelength λ0
does not match (1) which introduces a smooth phase drift of

the optical fields at the particle positions. The following
investigation provides an overview of the basic properties
for both synchronous and asynchronous DLA undulators.
The reciprocal grating vector kg ¼ kxx̂þ kzẑ in Fig. 1(a)

is parallel to the y ¼ 0 symmetry plane and tilted by an
angle α with respect to the beam path along ẑ. The periodic
modulation of the laser field Enum

z along ẑ in Fig. 1(b)
mainly corresponds to the fundamental harmonic of the
reciprocal grating vector kz. Thus, the Fourier coefficient

e1ðx; yÞ ¼ λ−1z

Z
λz=2

−λz=2
Ẽzðx; y; zÞeikzzdz; ð2Þ

with the phasor Ẽz for the drive-laser field characterizes the
effective interaction field Eana

z of the DLA undulator.
A general beam dynamics description based on the

nonlinear, time-dependent Lorentz force in such setups
is rather cumbersome. However, in phase-synchronous
structures, the Panofsky-Wenzel theorem [28] allows sim-
plifying the analysis. Referring to the investigation in
Ref. [17], the effective electromagnetic interaction corre-
sponds to a scalar potential

Vðx; y; z; t;φÞ ¼ −
qje1ð0; 0Þj

kz
cosh ðkyyÞ

× sin ½kxxþ kzðz − βctÞ þ φ� ð3Þ

with

kx ¼ kz tan α; ð4Þ

ky ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk02 − kx2 − kz2j

q
; ð5Þ

the particle charge q, and an arbitrary phase φ. Unlike the
definition of V used in Ref. [17], the force −∇V acting on
a synchronous particle with z ¼ sþ βct and y ¼ 0 is

FIG. 1. CST STUDIO simulation [27] of the field between two
opposing dielectric gratings for a ẑ polarized drive-laser with
amplitude E0 in (a). In (b), the field strength is compared to a
cosine wave with e1ð0; 0Þ complex amplitude, showing that the
fundamental Fourier coefficient is dominant.
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constant in time and anti-/parallel to the grating vector kg.
Hence, electrons passing a tilted diffraction grating expe-
rience both transverse deflection and longitudinal accele-
ration. The relative phase φ between the electron beam and
the laser field determines the sign and strength of the force.
Effective electromagnetic interaction between the drive-

laser field and the electrons requires maximizing the
structure coefficient je1ðαÞj defined as (2) evaluated at
x ¼ y ¼ 0 for the grating tilt angle α. Figure 2(a) shows the
results of a numerical optimization study for the geometry
in Fig. 2(b) using CST STUDIO [27]. The DLA cell consists
of two opposing silica diffraction gratings with ϵr ¼
2.0681 for a laser wavelength of λ0 ¼ 2 μm and a longi-
tudinal grating wave number kz according to (1) for β ≈ 1.
The transverse grating wave number kx gets larger
as the tilt angle α increases. The optima for both the
grating tooth width wt ¼ 1.0 μm and the tooth height ht ¼
1.5 μm is similar to typical specifications of commercially
available NIR spectrometer gratings [29]. In Fig. 2(a), the
coefficient je1ðαÞj is maximum at zero tilt and decreases as
α increases. Qualitatively, this degradation is a consequence
of the laser field attenuation from the inner grating surface
toward the beam path indicated as a green arrow.
Combining (1), (4), and (5) yields the field attenuation
constant ky ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−2 cos−2 α − 1

p
in the ŷ direction. The

attenuation limits the maximum beam channel width to
Δy ∼ λ0 for which the numerical geometry optimization
yields a good compromise at Δy ¼ 1.2 μm.

III. DLA UNDULATOR LATTICE

In order to achieve a wiggling beam trajectory, the
deflection needs to switch sign twice per undulator period
length [9]. This can be implemented on a tilted grating
structure in two ways: either, one can introduce phase
jumps, as in an alternating phase focusing scheme for a
synchronous lattice [19], or one can introduce a continuous

phase drift by a mismatch of the laser wavelength and the
grating period in (1) resulting in an asynchronous lattice.
Figure 3 shows a lattice for the synchronous scheme with

Δz ¼ λz=2 drift spaces equivalent to phase shiftsΔφ ¼ π in
order to accomplish the alternating deflection. Hence, a full
undulator period comprises two blocks of n ∈ Nþ DLA
grating cells separated by λz=2 which corresponds to the
undulator wavelength λund ¼ ð2nþ 1Þλz. As is the case for
magnetic undulators, the DLA undulator requires λund=4
sections at its entrance and exit to avoid imposing a
transverse drift motion on the beam [30].
The blue line in Fig. 4 visualizes the transverse deflection

x0 ¼ dx=dz across one wavelength λund ¼ 554 μm for the
reference particle located at ðx0; y0 ¼ 0; s0;φ0Þ in a syn-
chronous DLA undulator with n ¼ 138 cells per segment.
The trajectory corresponds to a periodic sequence of λund=2
sections in which the particle experiences the acceleration
dpx=dt ¼ �∂V=∂x. Since the longitudinal velocity is almost
constant, zðtÞ ≈ s0 þ βct, and the transverse deflection
remains negligibly small, jxðtÞ − x0j ≪ 2π=kx, the motion
resembles the dynamics of a uniformly accelerated particle.

FIG. 2. CST STUDIO simulation [27] for the structure coefficient
je1ðαÞj of a silica grating at different tilt angles α for a ẑ polarized
drive-laser with amplitude E0 in (a). The grating design in
(b) uses a tooth width of wt ¼ 0.6λg, a tooth height of
ht ¼ 0.75λ0, and a gap width of Δy ¼ 0.6λ0.

FIG. 3. Lattice design and beam trajectory (amplitude not to
scale) of a phase-synchronous DLA undulator for a ẑ polarized
drive-laser with amplitude E0. Each segment consisting of n ¼ 2
tilted DLA cells imposes a constant deflection force on the beam.
A subsequent drift space λz=2 shifts the phase by Δφ ¼ π which
flips the direction of the force.

FIG. 4. Transverse momentum modulation of the reference
particle in a tilted grating undulator. In a synchronous DLA
lattice, the trajectory is a sequence of constant acceleration with
alternating sign. The asynchronous DLA lattice imposes a
sinusoidal varying deflection.
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If applicable, direct integration of px ¼
R
∂V=∂x dt with

∂V=∂x evaluated at ðx0; 0; zðtÞ;φ0Þ yields an analytical
expression for x0ðzÞ which is the piecewise linear function
in Fig. 4.
Referring to the particle motion in conventional mag-

netic undulators [30] with x0 ¼ Kund=γ sin ð2πz=λundÞ, the
equivalent undulator parameter Kund for the synchronous
DLA lattice may be obtained from the fundamental Fourier
coefficient of x0ðzÞ in Fig. 4 as

Ksync
und ¼ 2

λund

Z
λund

0

γx0ðzÞ sin
�
2π

λund
z

�
dz

¼ 2

π2
qje1ðαÞj tan α

mc2
λund
β2

cos φs; ð6Þ

with the electron charge q, the rest mass m, and the
synchronous phase

φs ≡ kxx0 þ kzs0 þ φ0: ð7Þ

Note that in contrast to Ref. [19], where the synchronous
phase is a lattice property, the synchronous phase is
determined by the injection properties of the highly stiff
beam. Furthermore, the particle trajectory contains contri-
butions of higher harmonics (HH) with odd mode numbers
mHH ∈ f3; 5;…g and amplitudes proportional to 1=m2

HH.
Similar to its magnetic equivalent, the DLA undulator

parameter is proportional to the undulator wavelength λund
and the effective electromagnetic field strength je1ðαÞj. In
addition, Ksync

und varies with the grating tilt angle α and the
synchronous phase φs such that it vanishes completely if
α ¼ 0 or φs ∈ f90°; 270°g. For the investigated silica
structure, it exists an optimum at α ≈ 27° which maximizes
the undulator parameter Kund.
The orange dashed line in Fig. 4 for x0ðzÞ of an

asynchronous DLA undulator is sinusoidal and thus has
only the fundamental Fourier component. Because of the
inherent phase drift, the grating structure does not require
additional drift spaces to flip the deflection force. The
synchronous phase increases every grating cell length λz
by Δφs ¼ 2πλz=λund. Integration of the deflection force
dpx=dt ¼ ∂V=∂x ∝ cos ½2π=λundzðtÞ� results in an undula-
tor parameter

Kasync
und ¼ 1

2π

qje1ðαÞj tan α

mc2
λund
β2

: ð8Þ

In contrast to the synchronous undulator, Kasync
und repre-

sents a deflection that is approximately 20% smaller
than the maximum of Ksync

und and does not depend on the
synchronous phase φs.
Modeling the beam dynamics in asynchronous DLA

structures requires additional caution since the aforemen-
tioned approximation of the electromagnetic interaction as a
scalar potential (3) is not necessarily valid. A complete

description of the relativistic electron dynamics in an
asynchronous DLA laser field premises on the more general
Hamiltonian [31]

Hðx; px; y; py; ct; γ; zÞ ¼ −pz

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1 − ðpx − axÞ2 − ðpy − ayÞ2

q
− az; ð9Þ

with the canonical momenta p in units of mc and the scaled
vector potential a≡ q=ðmcÞA. Referring toAppendixA, the
geometry of an asynchronous DLA undulator motivates a
vector potential in the form of

a ¼ a0

0
B@

ξx cosh ðkyyÞ sin ðkzzþ kxx − k0ctþ φ0Þ
ξy sinh ðkyyÞ cos ðkzzþ kxx − k0ctþ φ0Þ
ξz cosh ðkyyÞ sin ðkzzþ kxx − k0ctþ φ0Þ

1
CA
ð10Þ

with a unitless amplitude

a0 ≡ qE0=k0
mc2

ð11Þ

proportional to the laser field strength E0 and a polarization
vector ξ. The injection phase φ0 is defined by the time at
which the reference particle enters the undulator. As dis-
cussed in Appendix B, the dynamics of (9) yields a coupled
system of six nonlinear differential equations which can be
solved numerically as shown in Fig. 5.
Typically, the energy variation across one laser wave-

length qE0λ0 is much smaller than the electron rest energy
mc2. A laser field strength in a range of the silica damage
threshold E0 ∼ 1–10 GV=m [13,32] at λ0 ¼ 2 μm in (11)
yields a0 ∼ 10−3. Following the idea of Ref. [33], the
particle dynamics might be approximated by treating the
laser field as a perturbation in a0 ≪ 1. The approximation
of (9) in Appendix B for a relativistic electron beam

FIG. 5. Numerical and Oða0−2Þ analytically approximated
solutions for the reference trajectories xðzÞ in an asynchronous
DLA undulator with Δk0=k0 ¼ 0.36% detuning from synchro-
nous operation, α ¼ 27° tilt angle, and E0 ¼ 10 GV=m laser field
strength. Both the laser detuning Δk and the initial phase Δφ
influence the dynamics.
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including terms Oðγ0−2Þ and Oða02Þ yields the transverse
coordinate of the reference particle

xðzÞ ≈
�
ξxa0 þ ξz

a0kx
kund

� ½cos φ − cos ðkundz − φÞ�
γ0kund

þ x0 þ ξz
a0
γ0

kx
kund

sin φ zþ …|{z}
Oða02Þ

; ð12Þ

with kund ¼ 2π=λund as the undulator wave number

kund ¼
�
1þ 1

2γ0
2

�
k0 − kz ≈

k0
β0

− kz ð13Þ

and the initial phase offset at z0 ¼ 0 defined as

φ ¼ kxx0 − k0ct0 þ φ0: ð14Þ

The approximation (12) evaluated for the design param-
eters in Fig. 5 shows a reasonable agreement with the
numerically computed solution of (9). The analytical
perturbation approach also reproduces fundamental aspects
of the beam dynamics and provides basic insights on the
parameter dependencies in asynchronous DLA undulators
as follows:
First, the undulator wavelength λund in (13) corres-

ponds to the beat wave due to the deviation from the
synchronicity condition (1). Hence, variation of the drive-
laser wavelength λ0 in an experiment allows direct adjust-
ment of λund. The orange dashed line in Fig. 5 shows the
effect of doubling the laser detuning to Δk0=k0 ¼ 0.72%
which reduces the effective undulator wavelength by a factor
of 1=2.
Second, the amplitude of the cosine terms in (12)

represents the asynchronous DLA undulator parameter
Kasync

und . The first term ξxa0 with a0 ∝ λ0 represents the
deflection induced by the transverse field component.
Electromagnetic rf [4], MIR [8], and THz [7] driven
undulators use this effect to wiggle the particle beam.
Since DLA structures use NIR wavelengths λ0 ∼ 2 μm
and typically kx ≫ kund the influence of the first term is
negligibly small compared to the second term ξza0kx=kund.
Identifying kx ¼ tan αkz and ξzE0 ¼ je1ðαÞj, the second
term reproduces the undulator parameter (8) in the relativistic
limit β ≈ 1. Hence, for the investigated DLA structures, the
simplifiedmodeling approach based on the scalar potentialV
provides reasonable results and, thus, can be a-posteriori
justified. Further analysis of (9) in Ref. [34] indicates that our
simulation code DLAtrack6D [17] based on the scalar potential
obtained by the Panofsky-Wenzel theorem [28] provides an
adequate tool to model the beam dynamics not only in
synchronous but also in asynchronous DLA structures

generally. Using DLAtrack6D, parameter studies for vari-
ous DLA undulator designs can be performed in a numeri-
cally efficient way, giving rise to simple brute-force
optimization.
Third, Eq, (12) shows that the initial phase offset φ

creates an initial deflection angle, i.e., a transverse drift
proportional to Kund=γ sinφ. The green dotted line in Fig. 5
shows how an offset Δx ¼ 0.1 μm for α ¼ 27° tilt angle,
equivalent to Δφ ¼ 10°, influences the transverse drift
angle. Furthermore, a second order effect, Oða0−2Þ, results
in the drift motion which is present in the analytical
solution (blue line) as well as in the numerical solution
(black line). Thus, for a finite bunch length, the asynchro-
nous DLA undulator introduces a transverse beam diver-
gence in the x̂ direction which fundamentally limits the
length of the undulator.

IV. ALTERNATING-PHASE FOCUSING

Due to the small aperture in the y-coordinate, external
beam optics elements cannot compensate for the laser
induced defocusing forces [19]. Consequently, an entirely
laser-based focusing scheme, such as APF [19,20], is
required as otherwise the electron beam widens and most
particles will be lost in the grating material. The following
discussion generalizes the APF scheme for a sinusoidal
wiggling reference trajectory.
A paraxial approximation of the Hamiltonian in comov-

ing coordinates [19] yields

Hðp; δr; tÞ ¼ 1

2γm

�
px

2 þ py
2 þ ps

2

γ2

�
þ VsðδrÞ; ð15Þ

with δrT ¼ ðδx; δy; δsÞ representing the distance to a
reference particle located at r0T ¼ ðx0; 0; s0 þ βct0Þ. The
synchronous DLA potential

VsðδrÞ≡ Vðδrþ r0; t0;φ0Þ þ qje1ðαÞj=kz
× ½kzðδsþ s0Þ þ kxðδxþ x0Þ� cos φs ð16Þ

implies by definition a fixed point of motion at δr ¼ 0
where −∇Vs ¼ 0. In the vicinity of r0, including terms
Oðδr2Þ, the synchronous DLA potential simplifies to

VsðδrÞ ≈
1

2
qje1ðαÞj

k0
β
sin φs

× ½ðδsþ tan α δxÞ2 − ðγ−2 þ tan α2Þδy2�; ð17Þ

which results in a coupled set of linear equations of
motion
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d2

dz2
δr ¼ −

k0
γ3β3

qje1ðαÞj
mc2

sinφs|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Kα

M̂α · δr

with M̂α ¼

0
B@

γ2 tan2α 0 γ2 tan α

0 −ð1þ γ2tan2αÞ 0

tan α 0 1

1
CA:

ð18Þ

In accordance with Ref. [19], at zero tilt angle α ¼ 0,
Eq. (18) decouples to Hill’s equations for a quadrupole lens
[35] aligned in y=s direction with focusing constant Kα¼0.
For a tilted grating with α ≠ 0, diagonalization of M̂α

provides analytical solutions for the beam dynamics. The
tilted grating acts as a thick defocusing quadrupole lens in
the y direction, which yields the general solution

δyðzÞ ¼ c1 cosh
ffiffiffiffi
K

p
zþ c2 sinh

ffiffiffiffi
K

p
z; ð19Þ

where tilt angle–dependent focusing constant is given by

KðαÞ ¼ Kαð1þ γ2 tan2 αÞ ð20Þ

and ci are constants to be determined from the initial
conditions.
Figure 6 shows a plot of the focusing constant of a

synchronous DLA undulator, inserting the results of
Fig. 1(a) into (20). The maximum at α ≈ 27° tilt angle
originates from a compromise between increasing tan α
and decreasing je1ðαÞj. The electron trajectory in the
x-=s-direction

δxðzÞ ¼ −ðc3 þ c4zÞ cot α
þ γ2 tan αðc5 cos

ffiffiffiffi
K

p
zþ c6 sin

ffiffiffiffi
K

p
zÞ; ð21Þ

δsðzÞ ¼ c3 þ c4zþ c5 cos
ffiffiffiffi
K

p
zþ c6 sin

ffiffiffiffi
K

p
z ð22Þ

is the superposition of a uniform drift motion and the particle
dynamics in a focusing quadrupole lens. The drift direction
δx=δs ¼ − cotα coincides with the translation symmetry

axis of the gratingwhich is perpendicular to kg. Equivalent to
a translation motion along the x direction in a nontilted
grating, an electron drifting perpendicularly to kg in a tilted
grating acquires zero phase advance δφ ¼ kzδsþ kxδx ¼ 0
and its relativemomentump remains constant. Regarding the
quadrupole-like terms, a longitudinal motion δs translates
directly to a transverse motion δx ¼ γ2 tan α δs.
The synchronous DLA undulator lattice shown in Fig. 3

forms a sequence of focusing and defocusing sections
effectively acting like a FODO channel. Each drift section
of length lO ¼ λz=2 shifts the synchronous phase by
Δφs ¼ π which alternates the sign of the focusing constant
�KðαÞ. Hence, the undulator wavelength λund determines
the length of the de-/focusing sections as lD=F ¼ λund=
2 − lO. An eigenvector analysis T̂η ¼ η for the FODO
transport matrices T̂ provides the Courant-Snyder param-
eters ηT ¼ ðβ̂; α̂; γ̂Þ [36] of the electron beam matched into
the DLA undulator lattice. Optimizing lD=F with respect to

the beam size σ ¼
ffiffiffiffiffi
εβ̂

q
as discussed in Ref. [19] yields the

undulator wavelength λund for which the maximum of the
betafunction β̂max ¼ max ½β̂ðzÞ� is at its minimum value.
Figure 7 shows the minimum β̂max of a matched electron

beam for E0 ¼ 10 GV=m laser field strength. The smallest
achievable value β̂max ¼ 826 μm appears for the maximum
focusing constant at α ¼ 27° and φs ¼ π=2. However,
according to (6), the undulator parameter Ksync

und vanishes at
φs ¼ π=2. Conversely, the maximum undulator parameter
Ksync

und at φs ∈ f0; πg implies zero focusing KðαÞ ¼ 0 which
iswhy β̂max diverges. Consequently, the efficient operation of
the synchronous DLA undulator requires a compromise
between focusing and deflection strength, which is set via
φs by the injection properties [cf. (7)]. For β̂max ≈ 1 mm
indicated with the red dashed line in Fig. 7, the optimal
FODO lattice cell length yields λund ∼ 0.6 mm.
An asynchronous DLA undulator effectively functions

like a spatial harmonic focusing device as discussed in

FIG. 6. Tilt angle–dependent quadrupole focusing of a syn-
chronous DLA undulator at maximum KðαÞ for φs ¼ π=2 and
E0 ¼ 10 GV=m field amplitude with an optimum at α ≈ 27°.

FIG. 7. Maximum of the betafunction β̂max for a matched beam
in a synchronous DLA undulator with E0 ¼ 10 GV=m laser field
strength at optimum FODO cell length. The absolute minimum of
β̂max at φs ¼ π=2 implies Ksync

und ¼ 0.
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Ref. [18]. The phase drift φs ¼ kundz creates a continuously
varying focusing function Kðα; zÞ ¼ K0 cos ðkundzÞ with
K0 ≡ KðαÞjφs¼π=2. This results basically in the equation of
motion for ponderomotive focusing of Ref. [34]. The
efficiency of spatial harmonic focusing in DLA structures
typically suffers from sharing the available laser power
between the phase synchronous acceleration field and the
phase asynchronous focusing field [18]. However, for the
application in an undulator, this drawback vanishes since
the asynchronous field provides both beam wiggling and
focusing. The total transport matrix T̂ of an asynchronous
DLA undulator is basically a matrix product of multiple
single DLA cell transport matrices with Δφs ¼ 2πλz=λund
phase shifts in between. Thus, a numerical evaluation of T̂
facilitates the same eigenvector analysis for η as used for
the synchronous design.
Figure 8 shows the minimum of β̂max for the asynchro-

nous DLA undulator. The absolute minimum of β̂max is
952 μm and appears for α ¼ 27° at λund ≈ 0.55 mm. In
contrast to the synchronous design, the asynchronous
undulator parameterKasync

und ≈ 0.3 is nonzero for all injection
phases. As in Ref. [19], the betafunction diverges if
λund → 0 and it also diverges for an undulator wavelength
λund ≳ 0.8 mm when the FODO lattice reaches its over-
focusing stability limit. Hence, the practical working range
of the asynchronous DLA undulator, indicated by the red
dashed line, restricts the achievable undulator wavelength
to 0.45 mm ≤ λund ≤ 0.64 mm.
In order to compare the two lattice design strategies,

Fig. 9 shows the optimum β̂max for α ¼ 27° tilt angle at the
corresponding radiation wavelength [30]

λrad ¼
λund
2γ2

�
1þ Kund

2

2

�
ð23Þ

and the peak power in the central radiation cone [37]

P̂rad ≈
qπ
ε0

γ2I
λund

Kund
2

1þ Kund
2
; ð24Þ

which depends on the maximum beam current I. Note that
the bandwidth Δλrad=λrad ∝ N−1

und scales inversely to the
number of undulator periods Nund such that the power
emitted in the central radiation cone, by definition, does not
depend on the total length of the undulator. ARES provides
Q ¼ 0.5 pC Gaussian electron bunches with σt ¼ 0.75 fs
pulse duration at 50-Hz repetition rate [22]. Each single
electron bunch reaches a peak beam current of
I ¼ Q=2σt ≈ 333 A. Hence, the values reported in Fig. 9
for P̂rad correspond to the peak radiation power output of
one single electron bunch. Varying λund for the asynchro-
nous DLA undulator directly affects the FODO lengths
lD=F. However, the amplitude of the focusing function

K ¼ K0 remains fixed. Hence, the optimum β̂maxðλradÞ
approaches a local minimum at λrad ≈ 6.5 nm and starts
diverging outside the interval 2 nm≲ λrad ≲ 10 nm.
Varying λund for the synchronous DLA undulator requires
adjustment of the synchronous phase φs in a way thatffiffiffiffi
K

p
∝

ffiffiffiffiffiffiffiffiffiffiffiffi
sinφs

p
∝ 1=λund yields a constant betatron phase

advance θ≡ ffiffiffiffi
K

p
lD=F, which facilitates keeping the beta-

function β̂max ∝ 1ffiffiffi
K

p at its minimum, until K reaches its

upper limit max ½KðαÞ�. Thus, a smaller radiation wave-
length λrad yields a smaller β̂max. For equal peak radiation
power, the optimum β̂max of the asynchronous design is
slightly smaller than for the synchronous undulator.
However, the synchronous design allows trading off peak
radiation power for a smaller value of β̂max.
Table I shows the specifications and performance

parameters of both optimized DLA undulator designs for
the ARES accelerator injection parameters. The synchro-
nous DLA undulator yields the same peak power as the
asynchronous design if both undulator parameters (6) and
(8) are equal which is the case for φs ≈ 38° synchronous
phase. The damage threshold fluence 1.85 J=cm2 for a

FIG. 8. Maximum β̂max for a matched beam in an asynchronous
DLA undulator with E0 ¼ 10 GV=m laser field strength at
optimum FODO cell length. In comparison to the synchronous
design the minimum of β̂max at λund ≈ 0.55 mm is larger, but the
undulator parameter Kasync

und does not vanish.

FIG. 9. Comparison of the optimum β̂max for α ¼ 27°, the
radiation wavelength, and the radiation peak power for both the
synchronous and the asynchronous DLA undulator design at
E0 ¼ 10 GV=m drive-laser field amplitude.
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silica grating [38] limits the maximum field strength to
E0 ∼ 10 GV=m and necessitates to utilize ultrashort laser
pulses with τ ∼ 100 fs pulse duration. Reducing the peak
field to E0 ¼ 1 GV=m relaxes the short pulse requirement
to τ ∼ 10 ps at the cost of weaker focusing and smaller
Kund. Even though the damage threshold restricts the drive-
laser power, pulse front tilted laser beams [39] offer an
elegant solution to maximize the interaction length without
increasing the pulse duration τ. In exactly the same way,
tilted pulse front lasers enhance the energy gain in accel-
erating grating structures [40] and the technique can be
applied for DLA undulators as well.
For both designs, the performance critically depends on

the maximum achievable focusing constant KðαÞ. The
ARES electron beam specified with εy ¼ 1 nm geometric
emittance reaches for E0 ∼ 10 GV=m, a beam size of
σy ≈ 1 μm inside the DLA structure. Thus, non-negligible
particle losses in the dielectric material of the beam channel
with Δy ¼ 1.2 μm gap width will occur. In order to prevent
charging effects and structural damage to the DLA grating,
it might become necessary to collimate the ARES beam.
On the other hand, experimental results reported in
Ref. [41] indicate that silica DLA structures tolerate quite
a lot of electron beam loss. At E0 ∼ 1 GV=m, the expected
beam size is about twice as large as the aperture.
Consequently, maximizing the laser field strength E0 in
order to minimize the β̂-function is crucial. The achievable
photon wavelength covers a spectral range from XUV to
soft x-ray radiation. For E0 ∼ 10 GV=m, the DLA undu-
lator light source reaches up to P̂rad ∼ 100W peak power,
converting to Erad ∼ 0.1 pJ photon pulse energy per 0.5 pC,
0.75 fs electron bunch.

V. PARTICLE TRACKING SIMULATIONS

Limited by the laser damage threshold of silica, we
assume 10 GV=m field strength for a sufficiently short,
pulse front tilted drive-laser illumination. With a total
length of z ¼ 1.25 cm, the dimensions of the simulated
DLA undulator lattice are similar to the typical size
of commercially available transmission spectrometer

gratings [29]. In order to determine the Courant-Snyder
parameters η of the injected electron distribution, the
numerical studies initially consider a Gaussian phase space
distribution with an idealized, hypothetical emittance of
εy ¼ 25 pm and εx ¼ εz ¼ 0 represented by Np ¼ 105

macroparticles. Based on the matched parameters η, a
subsequent, fully numeric simulation study provides the
beam dynamics of the experimental setup for the ARES
electron beam with εx ¼ εy ¼ 1 nm transverse emittance
and σt ¼ 0.75 fs bunch length. Because the electrons have
relativistic energy and the complete DLA undulator grating
is not longer than two FEL gain lengths, the particle
dynamics simulation neglects the small influence of space
charge interaction, microbunching, and SASE effects.
Wakefield effects are not considered either. However, they
might become relevant at the nominal bunch charge. A study
of wakefields in DLAs at mildly relativistic energy [42]
indicates that the ARES bunch charge comes close to the
limit. So far, the study presented here considers an indepen-
dent particle dynamics model. Upon the observation of
wakefield effects at ARES, more detailed studies would
obviously be in order.
First, we employ the semianalytical particle tracking

code DLAtrack6D [17] which provides a fast opportunity to
investigate and optimize the nonlinear beam dynamics inside
the DLA undulator lattice. Figure 10(a) compares the
reference trajectory for three different setups of a synchro-
nous DLA undulator lattice as shown in Fig. 3. According to
(6) and (18), the transverse deflection Kund and the focusing
strength Kα of the undulator lattice depend on the synchro-
nous phase φs and the undulator period λund. Figure 10(b)
shows the corresponding beam size σy for the reference
electron distribution with εy ¼ 25 pm emittance. The par-
ticle trajectory for λund ¼ 491 μm and φs ¼ 90° (orange)
corresponds to a purely focusing setup without transverse
deflection. As visible in the strictly periodic σy envelope
function, a perfectly matched injection was attained.
The simulation results for λund ¼ 546 μm and λund ¼

274 μm demonstrate that for the synchronous phase
φs ¼ 38.2° (cf. Table I), the DLA lattice provides both

TABLE I. Specifications of both DLA undulator designs for the DESY-ARES accelerator. The damage threshold
of the silica grating limits the drive-laser amplitude to E0 ¼ 10 GV=m. The values at E0 ¼ 1 GV=m serve for
comparison.

Laser field strength E0
10 GV=m 1 GV=m

Operation mode Asynchronous Synchronous Asynchronous Synchronous

Undulator wavelength λund (mm) 0.55 0.55 1.20 1.20
Undulator parameter Kund 0.30 0.30 0.07 0.07
Radiation wavelength λrad (nm) 6.49 6.49 13.63 13.63
Radiation peak power P̂rad (W) 121 121 3 3
Optimum betafunction β̂max (mm) 0.95 1.07 3.44 4.13
Beam size (rms) σy ðμmÞ 0.98 1.04 1.85 2.03
Synchronous phase φs (deg) · · · 38.2 · · · 38.2
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deflections in Fig. 10(a) and periodic focusing. According
to (7), the transverse deflection in the x direction affects φs
which, if not compensated, results in a drifting synchronous
phase. The investigation of the dynamics in tilted gratings
in Ref. [17] shows that a deflection induced phase drift
converts to a coherent oscillation in the x direction as well.
However, the longitudinal period λu in Ref. [17] is larger
than the undulator period λund. Appropriate adjustment
of the drift spaces allows to mitigate the phase drift
which the transverse deflection along the x axis induces
in (7). Numerical optimization of the DLA lattice design
yields a consecutive alternation of the drift space lengths by
δλz≈þ9%=−7% for λund¼546 μm and δλz ≈þ2%= − 2%
for λund ¼ 274 μm. Nevertheless, a constant drift motion in
the x direction, as visible for the larger undulator period
λund ¼ 546 μm, remains. Moreover, a slight mismatch
caused by the nonlinear field distribution of the DLA
structure overlays the strictly periodic envelope oscillation
of the beam size σy with periodicity λund in Fig. 10(b).
The investigation of the Courant-Snyder parameters for
the DLA cell shown in Fig. 2 with α ¼ 27° results in an
optimum FODO segment length corresponding to
λund ¼ 546 μm. The beam size in the λund ¼ 274 μm
DLA undulator is larger because the periodicity deviates
from the optimized FODO segment length. A Fourier
analysis of the reference trajectory yields the spectral
components of the transverse particle deflection x0ðzÞ.
Figure 11 shows the numerical results for the effective

undulator parameter Kund of the contributing oscillation
wavelengths λund. In very good agreement with (6), the

fundamental harmonic oscillation in the DLA lattice
design for λund ¼ 546 μm corresponds to an effective
undulator parameter of Kund ≈ 0.29. Furthermore, at λund ∈
f182 nm; 109 nm;…g the spectrum shows contributions
of uneven higher harmonics which are typical for the
synchronous undulator setup. According to (6), the undu-
lator parameter scales linearly with the undulator wave-
length such that λund ¼ 274 μm results in Kund ≈ 0.14.
Figure 12 shows that the phase space ellipses of the three

different setups can be obtained from Poincaré cross
sections (after each FODO period λund) of the phase space
coordinates ðy; y0Þ for a particle with εy ¼ 25 pm single-
particle emittance. The solid lines are obtained from fitting
the points to an ellipse, which shows that the single particle
emittance, as a Courant-Snyder invariant, is preserved.
Moreover, matching at injection is at least approximately
confirmed. As expected by design, the purely focusing
DLA lattice with λund ¼ 491 μm and φs ¼ 90° provides
the smallest transverse beam size. Furthermore, the
numerically computed maxima of the betatron function
β̂max ¼ 1.1 mm for λund ¼ 546 μm and β̂max ¼ 1.7 mm for
λund ¼ 274 μm fit very well to the predictions of the
linearized focusing model (18).

(a)

(b)

FIG. 10. DLAtrack6D simulations of the reference trajectory in
(a) and transverse rms size in (b) of an electron beam with εy ¼
25 pm and εx ¼ εz ¼ 0 emittance for three different setups of the
synchronous DLA undulator lattice. The setup for φs ¼ 90°
synchronous phase with λund ¼ 491 μm provides maximum
focusing but no transverse deflection. The other setups compare
the beam dynamics for φs ¼ 38.2° in two lattice designs with
different undulator wavelengths λund.

FIG. 11. Fourier analysis of the reference trajectory x0ðzÞ in
order to determine the contributing oscillation wavelengths λund
and the effective undulator parameter Kund for the synchronous
DLA undulator lattices.

FIG. 12. Poincaré plots for the three synchronous DLA
undulator lattices based on the phase space coordinates ðy; y0Þ
of particles with εy ¼ 25 pm single-particle emittance evaluated
after each FODO period λund.
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Figure 13 shows DLAtrack6D simulations of the asynchro-
nous DLA undulator lattice. According to (12), electrons
injected into the asynchronous DLA undulator at the laser
phase of maximum focusing, φs ¼ 90°, acquire a transverse
momentum offset in the x direction. However, simulations
show that a linear ramp-up of the laser field amplitude
across one undulator period, λund as shown in Fig. 13(c),
allows to mitigate the resulting drift motion. The intensity
distribution of the drive-laser pulse in a practical DLA
experiment automatically introduces a reduction of field
strength at the entrance and exit of the DLA undulator. In
the numerical model, we simplified the ramp-up as linear.
However, the model can easily be extended to a more
realistic, e.g., Gaussian, shape. Regarding the deflection
and focusing properties, the simulation results are to be
interpreted in the same way as the aforementioned syn-
chronous DLA setup. Evaluation of the numerical simu-
lation data for λund ¼ 546 μm yields Kund ≈ 0.28 and
β̂max ≈ 1 mm and, thereby, reproduces the deflection and
focusing properties listed in Table I.
In order to validate the results of the semianalytic

DLAtrack6D model for the asynchronous setup, Fig. 13
additionally shows simulation results of the fully numeric
particle tracking code ASTRA [43]. The ASTRA simulation

uses a time-dependent representation of the laser field
distribution inside the beam channel of the DLA lattice
(see Appendix C describing the concatenation of single cell
fields for the entire structure). Sincemodeling the ramp-up of
the field strength would extend the computational domain to
the memory limit of ASTRA, the tracking simulation starts
in the fully periodic region of the DLA lattice for z > λund.
The initial particle distribution is obtained from a DLAtrack6D

simulation of the ramp-up section. The detuning required for
the asynchronous undulator was chosen according to (13) as
δλ0 ≈ 7.3 nm for λund ¼ 546 μm and δλ0 ≈ 14.5 nm for
λund ¼ 274 μm. The electromagnetic field model uses the
same grating structure in both cases and the frequencies
f0 ¼ 150.45 and 150.99 THz, respectively. Comparing the
ASTRA and DLAtrack6D simulation approaches in Fig. 13
shows that the undulator wavelength, the oscillation ampli-
tude, and thebeamwidth agreeverywell.Hence,we consider
designing both synchronous and asynchronous lattices with
DLAtrack6D as legitimate, while a cross-check with a much
slower full field simulation tool should be reserved for a
finalized design.
With the current ARES beam parameters, losses in the

beam transport through the investigated DLA undulator
lattice are unavoidable. Limited by the focusing strength of
the DLA lattice in the y direction, roughly 50% of the initial
particle bunch is lost during the injection. Because the
spatial extent of the beam is not negligibly small compared
to the characteristic dimensions 2π=kx and 2π=kz of the
DLA cells, it is impracticable to match the entire electron
bunch to the optics functions of the DLA FODO lattice and
there is a dynamical aperture that is smaller than the
physical aperture.
Figure 14 shows the transverse momentum x0 vs φ

(cf. (14)) distribution in the center and the end of the DLA
undulator. Since the phase depends not only on time but
also on the transverse displacement of individual particles,
the particle distribution spans more than just one optical
period. The dynamical evolution of each particle described
by (12) depends crucially on the initial parameters x0 and
ct0. Thus, the oscillations of a non-microbunched beam are
incoherent and the generated radiation is subsequently also
incoherent. In order to obtain coherence, microbunching
prior to injection is required.
The electron distribution at the rear end of the asyn-

chronous DLA undulator in Fig. 14(b) provides approxi-
mately 17% transmission with the ARES beam injection. In
addition to the injection itself, most of the particle losses
occur within the first couple undulator wavelengths
z≲ 2λund. Doubling the total length in the DLAtrack6D

simulation to L ≈ 2.5 cm still provides 17% and for
L ≈ 6 cm approximately 16.5% of the injected electrons
remain. Hence, the scalability of the confinement, within its
limitations of the dynamic aperture, is confirmed.
Figures 15 and 16 compare (a) DLAtrack6D and (b) ASTRA

simulation results for the transverse phase spaces x-x0 and

(a)

(b)

(c)

FIG. 13. DLAtrack6D simulations of the reference trajectory in
(a) and transverse rms. size in (b) of an electron beam with εy ¼
25 pm and εx ¼ εz ¼ 0 emittance for two operation modes of the
asynchronous DLA undulator with linear laser field ramp-up
shown in (c). The ASTRA [43] simulations show the results of a
fully numeric, time-dependent beam dynamics model calculated
with particle tracking in a 3D field map of the DLA cell from CST

STUDIO [27].
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y-y0 at z ≈ 9.3 mm. The laser field interaction imprints the
transverse grating periodicity with λx ¼ 2 μm= tan 27° ≈
3.9 μm on the electron beam’s x-x0 phase space distribution
in Fig. 15. For the transverse y-y0 coordinates in Fig. 16, the
focusing properties of the DLA lattice maintain a spatially
confined beam.
While the results with regard to phase space shape are

very similar, the ASTRA simulation reaches only an 8.3%
transmission rate as compared to 17% in DLAtrack6D. This
discrepancy is related to edge field effects at the transverse
boundaries of the beam channel jyj → 0.6 μm which are

not considered in the DLAtrack6D model (the DLAtrack6D

model assumes a cosh-shaped transverse profile, which is
inaccurate close to the channel boundary). Furthermore, the
ASTRA simulation in Fig. 15(b) predicts a larger beam
divergence in the x direction than DLAtrack6D in Fig. 15(a).
This indicates that the investigated DLA lattice design
cannot completely compensate for the transverse particle
drift motion (12) which the laser field imposes on the
particles during the injection. Since a mismatched beam
injection can induce both particle losses and transverse drift
motion, a fully numeric tracking optimization of the lattice
design and injection properties might mitigate these dis-
crepancies. In an experiment, the injection parameters are
usually tweaked manually for best performance.

VI. CONCLUSION

In summary, this study considers two different concepts
of laser driven undulator designs based on either synchro-
nous or asynchronous tilted-grating APF-DLA lattices.
The theoretical investigation of the beam dynamics in such
structures contributes to a collection of basic design
guidelines for experimental setups, which can be imple-
mented, for example, at the DESY-ARES accelerator. First,
a wave-optical simulation of the silica grating allows
optimizing the DLA cell geometry for maximum inter-
action between the electron beam and the drive-laser field.
Second, the analytical analysis of the beam dynamics yields
approximate formulas for the undulator parameter and the
focusing strength. Application of these formulas shows that
the DLA undulator can be operated as an APF focusing
channel. Third, the focusing properties of the DLA undu-
lator impose direct restrictions on the achievable undulator
wavelength. For the parameters considered in this study, the

FIG. 15. Comparison of horizontal phase space from DLA-

track6D and ASTRA at z ≈ 9.3 mm in the asynchronous DLA
undulator lattice for λund ¼ 546 μm.

FIG. 16. Comparison of vertical phase space from DLAtrack6D
and ASTRA at z ≈ 9.3 mm in the asynchronous DLA undulator
lattice for λund ¼ 546 μm.

FIG. 14. DLAtrack6D simulation of the λund ¼ 546 μm asyn-
chronous DLA undulator with realistic ARES injection param-
eters. The plots show the transverse momentum vs the relative
phase [cf. (14)] at two different z positions.
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optimization of the beam focusing yields an undulator
wavelength of approximately λund ¼ 0.6 mm which will
generate XUVand soft x-ray photons. Fourth, semianalytical
DLAtrack6D simulations and fully numeric particle tracking,
e.g., with ASTRA facilitate to match the Courant-Snyder
parameters of the injected electron bunch to the beam optics
functions of the DLA lattice. Beam dynamics simulations
are a crucial step in the design process since mismatched
Courant-Snyder parameters would result in excessive par-
ticle losses. Last but not least, a comparison of both
synchronous and asynchronous undulator concepts reveals
the advantages and drawbacks of the two approaches. The
asynchronous DLA undulator is very promising since its
experimental setup is comparably simple and can be imple-
mented by bonding two commercially available diffraction
gratings together. Synchronous DLA undulators require a
dedicated grating structure design and fabrication but offer
more design options to optimize the beamdynamics. In order
to obtain coherent radiation output, the beam has to be
bunched on the optical scale, such that it undulates coher-
ently. Moreover, its transverse size (or better transverse
emittance) needs to be sufficiently small to fit in one of
the “transverse buckets.” Suchmatching is possible at ARES
when the accelerator reaches its full performance [44]. With
the larger bunch, as considered here, the electrons will not
oscillate with a proper phase relation, and therefore, inco-
herent radiation is obtained. Detecting this radiation and
characterizing its spectral properties is, however, already an
experimental challenge worthy of addressing.
Although the predicted power output is miniscule, the

simple design of an asynchronous DLA undulator lattice
qualifies it as a promising concept for a demonstration
experiment at ARES. A setup based on two commercially
available silica diffraction gratings like in Ref. [29] allows
conducting a comparably simple radiation generation
experiment. However, the size limitation of the beam
channel and the laser induced beam divergence will result
in significant electron losses inside and behind the DLA
structure. Utilizing a λ0 ¼ 5 μm MIR drive-laser, currently
developed at DESY-ARES, rather than the current 2 μm
one offers one possibility to lift design restrictions. Due to
the scale invariance of Maxwell’s equations, the relative
electron beam size in the gap of the DLA undulator
decreases like σy=Δy ∝ λ0

−3=4 which reduces the particle
losses in the structure. Likewise, the radiation wavelength
increases like λrad ∝ λ0

1=2. However, such setups require
different grating materials since silica loses its transparency
for MIR wavelengths. Another approach for DLA experi-
ments considers the injection of preconditioned electron
beams in the form of microbunch trains [44]. Utilizing
tailored electron beams for DLA undulators is a promising
concept because both the particle transmission rate and the
spectral coherence of the x-ray emission potentially profit.
Considering the impact on large scale x-ray light sources, it
is rather unlikely that tilted DLA gratings will become a

replacement for conventional magnetic undulators. For
instance, the E-XFEL utilizes a Q ¼ 1 nC bunch charge,
εnx ¼ 1.4 mmmrad normalized emittance electron beam
in order to generate P̂rad ∼ 100 GW peak radiation power
with ultralarge brilliance [2]. Hence, the particle beam
properties deviate significantly from the working range of
the investigated DLA structures. However, small scale
DLA setups open new research prospects. Especially the
combination of DLA undulators with DLA electron accele-
rators is a promising concept since a complete light source
could be integrated on a very small, i.e., tabletop, scale.
A DLA-based light source might also include an optical
DLA buncher upstream of the DLA undulator imposing a
microbunch structure [16] on the electron beam in order to
obtain superradiance. Moreover, the intrinsic synchroniza-
tion with the drive laser offers the opportunity for pump-
probe experiments of various kinds.
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APPENDIX A: ELECTROMAGNETIC FIELD
MODEL FOR A TILTED DLA GRATING

The following section contains supplementary informa-
tion regarding an ansatz for the scaled vector potential in an
asynchronous DLA undulator. The geometry and symmetry
of the DLA grating structure motivate the analytical form of
the vector potential ansatz (10) in Sec. III.
Considering the special case of a nontilted grating with

α ¼ 0, the wave vector of the electromagnetic field dis-
tribution in the DLA beam channel is perpendicular to the x
direction k⊥x̂. Since the DLA grating geometry remains
invariant for a mirror reflection in the y − z plane [18], the
electromagnetic field decomposes into TE ðEy; Ez; BxÞ and
TM ðBy; Bz; ExÞ polarized modes [ [45], pp. 37–39] which
each fulfill Maxwell’s equations. Hence, a reasonable
ansatz for a fundamental spatial harmonic of the vector
potential Aαðx; y; z; ctÞ in a nontilted DLA structure with
grating wave number kg and α ¼ 0 is

A0ðx;y;z;ctÞ ¼

0
BB@

ATM cosh ðkyyÞ sin ðkgz− k0ctÞ
− kg

ky
ATE sinh ðkyyÞcos ðkgz− k0ctÞ

ATE cosh ðkyyÞ sin ðkgz− k0ctÞ

1
CCA;

ðA1Þ

with the corresponding mode amplitudes ATE and ATM.
Note that the ansatz represents a y-symmetric field
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distribution which is periodic in the longitudinal z direction
and decays exponentially toward the center of the beam
channel at y ¼ 0.
A rotation R̂ŷðαÞ around the y axis transforms the

vector potential A0ðx; y; z; ctÞ into the coordinate system
ðx̃; ỹ; z̃; ctÞ of an electron beam propagating at a tilt angle α
with respect to the z axis of the nontilted grating. For the
corresponding mode amplitudes in the new coordinates, the
rotation R̂ŷðαÞ yields

0
B@

Ax̃

Aỹ

Az̃

1
CA ¼

0
B@

ATM cos αþ ATE sin α

− kg
ky
ATE

ATE cos α − ATM sin α

1
CA ðA2Þ

and, thereby, defines the polarization vector ξ in (10). Note
that the components of ξ are not fully independent since Aα

is a superposition of the TE and TMmodes of the dielectric
grating. Applying the identity kz̃ ¼ kg cos α, the trans-
formation of the spatial coordinates reproduces the relation
between the transverse and longitudinal grating wave
numbers kx̃ ¼ kz̃ tan α from Ref. [17]. Finally, conversion
of the laser field strength E0 to the corresponding vector
potential amplitude E0

k0c
and scaling Aα by q

mc yields the
scaled vector potential ansatz (10).

APPENDIX B: PERTURBATION THEORY
APPLIED TO THE EQUATIONS OF MOTION

IN AN ASYNCHRONOUS DLA

This section addresses a perturbation theory model for
the beam dynamics in an asynchronous DLA undulator. In
order to provide a reasonable approximation, the analytical
model requires a relativistic electron beam and a reasonably
small vector potential amplitude a0 → 0. In that case, the
perturbation approach results in the approximation for the
particle trajectories discussed in Sec. III.
Using the ansatz (10) in (12), Hamilton’s equations

d
dz

0
BBBBBBBBB@

x

y

ct

px

py

−γ

1
CCCCCCCCCA

¼

0
BBBBBBBBB@

∂H=∂px

∂H=∂py

∂H=∂γ

−∂H=∂x

−∂H=∂y

−∂H=∂ct

1
CCCCCCCCCA

ðB1Þ

for the canonical coordinates xðzÞ, yðzÞ, ctðzÞ, pxðzÞ,
pyðzÞ, and −γðzÞ as functions of the independent variable
z yield a system of six coupled nonlinear first order
ordinary differential equations (ODEs). Considering a
relativistic electron beam with γ ≫ 1, a series approxima-
tion for the right-hand side of (B1), including terms
Oð1=γ2Þ, allows simplifying the ODEs to

d
dz

� x

..

.

�
≈

0
B@

px−ξxa0 cosh ðkyyÞ sin ðkxxþkzz−k0ctÞ
γ

..

.

1
CA: ðB2Þ

For the DLA undulator discussed in Sec. III, the
amplitude (11) of the scaled vector potential is small
a0 ≪ 1. Hence, the solutions of (B2) can be approximated
considering the laser field interaction as a perturbation of
the electron trajectory. If the laser is switched off, a0 ¼ 0,
the unperturbed electron follows the trajectory of a free
particle x0ðzÞ. In order to approximate the solution for
a0 > 0, the straightforward perturbation method [ [46],
pp. 355–359] substitutes

a0 → ϵ ðB3Þ

xðzÞ → x0ðzÞ þ ϵx1ðzÞ þ ϵ2x2ðzÞ ðB4Þ

yðzÞ → y0ðzÞ þ ϵy1ðzÞ þ ϵ2y2ðzÞ ðB5Þ

..

. ðB6Þ

in (B2) and sorts the resulting terms by increasing powers
in ϵ. Incremental computation of the perturbation terms
x1ðzÞ, x2ðzÞ, etc., by reinserting the results of each previous
calculation step in (B2) provides the beam dynamics
corrections for laser field interaction. The procedure has
been implemented in Mathematica [47] which yields the
approximation (12) if all terms up to Oðϵ2Þ are taken into
account.
In most accelerator designs the relative energy gain of

the particles qE0

mc2 per accelerating field wavelength 2π=k0 is
comparably small. Thus, the fundamental assumption of
the perturbation approach a0 ≪ 1 does not specifically
apply to DLA undulators but is also valid in the more
general context of electromagnetic undulators like, e.g.,
radio-frequency wigglers as discussed in Ref. [33].
However, the approximation (12) fails in escribing the
beam dynamics of a synchronous DLA undulator. If the
synchronicity condition (1) is fulfilled, the undulator wave
number (13) vanishes and, therefore, the oscillation ampli-
tude in (12) diverges. The perturbation approach assuming
small corrections x1ðzÞ, etc., is not valid anymore.
However, the semianalytical tracking approach for syn-
chronous DLA structures in DLAtrack6D [17] provides a
suitable workaround to compensate for the weakness of the
perturbation theory model for kund → 0.

APPENDIX C: CONSTRUCTION OF 3D FIELD
MAPS FOR THE ASTRA SIMULATIONS

The fully numeric particle tracking simulation Astra [43]
uses 3D field maps of the drive-laser distribution in the beam
channel of the DLA undulator lattice. An electromagnetic
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field simulation in CST STUDIO [27] provides the complex
field amplitudes for the time-harmonic laser field on a
hexahedralmesh in the computational domain. Thenumerical
model applies a magnetic boundary condition Bx ¼ Bz ¼ 0
in the symmetry plane of the DLA cell at y ¼ 0 in order to
reduce the computational effort and ensure a mirror-
symmetric field distribution.
A postprocessing step in MATLAB [48] transforms the

output of CST STUDIO to the input file format for 3D cavity
field maps in ASTRA. First, mirroring the numerical
simulation results at the y ¼ 0 boundary extends the field
map to the upper half-space and provides the unit cell of the
DLA grating. Figure 17 shows the electromagnetic field in
one unit cell of a tilted silica grating. Second, a periodic
repetition in the x direction extends the DLA unit cell to
several transverse periods of the DLA lattice. This step is
cumbersome but necessary, because ASTRA does not
provide a periodic repetition of cavity field maps in the
transverse direction. However, periodic repetition in the
longitudinal z direction is possible, such that ASTRA can
model the complete asynchronous DLA undulator with
upwards of 6000 silica grating periods in a single tracking
simulation. The laser distribution of the DLA undulator
lattice enters the ASTRA tracking simulation in the form of
time-dependent accelerator cavity field maps.
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