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A simple 2D model of the bubble formation in a plasma wakefield accelerator is developed and
investigated. We show that in the case of a flat driver, the bubble may consist of two parts. The first part
corresponds to a laminar flow where plasma electron streams do not cross and the second to the two-stream
(turbulent) flow. The laminar flow turns out to be robust to the symmetry breaking. Building off of the
developed model, we demonstrate that, in the case of the laminar flow and nonrelativistic plasma electrons,
the transverse wakefield is absent inside the bubble even in the case of a transversely nonuniform plasma.
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I. INTRODUCTION

The plasma wakefield acceleration (PWA) technique
[1–4] attracted much attention over the past several years
and is envisioned as one of the main options for the design
of future colliders and light sources [5–10].
Development of the PWA emerged into the rapid develop-

ment of PWA theories from simple yet powerful analytical
models [11–15] to complex and precise simulation codes
[16–18]. Nonetheless, a significant understanding of physi-
cal processes that underlie PWA technology has already been
gained, there is still ongoing work on the theoretical side as
well as extensive experimental developments (see, for
instance, Refs. [19,20]). Several questions such as optimal
beam-loading [21], instability suppression, and instability
mechanisms [22–25], as well as acceptable tolerances [26],
are still under active study.
The main challenge that is common to all wakefield

accelerators, be it plasma-based or structure-based (dielec-
tric loaded or corrugated structures [27–29]) machines, is
the beam breakup instability that directly affects the
efficiency of the accelerator [30–33]. Many mechanisms
and approaches were investigated, including ion motion
[23] Balakin, Novokhatski, and Smirnov damping [22,24]
and other methods of resonance elimination.
One of the approaches that stand aside is the transverse

shaping of the driver beam that mainly includes injection of
the flat beam (or the beam with the high ellipticity
σy=σx ≫ 1) [34–36] and dual driver injection [33,37]. It

was predicted [37,38] and recently experimentally demon-
strated [39] that a highly elliptic driver can suppress
transverse wake in a structure-based wakefield accelerating
device. It turns out that an asymmetric driver is a promising
approach in the hollow channel plasma as well [40].
Recently, it has been realized that the path toward a real

machine unavoidably includes staging of the individual cells
and this, in turn, results in tolerances on plasma cell align-
ments and plasma density uniformity. Indirect evidence of
the nonuniformity effects could be found in the results on
hollow channel plasma described in Refs. [41,42].
Being motivated by the recent success of the flat beam

application and the need for preliminary analysis of the
transverse plasma nonuniformity in this paper, we develop
a simple analytical model of the blowout plasma regime
formed by the infinitely flat driver and investigate how
local nonuniformity of the plasma density affects the
problem. We demonstrate that, in contrast to the similar
cylindrically symmetric problem with the point driver,
considered in Refs. [13,14], in the planar case, the plasma
has two regimes, namely, a laminar flow and a turbulent
flow. We point out that in the case of a laminar flow and
nonrelativistic plasma electrons, the transverse wake is
absent even in the case of the transversely nonuniform
plasma.
The model and results of the presented analysis may

serve as a starting point for further investigation of the flat
beam injection into the nonuniform plasma and is benefi-
cial for some basic parameter estimations for the ongoing
experimental effort at the Argonne Wakefield Accelerator
facility [43].

II. BASIC EQUATIONS

In this section, we provide a brief overview of the model
used for the calculus and analysis.
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A. General formulas

We start from the set of equations derived in Ref. [14].
We use the same convention as the Ref. [14] and we use
dimensionless variables: time is normalized to ω−1

p , length
to k−1p , velocities to the speed of light c, and momenta to
mc. We also normalize fields to mcωp=e, forces to mcωp,
potentials to mc2=e, the charge density to n0e, the plasma
density to n0, and the current density to en0c. With e being
the elementary charge, e > 0.
The equation of motion for the plasma electrons reads

dp
dt

¼ ∇ψ þ ẑ ×B⊥ − v ×B;
dr
dt

¼ p
γ
: ð1Þ

Here p is the momentum of the plasma electrons, γ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
is the relativistic gamma factor of the plasma

electrons, v ¼ p=γ is the velocity, and ψ ¼ ϕ − Az is the
pseudopotential that defines the wakefield as

Ez ¼
∂ψ

∂ξ
; F⊥ ¼ −∇⊥ψ ; ð2Þ

and ∇ ¼ ð∂x; ∂y;−∂ξÞ. Here F⊥ is the transverse part of the
Lorentz force per unit charge of the test particle
and ξ ¼ t − z.
Equation (1) have the following integral of motion:

γ − pz − ψ ¼ 1; ð3Þ

as a consequence, we have

1 − vz ¼
1þ ψ

γ
: ð4Þ

In a quasistatic picture, it is convenient to replace the
derivative by time twith the derivative by ξ. We use the fact
that

dξ
dt

¼ 1 − vz; ð5Þ

consequently, for an arbitrary function fðξÞ, we have

df
dt

¼ df
dξ

dξ
dt

¼ ð1 − vzÞ
df
dξ

¼ 1þ ψ

γ

df
dξ

: ð6Þ

Since in a quasistatic picture momentum of the plasma
electron is a function of ξ Eq. (1) with Eq. (6) are reduced to

dp⊥
dξ

¼ γ

1þ ψ
∇⊥ψ þ ẑ × B⊥ −

Bz

1þ ψ
p⊥ × ẑ: ð7Þ

The equation for the pseudopotential reads

Δ⊥ψ ¼ ð1 − vzÞne − niðxÞ; ð8Þ

here ne is the plasma electron density and niðxÞ is the ion
density that depends on the transverse coordinate x. In what
follows, we will assume that

niðxÞ ¼ 1þ gx; ð9Þ

with g ≪ 1. The last term in the equation above is
responsible for the gradient in plasma density along x
axis. Equations for the magnetic field are

Δ⊥Bz ¼ ẑ · ð∇⊥ × nev⊥Þ; ð10Þ

Δ⊥B⊥ ¼ −ẑ × ∇⊥nevz − ẑ × ∂ξnev⊥: ð11Þ

The final equation that complements equations for the
fields is the continuity equation for the plasma given by

∂ξ½neð1 − vzÞ� þ∇⊥ · nev⊥ ¼ 0: ð12Þ

B. 2D approximation

If one assumes that the charge density is uniform and the
charge is distributed along the infinite line in the y
direction, then the following simplification to the main
set of equations could be made. Equation (2) reduces to

Ez ¼
∂ψ

∂ξ
; Fx ¼ −

dψ
dx

; Fy ¼ 0: ð13Þ

Equation for the pseudopotential (8) reads

d2ψ
dx2

¼ ð1 − vzÞne − ni; ð14Þ

and continuity equation (12) reads

∂ξ½neð1 − vzÞ� þ
d
dx

nevx ¼ 0: ð15Þ

III. SHOCK WAVE

As discussed in detail in Ref. [14], plasma electrons
cross an infinitesimally thin layer in which the fields
produced by the driver have a delta-function discontinuity

E⊥ ¼ DδðξÞ;
B⊥ ¼ ẑ ×DδðξÞ; ð16Þ

with the transverse profile defined by the vector
D ¼ ðDx;DyÞ.
To solve for the shock wave at ξ ¼ 0, we assume that the

plasma density in front of the moving driver has a linear
gradient
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nð0Þe ¼ 1þ gx; ð17Þ

where the uniform part of the density in the introduced
units is 1, g is a constant, and x is the transverse coordinate.
At rest, plasma is electrically neutral, consequently, the
gradient in density is the same for both ions Eq. (9) and
electrons [Eq. (17)]. As before, we assume a small gradient

g ≪ 1; ð18Þ

and use the perturbation theory.
We consider equation for the vector D, which according

to Ref. [14], reads

Δ⊥D ¼ nð0Þe

γ0
D: ð19Þ

If we set g ¼ 0, then due to the symmetry, we have

Dð0Þ
y ¼ 0 and Dð0Þ

x ¼ Dð0Þ
x ðx; ξÞ. This immediately results

in the equation for Dð0Þ
x in a form

d2

dx2
Dð0Þ

x ¼ nð0Þe

γ0
Dð0Þ

x : ð20Þ

With the unmodified plasma density and initial gamma set

to unity (nð0Þe ¼ 1, γ0 ¼ 1) for boundary conditions
Dxð�∞Þ ¼ 0, Dxðx → �0Þ ¼ �2πλ, where λ is the line
charge density of the beam, we have

Dð0Þ
x ¼

�
2π λ expð−xÞ x > 0

−2πλ expðxÞ x < 0
: ð21Þ

Now we consider n0 as given by Eq. (17). We apply
perturbation theory and introduce ansatz

Dx ¼ Dð0Þ
x þ gDð1Þ

x ;

Dy ¼ Dð0Þ
y þ gDð1Þ

y : ð22Þ

Substituting Eqs. (22) and Eq. (17) into Eq. (19),
equating terms of the same order and assuming for
simplicity x > 0, we arrive at a set of equations for the
corrections in the form

d2

dx2
Dð1Þ

x ¼ Dð1Þ
x � 2πλx expð∓ xÞ;

d2

dx2
Dð1Þ

y ¼ Dð1Þ
y : ð23Þ

Corrections should vanish both at the infinity and near the

sourceDð1Þ
x;yðx → 0Þ ¼ 0 and Dx;yð�∞Þ ¼ 0, consequently,

Dð1Þ
x ¼ ∓πλ

2
xð1� xÞ expð∓ xÞ;

Dð1Þ
y ¼ 0: ð24Þ

Combining Eq. (21) with Eq. (24), we finally arrive at

Dx ¼ �2π λ expð∓ xÞ ∓ gπλ
2

xð1� xÞ expð∓ xÞ;
Dy ¼ 0: ð25Þ

Equation (25) fully defines the shock electromagnetic wave
produced by the infinitely long (in y) line that propagates
along the z axis.

IV. SHAPE OF THE PLASMA BUBBLE

A. Ballistic approximation

As the first step in our considerations, we neglect the
effect of the plasma self-fields on the trajectories of the
plasma electrons. This is the “ballistic” regime of plasma
motion introduced in Ref. [13]; it assumes that the plasma
electrons are moving with constant velocities.
We assume plasma electrons to be nonrelativistic and

vz0 ≈ 1, consequently for the upper half plane, we get

dx
dξ

≈ −2π λ expð−x0Þ þ
gπλ
2

x0ð1þ x0Þ expð−x0Þ: ð26Þ

A solution to the equations above gives electron trajectories

x¼ x0−2πλξ expð−x0Þþ
gπλξ
2

x0ð1þx0Þexpð−x0Þ: ð27Þ

First, we consider the case of g ¼ 0 and plot electron
trajectories in Fig. 1 setting for the simplicity λ ¼ 1=2π.
From Fig. 1, we observe that plasma flow has two

regimes: laminar flow, when trajectories do not cross, and a
two-stream flow. Switching point ξsw could be found from
the following considerations: we consider the upper half
plane (x > 0). The two-stream flow appears when the most
inner electron trajectory crosses the next closest trajectory.
This condition could be expressed as

−2πλξsw ¼ δx0 − 2πλξsw expð−δx0Þ: ð28Þ

Here δx0 is the distance between starting points of the two
trajectories. Solving for ξsw and assuming λ < 0, we get
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ξsw ¼ 1

2πjλj
δx0

1 − expð−δx0Þ
: ð29Þ

Proceeding with the limit δx0 → 0, we finally have

ξsw ¼ 1

2πjλj : ð30Þ

Before the switching point, the bubble has a linear
“triangular” shape and the boundary is simply defined
by the most inner trajectory

xb ¼ 2πjλjξ; ξ < ξsw: ð31Þ

The bubble boundary for the two-stream flow (for ξ ≥ ξsw)
can be found as an envelope for the plasma electron
trajectories from the condition

dx
dx0

¼ 0; ð32Þ

and reads

xb ¼ 1þ ln ð2πjλjξÞ; ξ ≥ ξsw: ð33Þ

Next, we account for the plasma gradient (now g ≠ 0). The
plasma flow still has two regimes, and the switching point
now is found with the help of the condition

2πjλjξsw ¼ δx0 þ 2πjλjξsw expð−δx0Þ

−
gπjλjξsw

2
δx0ð1þ δx0Þ expð−δx0Þ: ð34Þ

Solving for ξsw, we get

ξsw ¼ 1

2πjλj
δx0

1 − expð−δx0Þ þ g
4
δx0ð1þ δx0Þ expð−δx0Þ

:

ð35Þ

Proceeding with the limit δx0 → 0, we have

ξsw ¼ 1

2πjλj : ð36Þ

We note that in the case of a small plasma gradient, the
switching point remains at the same location as in the case
of the uniform plasma and the first part of the plasma
boundary remains the same as given by Eq. (32). It is worth
mentioning that if λ ≪ 1, then switching point ξsw → ∞
and plasma flow is laminar. We note that in the case g ≠ 0
boundary for the two-stream part of the flow could not be
expressed in a simple form as Eq. (32) becomes a
transcendental equation. However, the flow could be easily
found numerically.

B. Small charge regime

Now we switch to a different approximation and account
for the shielding effect. First, we derive a general expres-
sion for the force that acts on the plasma electrons. By
combining Eq. (14) with Eq. (13) in the case of the
nonrelativistic plasma electrons (vz ≪ 1), we get

dFx

dx
¼ ni − ne: ð37Þ

Integrating the equation above, we get

FxðxÞ ¼
Z

x

0

ðni − neÞdx̃þ Fxð0Þ: ð38Þ

At rest, plasma is electrically neutral, so the total charge of
the electrons and ions should be the same in both the lower
(x < 0) and upper (x > 0) half-planes. As far as the charge
is conserved, one may write

R
∞
0 ðni − neÞdx̃ ¼ 0, conse-

quently, from Eq. (38), we have Fxð∞Þ ¼ Fxð0Þ. Lorentz
force, Fx, has to vanish at the infinity, consequently, we
conclude that Fxð0Þ ¼ 0. With this observation, one may
rewrite Eq. (38) as

FxðxÞ ¼
Z

x

0

ðni − neÞdx̃: ð39Þ

We notice that if the two-stream regime does not develop,
then the shape of the bubble is always defined by the most
inner trajectory of the plasma electron that starts at x0 ¼ 0.
A force that acts on this electron from the side of the plasma
ions is found from Eq. (39) with ne ¼ 0 (inside the bubble
there are no electrons). For the unperturbed case of g ¼ 0,
we get a familiar expression of the ion focusing force

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 1. Plasma flow in the ballistic approximation for the case
of jλj ¼ 1=2π and g ¼ 0. The red line denotes the trajectory with
x0 ¼ 0 [Eq. (32)], the blue line denotes the envelope of the two-
stream flow given by Eq. (33), dashed line shows the switching
point for the plasma flow.
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Fi
x ¼ x; x ≤ xb: ð40Þ

We note that we defined Fx as a force per unit charge,
consequently, the force that acts on the plasma electron is
recovered by multiplying Fx by the charge of the plasma
electron. In our notations, it is simply −1.
Using initial conditions x0 ¼ 0 and V0 ¼ −2πλ, one can

arrive at the expression for the bubble shape in the form

xb ¼ 2πjλj sinðξÞ: ð41Þ

The range of validity for the formula above could be
established from the condition of the crossing of the two
closest trajectories and, following the same steps as in the
ballistic approximation, one can deduce the equation for the
switching point in the form

sinðξswÞ ¼
1

2πjλj : ð42Þ

For this equation to have no real solutions for the ξsw, the
inequality sinðξswÞ > 1 must hold, consequently,

jλj < 1

2π
: ð43Þ

The condition above sets the upper limit on the line charge
density for the plasma flow to be laminar and is described
by Eq. (41).
Next, we notice that if the condition (43) significantly

fulfilled, then small perturbation to the ion and electron
densities as well as to the ion force should not induce a two-
stream regime and the plasma flow should remain laminar.
Consequently, one may account for the ion density gradient

ni ¼ 1þ gx; ð44Þ

with the help of Eq. (39), we get

Fi
x ¼ xþ g

x2

2
; x ≤ xb: ð45Þ

As far as the bubble boundary is given by the most inner
electron trajectory, the equation for the bubble boundary
reads

d2xb
dξ2

¼ −xb − g
x2b
2
; ð46Þ

with initial conditions xbð0Þ ¼ 0 and x0bð0Þ ¼ 2πλ.
Equation (46) could be solved using the perturbation
method and solution up to the terms of the orderO½g2� reads

xb ¼ 2πjλj sinðξÞ − 8π2λ2

3
g

�
sin

�
ξ

2

��
4

: ð47Þ

From Eq. (42), we observe that in the case of the laminar
flow and without the plasma gradient, bubble shape is
universal and scales linearly with the charge. However, in
the case of the plasma gradient, as follows from Eq. (47),
bubble shape always depends on the charge. Introducing
normalized variable xnb ¼ xb=ð2πjλjÞ, we arrive at the final
bubble shape in the form

xnb ¼ sinðξÞ − g
4πjλj
3

�
sin

�
ξ

2

��
4

: ð48Þ

We conclude that the transverse plasma gradient results in
the “bending” of the bubble toward the less dense plasma.
Qualitatively, this asymmetry is proportional to the product
of the driver charge density and the strength of the plasma
gradient.

V. PLASMA FLOW AND PLASMA DENSITY

Immediately behind the driver, at ξ ¼ 0þ, the plasma
density n0 is given by Eq. (17).
If we assume that electron trajectories are known, then

from the continuity of the plasma flow, we conclude that

neðx; y; ξÞdS ¼ n0ðx0; y0ÞdS0 ð49Þ

from which it follows that

neðx; y; ξÞ ¼ n0ðx0; y0Þ
dS0
dS

: ð50Þ

Accounting for the translation symmetry in y, we simply
have

neðx; ξÞ ¼ n0ðx0Þ
dx0
dx

; ð51Þ

or, substituting n0 from Eq. (17), we get

neðx; ξÞ ¼ ð1þ gx0Þ
dx0
dx

: ð52Þ

We note that if plasma flow is laminar (electron trajectories
do not cross), then the force that is associated with the
plasma electrons can be easily found with the help of
Eq. (39) and with Eq. (52) reads

Fe
x ¼ −

Z
x

0

ð1þ gx0Þ
dx0
dx

dx ¼ −x0ðxÞ − g
x0ðxÞ2

2
: ð53Þ

Interestingly, this leads to a closed form solution for
electron trajectories as the equation of motion for each
plasma electron with initial conditions xð0Þ ¼ x0 and
x0ð0Þ ¼ −Dxðx0Þ now reads
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d2x
dξ2

¼ −x − g
x2

2
þ x0 þ g

x20
2
: ð54Þ

The equation above can be again solved using the pertur-
bation approach:

x ¼ xð0Þ þ gxð1Þ þOðg2Þ: ð55Þ

With Eq. (25), the equation for the leading order xð0Þ reads

d2xð0Þ

dξ2
¼ −xð0Þ þ x0;

xð0Þð0Þ ¼ x0;

dxð0Þ

dξ

����
ξ¼0

¼ �2πjλj expð∓ x0Þ: ð56Þ

Here the upper sign is for the case of x > 0 and the lower
sign is for the case of x < 0. Solution to this equation reads

xð0Þ ¼ x0 � 2πjλj expð∓ x0Þ sinðξÞ: ð57Þ

Next to the leading order xð1Þ could be found by
substituting Eq. (55) with Eq. (25) into Eq. (54) and
equating terms of the same order. After some algebra,
we have

d2xð1Þ

dξ2
¼ −xð1Þ −

ðxð0ÞÞ2
2

þ x20
2
;

xð1Þð0Þ ¼ 0;

dxð1Þ

dξ

����
ξ¼0

¼ ∓ πjλj
2

x0ð1� x0Þ expð∓ x0Þ: ð58Þ

After substituting Eq. (57) into Eq. (58), the expression for
the xð1Þ is found to be

xð1Þ ¼ −
8π2jλj2

3
expð∓ 2x0Þ

�
sin

�
ξ

2

��
4

� πjλjx0ξ expð∓ x0Þ cosðξÞ

∓ πjλjx0
2

expð∓ x0Þ½3� x0� sinðξÞ: ð59Þ

Combining Eqs. (57) and (59) with the help of Eq. (55), we
plot electron trajectories in Fig. 2 (left panel) for the case
g ¼ 0.2 (highly inhomogeneous plasma density) and
jλj ¼ 0.6=2π. The numbers in the example are chosen to
emphasize the effect visually and are exaggerated in
comparison to common realistic parameters. As expected,
the flow is laminar and modification to the bubble shape is
small (of the order ∼λ2g) as dictated by Eq. (47).
To examine the total plasma density nðx; ξÞ ¼

niðx; ξÞ − neðx; ξÞ, we compare several cases [nðx; π=8),
nðx; π=4Þ and nðx; π=2Þ] in Fig. 3. The plot is produced

with the help of Eq. (52). As far as the flow is laminar, the
solution to Eq. (55), with Eqs. (57) and (59), is unique with
respect to x0 for a given x and could be found numerically.
Consequently, one may derive an explicit expression for the
plasma density in terms of x0 and, using this numerical
solution, compute nðx0ðxÞ; ξÞ. We do not provide final
expressions as they are bulky but can easily be produced
once needed.
As could be seen from Fig. 3, in contrast to the

cylindrically symmetric case (see Ref. [13]), plasma den-
sity does not have a singularity at the plasma boundary.
However, it has a jump that corresponds to the jump in the
electron density. We observe, that, as expected, the jump in
the electron density increases toward the bubble wall and is
maximal at the bubble boundary.
In Fig. 4, we plot plasma density close to the end of the

bubble ξ ¼ 3π=4 where the witness beam is placed to
maximize the acceleration rate. One can observe that an
initial seed in plasma density gradient g ¼ 0.2 results in a

0.0 0.5 1.0 1.5 2.0 2.5 3.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

FIG. 2. Plasma flow in the approximation of a small charge for
the case of λ ¼ 0.6=2π and g ¼ 0.2 (numbers are chosen to
emphasize the effect visually). Thick red lines denote bubble
boundary.

0 0.5 1 1.5 2 2.5
–2

–1

0

1

2

x

bubble boundary

= /2

= /4
= /8

n i
–

n e

FIG. 3. Total plasma density for the case of x > 0 and three
different values of ξ inside the bubble electron density ne is equal
to zero and the total density is essentially ion density given by
Eq. (44). jλj ¼ 0.6=2π and g ¼ 0.2.
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significant imbalance of the total plasma density at the
bubble boundary. This, in turn, may result in the asymmetry
of the witness self wake and consequently may affect the
emittance of the witness beam.

VI. WAKEFIELD

It was established in Sec. IV B that, in the small charge
regime, a flat driver does not produce any transverse wake
even in the case of nonhomogeneous plasma. The Lorentz
force inside the bubble is a focusing force given by
Eq. (45). Combining the first and second formulas in
Eq. (13), we get

dEz

dx
¼ −

dFx

dξ
: ð60Þ

The expression above is widely known as the Panofsky-
Wenzel theorem (see Refs. [44,45]) From Eq. (61), we
immediately conclude that Ez is constant inside the bubble
and depends on ξ only.
Substitution of Eq. (38) into Eq. (61) gives

dEz

dx
¼ −

dFe
x

dξ
; ð61Þ

with Fe
x, given by Eq. (53). Expanding the ξ derivative on

the right-hand side and integrating over x, we get for the Ez
inside the bubble

Ez ¼
Z

∞

xb

dx0
dx

dx
dξ

dxþ g
Z

∞

xb

x0
dx0
dx

dx
dξ

dx: ð62Þ

Interestingly, both integrals in the expression evaluate
explicitly. Indeed, switching from integration over x to
integration over x0, we get

Ez ¼
Z

∞

0

dxðx0Þ
dξ

dx0 þ g
Z

∞

0

x0
dxðx0Þ
dξ

dx0; ð63Þ

with xðx0Þ defined through Eq. (55) and xð0Þ and xð1Þ given
by Eqs. (57) and (59), respectively.
After some algebra, we finally get

Ez ¼ −2πλ cosðξÞ − gπλ

�
cosðξÞ

2
þ sinðξÞ

×

�
2πλ

3
−
2

3
πλ cosðξÞ − ξ

��
: ð64Þ

We observe that if the plasma is homogeneous, then the
expression for the electric field despite the bubble for-
mation is exactly the same as in the linear plasma response
case. When there is a slight transverse density gradient ∼g
in plasma, the nonlinearity of the same magnitude perturbs
the longitudinal wake potentialWz (see Fig. 5). We reiterate
two conclusions. In the case of a laminar plasma flow, an
infinitely flat driver does not produce any transverse wake
even if the local plasma density fluctuates from the
equilibrium. In the laminar regime of the plasma flow in
the flat case, the longitudinal component of the electric
field Ez generated by the driver is constant inside the
bubble and in the case of a homogeneous plasma has the
same harmonic form as in the case of the linear plasma
response.

VII. CONCLUSION

We have suggested a simple model of the flat bubble
formation by the flat driver beam. Using this model and
ballistic approximation, introduced in Ref. [13], we have
demonstrated that in the case of the flat drive, two different
regimes (laminar and turbulent) can develop. The switching
point where one type of flow switches to another depends
solely on the line charge density of the driver.
We have investigated the laminar plasma flow regime

generated by the flat electron driver. We demonstrated that
a small perturbation to the plasma density results in
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FIG. 4. Total plasma density for the case of ξ ¼ 3π=4,
jλj ¼ 0.6=2π, and g ¼ 0.2.
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FIG. 5. Longitudinal wake potential per unit length Wz ¼
−Ez=λ for the case jλj ¼ 0.6=2π, g ¼ 0.2 (blue line), and g ¼ 0
(red dashed line).
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“bending” of the bubble toward a lower plasma gradient.
Despite such a modification to the bubble shape and
symmetry breaking, in the case of the nonrelativistic
plasma flow, the wake generated by the flat driver does
not have any deflecting components. The focusing force of
the ion column has the same gradient as the initial gradient
of the plasma density. It is worth mentioning that this
gradient is independent of the longitudinal coordinate ξ and
consequently should not affect the emittance of the accel-
erated beam. The model and its extensions could be applied
to the analysis of the flat beam injection into the plasma cell
—an ongoing project at the AWA facility [43].
We note that numerical examples, provided in the paper,

are synthetic, and we choose parameters for these examples
for the illustrative purpose only. In reality, the parameter
g—a transverse plasma gradient should be on the order of
1% or less. We note that the model most probably breaks
when λ ∼ 1

2π and bubble radius is ∼0.5 as at this point,
plasma electrons are most likely to become relativistic.
In a realistic scenario, when the driver has a finite flatness

σx=σy > 0, the edge effects that come from the finite driver
size in ymust be considered. Aswas pointed out in Ref. [37],
for a finite flat driver inside the vacuum channel, along with
the dipole wake, there always exists a quadrupole wake that
may result in a quadrupole instability. While the present
study shows that in the limiting case of σx=σy ¼ 0 in the
laminar bubble regime, both wakes are suppressed com-
pletely, scaling of these wakes with the beam ellipticity
χ ¼ σy=σx is an open question. Nonetheless, the observed
analogy between the flat beam in a slab channel and a flat
beam forming a flat bubble opens potentially new oppor-
tunities to combat hosing instability.
Presented formalism is complementary to the well-

known analytical Lu model of the plasma bubble
Refs. [12,15]. While the Lu equation works best when
the bubble radius is significantly larger than the plasma
wavelength, the presented model and approach of the
Ref. [13] works in the opposite limit when the bubble
size is way smaller than the plasma wavelength. The
ballistic model and the small charge model may serve as
an initial condition for the Lu equation. A potential next
step is an attempt to merge these models such that the
combined model will cover the whole parameter range.
In contrast to the approach of Ref. [13], the present

model, due to the different geometry, does not contain
singularities at the position of the driver and the plasma
boundary. This results in the formation of the transition
region from the laminar flow to the two-stream turbulent
flow. In reality, even in the case of the round driver, the field
is always finite at the driver position, consequently, similar
effects should occur. Namely, in the round case, there might
exist a transition of the laminar flow to the turbulent flow.
In the case of the laminar flow in the cylindrical geometry
for the round driver, the wake and its response to the
external perturbation are expected to be different.
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