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We report on the effects of transverse spatial misalignment on the performance and stability of x-ray free
electron laser oscillators (XFELOs). For this study, we adopt the FEL driven paraxial resonator model in
which the transverse profile of the radiation field is represented by Gauss-Hermite mode expansion.
Then, we apply Gaussian optics for transporting the radiation field along with the misalignment in the
optical cavity. We divide the misalignment into relevant categories of static and periodic types to
understand their effects on FEL gain, lasing, and saturation. After that, we associate the first order moments
of the radiation field to that of driven simple harmonic oscillator models to identify regions of instability.
Throughout this report, we validate our models and analyses via theoretical calculations, analytical
approximations, and simulations.
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I. INTRODUCTION

Recent advances for transporting coherent hard x rays
with near perfect efficiency by means of Bragg crystals [1]
and compound refractive lenses [2] have prompted signifi-
cant activities in the research and development of x-ray free
electron laser oscillators (XFELOs) [3–5]. An XFELO
consists of an electron beam and an undulator as the
amplifying (low gain) medium and an optical cavity
containing Bragg crystals and compound refractive lenses
as optical elements for circulating x-ray pulses for
repetitive amplification [6,7]. A schematic layout of an
XFELO is shown in Fig. 1.O represents the waist location
of both electron and radiation beams. S is the undulator
entrance point, and P is the exit point. The FEL radiation
strikes the first optical element surface Q; it is succes-
sively guided by other cavity elements to the last optical
element R, which directs the radiation beam to interact
with a fresh electron beam in the undulator (SP) for
further amplification. The FEL gain continues until
saturation is reached in many turns.
XFELOs offer intense, stable, and coherent pulses with

unprecedented spectral resolution, thereby bringing atomic
laser properties to the x-ray regime [8,9]. XFELOs would

benefit measurements of wide range of systems with
increased accuracy (extending down to the micro eV
range), improved signal counts, reduced sample damage,
and reduction of exposure time of samples under study.
This would enable efficient experimental studies in wide
range of fields, from physics to applications in medicine,
such as rare earth core materials, strongly correlated states
in high temperature superconductors, atomic dynamics
in disordered materials, hemoglobin mobility, and
mesoscopic and artificially structured materials, and bio-
molecules [10,11]. Nevertheless, we are still limited in
understanding the technical requirements of a realiz-
able XFELO.
Unlike x-ray regenerative amplifier FEL [12] and similar

high-gain systems, the stable operation of an XFELO relies
on the quality and precise spatial and temporal alignments
of both electron beams and optical cavity. Even though a
complete requirement of an operable XFELO is difficult to
ascertain in few numerical and/or simulation case studies,
one can always determine specifications for cases where
one or only a few phenomena dominate XFELO output and
stability. For example, in the ideal scenario of perfect
quality e-beams, an ideal undulator, and a cavity with ideal,
defect-free optical elements, the stable operation of the
XFELO depends on the misalignments in the cavity. In this
case, we can simply model the relevant x-ray FEL physics
and cavity (resonator) properties as well as the misalign-
ments to predict the effects of misalignments on XFELO
operation.
Although several FEL codes can model and simulate

FELs, most like GENESIS [13] are not written with
XFELO applications in mind. In addition, GENESIS
discretizes the transverse profile of the radiation field on
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a Cartesian grid with uniform spacing resulting in the
simulation run times to vary based on the desired resolution
[13]. Since time-dependent FEL simulations are CPU
expensive, the extension of codes like GENESIS for
XFELO studies will be computationally expensive. While
some codes such as GINGER [14] can simulate ideal
XFELOs with Bragg crystals, conducting simulation stud-
ies of XFELOs with misalignments is outside their domain.
For instance, GINGER assumes cylindrical symmetry for the
transverse radiation profile [14]. This can be cumbersome
for simulating XFELOs with realistic misalignments that
do not respect azimuthal symmetry. To address these
limitations, we adopt the free-space cavity modes–based
model of the XFELO as presented in Ref. [15] to study the
effects of misalignments on XFELO stability and opera-
tion. We note that the resonator modes–based model has
been applied by several others before studying free electron
lasers and oscillators (see Ref. [16–19]).
The rest of this report is organized as follows: In Sec. II,

we introduce the cavity-based model of the XFELO, details
pertaining to paraxial resonator dynamics, misalignment
projections, and the impact of misalignments on single
pass FEL gain. Then, we discuss our strategy for handling
misalignments in simulations and present the input
parameters for XFELO simulations in Sec. III. We cover
the XFELO simulation results under static misalignments
in Sec. IV. We evaluate unsaturated power gain values
obtained from simulations and compare them to the values
calculated from the Gaussian beam theory and approxi-
mate models in Sec. II D. Section V covers periodic
misalignments in single and multifrequency domains.
In Sec. VI, we show that the first order moments of the
radiation beam behave like that of a simple harmonic
oscillator driven by an external source in both static and
periodic cases. After that, we investigate the instabilities
set by misalignments and/or their frequencies as con-
firmed by the driven simple harmonic oscillator models in
Sec. VII. We extend the instability analysis to calculate
frequency widths/ranges of the unstable regions and their
dependencies on misalignment amplitudes and quality
factors of the optical cavities. Finally, we summarize our
findings in Sec. VIII.

II. XFELO MODEL BASED ON CAVITY MODES

We model the XFELO using paraxial resonator
modes with FEL gain, wherein the transverse profile

of the circulating radiation field is represented by a
Gauss-Hermite expansion, and the transport of the x-ray
beam in the periodic optical cavity is computed using ray-
transfer matrices including the corresponding phase
advances and misalignment errors [15,20,21]. In this rep-
resentation, the transverse profile of a single frequency
component of the radiation beam is given by

Eðx; zÞ ¼
X
l;m

El;mðzÞMlðx; zÞMmðy; zÞ; ð1aÞ

where

Mpðr; zÞ ¼
exp

h
− r2ð1−iz=zRÞ

4σ2rð1þz2=z2RÞ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pp!σrð1þ z2=z2RÞ1=2

q
×Hp

�
r=σrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ z2=z2RÞ
p �

e−iðpþ
1
2
Þatanð z

zR
Þ ð1bÞ

is theGauss-Hermitemode shape of thepth order, defined in
terms of the spatial root mean square (rms) width σr, the
Rayleigh range zR ¼ σr=σr0 ¼ 2k1σ2r for the paraxial field
of wave number k1 ¼ 2π=λ1 and rms divergence σr0 , and
thep-dependentGouy phase shift; themode shape functions
form a complete basis set for the paraxial radiation beam
and satisfy the orthonormal condition with its complex
conjugate counterpart given by

R
drMpðr; zÞM�

qðr; zÞ ¼ffiffiffiffiffiffi
2π

p
δp;q [20].

The Gauss-Hermite mode representation reduces the
field evolution to that of the mode coefficients El;m.
These coefficients are constant under free-space propa-
gation of the field (see Appendix A), which makes
transport through the cavity relatively simple even in
the presence of errors. Furthermore, since low-gain (net
power gain ≲5) FELs preferentially amplify low-order
modes, the Gauss-Hermite representation is efficient in
that it typically only requires ≲7modes in each transverse
plane for accurate simulations. For convenience, we
separate the radiation dynamics in the gain medium
(the FEL) from that in the circulation medium (the
resonator) as described in Secs. II A and II B, respectively.
We also derive the single pass FEL gain for misaligned
electron and radiation beams in II D.

A. FEL equations

First, we are concerned with the motion of relativistic
electrons in the undulator and radiation fields. For paraxial
electron beams with negligible space-charge and radiation
recoil effects, the motion of the jth electron in a planar
undulator field is governed by the following set of
equations (see [22,23], and references within):

d
dz

θj ¼ 2kuηj −
k1
2
ðp2 þ k2βx

2Þ; ð2aÞ

FIG. 1. Schematic of an x-ray free electron laser oscillator. The
figure is not drawn to scale.
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d
dz

ηj ¼
eK½JJ�
2γ20mc2

ðeiθjEðx; zÞ þ c:c:Þ; ð2bÞ

d
dz

xj ¼ pj; ð2cÞ

d
dz

pj ¼ −k2βxj; ð2dÞ

where an electron with arrival time tj has the phase θj ¼
ðk1 þ kuÞz − ck1tj in the pondermotive potential formed by
the electromagnetic wave of resonant wave number k1 and
undulator with wave number ku; the other electron coor-
dinates are the scaled energy ηj ¼ ðγj − γ0Þ=γ0 and the
transverse position and momentum ðxj; pjÞ. In addition, kβ
is the natural focusing in the undulator, while the energy
exchange between the electron and the radiation field
Eðx; zÞ is given by the coupling in Eq. (2b), where e is
the electron charge, m its mass, K is the undulator
deflection parameter, and [JJ] is the Bessel function factor
defined by

½JJ� ¼ J0

�
K2

4þ 2K2

�
− J1

�
K2

4þ 2K2

�
:

Now, we shift our attention to the radiation field and its
evolution. Without going into the details of this derivation
(see, e.g., [22,23]), we merely quote the final form of the
paraxial wave equation with FEL source current as

�
∂

∂z
þ ku

∂

∂θ
þ ∇2⊥
2ik1

�
Eðθ; x; zÞ

¼ −
eK½JJ�k1
8πϵ0γ0

1

NΔ

X
j∈Δ

e−iθjδðx − xjÞ; ð3Þ

where ϵ0 is the permittivity of free space, Δ represents the
delta-slice average over an integral number of radiation
wavelengths for which the field amplitude varies slowly,
and NΔ is the number of electrons in the Δ-slice. Inserting
the Gauss-Hermite mode expansion from Eq. (1) into
Eq. (3) and projecting onto one mode yields

�
∂

∂z
þ ku

∂

∂θ

�
El;mðz; θÞ

¼ −
eK½JJ�k1

16π2ϵ0γ0NΔ

X
j∈Δ

e−iθjM�
l ðxj; zÞM�

mðyj; zÞ: ð4Þ

In the absence of the electron beam current, the mode
coefficients are constant and only slip ahead of the electron
beam by one wavelength per undulator period. Finally, for
ultrarelativistic electron beams used for x-ray generation,
the undulator focusing is weak with kβLu ≲ 1 over the

undulator length Lu; for simplicity, we neglect kβ in what
follows.

B. Paraxial resonators

As shown in Fig. 1, the radiation beam exiting the
undulator at point P during the tth turn traverses through
free space and the cavity optical elements to become the
input field for the (tþ 1)th turn at the undulator entrance S.
This x-ray beam transport can be achieved using any one of
the several configurations of tunable or nontunable optical
cavities containing different numbers of crystals and
focusing elements, the simplest being a nontunable sym-
metric cavity that uses two focusing mirrors [24–26]. The
geometric stability and loss of the radiation beam in these
optical cavities can be studied using geometrical optics, in
which the radiation beam is treated using paraxial rays
whose passage through ideal and defect-free optical ele-
ments is described by the ray transfer matrices, often called
the ABCD matrices. The general form for the transverse
position (r2) and slope (r02) of a ray after traversing through
a paraxial optical element is given by

�
r2
r02

�
¼ M

�
r1
r01

�
¼

�
A B

C D

��
r1
r01

�
; ð5Þ

where r1 and r01 are initial position and slope of the ray,
respectively, and A, B, C, and D are transport components
of the optical element [20,21] defined for one transverse
dimension.
We assume that the radiation comes to a waist at the

undulator center point O in Fig. 1, and we can trace a
paraxial ray that starts at O and passes through all the
optical elements to return to O, thus forming a closed loop
or a round-trip. It is easier to visualize the optical cavity of
Fig. 1 in the unfolded configuration as shown in Fig. 2. In
this unfolded configuration, free space and flat optical
surfaces constitute drift elements with their ABCD matrix
given by ½1

0
d
1
�, where d is the perpendicular distance

between the ray’s initial position and the optical element
surface. Besides plane reflectors like Bragg crystals,
XFELO cavities also consist of lenses or focusing mirrors
which contribute to transverse mode matching and stability.
For lenses or mirrors with large focal length f, their ABCD
matrix is conveniently written as ½ 1

−1=f
0
1
�. If the optical

cavity consists of N elements, the round-trip of the paraxial

FIG. 2. Unfolded representation of XFELO cavity of Fig. 1.
The optical axis is defined along the unperturbed ray path (red)
which overlaps with that of the electron beam (blue) in the
undulator.
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ray starting and ending at O of Fig. 2 results in the new
position and slope of the ray given by

�
r2
r02

�
¼ MNMN−1…M2M1

�
r1
r01

�
¼

YN
n¼1

Mn

�
r1
r01

�
: ð6Þ

Likewise, if any optical element is misaligned, the
misalignment can be propagated using a cascade of
ABCD matrices from subsequent elements. Suppose the
nth optical element is misaligned by En ¼ ½En

Fn
�, where En

and Fn refer to its respective displacement and slope errors.
Then, we can write the net misalignment of the cavity
representing one round-trip as [20]

Etotal ¼ ½MN…M2�E1þ½MN…M3�E2þ…þMNEN−1þEN;

ð7Þ

and the coordinates of the paraxial ray passing through this
misaligned system are given by

2
64
r2
r02
1

3
75 ¼

2
64
A B E

C D F

0 0 1

3
75
2
64
r1
r01
1

3
75: ð8Þ

Here A, B, C, and D represent the primary ABCD
components of the round-trip cavity, while E and F
summarize the net cavity misalignment from the reference
optical axis. From this equation, it is fairly straightforward
to calculate the coordinates of the perturbed orbit and
movements required for overall system alignment.
The setup of Eqs. (6) and (8) allows us to compute the

stability of the periodic resonator formed by this cavity
configuration as well as the effects of cavity misalignments
on the radiation. For example, using eigenvalue decom-
position on Eq. (6) assuming a periodic system, it is easy to
show that optical cavities with jðAþDÞ=2j < 1 are stable
and unstable otherwise [20]. In addition, if the cavity
misalignments are static in time, we only need to calculate
E and F values from Eq. (7) once to determine their effect
on the paraxial rays using Eq. (8).
Now, we discuss how the ray-transfer matrix analysis can

be used to understand the propagation of Gauss-Hermite
modes in the optical cavity. We list the primary results here
and summarize Siegman [20] to provide detailed deriva-
tions for Gauss-Hermite mode propagation through an
ABCD system in Appendix B.
Stable ABCD transport through one period of length L

results in a radiation phase shift that sums the usual eik1L

phase due to the path length with a contribution associated
with the Gouy phase. The latter leads to a mode-dependent
phase shift per turn given by

Etþ1
n

Et
n

¼ e−iðnþ1=2Þsign½B�acos½AþD
2
� ð9Þ

for each transverse dimension (see Appendix B).
For turns starting and ending at the radiation waist

(which we labeled by O and assume to be at the undulator
midpoint), the first order moments of a Gaussian beam at
turn 2 are related to those at turn 1 by the ray-transfer
matrix as follows:

�
r̄2
r̄02

�
¼

�
A B

C D

��
r̄1
r̄01

�
: ð10Þ

Here the bars over the terms indicate mean values with their
subscripts referring to the turn number. In accelerator
physics, this ray-transfer matrix and the phase advance
can be represented in Courant-Snyder notation by solving
Hill’s equation (see Ref. [27] for example). Using the fact
that rr0 ¼ 0 at the waist location for periodic resonators, we
can express the first order moments using

�
r̄2
r̄02

�
¼

�
cosφ zR sinφ

− sinφ=zR cosφ

��
r̄1
r̄01;

�
; ð11Þ

where the Rayleigh range zR replaces the particle beta
function in accelerator physics, and the phase φ ¼
acos½ðAþDÞ=2� is the phase advance per turn for the
fundamental transverse mode. The turn at which the first
order moments retrace their original or reference values for
the first time is the Betatron period. Let us assume the first
order moments recover their original values at Tth turn,
such that r̄T ¼ r̄1 and r̄0T ¼ r̄01. This implies that concat-
enating T single turn transport matrices yields the identity,
namely, that

�
cosφ zR sinφ

− sinφ=zR cosφ

�T
¼
�

cosðTφÞ zR sinðTφÞ
− sinðTφÞ=zR cosðTφÞ

�

¼
�
1 0

0 1

�
; ð12Þ

where the first equality follows from the generalized
De Moivre’s formula. Hence, the Betatron period Tβ for a
stable optical resonator is the turn T for which cosðTφÞ¼ 1,
meaning that

Tβ ¼
2π

φ
¼ 2π

acos½AþD
2
� : ð13Þ

The properties of a perfectly aligned cavity are only
slightly changed under small perturbations so that the most
of the previous analysis remains relevant even in the
presence of misalignments. On the other hand, Eq. (8)
indicates that cavity errors will lead to the nominal optical
axis no longer closing upon itself, which will reduce the
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overlap between the electron beam and radiation, thereby
reducing FEL gain. While the nominal optical axis no
longer returns to itself, small perturbations result in a
closed, stable orbit that defines the cold-cavity modes in the
presence of misalignments [20,27]. This distorted optical
axis is defined by the conditions r1 ¼ r2 ¼ r̄ and
r01 ¼ r02 ¼ r̄0. Inserting this into (8) and solving for the
distorted optical axis results in

�
r̄

r̄0

�
¼ ðI −MÞ−1

�
E

F

�

¼ 1

2 − A −D

� ð1 −DÞEþ BF

CEþ ð1 − AÞF

�
: ð14Þ

The distorted optical axis defines where the stable low-gain
resonator mode will be centered, while we assume that the
electron beam is aligned to the nominal optical axis (0,0).
Hence, the ray ðr̄; r̄0Þ defines the overlap mismatch between
the two and will be a critical tool for analyzing stability
tolerances.

C. Misalignment projection

The tilt or displacement of any optical element in the
cavity, including the Bragg crystals and/or the focusing
lenses, acts to shift the optical axis as summarized in
Eq. (14). This shifted optical axis results in coupling
between cavity modes, which becomes apparent when
one projects the displaced field onto the stable resonator
modes at the next pass. To see how this works, let rr and ϕr
be the position of the displaced optical axis at the waist
location; these displaced values are given by the matrix
elements E and F in Eq. (8), and we consider only one
dimension for simplicity. Ignoring any phase advance
terms, the (new) projected one-dimensional field at the
waist for the next turn (tþ 1) will be [15]

Etþ1ðr;Lu=2Þ ¼ eikðr−rrÞϕrEtðr − rr;Lu=2Þ: ð15Þ

Here we chose to define the undulator center at z ¼ Lu=2,
with Lu being the undulator length. The mode coefficients
associated with the displaced field at the turn (tþ 1) can
now be related to those at turn t by inserting the Gauss-
Hermite expansion and exploiting the orthonormal proper-
ties of the Gauss-Hermite modes. Multiplying both sides of
Eq. (15) with the mode M�

nðr;Lu=2Þ and integrating over
the transverse dimension r, we obtain

Etþ1
n ð0Þ ¼ 1ffiffiffiffiffiffi

2π
p

Z
dreikðr−rrÞϕr

×
X
l

Et
lðLuÞMlðr − rr;Lu=2ÞM�

nðr;Lu=2Þ

¼
X
l

Et
lðLuÞPn;lðrr;ϕrÞ: ð16Þ

The misalignment projection matrix P is defined in terms
of associated Laguerre polynomials (first reported in
Ref. [15]) as

Pn;lðrr;ϕrÞ
¼ e−ikrrϕr=2e−½ðrr=σrÞ2þðϕr=σr0 Þ2�=8

×

8>>><
>>>:

ffiffiffiffiffi
l!
n!

r �
izRϕr þ rr

2σr

�
n−l

Ln−l
l

�
r2r þ z2Rϕ

2
r

4σ2r

�
; ½l ≤ n�

ffiffiffiffiffi
n!
l!

r �
izRϕr − rr

2σr

�
l−n

Ll−n
n

�
r2r þ z2Rϕ

2
r

4σ2r

�
; ½n ≤ l�:

:

ð17Þ

Hence, nonzero misalignment amplitudes act to
induce phase shifts and mode couplings. For a radiation
field that is initially comprised of one mode, the coupling
will serve as an effective loss from that mode to others.
The derivation leading to Eq. (17) is shown in
Appendix C.

D. FEL gain for misaligned beams

In the low-gain regime, the solution for evolving
radiation field in the FEL can be approximated and
expressed in terms of the incident radiation, the sponta-
neous (or undulator) radiation, and the first-order field
amplification, also known as gain, as derived in Ref. [22].
Upon ignoring the natural transverse focusing effect of the
undulator, the power gain reduces to a simpler form in
terms of the brightness functions of the undulator field
(BU), radiation beam (BE), and electron beam (F̄ )

G ¼ n̄eκhχh
λ2

Z
dϕdydηdxdpBEðy;ϕÞ

×
BUðη; x − y;ϕ − pÞ ∂

∂η F̄ ðη; x; p; Lu
2
ÞR

dϕdyBEðϕ; yÞ
; ð18Þ

where n̄e ¼ I=ec is the peak electron line density,

κh ¼ eK½JJ�h
4ϵ0γ0

, and χh ¼ eK½JJ�h
2γ2

0
mc2 [22]. An explicit analytical

expression has been obtained for Gaussian radiation and
electron beams in Ref. [22]. To understand to what extent a
given misalignment might affect the single pass FEL gain,
we evaluate Eq. (18) assuming that the initial radiation and
electron beams are transversely Gaussian but displaced
from the optical axis in position and angle.
The brightness/distribution function of a Gaussian elec-

tron beam that is displaced at the waist in position and angle
by (re;ϕe) is

F̄
�
η; x; p;

Lu

2

�
¼ e−ðη−η0Þ2=2σ2ηffiffiffiffiffiffi

2π
p

ση

e−x̂
2=2σ2x

2πσ2x

e−p̂
2=2σ2p

2πσ2p
;
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where we have introduced the new variables x̂ ¼ x − re and
p̂ ¼ p − ϕe, and σx and σp are rms width and divergence,
respectively. Then,

∂

∂η
F̄
�
η; x; p;

Lu

2

�
¼ −

η − η0
σ2η

F̄
�
η; x̂; p̂;

Lu

2

�
: ð19Þ

Similarly, the brightness function of a Gaussian
radiation beam with input power Pin, rms width σr, and
rms divergence σϕ, when it is misaligned by (rr;ϕr) at the
waist is given by

BEðy;ϕÞ ¼ Pin
e−ðy−rrÞ2=2σ2y

2πσ2r

e−ðϕ−ϕrÞ2=2σ2ϕ

2πσ2ϕ
: ð20Þ

The usual undulator brightness function defined in Eq. (18)
is given by

BU ¼
Z Lu

2

−Lu
2

dz
Z Lu

2

−Lu
2

ds e−ið2νη−ΔνÞkuðz−sÞ
Z

dξ

× e−ikðx−yÞ:ξeik½ðϕ−p−1
2
ξÞ2z−ðϕ−pþ1

2
ξÞ2s�=2: ð21Þ

With the new variables

x̂ ¼ x − re; p̂ ¼ p − ϕe;

ŷ ¼ y − rr; ϕ̂ ¼ ϕ − ϕr;

δr ¼ re − rr; δϕ ¼ ϕe − ϕr;

the 3D FEL gain formulas of Eq. (18) become

G ¼ n̄eκhχh
λ2

Z
dϕ̂dŷdηdx̂dp̂BEðŷ; ϕ̂Þ

×
BUðη; x̂ − ŷþ δr; ϕ̂ − p̂ − δϕÞ ∂

∂η F̄ ðη; x̂; p̂ÞR
dϕ̂dŷBEðŷ; ϕ̂Þ

: ð22Þ

Using integral formulas for Gaussian functions (in one
dimension) given by

Z
dx e−ax

2−2bx ¼
ffiffiffi
π

a

r
eb

2=a;

Z
dx xe−ax

2−2bx ¼ −
b
a

ffiffiffi
π

a

r
eb

2=a

and with careful calculation steps, we arrive at the follow-
ing expression for the modified gain in the presence of
misalignment

G ¼ i
jC;h
2

σ2x
Σ2
x

Z
1
2

−1
2

dz
Z

1
2

−1
2

dsðz − sÞe−i2ðhη0−Δν=2ÞkuLuðz−sÞe−2½hkuLuðz−sÞσn�2

×

exp

�
−

δr2−δr:δϕLuðzþsÞþzsðLuδϕÞ2−ikLuðz−sÞΣ2
xΣ2

ϕ½ðδr=ΣxÞ2þðδϕ=ΣϕÞ2�

2Σ2
x

h
1þzs

L2uΣ
2
ϕ

Σ2x
−iðz−sÞ

�
kLuΣ2

ϕþ Lu
4kΣ2x

�i �

1þ zs
L2
uΣ2

ϕ

Σ2
x
− iðz − sÞ

h
kLuΣ2

ϕ þ Lu
4kΣ2

x

i : ð23Þ

The modified gain at harmonic h is expressed in terms of
the Colson parameter jC;h ¼ 4hχhκhnekuL3

u and the con-
volved spatial and angular rms widths given by

Σ2
x ¼ σ2r þ σ2x; Σ2

ϕ ¼ σ2ϕ þ σ2p:

This gain expression reduces to the ideal gain
in Ref. [22] in the absence of misalignment, namely, for
ðδr; δϕÞ ¼ ð0; 0Þ.
Figure 3(a) depicts the density plot of the normalized

gain for a given set of parameters listed in Table I for
XFELO-Awith respect to the normalized displacement and
tilt errors between the radiation beam and the electron beam
at the waist location in one dimension. The FEL gain stays
within 80% of its ideal value provided the misalignment
amplitudes are less than the rms widths, while it drops to
60% of the ideal value when the misalignments become
approximately twice the rms widths of the radiation beam.
Since low-gain devices like XFELO strictly depend on the

FEL gain (G) and cavity losses (1 − R) to satisfy the lasing
condition

Rð1þGÞ ≥ 1; ð24Þ

the prior knowledge of FEL gain dependence on misalign-
ments is useful for identifying design tolerances for the
optical cavity.
While the gain formulas [Eq. (23)] provide an analytic

expression that can be numerically calculated, it may be
somewhat unwieldy for simple estimates or parameter
scans. To determine a simplified but approximate expres-
sion, we observe that the gain dependence on misalignment
amplitude in Fig. 3(a) is reasonably Gaussian in nature and
therefore propose to approximate the gain function for each
dimension by

GSM ¼ G0e−½ðδr=aΣxÞ2þðδϕ=bΣϕÞ2�=2; ð25Þ
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where the subscript SM indicates static misalignment,G0 is
the ideal gain value, Σx and Σϕ are the convolved rms
widths, and a and b are fit parameters to be determined.
For XFELO-A, we determine the fit parameters to be

a ¼ b ≈
ffiffiffiffiffiffiffiffiffiffi
2

pp
. For misalignment amplitudes within twice

the rms size and/or divergence of the radiation beam, the
approximate gain expression (25) is accurate to within 5%
error of the theoretical expression in Eq. (23), as shown in
Fig. 3(b). For XFELO-B, a ¼ 1.03 and b ¼ 0.99, whereas
for XFELO-C, we estimate a ¼ 1.07 and b ¼ 1.25.

The approximate gains estimated from these values are
also found to be within 6% and 2% error of the original gain
expression for misalignment amplitudes within twice the
rms widths of the radiation beams for XFELO-B and
XFELO-C, respectively. Later, we will apply this approxi-
mate gain model of Eq. (25) to understand features of
power evolution and estimate regions of nonlasing and
instabilities.
Order of magnitude tolerances can be found by setting

a ¼ 1.09 and b ¼ 1.14, which were obtained by averaging

FIG. 3. (a) Density plot of (a) normalized 3D gain calculated for mismatch between radiation and electron beams at the waist location
in one dimension, with error values normalized to rms widths of radiation beam, and (b) difference in normalized gain calculated from
theory [Eq. (23)] and the Gaussian approximation [Eq. (25)] for a range of error values used in Fig. 3(a).

TABLE I. XFELO parameters for simulations.

Parameter Symbol (unit) A [12 keV] B [14.4 keV] C [9.83 keV]

Electron beam
Energy γ0mc2 (GeV) 7 7.982 10.3
Energy spread σγ (MeV) 1.4 1.5 4.35
Energy shift δE (MeV) 2.3 3.2 7.8
Normalized emittance εn (mm mrad) 0.2 0.35 0.5
Peak current I (A) 10 100 200
Pulse length σt (ps) 1 0.24 0.12
rms width σx (μm) 12.67 15.054 15.73

Undulator/radiation
Undulator periods Nu 3000 1500 1000
Undulator length Lu (m) 52.8 30 26
Radiation wavelength λr (Å) 1.0298 0.861 1.261

Optical cavity
Rayleigh range ZR (m) 10 10 10
Cavity length Lcav (m) 200 300 300
Stability parameter jAþDj=2 0.704 0.076 0.076
Ideal FEL gain G0 0.44 1.48 1.03

MISALIGNMENT EFFECTS ON THE PERFORMANCE … PHYS. REV. ACCEL. BEAMS 25, 090702 (2022)

090702-7



the fit parameters for all three XFELOs. Using this
simplification, the Gaussian gain model has errors that
are typically ≲10% but may be as large as 20% when the
misalignment amplitude approaches ð2σr; 2σϕÞ the radia-
tion beam. While this may be sufficient for initial estimates
of the tolerances, the predictions were not accurate enough
for our subsequent analysis, and we, therefore, resort to
using fit parameter values in what follows.

III. SIMULATION SETUP

A. Approach

We extended the FEL oscillator code [15] for the cavity-
based model of XFELO of Sec. II. The FEL interaction in
the undulator is numerically solved with Eqs. (2a)–(2d) and
(4) using the leap-frog method for symplectic integration;
this ensures total (electronþ radiation) energy conserva-
tion to machine precision for each pass. The misalignment
of the optical elements is cascaded through the ABCD
transport matrices of Eq. (7) to calculate the mean dis-
placement and tilt of the optical axis at the waist location.
Then, the mode coefficients for the start of the next pass are
determined by multiplying the misalignment matrix of
Eq. (17), after applying the phase advance of Eq. (9),
and accounting for total cavity losses by reducing each
mode coefficient value by the amount

ffiffiffiffiffiffiffiffiffiffiffi
1 − R

p
, where R is

the total power reflectivity of the cavity. The XFELO
simulations reported here focus on the transverse stability
of the field, and are conducted using a single frequency
component that effectively ignores the longitudinal effects
of slippage and frequency filtering due to the Bragg
crystals, and also neglects the finite angular bandwidth
of the crystals. All these effects will be included in future
studies. Nevertheless, we expect that the conclusions
presented here will remain largely unchanged since the
misalignment angles under consideration are typically
<10% of the crystals’ Darwin width.
In an experimental setup, misalignments occur mainly

due to external sources, which also determine their nature.
A displaced/tilted optic because of the alignment errors or
disturbance by an experimenter is an example of static
misalignment whereas a vibrating optic under the influence
of motorized stages or vacuum pumps is considered
periodic in nature. The effects of vibrational noises result-
ing from cultural-technical noise and ground motion in
accelerators have been studied in detail through measure-
ments and modeling [28–31]. Since XFELOs are expected
to operate at frequencies between a few hundred kHz and a
few MHz and reach saturation within a few hundred to
thousand turns, the effects of cultural-technical and ground
vibrations up to few hundred Hz with associated rms
displacements between 0.1 μm and 1 nm are not of major
concern for XFELO stability and operation [32,33].
Nevertheless, our interest lies in identifying scenarios that
would hinder XFELO saturation for a better understanding

and predictability of the misalignment effects. Following
[15], we separate the misalignments cases into three cat-
egories: (a) static—the cavity optics aremisaligned at a fixed
value for all passes/turns, (b) periodic—misalignments
are pass-dependent, but sinusoidal or periodic in time,
and (c) random—pass-dependent and realistic like scenario
but neither fixed nor periodic.

B. Input parameters

We consider three XFELOs listed in Table I. XFELO-A
employs a relatively long bunch with low peak current that
would minimize deleterious wakefields and whose param-
eters could be achieved in an energy recovery linac. The
electron beams for XFELO-B and XFELO-C have higher
peak currents and shorter bunch lengths and target different
x-ray wavelengths; the remaining parameters are chosen to
provide an FEL gain between 0.4 and 1.5 while being
consistent with what high-brightness injectors and perma-
nent magnet undulators can achieve.
The cavity configurations of the XFELOs are shown in

Fig. 4. XFELO-A uses a two crystal and two focusing
mirror configuration [Fig. 4(a)], where the undulator is
positioned directly between the flat crystal mirrors that are
separated by 98 m. The focusing mirrors, each with 26.0 m
focal length, are placed 1.0 m after the crystals and are
separated from each other by 100 m. Hence, the total
cavity length is 200 m which, together with the focusing
mirrors, defines a stable mode whose waist is at the center
of the undulator and whose Rayleigh range is 10 m. For
this cavity, A ¼ D ≈ 0.704, so that the Betatron period
Tβ ¼ 2π=acos½ðAþDÞ=2� ≈ 7.96 turns. XFELO-B and

FIG. 4. XFELO cavity configurations based on (a) two focus-
ing mirrors (green) and two flat crystals (purple) for XFELO-A,
and (b) two compound refractive lenses (green) and four crystals
(purple) forming a bow-tie pattern for XFELO-B (with θ ¼
30.56° for C444 crystal) and XFELO-C (with θ ¼ 23.275° for
C333 crystal). Figures are not drawn to scale. For (a), the
geometrical shape is only approximate and determined by the
choice of crystals and focusing mirrors.
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XFELO-C use a tunable, bow-tie cavity configuration with
four crystals and two focusing lenses as shown in Fig. 4(b).
The focal length of each lens is 36.73 m and are separated
from each other by 92 m to define a Rayleigh range of
10.0 m at the undulator center in the cavity. The total cavity
length is 300 m and a second waist with a Rayleigh range of
72.58 m exists at the center of two crystals separated by
2.85 m. For both XFELO-B and XFELO-C, A ¼ D ≈
−0.0759 defining a Betatron period of ≈3.82 turns.
XFELO-B uses C444 crystals with an incident angle of
30.56°, whereas XFELO-C utilizes C333 crystals at an
incident angle of 23.275°. We note that alternate crystal
choices with a slight change in cavity parameters may
allow better angular acceptance. For example, using C444
results in full width at half maximum (FWHM) angular
acceptance of only 2.4 μrad, whereas using C337 at an
incident angle of 9.17° offers FWHM Darwin width of
4.0 μrad. Similarly, the tuning range for an XFELO using
the C333 reflection was found to be only 6% in a previous
study [32].
We assume that the nominal power loss per turn is 20%

and define the cold-cavity efficiency in terms of the ratio
of stored power to power loss per turn via q̂ ¼ R=ð1 − RÞ,
where q̂ is related to the standard Q factor of the
optical resonator as Q ¼ 2πq̂=R. For all simulations
and calculations presented in this report, we ignore the
natural transverse focusing from the undulator and con-
sider misalignments only in one transverse direction,
generated by tilting and/or displacing the first crystal as
shown in Fig. 4. The seeding pulse is a weak signal
fundamental transverse mode and the electron shot
noise (spontaneous radiation emission) is turned off.
We choose XFELO-A for detailed analysis and compar-
isons in Secs. IV–VI to demonstrate the response char-
acteristic of low-gain FEL oscillators under various
misalignments.

IV. STATIC MISALIGNMENTS

We simulate static misalignment by tilting and/or
displacing the first crystal in the cavity and propagate
the effect of the misalignment to the center of the undulator
using ray-matrix transfer analysis. This then serves as the
input displacement in position and angle for the misalign-
ment projection formula derived in Sec. II C. As an
example, for the cavity in Fig. 4(a) crystal tilt of
−45 nrad results in the radiation beam being shifted from
the waist transversely by 0.413 of its rms size and in angle
by 0.276 of its rms divergence. We obtain a similar position
offset at the waist from tilting the second crystal by roughly
40 nrad.
Equation (14) tells us that tilting the first crystal by

−45 nrad results in a closed optical axis that is displaced by
the coordinates ð−0.124σr; 0.634σϕÞ from the nominal
axis. In the absence of gain or loss, the radiation freely
oscillates about the closed optical axis at the Betatron

frequency. Including FEL gain and cavity loss drives the
radiation beam toward a steady state, and this steady state
is located between the cold-cavity equilibrium (i.e., the
distorted closed orbit) and the nominal optical axis where
the gain is maximized. For our low-gain system, we find
that the steady state is closely approximated by the
distorted closed orbit. Figure 5(a) shows the evolution
of radiation beam centroid phase space for four cases of
constant crystal tilts representing the approach to steady
state through power saturation in XFELO-A. The FEL
simulations indicate radiation beam settling close to
coordinates predicted by Eq. (14). For instance, a crystal
tilt of −45 nrad led to a steady-state orbit with coordinates
(−0.069σr; 0.639σϕ), not far from the theoretical value of
(−0.124σr; 0.634σϕ) obtained from Eq. (14). While we
found the major perturbation (slope error in this case)
affecting FEL gain is close to the value predicted by
ABCD analysis for all cases considered in Fig. 5, our
simulations indicate the mean positions of the radiation
beam settled at values half of that predicted by ABCD
analysis. We assume this effect stems from FEL dynamics
and gain compensation.
Figure 5(b) shows the evolution of the total intracavity

power for constant crystal tilts up to 0.125 μrad. The
outcoupled power for this case would be about 6% of what
is shown, meaning that a perfectly aligned cavity results in
∼0.8 MW for users. Increasing the crystal tilt leads to
larger offsets between the radiation beam and the electron
beam and thus, less transverse area for FEL interaction
and reduced gain per pass. This results in longer buildup
times for saturation as well as lower saturated powers.
Additionally, the buildup time and saturation power can
be further impacted by angular filtering of the crystals,
and this deleterious effect becomes more significant for
reflection angles different from near normal where the
crystal angular acceptance decreases.
While misalignments affecting XFELO performance are

not desired in general, small residual misalignments inevi-
tably occur in experimental setups. We have shown that
such nonideal cavity conditions lead to suboptimal perfor-
mance and are now in the position to use this information to
set tolerances on the alignment errors. For instance, since
the XFELO of Fig. 5(b) showed little change in gain or
saturation power for crystal tilts less than 20 nrad, we
conclude that achieving an angular alignment tolerance less
than this will result in high-quality output. If we allow
ourselves ∼10% reduction in output power, then the
tolerance grows to 45 nrad. Generalizing this last result
to the entire cavity, we find that a combination of static
misalignments that result in steady-state radiation beam
offsets at the waist by less than (−0.07σr; 0.64σϕ) will have
negligible effects on gain and ≲12% effect on satu-
rated power.
A static misalignment can cripple an XFELO if gain is

reduced below its threshold value
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Gthres ¼
1 − R
R

¼ 1

q̂
:

We expect that this threshold will be reached when the
misalignment leads to a steady-state radiation beam offset
exceeding the rms width of the radiation or electron beam
(whichever is smaller). For the case in Fig. 5(b), the gain
becomes zero when the crystal tilt approaches 125 nrad,
which from Fig. 5(a) corresponds to a steady-state dis-
placement of the stable optical mode by approximately
(−0.187σr; 1.721σϕ). At this stage, the single pass FEL
gain is predicted by the theory to drop by more than 35%
according to Eq. (23) [Fig. 3(a)].
For misalignments that lead to displacements between

the two extremes of ideal and zero gain, we plot the FEL

gain per pass obtained from the simulation in Fig. 5(c).
Initially, the gain appears to oscillate, which is an artifact of
the initial seed field not being matched to the steady-state
mode along the distorted closed orbit. After the initial
oscillating transient, the FEL gain settles to a nearly
constant value during which the field grows exponentially.
We observe that this unsaturated FEL gain, by which we
mean the gain during the exponential growth region,
decreases as the misalignment amplitude increases. We
compare the simulation results to analytical gain calcu-
lations in Fig. 6, where the theory computes the gain from
the simulated steady-state position and angular displace-
ments. The simulated and analytical FEL gain follows a
similar downward trend with increasing misalignment
amplitude, with very good agreement for crystal tilts up
to 45 nrad, and increasing deviations that still stay within
10% up to the crystal tilt of 110 nrad. The simplified
theory based upon the Gaussian approximation converges
with the theory for all misalignment amplitudes that do
not sabotage lasing and XFELO saturation as we indicated
earlier in Sec. II D. The approximate Gaussian model
starts to diverge from the theory at 125 nrad crystal tilt
amplitude, the region where the XFELO cannot sustain
lasing anymore.
In addition to the exponential growth, Fig. 5(c) also

shows how the FEL gain saturates due to nonlinear
interactions with the beam. A convenient model for the
XFELO power/intensity buildup to saturation can be
formulated in the form of (see Ref. [20] and references
within for more details)

dP
dn

¼ ðδm − δcÞP −
2δm
Psat

P2; ð26Þ

where δm ¼ lnð1þGÞ corresponds to the unsaturated
growth rate, δc ¼ lnð1=RÞ is the rate of power loss, and
Psat is the power at saturation. The above equation has an
exact analytical solution given by

FIG. 5. Evolution of (a) transverse centroid phase space of the
radiation beam at the waist along the misalignment dimension,
(b) total radiation power, and (c) radiation power gain per pass for
constant crystal tilts from 0 to 125 nrad in the first crystal of
XFELO-A defined by Table I and Fig. 4(a).

FIG. 6. Comparison of normalized gain values obtained from
simulations, calculated gain formulas of Eq. (23), and approxi-
mate gain formulas of Eq. (25) for steady-state coordinates of the
radiation beam obtained from simulations.
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PðnÞ ¼ P0Pssenðδm−δcÞ

Pss þ P0½enðδm−δcÞ − 1� ;

Pss ¼
�
1 −

δc
δm

�
Psat

2
ð27Þ

For the ideal case, the saturated power is approximated

as Psat ¼ Pe-beam
2δcNu

¼ Iγ0mc2

e2δcNu
[22]. For the low-gain XFELO

under study with a high-quality cavity, we can use
approximations δm ≈ G and δc ≈ 1 − R. From simulations
shown in Fig. 5(b), the power at steady state in the
ideal case is Psim

ss ¼ R × 14.4934 ¼ 11.595 MW. Since
the ideal gain calculated from Eq. (23) for Gaussian
beams is G0 ¼ 0.378, we estimate the power at the
steady state to be Pth

ss ≈ 13.74 MW, which is a good
approximation. We note that analytical models repre-
sented by Eqs. (23)–(27) can be useful for quick pre-
liminary analysis of XFELOs considered under static
misalignment.

V. PERIODIC MISALIGNMENTS

Misalignments in an operational XFELO will vary over
time due to a variety of causes from slow drifts to
vibrations from noise sources across the frequency
spectrum. Small variations with frequencies less than
100 Hz, which is typical of both ground motion and
cultural-technical noise, can easily be eliminated with
active feedback (see, e.g., [34]). Vibrations that lead to
misalignments over time scales of 0.1 to 10 kHz can also
in principle be controlled with advanced feedback tech-
niques, while any misalignment occurring at the 10 to
∼500 kHz will probably have to be limited to levels
such that XFELO performance is not adversely affected.
Noise in the latter two frequency ranges can come
from many sources, including e-beam jitter, cavity detun-
ing effects, piezo-actuators malfunctions, mechanically
undamped turbo pumps, and sudden movements of
experimental setup due to ground motions, construction
works, and so on. In general, all sources of noise
contribute, with the total effect typically described by
the power spectral density of fluctuations. Nevertheless,
we can learn about how much time-varying misalign-
ments affect XFELO output by investigating the response
to oscillations that have one or two frequency compo-
nents. To this end, we model periodic crystal tilt error at
pass t using

δθðtÞ ¼
XN
i¼1

ðδθÞi cosðωitÞ; ð28Þ

where ðδθÞi is the misalignment amplitude imparted by
the source associated with frequency ωi. For now, we
limit our studies to misalignments with frequencies less
than the Betatron frequency, ωi < ωβ.

A. Single frequency

Single frequency simulations allow us to investigate how
the output power fluctuations depend upon the time scale
over which the misalignment varies. Figure 7 shows the
power evolution in XFELO-A for a wide range of single-
frequency misalignment. The period of these misalign-
ments ranges from 20 to 400 turns with the misalignment
amplitude corresponding to −75 nrad crystal tilt. The
power buildup at the steady state shows two-fold behavior
in sampling frequency. This two-fold frequency feature
of power evolution can be understood using the approxi-
mate Gaussian gain of Eq. (25). For periodic misalign-
ments of a single frequency defined by expression (28),
the mean position of the radiation beam at steady state is
directly proportional to the driving amplitude, i. e.,
r̄ðtÞ ∝ δr cosðωtÞ, where δr is the steady-state displace-
ment value. Upon substituting r̄ðtÞ ¼ crδr cosðωtÞ and
ϕ̄ðtÞ ¼ cϕδr cosðωtÞ, the approximate gain for this sinus-
oidal misalignment at tth pass takes the following form

GpðtÞ ¼ G0e−cos
2ðωtÞ½ðcrδr=ΣxÞ2þðcϕδϕ=ΣϕÞ2�=2

ffiffi
2

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0GSM

p
e−ρ cosð2ωtÞ=2;

where we used the trigonometric identity for cosine
function, GSM is the gain for the static misalignment
case, and we introduced

ρ ¼ ½ðcrδr=ΣxÞ2 þ ðcϕδϕ=ΣϕÞ2�=2
ffiffiffi
2

p
;

cr and cϕ are constants of proportionality. In Sec. VI,
we will show that these constants represent frequency-
dependent responses. The exponential part carries
cosð2ωtÞ indicating that the misalignment frequency
gets doubled for gain and power. Since Nyquist frequency
is 750 kHz for XFELO-A, misalignment occurring at

FIG. 7. Evolution of total radiation power per pass for periodic
misalignment with the crystal tilt modeled as a sinusoid given by
δθðtÞ ¼ δθ cosðωtÞ for six different frequencies in XFELO-A.
The label T indicates the period in turns associated with each
frequency.
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frequencies above 375 kHz will be aliased to smaller
frequencies in power evolution.
In addition, we observed suppression of power fluctua-

tions after saturation with increasing frequency (decreas-
ing period) in Fig. 7. The periodic variations that occur on
the timescale much longer than the cavity round-time
imprint themselves upon the output, whereas the fluctua-
tions with smaller timescales are averaged over the full
amplitude oscillations for a given misalignment ampli-
tude. While the general periodic behavior seen in Fig. 7
mirrors that previously published in Ref. [15], the satu-
rated power values are somewhat different. This difference
is due to the effect of the turn-by-turn mode-dependent
Guoy phase shift of Eq. (9) that was not properly
accounted for in Ref. [15].
Returning to Fig. 7, we see that the oscillation amplitude

decreased by half for the misalignment period of 80 turns
when compared to that of 400 turns. The further increase in
the misalignment frequency (to a period of 20 turns) led to a
further reduction in the power fluctuations. At this fre-
quency, we observe a further decrease in unsaturated FEL
gain during the exponential growth regime (100–200
turns), and hence, the reduction in average power output
by ≥ 10% compared to lower frequency cases. We will
cover the cases with frequencies close to the Betatron
frequency that lead to excitations, poor performance, and
even instabilities in Sec. VI and beyond.

B. Multiple frequencies

In real systems, misalignments originate from various
sources that contribute over a wide range of frequencies,
whose total effect can be taken into account via Eq. (28).
While such modeling will be needed for any particular
facility once the noise sources are known, we think that an
exhaustive study of the many scenarios would be both
challenging to complete and difficult to interpret. Rather,
we study the response to periodic misalignments that have
only two or three frequency components. We find that the
resulting power evolution is essentially a superposition
of the single frequency responses, and therefore conclude
that the single frequency response gives important
information regarding generic, time-varying errors.
While this observation may seem reasonable, it is perhaps
not obvious due to the nonlinear nature of the FEL at
saturation.
For simplicity, we consider a case where both frequen-

cies occur with the same misalignment amplitude. In
this case, the centroid of the misaligned radiation beam
evolves as

r̄ðtÞ ¼ cr
δr
2
½cosðω1tÞ þ cosðω2tÞ�

at the steady state, and the approximate gain at the tth turn
becomes

GpðtÞ ¼ G0e−ρ½2þcosð2ω1tÞþcosð2ω2tÞ�=8

× e−ρ cos½ðω1þω2Þt�=4e−ρ cos½ðω1−ω2Þt�=4: ð29Þ

In addition to the responses at 2ω1 and 2ω2, we find that the
gain also contains the beat frequencies ω1 � ω2. The
exponential containing the individual responses at twice
the frequencies in the first line indicates that the gain will
fluctuate between G0 and G0e−ρ=2. Since the contribution
from the exponential containing the sum of frequencies is
e�ρ=4 (maximum/minimum) at constructive interference,
this results in the shift of gain fluctuation betweenG0e−3ρ=4

and G0eρ=4. However, further truncation from the expo-
nential containing the difference of frequencies reduces the
maximal achievable gain to G0 because it also contributes a
factor of e∓ρ=4 at minimum/maximum when constructive
interference occurs. In other words, Eq. (29) indicates that
the gain fluctuates betweenG0 andG0e−ρ in the presence of
two frequencies. These beat frequencies will also be present
in the saturated power, but the high frequency oscillation
(ω1 þ ω2) will be less prominent since it will be more
strongly averaged (damped) by the cavity Q resulting in
reduced power fluctuations as we observed earlier in Fig. 7.
The difference frequency has a period of 2π=jω1 − ω2j

turns, and we will observe features of constructive inter-
ference in the steady-state power fluctuations at intervals
given by

TC ¼ π

ω1 − ω2

¼ T1T2

2jT2 − T1j
; ð30Þ

and destructive interference occurring at the same interval
but shifted by ∼TC=2 passes. In other words, each period in
the difference frequency contains two constructive inter-
ference and four destructive interference patterns. One
constructive interference leads to amplification of gain
(at destructive interference) by eρ=4 whereas the other one
leads to attenuation by the same factor. Figure 8(a) shows
the power evolution per pass for crystal oscillations with
two frequencies of oscillation, where the second period is
fixed at 80 turns and the crystal tilt amplitude is −37.5 nrad
for both frequency components. For the most rapid oscil-
lation with T1 ¼ 20, the period TC ≈ 13.3 ∼ T1 is difficult
to clearly identify, and furthermore the gain and cavity Q
more effectively average over the relatively high frequency
oscillations, which leads to less variation in the power.
When T1 ¼ 50, 64, and 100, however, the respective
periods of constructive interference TC ≈ 67, 160, and
200 are clearly visible in the power. For T1 ¼ 50, we
observe three peaks due to gain amplification at 200, 333,
and 467 turns followed by dips due to gain attenuation
halfway between them. The peaks for T1 ¼ 64 occur at 160
and 480 turns with a power dip following at 320 turn.
Similar trends are found for T1 ¼ 100 at 200, 400, and 600
turns. The maximum intracavity power in these regions of

GANESH TIWARI and RYAN R. LINDBERG PHYS. REV. ACCEL. BEAMS 25, 090702 (2022)

090702-12



constructive interference approaches the ideal, steady-state
value ≈14.5 MW, while the power in between is close to
that when both frequencies are equal as depicted by the
green line of Fig. 8(a). Hence, the average power at steady
state is larger when T1 ≠ T2. In fact, for disparate frequen-
cies, we expect the average power to be dictated by the rms
average over the two misalignment amplitudes, which in
this case, is reduced by a factor of

ffiffiffi
2

p
.

We observe similar features for the particular case
of three frequencies provided the gap between two of
the frequencies is much smaller than their difference
from the third frequency, namely, either (ω1;ω2 ≪ ω3)
or (ω1;ω2 ≫ ω3). In this case, the dominating beat fre-
quency occurs with the periodicity

TC ¼ π

ω1 þ ω2 − 2ω3

¼ T1T2T3

jT3ðT2 þ T1Þ − 2T1T2j
: ð31Þ

Again, the periodic “constructive interference” leads to
times when the FEL gain and output power that is close to
the unperturbed state, while there are other times within the
difference period for which the gain and power will be
somewhat attenuated. Furthermore, we expect that the

phenomenology of the three frequency cases just described
will become almost indistinguishable from the two fre-
quency cases in the limit that the misalignment amplitudes
associated with the first two frequencies are equal and half
that associated with ω3.
Figure 8(b) shows the power evolution profile in the

presence of three frequencies under the previous con-
straints. The misalignment amplitude for T3 is set at
−37.5 nrad crystal tilt while that of T1 and T2 are at
−18.75 nrad tilt. From the expression (30), we expect the
gain amplification/attenuation by constructive interference
to occur at every 50 turns between T1 ¼ 20 and T2 ¼ 25.
For T3 ¼ 100, we expect constructive interference to occur
at every 14.29 turns from Eq. (31). We only observe the
maxima/minima in power fluctuations at turns when integer
multiple of 14.29 turns (every 100 turns) equals the integer
multiple of the period of constructive beats between two
frequencies occur. In this case, such occurrence is observed
every 100 turns as shown in Fig. 8(b). Similar patterns
emerge for T3 ¼ 200, 300, and 400. Moreover, the damp-
ing of higher frequency components is also evident.

VI. HARMONIC OSCILLATIONS

So far, we have focused on a few cases of static and
periodic misalignments, concentrating on the gain, the
power buildup, and the final saturated power. Now, we
shift our attention to the evolution of the first order
moments, how they can be modeled using a simple
harmonic oscillator model, and this model’s application
to assessing potential instabilities.
The solid lines in Figs. 9(a) and 9(b) show the mean

position and divergence of the radiation beam minus their
steady-state values at the waist location plotted against the
pass for the static misalignment cases of Fig. 5; the
centroids execute damped oscillations with a frequency
close to Betatron frequency before approaching the steady
state. This makes physical sense since we have already
established that a misaligned cavity has an equilibrium
about the distorted closed orbit, a natural frequency ωβ, and
loss due to the reflectivity R < 1. Hence, we model the
radiation centroid using the following damped harmonic
oscillator equation:

d2

dt2
ȳþ 2β

d
dt

ȳþ ω2
βȳ ¼ ω2

βδy; ð32Þ

where the natural frequency is the Betatron frequency ωβ,
the damping factor is β, and the steady-state amplitude is
the driving amplitude δy which corresponds to the closed
orbit at the cavity center. The solution for the centroid is
then

ȳðtÞ ¼ δyþ ðy0 − δyÞe−βt
cosψ

cos

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωβ

2 − β2
q

þ ψ

�
ð33Þ

FIG. 8. Evolution of total radiation power per pass for scans
conducted (a) for two frequencies with the second frequency
component kept fixed with its period at 80 turns, and (b) for three
frequencies with two frequencies kept fixed close to each other
with their periods corresponding to 20 and 25 turns.
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where the phase ψ is determined by the initial condition,

with tanψ ¼ ½ y0
0

δy−y0
− β�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
β − β2

q
for ȳð0Þ ¼ y0 and

ȳ0ð0Þ ¼ y00. The displacement at the steady state is given
by the first term δy, while the second term describes the
transient evolution wherein the centroid makes damped

oscillations with the frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωβ

2 − β2
q

like those seen

in Figs. 9(a) and 9(b) [35]. We expect the damping factor β
to scale with radiation amplitude loss in the cavity,
i.e., β ∝ ð1 − RÞ. We verified this by conducting scans
using cavities with Betatron periods between 4 and 20
turns and also for different FEL gains (≤2) and power loss
per turn. We concluded that β ≈ ð1 − RÞ=2 based upon
these scans.
We show the harmonic oscillator solutions of Eq. (33) for

mean position and divergence minus their steady-state
values over pass with the dashed lines in Figs. 9(a) and
9(b), respectively. The initial displacement values used for
the dashed lines were obtained using ABCD matrix
analysis [Eq. (8)], whereas we used the steady-state values
from the simulations for consistency. The overlap between
the simulations and the harmonic oscillator model results
are obtained for the damping factor β ¼ ð1 − RÞ=2 and also
by shifting the dashed lines right by 2.7 turns for mean

position and 7 turns for mean divergence. Since the
simulation is conducted with a weak seeding pulse of
fundamental transverse mode in which the evolving radi-
ation beam after each turn suffers constant misalignment,
the coordinates of the radiation beam after the first pass or
even first few passes do not necessarily converge immedi-
ately to the values predicted by ray-transfer matrix analysis,
thereby justifying the applied shift correction. The overall
phenomena of transient damped oscillations of the first
order moments on the approach to steady state is effectively
captured by the simple harmonic oscillator model as
observed in Fig. 9. In addition, the early excitation
amplitudes for mean position are found to occur at

t ¼ ð2nþ1Þπffiffiffiffiffiffiffiffiffiffi
ω2
β−β

2
p , where n ¼ 0; 1; 2; 3;… based on Eq. (33).

The first excitation occurs for n ¼ 0, and t ¼ πffiffiffiffiffiffiffiffiffiffi
ω2
β−β

2
p ≈ 4,

and the factor of this excitation is

αe ¼ 1þ δy − y0
δy

e−π=
ffiffiffiffiffiffiffiffiffiffiffiffi
ðωββ Þ2−1

p
:

For y0 ¼ 0, αe ≈ 1.67. It is easy to show that the factor of
first excitation for mean divergence is exactly

αe ¼ 1þ e−π=
ffiffiffiffiffiffiffiffiffiffiffiffi
ðωββ Þ2−1

p
≈ 1.67, a value independent of

initial offset.
Similarly, we model the first order moments in single

frequency–based periodic misalignment case by replacing
the constant driving term with δy cosðωtÞ in Eq. (32). The
complete solution of this periodically driven harmonic
oscillator is given by

ȳðtÞ ¼ Aðωβ;ω; βÞ

×

�
cosðωtþ ϑÞ − cos ϑe−βt

cosψ
cos

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
β − β2

q
þ ψ

��

þ y0
cosψ

e−βt cos

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
β − β2

q
þ ψ

�
; ð34Þ

where

Aðωβ;ω; βÞ ¼ jδyj
sign

�
−

ω2
β

βω δy sinϑ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ω2
β−ω

2

ω2
β

�
2

þ
�
2βω
ω2
β

�
2

s ; ð35aÞ

tanϑ ¼ 2βω

ω2 − ω2
β

; ð35bÞ

and tanψ ¼ Aðωβ;ω; βÞ½β cosϑ − ω sin ϑ� − y00 − βy0
y0 − Aðωβ;ω; βÞ cosϑ

:

ð35cÞ

FIG. 9. Plot of (a) mean position and (b) mean divergence of the
radiation beam minus their steady-state values versus pass for
static misalignment cases of Fig. 5 obtained from the simulations
(solid lines) and harmonic oscillator model of Eq. (32) (dashed
lines). The x-axis scale is log10.
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Again, the value of phase ψ is determined from the initial
conditions for ȳð0Þ ¼ y0 and ȳ0ð0Þ ¼ y00. The first term is
the steady-state solution, whereas the second and third
terms are associated with the transient evolution of the first
order moment that depends on the driving frequency and
initial conditions, respectively. At steady state, the har-
monic oscillator oscillates with the frequency of the driving
source unlike the transient solutions. The appearance of
frequency-dependent amplitude Aðωβ;ω; βÞ represents the
frequency response of the oscillator to the driving fre-
quency and the excitation of the amplitude occurs close to
the Betatron frequency. Moreover, the steady state itself
represents oscillation about the driving amplitude (δy) in
contrast to the static misalignment where a fixed orbit is
achieved. As observed in the first two terms in Eq. (34), the
transient excitation amplifies the driving amplitude, which
may further enhance the frequency excitation leading to
instabilities. Figure 10 depicts normalized frequency ampli-
tudes of first order moments for various misalignment
frequencies obtained from simulations (diamonds for
position and circles for divergence) and harmonic oscillator
model (sold lines) for XFELO-A with β ¼ 0.1; q̂ ¼ 4, and
crystal tilt amplitude of −45 nrad after saturation. At steady
state, the driving amplitude is manifested in the distorted
orbit coordinates, ð−0.124σr; 0.634σϕÞ for this case as
found earlier in Sec. IV. The excitation of the amplitude
near the Betatron period is clearly indicated by both
simulations and the oscillator model of Eq. (35a). For
the mean divergence, we find the harmonic oscillator model
to reproduce the simulation results over the range of
misalignment frequency/period. There is disagreement
between the harmonic oscillator model and the simulations
for the mean position when the misalignment frequency
approaches Betatron frequency from either side. We note
that the harmonic oscillator model is devoid of FEL
dynamics and gain compensation. Moreover, the transient

excitation of the misalignment amplitude may lead to
slightly different driving amplitudes than predicted from
the ray-transfer matrix analysis at these frequencies. In the
next section, we will extend this frequency response
analysis to estimate width of instabilities.

VII. INSTABILITIES

The intricacies involved in the modeling of XFELO
make us rely on simulations to identify ranges of static or
periodic misalignments that render XFELO performance
unstable. Often, these studies would be on a case-by-case
basis for individual XFELOs under consideration. These
studies would not only be cumbersome, time consuming,
and repetitive but also be rather limited in assessing overall
performance and stability. In such studies, identifying
patterns and limits often prove useful. For example, the
upper threshold on misalignment frequency was easily
determined using the sampling theorem (the Nyquist
frequency limit), and two-fold frequency of power buildup
was simply understood using the approximate gain model.
Therefore, we apply the approximate Gaussian gain model,
the lasing condition, and the harmonic analysis of the first
order moments presented earlier to serve as the tools for
exploring XFELO instability in the presence of static and
single frequency driven periodic misalignments.
In the presence of time-dependent misalignments, the

approximate Gaussian gain [Eq. (25)] takes the form

GðtÞ ¼ G0e−½ðr̄ðtÞ=aΣxÞ2þðϕ̄ðtÞ=bΣϕÞ2�=2:

Since the FEL lasing is disturbed when Rð1þGÞ ≤ 1, we
substitute the gain from the above expression and q̂ ¼ R

1−R
to obtain

�
r̄ðtÞ
aΣx

�
2

þ
�
ϕ̄ðtÞ
bΣϕ

�
2

≥ 2 ln½G0q̂� ð36Þ

This is the required analytical expression that indicates
when lasing becomes unachievable in the presence of
misalignment. For static misalignment and when approach-
ing steady state to the driving amplitude, this condition
reduces to

jδrj ≥ aΣx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln½G0q̂�

p
; for δϕ ¼ 0: ð37aÞ

jδϕj ≥ bΣϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln½G0q̂�

p
; for δr ¼ 0: ð37bÞ

For nonzero δr and δϕ, and jδrj
jδϕj ¼ c, we get

jδrj ≥ abcΣxΣϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaΣxÞ2 þ ðbcΣϕÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln½G0q̂�:

p
ð38Þ

In other words, FEL lasing disturbance in the presence of
the static misalignment is determined by the misalignment

FIG. 10. Plots of normalized amplitude jAðωβ;ω; βÞj with
rms size versus misalignment periods in XFELO-A with
β ¼ 0.1; q̂ ¼ 4, and crystal tilt amplitude of −45 nrad obtained
from simulations (diamonds for position and circles for angle)
and harmonic oscillator model (solid lines, blue for position, and
red for angle) of Eq.(35).
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amplitudes whose threshold depends on the convolved
spatial and angular rms values as well as the ideal gain and
cold cavity quality parameter (since q̂ ¼ Q̂c=ωβ). We note
that the early excitation (as observed in Fig. 9) of the first
order moments may exceed the threshold values for static
misalignments right after the XFELO is turned on, which
may render lasing difficult or even impossible. For
XFELO-A, lasing is ensured for static misalignments if
and only if the first order moments of the radiation beam do
not approach and exceed half of the threshold values
determined by conditions (37) and (38); Fig. 11 shows
the density plot of the threshold values for a range of q̂ and
ideal gain values. High quality cavities (with higher q̂
values> 10) are found to have higher threshold even for an
ideal FEL system with G0 < 1. Similarly, higher gain FEL
permits adopting cavities with low q̂ values for higher
outcoupling.
In addition to depending onmisalignment amplitudes and

their excitations, instabilities under periodic misalignments
also depend on the driving frequency as observed from the
frequency excitations in Fig. 10. Figure 12(a) shows the
power evolution in XFELO-A, with R ¼ 0.8ðq̂ ¼ 4Þ, sub-
ject to periodic misalignments with frequencies between
0.7ωβ and 1.47ωβ for a crystal tilt amplitude of −45 nrad.
We observe the instabilities to occur with a frequency width
of δω=ωβ ¼ 0.345� 0.035 between 0.81ωβ and 1.19ωβ.
This range is calculated by subtracting the upper and lower
frequencies at which instability is observed (assuming
power did not reach 0.1 MW by 600 turns). This difference

is then centralized to account for the scan gaps with an
adjusted error by half of the scan gaps. The resonance width
increased to δω=ωβ ∼ 0.49� 0.04 between 0.72ωβ and
1.25ωβ upon increasing the crystal tilt to −67.5 nrad as
shown in Fig. 12(b). When the crystal was tilted by
−78.75 nrad (1.75 amplification), the resonance width
became δω=ωβ ¼ 0.605� 0.045 between 0.67ωβ and
1.32ωβ [see Fig. 12(c)].
Similarly, we conducted single frequency scans for

XFELO-A with different reflectivity (R) to observe the
effect on resonance widths. Upon changing the reflectivity

FIG. 11. Density plot of threshold value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln½G0q̂�

p
for static

misalignment for various q̂ and G0 values. Both x axis and y axis
are on a log10 scale.

FIG. 12. Power evolution in XFELO-A with R ¼ 0.8 ðq̂ ¼ 4Þ
subject to periodic misalignments with frequencies between 0.67
and 1.46 times the Betatron frequency with the crystal tilt
amplitude of (a) 45 nrad, (b) 67.5 nrad, and (c) 78.75 nrad.
The y-axis scale is log10.
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of the XFELO cavity to R ¼ 0.8333 so that q̂ ¼ 5, we
observed the instability width reduced to δω=ωβ ¼ 0.27�
0.04 between 0.83ωβ and 1.14ωβ as shown in Fig. 13(a).
Then, we lowered the cold cavity parameter to q̂ ¼ 3 by
setting R ¼ 0.75. As shown in Fig. 13(b), the instability
width widened to δω=ωβ ¼ 0.47� 0.04 between 0.74ωβ

and 1.25ωβ

In the above case studies, a more accurate estimation of
the frequency range for XFELO instability would require
performing simulations of more frequency scans with
smaller gaps. Alternatively, we can extend the expression
of Eq. (36) to periodic misalignments to estimate the
frequency range (resonance width) of instability. Using
the amplitude part and ignoring the oscillating component
from Eq. (34), we get

�
Arðωβ;ω; βÞ

aΣx

�
2

þ
�
Aϕðωβ;ω; βÞ

bΣϕ

�
2

≥ 2 ln½G0q̂�: ð39Þ

Substituting jAyðωβ;ω;βÞj¼jδyjω2
β½ðω2

β−ω2Þ2þð2βωÞ2�−1=2
into the above expression, we obtain the frequency range or
width of the instability given by

δω

ωβ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2β2

ω2
β

þ 1

2
F

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2β2

ω2
β

−
1

2
F

s
; ð40aÞ

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2β

ωβ

�
4

− 4

�
2β

ωβ

�
2

þ 2
ðδr=aΣxÞ2 þ ðδϕ=bΣϕÞ2

ln½G0q̂�

s

ð40bÞ

The textbook approach to approximate the resonance width
relies on solving for full-width at half maximum (FWHM)
of jArðωβ;ω; βÞj2 and is equal to 2β to first order in β for
optical cavities with β ≪ ωβ [35]. We follow Jose and
Saletan [35] to define a new parameter Q̂, which represents
the effective quality of XFELO cavities for these damped
oscillations and the sharpness of the resonance peak, where
Q̂ ¼ ωβ

2β ¼
ωβ

1−R to first order in β. The equivalent cold cavity
quality parameter in the absence of FEL gain would be
Q̂c ¼ RQ̂ ¼ ωβq̂. Then, we can effectively write the
FWHM width of the resonance for a cold cavity by

�
δω

ωβ

�
c

¼ 2β

ωβ
¼ 1

Q̂c
¼ 1

ωβq̂
: ð41Þ

The FWHM formulas for resonance width are useful to
identify the extent of unstable regions based only on the
information of Betatron frequency and reflectivity or the
cold cavity quality parameter of XFELOs under study.
From Eq. (41), we find FWHM widths in XFELO-A to be
ðδω=ωβÞc ≈ 0.32 for q̂ ¼ 4, ≈0.25 for q̂ ¼ 5, and ≈0.42 for
q̂ ¼ 3. While these estimates are not far from the resonance
widths we obtained from simulations in Figs. 12 and 13 for
the crystal tilt amplitude of 45 nrad, formulae (41) does not
indicate any truncation or expansion of the resonance width
when the misalignment amplitude is altered. This short-
coming is addressed by formulas (40), which includes the
misalignment amplitudes in the expression for resonance
width. Figure 14 shows the excitation curves obtained from
this calculation for case studies of Figs. 12 and 13 with
β ¼ ð1 − RÞ=2 from Eq. (40). The instability is set for
normalized amplitude equal to 1 and resonance widths
obtained from this calculation are slightly smaller than the
values recovered from the simulation studies earlier for
various q̂ values and applied misalignment amplitudes.
This discrepancy could be the result of observed differences
in frequency response between simulations and the har-
monic oscillator model we discussed earlier (see Fig. 10).
Nevertheless, the trend of decreasing/increasing resonance
widths with increasing q̂/misalignment amplitudes is
clearly observed.
Table II summarizes resonance widths obtained from

simulations and theoretical approximations of Eqs. (40) and
(41) for all XFELOs of Table I. The trend of decreasing and
increasing resonance widths with a respective increase in q̂

FIG. 13. Power evolution in XFELO-A with (a) R ¼ 0.8333
ðq̂ ¼ 5Þ, and (b) R ¼ 0.75 ðq̂ ¼ 3Þ subject to periodic misalign-
ments with single frequency between 0.77 and 1.46 times the
Betatron frequency with an amplitude of crystal tilt of −45 nrad.
The y axis is on a log10 scale.
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and misalignment amplitudes are effectively observed from
both theory and simulations. In simulation studies of
XFELO-A, the resonance widths estimated from theory
are found to be slightly smaller than simulation values. For
XFELO-C, the estimated resonance widths from the
simulation are found to be slightly larger compared to
the theoretically calculated values from Eq. (40). On the
other hand, the FWHM width formulas predict similar
widths obtained from simulations for various q̂with driving
misalignment amplitude corresponding to displacement
error of −15 μm of the first crystal. This crystal displace-
ment results in the radiation beam offset at the waist by
approximately (0.76σr; 0.82σϕ) from the original optical
axis with the driving amplitude of (−0.00001σr; 0.758σϕ)
at the steady state. Although XFELO-B has higher FEL
gain than XFELO-C, the FWHM resonance widths from
formulas (41) are the same for cavities with same q̂ values
because they have same Betatron frequency. The predicted
FWHM widths are also found to be similar for XFELO-B
when the first crystal is displaced by −20 μm and tilted
by 40 nrad, resulting in the radiation beam offset of
approximately (1.16σr; 0.87σϕ) at the waist from the
optical axis with the corresponding driving amplitude of

(0.178σr; 0.972σϕ). Again, we find the resonance widths
estimated from Eq. (40) to be slightly different than that
obtained from simulations for XFELO-B as well. We note
that we used the same damping factor β ¼ 1−R

2
in all of

these calculations of the theoretical estimates. Since
XFELO-B and XFELO-C have the same Betatron fre-
quency but different ideal FEL gains, it is feasible that
higher FEL gain resulted in a lower damping factor. The
accurate quantitative prediction of such a shift would
require a large parameter scan studies and is beyond the
scope of this article. Nevertheless, it is understood that the
excitation of the misalignment amplitude and resonance
width of instability can be reduced to a certain extent by
choosing a cavity with a larger Betatron frequency and
switching to a slightly higher FEL gain.

VIII. CONCLUSION

To sum up, we have presented a complete model
for XFELO modeling within the paradigm of paraxial
approximation for optical cavities with broadband optical
elements, whose angular acceptance ≫μrad. We have
incorporated methods and tools that allow us to simulate
transverse misalignments and their effects in XFELOs with
sufficient accuracy. We have studied the effects of trans-
verse misalignment in XFELOs and the emergence of
various phenomena due to the XFELO response. Static
misalignment results in the reduction of single pass FEL
gain and may result in nonlasing through early excitations.
XFELOs can be made resilient to static misalignment and
their excitations by either reducing outcoupling and loss in

FIG. 14. Normalized excitation amplitude plotted against
normalized frequency for the periodic misalignment of case
studies of (a) Fig. 13 for cavities with q̂¼3, q̂ ¼ 4, and q̂ ¼ 5
and (b) Fig. 12 in which crystal tilt of amplitude 45 nrad is
amplified by a factor of 1.5 and 1.75. The resonance frequency
widths are obtained when normalized excitation equals 1 based
on Eq. (40), beyond which instability kicks in.

TABLE II. Comparison of resonance widths obtained from
simulations and analytical formula of Eqs. (40) and (41).

q̂ ¼ R
1−R

Crystal Offset
(δx μm, δθ μrad)

Simulations
(δω=ωβ)

Theory
(δω=ωβ)

FWHM
ðδω=ωβÞc

XFELO-A: ωβ ≈ 0.79 G0 ¼ 0.44
4 (0, −0.045) 0.345� 0.035 0.194 0.32
4 (0, −0.0675) 0.49� 0.04 0.416 � � �
4 (0, −0.07875) 0.605� 0.045 0.517 � � �
5 (0, −0.045) 0.27� 0.04 0.167 0.25
3 (0, −0.045) 0.47� 0.04 0.336 0.42

XFELO-C: ωβ ≈ 1.65 G0 ¼ 1.03
4 (−15, 0) 0.17� 0.04 0.152 0.15
4 (−22.5, 0) 0.36� 0.04 0.267 � � �
4 (−26.25, 0) 0.39� 0.04 0.32 � � �
5 (−15, 0) 0.085� 0.045 0.15 0.12
2.5 (−15, 0) 0.27� 0.04 0.164 0.24

XFELO-B: ωβ ≈ 1.65 G0 ¼ 1.48
4 (−20, 0.04) 0.17� 0.04 0.223 0.15
4 (−30, 0.06) 0.42� 0.04 0.374 � � �
4 (−35, −0.07) 0.495� 0.045 0.446 � � �
5 (−20, 0.04) 0.085� 0.045 0.222 0.12
2.5 (−20, 0.04) 0.3� 0.04 0.248 0.24
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the cavity or switching to higher FEL gain without affecting
outcoupling. The highest frequency of the oscillatory
misalignment is limited by the Betatron frequency of the
XFELO cavity due to folding. Power fluctuations due to
higher frequencies are effectively damped, albeit resulting
in a reduced overall power output. Large frequencies,
greater than twice the Betatron frequencies, and their
excitations are not worrisome. Although smaller frequen-
cies do not lead to instabilities, the power output fluctua-
tions are imprinted from the misalignment effects. In other
words, larger misalignment amplitudes at lower frequencies
will affect XFELO output badly. Such effects should be
mitigated through precise alignment and active feedback
control. Finally, the regions of instability for static and
single frequency oscillatory misalignment can be predicted
by exploiting Gaussian gain model and driven harmonic
oscillator models. The resonance widths can be adjusted by
tuning Betatron frequency, cold cavity parameter Q̂c, and
ideal FEL gain in the XFELO.
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APPENDIX A: FREE-SPACE PROPAGATION

Free-space propagation of the Gauss-Hermite mode
coefficients comes into play when we implement misalign-
ment projection, time dependency, or slippage in FEL
simulations. For single frequency component in one dimen-
sion, we can solve for the free-space propagation in angular
space by

Ẽðϕ; zÞ ¼ e−ik
ϕ2

2
ðz−z0ÞẼðϕ; z0Þ; ðA1Þ

where z0 is the starting position and z is the position of
interest at which we want to compute the field. We have
dropped the constant phase kðz − z0Þ for convenience. The
tilde denotes the field expansion in angular space, defined by
the Fourier transformof the field in the coordinate space, i.e.,

Ẽðϕ; zÞ ¼ 1

λ

Z
dr e−ikϕrEðr; zÞ

¼
Z

dr e−ikϕr
X
l

ElðzÞ
Exp

h
− r2ð1−iz=zRÞ

4σ2rð1þz2=z2RÞ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ll!σrð1þ z2=z2RÞ1=2

q Hl

�
r=σrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ z2=z2RÞ
p �

e−iðlþ1=2Þatanðz=zRÞ; ðA2Þ

where we substituted Eðx; zÞ from Eq. (1) and kept only the modes in one transverse direction. We can solve the above
expression using integral properties of Hermite polynomial generating function to obtain the one-dimensional field in
angular space

Ẽðϕ; zÞ ¼
X
l

ElðzÞM̃lðϕÞ;¼
X
l

ElðzÞ
ð−iÞlffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λσϕ2

ll!
q e

− ϕ2

4σ2
ϕ

ð1þiζÞ
Hl

�
ϕffiffiffi
2

p
σϕ

�
; ðA3Þ

where σx0 ¼ σϕ and ζ ¼ z=zR. Now, we can apply field expression from Eq. (A3) in Eq. (A1) and use mode projection to
obtain the expression for outgoing mode coefficients. Using projection, integration, φ ¼ ϕffiffi

2
p

σϕ
, and zR ¼ 1

2kσ2ϕ
, we get

EnðzÞ ¼
X
l

Elðz0Þ
i3lþnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2lþnl!n!
p

Z
dφe−ikφ

2σ2ϕðz−z0Þe−φ2½1þiðζ0−ζÞ=2�HlðφÞHnðφÞ

¼
X
l

Elðz0Þ
i3lþnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2lþnl!n!
p

Z
dφeiφ

2ðζ0−ζÞ=2e−φ2½1þiðζ0−ζÞ=2�HlðφÞHnðφÞ

¼
X
l

Elðz0Þ
i3lþnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2lþnl!n!
p

Z
dφe−φ

2

HlðφÞHnðφÞ

¼
X
l

Elðz0Þ
i3lþnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2lþnl!n!
p 2nn!

ffiffiffi
π

p
δn;l ¼ Enðz0Þ: ðA4Þ

This shows that the Gauss-Hermite field mode coefficients remain constant under free-space propagation besides
accumulating the constant phase.
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APPENDIX B: ABCD PROPAGATION

We follow Siegman [20] to derive the effect of ABCD
matrix on the propagation of Gauss-Hermite modes of
Eq. (1b). Let us define the complex beam parameter q as

1

qðzÞ ¼
1

RðzÞ þ
2i

kw2ðzÞ ;

where RðzÞ ¼ z½1þ ðzR=zÞ2� is the radius of curvature, and
wðzÞ ¼ 2σr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

p
is the waist size at any position

z. Then, the field amplitude of the unnormalized nth
transverse mode reduces to

unðr; zÞ ¼ αnwnðzÞExp
�
ikr2

2qðzÞ
�
Hn

�
r

ffiffiffi
2

p

wðzÞ
�
: ðB1Þ

The output of this Gauss-Hermite mode after passing
through an ABCD system is solved using Huygen’s integral
for wave propagation and is given by

unðr2Þ ¼ eikL
Z

dr1Kðr2; r1Þunðr1Þ; ðB2Þ

where the ABCD kernel of propagation is

Kðr2; r1Þ ¼
1ffiffiffiffiffiffiffi
iBλ

p Exp

�
ik
2B

ðAr21 − 2r2r1 þDr22Þ
�
;

and L is the length of the ABCD system [20]. Since kL is
fixed in the context of this report and presented analysis, we
ignore the phase prefactor of L and solve Eq. (B2) to get

unðr2; zÞ ¼ αn;2wn
2ðzÞExp

�
ikr22

2q2ðzÞ
�
Hn

�
r2

ffiffiffi
2

p

w2ðzÞ
�
;

where the new mode coefficient, new waist size, and the
new complex beam parameter take the following form:

αn;2ðzÞ ¼ αnðzÞ
�
Aþ B

qðzÞ
�

−ðnþ1
2
Þ
; ðB3aÞ

w2
2ðzÞ ¼

�
w2ðzÞ

�
Aþ B

qðzÞ
�
−
4iB
k

��
Aþ B

qðzÞ
�
; ðB3bÞ

and

1

q2ðzÞ
¼ 1

B

�
D −

qðzÞ
AqðzÞ þ B

�
: ðB3cÞ

Since AD − BC ¼ 1, in general, the expression for the
outgoing complex beam factor q2 reduces to the well-
known expression

q2ðzÞ ¼
AqðzÞ þ B
CqðzÞ þD

: ðB4Þ

In the fourth paragraph of Sec. II B, we mentioned that
for periodic cavities, the required criterion for stability of
periodic cavities is j AþD

2
j < 1, the result which one could

easily arrive at by solving for eigenvalues in periodic
resonators. There was no indication of additional con-
straints or requirements. For a Gaussian mode beam to
propagate in such a stable periodic cavity, Eq. (B4)
indicates that the complex beam parameter q be self-
consistent from one turn to the next (i.e., q2 ¼ q1).
Once we solve for the self-consistent complex beam
parameter from Eq. (B4), which gives

1

qþ=−
¼ D − A

2B
� i
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
AþD

2

�
2

s
; ðB5Þ

we perturb the incoming beam parameter by a tiny quantity
δq to observe its effects on the outgoing parameter.
Keeping the terms upto first order in δq after expansions,
the outgoing parameter becomes

q2 ¼
Aq1 þ B
Cq1 þD

þ δq
ðCq1 þDÞ2 :

When we substitute the self-consistent property (i.e.,
q2 ¼ q1) in the perturbation term, we obtain

q2 ¼ q2 þ δq2 ¼ q2 þ
δq

ðAþ B=q1Þ2
: ðB6Þ

Based on the above expression, the stability of the beam
parameter depends on the growth rate of second term, ðAþ
B=qÞ in particular. For the self-consistent parameter of
Eq. (B5), this expression takes the form

Aþ B
qþ=−

¼ ei sign½B�φ; ðB7Þ

where φ ¼ acos½AþD
2
�. We replaced the signs of stable

eigenvalue by the sign of B component because a real
spot size (and therefore the stable eigenvalue) in Eq. (B5) is
decided by the sign of B. The definition of the beam
parameter suggests that for jðAþD

2
Þj < 1, the optical

cavity will have a confined and stable mode with a real
waist size; in such cavity systems, the perturbations
oscillate about a fixed orbit and hence, are perturbations
stable as well as geometrically stable [as discussed in
geometric optics of Sec. II B]. Such systems define a radius
of curvature given by R ¼ 2B

D−A and Rayleigh range zR ¼
jBj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðAþDÞ2=4

p
for a self-consistent Gauss-Hermite

mode. If jðAþD
2
Þj ≥ 1, the system is rendered unstable as

GANESH TIWARI and RYAN R. LINDBERG PHYS. REV. ACCEL. BEAMS 25, 090702 (2022)

090702-20



Aþ B
qþ=−

¼ e�φ̄ grows/decays exponentially for unstable

eigenvalues with φ̄ ¼ acosh½AþD
2
�.

For stable and periodic ABCD transport system with the
self-consistent beam parameter defined for Gauss-Hermite
modes, each field mode accumulates modal phase upon
passing through it. The phase accumulated by a one-
dimensional field with mode number n per turn is given by

αn;2
αn

¼
�
Aþ B

qþ=−

�
−ðnþ1

2
Þ

¼ e−iðnþ1=2Þsign½B�acos½AþD
2
�: ðB8Þ

An alternate derivation of the accumulated phase shift for
Gaussian beams has been derived in Ref. [36] and
discussed thoroughly by Arai [37].

APPENDIX C: MISALIGNMENT PROJECTION

From Eq. (16), we have

Pn;lðrr;ϕrÞ

¼ 1ffiffiffiffiffiffi
2π

p
Z

dreikðr−rrÞϕrMlðr − rr;Lu=2ÞM�
nðr;Lu=2Þ

¼ e−ikrrϕrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2nþln!l!

p
Z

dyeiκye−½y2þðy−YrÞ2�=2Hlðy − YrÞHnðyÞ

¼ e−ðiκYrþY2
r=2ÞeðiκþYrÞ2=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2nþln!l!
p

Z
dye−½y2−ðiκþYrÞ=2�2

×Hlðy − YrÞHnðyÞ; ðC1Þ

where we have substituted

κ ¼
ffiffiffi
2

p
kσrϕr; y ¼ r

σr
ffiffiffi
2

p ; and Yr ¼
yrr
r

:

Let p ¼ y − ðiκ þ YrÞ=2, then dp ¼ dy. Similarly, for α ¼
ðYr þ iκÞ=2 and β ¼ ðiκ − YrÞ=2, we get y ¼ pþ α and
y − Yr ¼ pþ β. Substituting these values in (C1), the
integral takes the well-known form for Hermite polyno-
mials (tabulated in Ref. [38])

Z
dye−½y−ðiκþYrÞ=2�2Hlðy − YrÞHnðyÞ

¼
Z

dpe−p
2

Hlðpþ βÞHnðpþ αÞ

¼
	
2n

ffiffiffi
π

p
l!ðαÞn−lLn−l

l ð−2αβÞ; ½l ≤ n�
2l

ffiffiffi
π

p
n!ðβÞl−nLl−n

n ð−2αβÞ; ½n ≤ l�: ðC2Þ

Since −2αβ ¼ ðκ2 þ Y2
rÞ=2 and e−ðiκYrþY2

r=2Þeð
iκþYr

2
Þ2 ¼

e−iκYr=2e−ðκ2þY2
rÞ=4, the misalignment projection matrix

becomes

Pn;lðrr;ϕrÞ
¼ e−iκYr=2e−ðκ2þY2

rÞ=4

×

8>>>>><
>>>>>:

ffiffiffiffiffi
l!
n!

r �
iκþYrffiffiffi

2
p

�
n−l

Ln−l
l

�
κ2þY2

r

2

�
; ½l≤ n�

ffiffiffiffiffi
n!
l!

r �
iκ−Yrffiffiffi

2
p

�
l−n

Ll−n
n

�
κ2þY2

r

2

�
; ½n≤ l�:

ðC3Þ

When we rewrite the above expression in terms of rr and ϕr

by substituting Yr¼rr=ðσr
ffiffiffi
2

p Þ, κ¼ kσrϕr

ffiffiffi
2

p ¼ zRϕr=
ðσr

ffiffiffi
2

p Þ, and zR ¼ σr=σr0 ¼ 2kσ2r , we arrive at Eq. (17).
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[35] J. V. José and E. J. Saletan, Scattering and linear oscil-
lations, in Classical Dynamics: A Contemporary Approach
(Cambridge University Press, Cambridge, England,
1998), pp. 147–200.

[36] M. F. Erden and H. M. Ozaktas, J. Opt. Soc. Am. A 14,
2190 (1997).

[37] K. Arai, On the accumulated round-trip Gouy phase shift
for a general optical cavity, Laser Interferometer Gravita-
tional Wave Observatory, Technical Report No. LIGO-
T1300189-v1, 2013.

[38] I. Gradshteyn and I. Ryzhik, in Table of Integrals,
Series, and Products, 7th ed., edited by A. Jeffrey and
D. Zwillinger (Academic Press, Boston, MA, 2007),
pp. 631–857.

GANESH TIWARI and RYAN R. LINDBERG PHYS. REV. ACCEL. BEAMS 25, 090702 (2022)

090702-22

https://doi.org/10.1109/3.825873
https://doi.org/10.1109/3.825873
https://doi.org/10.1103/PhysRevA.77.063831
https://doi.org/10.1103/PhysRevA.77.063831
https://doi.org/10.1364/AO.5.001550
https://doi.org/10.1103/PhysRevSTAB.10.034801
https://doi.org/10.1103/PhysRevSTAB.10.034801
https://doi.org/10.1063/1.1651874
https://doi.org/10.1103/PhysRevSTAB.12.030703
https://doi.org/10.1103/PhysRevSTAB.12.030703
https://doi.org/10.1103/PhysRevSTAB.14.010701
https://doi.org/10.1364/JOSAA.14.002190
https://doi.org/10.1364/JOSAA.14.002190

