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Hybrid macroparticle algorithm for modeling space charge
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A space charge algorithm is constructed that is a hybrid between envelope and multiparticle models. The
transverse dynamics is simplified by tracking the transverse envelope of each macroparticle. The equations
of motion are derived from the Hamiltonian-fluid formulation of the Vlasov Poisson system. A novel
electrostatic self-field solver is derived that solves directly for the self-consistent on-axis potential and
linear defocusing force, including longitudinal and beam pipe boundary conditions. The implementation of
the algorithm, HYPER3D, is presented. It is tested against the particle-in-cell code WARP, using various
configurations of a periodic focusing structure with rf cavities. The required number of macroparticles is
reduced substantially compared to standard particle-tracking codes. This model is well adapted to cases
where the transverse dynamics is linear and where the details of the longitudinal dynamics are the principal
point of interest; an example is where a dc beam is converted to a bunched beam.

DOI: 10.1103/PhysRevAccelBeams.25.084602

I. INTRODUCTION

Many reduced dimension models exist to study space-
charge effects in accelerators. Commonly, symmetries can
be exploited to reduce the dimensionality of the beam
distribution. Then, to discretize the algorithm, the particle
distribution is either described by a set of macroparticles
which are statistical samples of the distribution or alter-
natively, by a set of statistical moments.

The envelope model including space charge derived by
Sacherer in Ref. [1] is unmatched in computational
efficiency for modeling beams with space charge. This
has many benefits including fast optimization and fast
fitting making it ideal for online model-based tuning and
iterative design, as implemented in TRANSOPTR [2-4].
However, the envelope model is limited to describing
linear forces from optics and space charge. For applications
outside this scope, significantly more complicated multi-
particle simulations are required.

In contrast to moment methods, multiparticle codes
model the beam using many computational particles.
These computational particles can be considered as stat-
istical samples of the beam distribution, introducing stat-
istical noise into the calculation. Many multiparticle codes
use reduced complexity descriptions of the beam by using
lower dimensional particles or by exploiting a symmetry,
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yielding performance advantages. The reduced model,
SPUNCH [5], was designed to study longitudinal dynamics.
It tracks uniform discs of charge, with a fixed radius
in longitudinal phase space. However, this cannot self-
consistently model the space charge effects of both longi-
tudinal and transverse focusing; the transverse size needs to
be prescribed. A reduced model for electron accelerators
with axial symmetry, HOMDYN [6], tracks discs of charge
with a varying radius in 4D radial and longitudinal phase
space. The reduction made by HOMDYN is limited to
cylindrically symmetric optics: it cannot model quadru-
poles. The more standard approach is to use a 6D phase-
space multiparticle simulation such as the fully featured
particle-in-cell code WARP [7]. It tracks macroparticles in
6D phase space but also features reduced dimension
macroparticles and field solvers.

This paper presents the derivation and implementation of
a hybrid simulation that utilizes both a macroparticle and
moment based discretization of the beam. The system of
equations is derived using the Poisson bracket formalism for
the Maxwell Vlasov system derived by Morrison [8—10].
This mathematical formalism was applied to the Vlasov
system in the context of plasmas and accelerators by
Evstatiev and Shadwick, [11,12]. Before then, Shadwick
also proposed the use of this formalism to describe the
envelope model for accelerators [13]. This method was later
successfully applied to model a plasma-laser interaction in
1D using a grid-based approach [14]. Shadwick also
proposed a ‘“‘semi-discrete” model in the conclusion of
Ref. [13], which was never implemented, until now.

This hybrid scheme describes the beam in 6D phase
space while reducing the detail of the beam’s distribution
transversely. This reduction is designed specifically for the
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case where the transverse dynamics is well described by
linear optics, but the longitudinal is not.

First, the Poisson bracket formalism is described and the
discretization scheme is presented. The discrete system is
reduced to a Poisson system of ordinary differential
equations, which is later cast into canonical form for
symplectic integration. The algorithm is implemented in
the RUST programming language and features multithread-
ing. The code, HYPER3D, is distributed by Ref. [15] with a
GNU LGPLv3 license.

II. HAMILTONIAN FLUIDS FOR
PARTICLE DISTRIBUTIONS

Consider a single species of a particle with mass m and
charge ¢g. Any collection of these particles is completely
described by the particle density function of the 6D phase-
space coordinates: f(x,p, t). The Hamiltonian of this dis-
tribution of particles is the single particle Hamiltonian, in this
case, nonrelativistic, integrated over the distribution:

1
2m

= [ @xapsixpn (5 - Ak +apixn)).

(1)

where the single particle Hamiltonian depends on the electric
potential ¢» and magnetic vector potential A.

Physical quantities of interest can be written as func-
tionals of the particle distribution function. The Hamiltonian
is one such functional, and as we will see, statistical
moments are functionals as well. The Poisson bracket
operates on functionals of f. For example, let F[f] and
G|f] be arbitrary functionals of f, then the Poisson bracket
between them is

oF oG
F.G} = | &xd’ ) (2
(r6) = [exeprpn|35] @
where “[,-]” is the canonical phase-space bracket with
explicit form:
la.b] = Vya-V,b—Vya- Vb, (3)

for phase-space functions a(x,p) and b(x, p). The varia-
tional derivative of a functional is given by

%/d3xd3pa(x,p)f(x,p,t) =a(x,p). (4

where a(x, p) is a function of the phase-space variables; see
Appendix for more details.
III. HYBRID MOMENT MACROPARTICLES

The particle distribution f is divided into N, independent
distributions:

fxp) =3 fi(xp.). (5)
i=1

Each of these groupings is a macroparticle which we
assume has the form:

filx.p. ) =wifi (x*.pr.0R(z=(2),)8(p. = (o)), (6)

where w; is the weight of the ith macroparticle and f7- is the
transverse distribution of the macroparticle, which remains
general. Longitudinally, the macroparticle is described by
its centroid: ((z);, (p.);)- It has no longitudinal momentum
spread but is distributed in z using a particle kernel function
R, with a fixed width. The kernel function can be chosen to
be a Dirac delta distribution, or an arbitrary-sized localized
distribution, allowing for different amounts of smoothing
[[16] Chap. 5]. The longitudinal macroparticle discretiza-
tion is identical to the one presented in Ref. [11], whereas
the moment component of the discretization is a simplified
version of the discretization presented in Ref. [13].

The brackets, (-);, denote a quantity averaged over the
distribution function f;, as in

@ = [ @xEpfixpaxp). ()

1

where the 1/w; term normalizes by the number of particles
in the macroparticle.

The envelope method tracks the set of second statistical
moments of a beam distribution in phase space. Sacherer
showed that the system of equations that tracked these
second moments was self-consistent and closed if only
linear forces were considered and that the linear force of the
self-field only depended on the second moments [1,17].
Here, we treat the transverse distribution of each macro-
particle using the general moment approach, a generaliza-
tion of the envelope method derived in Ref. [13]. We
assume that f7-(x*, pt, 7) is centered on the axis so that the
first moments are zero. Furthermore, for the purposes of
this paper, we take the x and y phase spaces to be
uncorrelated. Thus, the hybrid macroparticle, labeled i,
is parameterized by the following coordinates:

X; = (<x2>ia <xpx>i’ <P§>i’ <y2>i’ <ypy>i’ <p§>i’ (2, <pz>i)'
(8)

A. Reduced Poisson bracket

After using Eq. (5) to split the distribution function into
many smaller distributions, the Poisson bracket becomes a
summation:
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{F.G} = Z/d3xd3pfl X, p. )E—;,g—ﬂ. (9)

This Poisson bracket, with a given Hamiltonian, can be
used to directly compute the equations of motion using
functional derivatives without loss of generality. However,
the bracket may be simplified to a reduced form in terms of
discrete variables and partial derivatives, as follows. Let
F[f] and G[f] be functionals of f, if they can be written as
functions of coordinates, called F(X;) and G(X;), respec-
tively, we may compute the Poisson bracket using the
following:

N,
{F.G} = Z (Vx,F)T-Bi(X)) - (Vx,G),  (10)
where B;(X;) is called the Poisson structure matrix, it is a
generalization of the symplectic matrix and is computed by
taking the Poisson bracket between each pair of coordi-
nates. For a thorough mathematical treatment of the
Poisson system, refer to [[18] Chap. VII Sec. 2].

The equations of motion follow from applying the
Poisson bracket to the Hamiltonian and the coordinates
in the usual way

X; = {X;.H} = By(X;) - (Vx,H). (11)
where H is the Hamiltonian written in terms of the discrete
coordinates. For a set of coordinates that are canonically
conjugate, this matrix will be the symplectic matrix. For our
case, the matrix is partitioned into blocks:

B 0 0
B,=|0 B 0], (12)
0 0 B

where each of the block matrices is

1 [ 0 2<x2>i 4<xpx>i_
Bi=—| 22 0 20 | (13)
CL-4p) =208 0]
0 2(y%); 4lypy)i]
B= | 20% 0 20 | (4
CL-40py) —20p2; 0

. 1[0 1
Bi_W,[—l 0}. (15)

The structure matrix, B;, is antisymmetric and it can be
used to verify that the reduced Poisson bracket satisfies the
Jacobi identity.

B. Discrete Hamiltonian

The Hamiltonian, Eq. (1), is a functional of f(x, p, ) in
general. However, in order to use Eq. (11) to find the
discrete equations of motion, we need to find H, a function
of the discrete coordinates. To make this reduction, the
Hamiltonian must be Taylor expanded in the transverse
directions, about the reference trajectory. It is then trun-
cated to include only terms up to second order. This
guarantees that the discrete system of equations relies on
moments only up to second order. This procedure follows
exactly the usual Hamiltonian approach to linear optics
[19]. For a more general recipe, Shadwick derives a
relativistic discrete Hamiltonian using a variational
approach in Ref. [13].

For our case, we expand Eq. (1) in the electrostatic and
nonrelativistic limits, yielding

2
p
i [ oxap st (B ann + a0t

+ g%y (2. t)>, (16)

where we have defined the on-axis potentials:

#(e.t) = 95, 1)
2

pulen =050 (19
2

nolen =050 (19)

neglecting all steering and xy-correlating terms, for sim-
plicity. Finally, substituting the discrete form of the particle
distribution and integrating give the discrete Hamiltonian:

+ (p.)?)

+qwl-/dzR(z—< D) (@ + ()i + ) ioyy) |-

(20)

IV. ELECTROSTATIC SPACE CHARGE SOLVER

The electrostatic space charge solver is based on the
uniform linear finite element discretization in the longi-
tudinal direction. For a grid with N, points and spacing £,
the linear finite element corresponding to grid point « is

1__|Z Za' |Z_Za|<h/2

21
0 else, ( )

wa(z) = {
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where z, is the coordinate of the grid point. The self-
potential is now discrete in the longitudinal direction and
left to be general transversely

Z Pu(x

Under this discretization, Poisson’s equation becomes a
system of partial differential algebraic equations for the set
of transverse fields, ¢, (x*, 1), as follows:

D a(2)- (22)

N,

g
1
D (MypAys = Dog)pp(x*, 1) = _apa<xl’ 1), (23)
=1

for all a= L,...,N, and where A,: denotes the 2D
Laplacian with respect to x*. The finite element mass
matrix M and stiffness matrix D appear in these equations.

The components of these matrices are:

M= [ deva@ws(a).

dWa( ) dWﬁ( )
D= [ dz ,
o / dz dz

which are all constants that depend on the grid spacing 4.
The D matrix denotes the discrete second derivative.

After factoring out 4, the matrices M and D are simulta-
neously diagonalizable. This property applies to both met-
allic and periodic boundary conditions [20]. We call the
orthogonal matrix of the eigenvectors of both matrices S. The
eigenvalues of M are called 2 and similarly for D, 12 all of
which are positive real numbers [20].

The general solution to Poisson’s equation in this
discretization scheme for an arbitrary charge distribution is

N,

¢(X’ t) = z S(I[J’S/}y l//a(z) (G/} *py)(xl)’ (24)

apy=1

where py(xL, t) is the transverse charge density at the yth
grid point. Also, (Gg* p,) denotes the 2D convolution
between the charge density and the Green’s function

(Gy#p,)(x1) = / PEG,(x" —E)p,(E).  (25)

The Green’s function is the potential of a Dirac delta
point charge which vanishes at infinity:

L (e SN S
dreghiM "0\ \| p2aM ’

where K is the zeroth order modified Bessel function of
the second kind. Additionally, the image charge term for

Go(x+) =

the beam pipe may be computed by reflecting the charge
distribution about the 2D circular domain in the usual way.

The full 3D potential is given by the above formulas, but
only the on-axis potential and defocusing force need to be
calculated for the transverse linear optics. So, the on-axis
potential is

N,

(P<Z, t) = Z Saﬁ’Sﬂy Wa(z) (Gﬁ * py) (XL
afy=1

—0). (27)

Similarly, the on-axis linear defocusing force is given
explicitly by taking partial derivatives of the convolution
and then evaluating on axis, yielding

(Gﬂ * py)

(pxx 2, t Z N /JSﬁ}/Wa a ( + _0)’ (28)
a,fy=1
N,
*(Gp*py)
Pnle) = D SupSyal) LT (= 0). (9
afy=1

These sums are computed assuming that the beam is
centered on the axis, and at any given slice in z, the
transverse distribution of the beam is a uniform elliptical
distribution. Given these assumptions, each 2D convolution
can be simplified to a 1D numerical integral, which is
evaluated using the trapezoid rule, in the implementation.

The algorithm for solving the self-field is as follows:
First, the average beam size and charge are computed at
each grid point taking O(N, + N,) computational time.
Then, the O(N gz) convolution terms are computed. Finally,
the summations with the § matrices take O(N,*) compu-
tation time.

V. INTEGRATION

Similar to other PIC codes, this algorithm relies on using
an explicit symplectic integrator, despite not being symplec-
tic overall. As pointed out by Evstatiev [11], PIC algorithms
neglect critical terms on the order of accuracy of the
discretization, which leads to loss of energy conservation,
even with arbitrarily small time steps. In contrast, energy-
conserving methods are derived from variational principles
in order to retain these critical terms [11]. The algorithm,
derived in this work, makes the same kind of approximation
as conventional PIC codes and is not symplectic.

To integrate the macroparticles using a typical symplectic
integrator, they must be transformed into a set of canonical
coordinates and conserved quantities. A Poisson system is a
set of coordinates equipped with a Poisson bracket that can be
used to find the equations of motion. For any Poisson system,
there exists a coordinate transformation to a set of canonical
coordinates and conserved quantities, this is the result of the
Darboux-Lie theorem [18]. In our case, each macroparticle is
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a Poisson system formed by its coordinates, the set of
moments, Eq. (8), and the discrete Poisson bracket,
Eq. (10). Thus, there exists a canonical coordinate system
for the macroparticles. In general, finding the set of canonical
coordinates is nontrivial.

First, recall that for linear optics, the rms emittance is a
conserved quantity. Similarly, the conserved quantities are
the x and y emittance of each macroparticle

E5(X) = /()P = (xp)2, (30)

E(X) =/ 0?)lp2)i = rpy)2. (31)

Note that these conserved quantities, £ and 5{ , must be
initialized for each macroparticle and then remain
unchanged throughout the entire simulation. Then we
can identify the canonical coordinates of each macro-
particle as

%= (01 P1LO} PO PY)

_ 2w (xp2)i <ypy>i
<<”’<ﬂﬁ 0%

<mmm@, (32)

<y2>i’ Wi

’

Since these are canonical pairs, the structure matrix of these
coordinates, B(X;) is the symplectic matrix. The factors of
w; indicate that the canonical momenta are the total
mechanical momentum of all the particles represented by
the macroparticle.

The discrete Hamiltonian is also coordinate transformed
to find the final Hamiltonian

+qw; / dzR(z = Q) (9 + (0F)? pux + (Qly)zq,yy)]_
(33)

Finally, the equations of motion can be obtained from
Hamilton’s equations. In the code HYPER3D, integration is
done using the asynchronous leapfrog method [16] and also
provides the symplectic Euler and Stromer-Verlet integra-
tion schemes for comparison.

VI. VALIDATION

The primary motivation for this algorithm is to self-
consistently model the process of bunching, the transition
from a dc to a bunched beam. This process occurs in the
injection line to the TRIUMF 500 MeV cyclotron. The dc
beam of H™ ions is extracted at 300 keV and is transported

down an electrostatic quadrupole lattice; bunching is driven
by 2 two-gap rf bunchers.

A. Electrostatic quadrupole lattice

For testing, the electrostatic quadrupole lattice of the
injection system is simplified: it is approximated by a
focus-drift-defocus-drift (FODO) lattice. The electrostatic
quadrupoles have a length of 12.1 cm and an aperture radius
of 2.54 cm and they are separated by a drift of 25.0 cm. The
electrodes have an applied potential of +3.5 kV giving an
integrated gradient of 6.56 kV/m. The dc beam of H™ ions at
300 keV has a current of 0.5 mA and a 4 rms geometrical
emittance of 6.5 um in each direction.

The hybrid model is tested against the envelope code
TRANSOPTR [3,21] and the multiparticle code WARP [7].
TRANSOPTR is run to model a 4D dc beam with space charge.
For both particle-based codes, the simulation parameters
were adjusted to achieve around 1% relative errors in the
envelope compared to TRANSOPTR while minimizing the
total simulation time. The code WARP is run with a
Kapchinskij-Vladimirskij transverse distribution.

Both HYPER3D and WARP are initialized with a longi-
tudinal thermal distribution with an rms momentum spread
of 0.054%, corresponding to the source temperature of
2000 °C. The transverse distribution is initialized using the
built-in envelope solver in WARP. For both WARP and
HYPER3D, the initial beam and self-field grid initially span
one FODO cell at the start of the lattice. The self-field grid
is initialized with periodic longitudinal boundary condi-
tions. The beam is tracked through the lattice until it has
completely crossed the final view screen.

The waRP simulation uses 100,000 particles and a grid
resolution of 64 x 64 x 64 in x, y, and z respectively. The
hybrid model uses 50 hybrid macroparticles with a self-
field grid of 64 longitudinal grid points. Both macroparticle
codes used 50-time steps per FODO lattice period.

The 2 rms envelope over the first five FODO lattice
periods is shown in Fig. 1. The beam size calculated in both
WARP and the hybrid model agrees with TRANSOPTR, with
the maximum relative error of WARP being 1.7% and the
maximum relative error of HYPER3D is 0.46% with respect
to TRANSOPTR. The hybrid discretization scheme of
HYPER3D is able to more accurately resolve the transverse
linear optics with O(N,'/?) the number of macroparticles
as WARP, or approximately one macroparticle per grid point.

B. Quadrupole lattice with bunching

The same quadrupole lattice is extended to 28 periods,
approximating the bunching distance of the injection line to
the TRIUMF cyclotron. This model includes two dual gap
rf bunchers operating at the first and second harmonics of
the TRIUMF cyclotron, 22.61 MHz and 45.21 MHz
respectively. The first buncher thus has i = 33.53 cm
and the second A = 16.77 cm. The first buncher is placed
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FIG. 1. Root mean square transverse beam size over the first

five FODO lattice periods for different codes.

in the middle first drift of the third lattice period, the second
buncher is placed 4.5 m downstream of the first.

Both bunchers are described by their longitudinal elec-
tric field on the axis. This is implemented into both
HYPER3D and WARP as an axial multipole expansion of
the electric field with a time-varying amplitude. The peak
voltages of the bunchers are 4.704 and 2.450 kV, for the
first and second buncher, respectively. These values were
the result of an optimization of bunching done in Ref. [22].

The codes are initialized with the same parameters as the
FODO test, with the following exceptions: both codes are
run using 100,000 macroparticles and 128 longitudinal grid
points. The 2 rms beam size is shown over the course of the
bunching process in Fig. 2. The envelopes computed by

04F
El WAAN ,\,\/\/\f\nnf\/’\:\/\/\/\/\/\/\l\l\l\l\l\'\"
02t —— HYPER3D |
] WARP

0.0 } } } } } } } t
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FIG. 2. The 2 rms beam envelope, over the bunching FODO
lattice periods for different codes. The bunchers are centered at
the locations indicated by the vertical lines.

WARP
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0.000
HYPER3D
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FIG. 3. The longitudinal phase space portrait measured at the
final view screen for the WARP code (above) and HYPER3D
(below) with 100,000 macroparticles. The color indicates the
normalized particle density.

WARP and HYPER3D agree reasonably well, with a maxi-
mum relative difference of 7.9% transversely and 2.8%
longitudinally. The phase space of the bunch at the final
screen is shown in Fig. 3 for both codes and is nearly
indistinguishable.

C. Long lattice with longitudinal focusing

To test the long term stability of HYPER3D, the FODO
lattice was extended to 1000 periods, a total length of
741 m. Additionally, to provide longitudinal focusing, a
copy of the first-harmonic rf buncher was placed in the
middle of every 10th FODO lattice. These rf bunchers were
tuned to a frequency of 23.50 MHz so that each buncher
would operate with the same phase and a voltage of 5.0 kV
to provide adequate focusing.

The bunch is initialized with a 200 ym longitudinal
4 rms emittance and contains 1.1 pC of charge. In HYPER3D,
the bunched beam was initialized as a uniform 2D ellipse in
longitudinal phase space with 500 macroparticles and 128
grid points. The transverse envelope of the beam was
initialized using the output of TRANSOPTR with a quadratic
taper in z, to represent the ellipsoidal shape. The total run
time of this simulation was 221.3 s on the author’s
computer, using all four cores (see below). The emittance
growth of the beam over the course of the simulation is
shown in Fig. 4. The longitudinal emittance fluctuates
about the initial emittance with a maximum deviation of no
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FIG. 4. The relative growth of the 4 rms emittance of a beam in a long focusing channel simulated in HYPER3D.

more than 1.5%. The transverse emittance is conserved
exactly, as a consequence of the canonical coordinate
transformation.

VII. PERFORMANCE

The performance of HYPER3D was tested for algorithmic
scaling, and the performance in the previous calculations
was compared to the other codes. All computations were
produced with a 3.5-GHz Intel quad-core desktop PC.

A. Performance scaling

The single-threaded performance of HYPER3D was evalu-
ated using the FODO lattice simulation as the benchmark to
verify the algorithmic scaling. The average time to compute
each time step for one run is calculated for many different
discretization parameters and is shown in Fig. 5. The time
to calculate one time-step scales linearly with the number of
macroparticles and with grid points slightly more than
quadratically: between o N,*! and o« N 2. This result is
consistent with the self-field solver, showing that evaluat-
ing the N g2 convolutions dominates the computation time
of the self-field calculation.

B. Quadrupole lattice with bunching

For the injection line simulation, both codes were run
with equivalent discretization parameters for direct com-
parison purposes. The total run time for HYPER3D was
79.0 s and 94.4 s with WARP, both running multithreaded.
However, note that the total run times are not directly

comparable since each simulation involves different post-
processing computations. A more direct comparison is the
average computation time per time step, which for WARP
was 61.2 ms single-threaded, and 50.8 ms multithreaded,
compared to HYPER3D running single-threaded 78.3 ms,
and multithreaded 43.5 ms. For equivalent numbers of grid
points and macroparticles, the codes HYPER3D and WARP
have comparable performance.

C. Electrostatic quadrupole lattice

To complete the FODO lattice calculation using the
macroparticle codes, the average computation time per time
step was 19.8 ms for WARP and 1.68 ms for HYPER3D, both
were run multithreaded, with the same step size; taking
250-time steps for the beam to span the plotted region in
Fig. 1. The disparity in computation time between WARP
and HYPER3D, in this case, is due to the latter requiring 2000
times fewer macroparticles. In stark contrast, the total run
time for TRANSOPTR was only 11 ms.

D. Performance discussion

The FODO example demonstrates that the minimal
number of macro-particles required for HYPER3D to resolve
the transverse dynamics is approximately one per longi-
tudinal grid point. This enables the code HYPER3D to run very
fast coarse simulations with few macroparticles, limited only
by the longitudinal sampling error. This trade-off is ideal for
specific situations including design, optimization, training
surrogate models such as in Ref. [23], and online
models [24]. However, the hybrid discretization scheme
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FIG. 5. The single-threaded performance of the HYPER3D code, measured as the average time in seconds per time step, for different

numbers of grid points and macroparticles. The computation time scales linearly with the number of macroparticles and slightly more

than quadratically with the number of grid points.

cannot be used to predict losses with high precision, similar
to an envelope code. For large-scale simulations, the algo-
rithmic scaling of HYPER3D is less advantageous compared to
standard PIC codes.

VIII. CONCLUSION

HYPER3D is the first implementation for modeling accel-
erators using a semireduced discretization: macroparticles
with moments. It has a semianalytic self-field solver
designed around transverse linear optics that solves for
the on-axis potential and defocusing forces directly. The
implementation was written in a low level language, RUST,
with parallelism. It was tested on several examples includ-
ing periodic focusing channels against the envelope code
TRANSOPTR and the PIC code wARP. All examples showed
excellent agreement, despite being fundamentally different
approaches to describe the dynamics. The performance of
the algorithm was quantified and found to be similar to the
highly optimized code WARP for similar numbers of macro-
particles and grid points. The performance scaling of
HYPER3D was measured: the time stepping performance
is linear in the number of macroparticles and slightly
greater than quadratic in the number of longitudinal grid
points.

The code was developed for online use in the control
room to guide the tuning of the bunching system when

switching beam delivery modes in the TRIUMF 500 MeV.
HYPER3D is able to run fast, coarse, simulations that are
consistent with the transverse optics while yielding precise
results about the injection efficiency, an ideal model for this
kind of application.
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APPENDIX: VARIATIONAL CALCULUS

For quantities averaged over particle distribution func-
tions, variational differentiation is given by

sla)i  _a(x'.p') - la)

of ;(x'.p’. 1)

where §;; is the Kronecker delta. For a general function of

the coordinates F(X;), the chain rule for functional deriv-
atives can be used

i
5ij?

(A1)

S

Vx, F(X))

SF(X,) 5X;
of;(x'.p'. 1) 5f;(x',p'.t)’

where the remaining functional derivative can be computed
by Eq. (Al).

(A2)
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