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In an electron storage ring, the emittances are determined by the beam energy and the linear lattice; the
effects of lattice nonlinearity are usually negligible. In this study, we show a case where the vertical
emittance has a strong quadratic dependence on the vertical chromaticity, a form of lattice nonlinearity. In
this case, a crab cavity is present in the lattice, which couples the longitudinal and vertical motions of the
beam. A theoretic analysis is conducted to derive the emittance dependence on chromaticity, using the
normal form approach to decouple the longitudinal and vertical motion. Particle tracking simulations are
performed to verify the analytic results and a good agreement is found. The dependence of equilibrium
emittances on nonlinear lattice properties as demonstrated in this paper may provide new possibilities for
design options and machine control.
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I. INTRODUCTION

Particles in a storage ring oscillate around the reference
orbit in three directions (x, y, and s). Typically the three
degrees of freedom are only weakly coupled, and hence the
motion in each plane can be separately described. The
distribution of a particle beam in a transverse plane is often
characterized by the emittance, which represents the phase
space area occupied by the beam, in (x, px) or (y, py)
coordinates. The emittances are important measures of the
beam quality as they are closely related to the performances
of the beam applications, for example, in terms of lumi-
nosity in colliders and photon beam brightness in light
sources.
Emittances in an electron storage ring are given by the

equilibrium state of the quantum diffusion and radiation
damping processes, both of which are consequences of
photon emissions in the bending fields. As a consequence
of the many small stochastic excitations, the electron beam
distributions acquire a Gaussian distribution in the six-
dimensional phase space. Since the excitation of the
betatron motion through photon emission depends on the
Courant-Snyder optics functions and the dispersion func-
tions in the bending fields [1], which in turn are given by
the linear lattice, the beam emittances in an electron storage

ring are determined by the beam energy and the linear
lattice.
In a typical case of small linear coupling between the two

transverse planes, the horizontal emittance and the energy
spread can be calculated analytically by evaluating the
radiation integrals, using linear lattice functions (beta
functions and dispersion functions [1]), along with the
distribution of bending fields [2]. In the case of linearly
coupled motion, the equilibrium distribution can be com-
puted numerically with the lattice model [3,4], which
accounts for the distribution of bending fields and focusing
gradients around the closed orbit of the beam. In all existing
machines, the vertical emittance is determined by the level
of horizontal-vertical linear coupling and the distribution of
vertical dispersion functions in the bending fields.
Although nonlinear magnets, such as sextupoles, affect
the linear lattice functions through the magnetic feed-down
effects, the nonlinearity in the dynamics around the closed
orbit is negligible in the determination of the equilibrium
distribution for a typical electron storage ring. In short, the
equilibrium beam distribution in a typical electron storage
ring is given by the linear lattice.
In this study, we report an interesting case in which the

vertical emittance shows a strong dependence on the vertical
chromaticity. This case comes from the study of short pulse
generation with transverse deflecting cavities (a.k.a., crab
cavities) in the SPEAR3 storage rings [5–7]. In a previous
study, it was found that the tilted distribution in the vertical-
longitudinal planes in the bending fields causes an excitation
of the vertical emittance [7]. Because the tilted distribution is
the consequence of the linear coupling between the two
planes, this emittance excitation mechanism is still of the
nature of linear motion. The chromaticity is a measure of the
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dependence of the betatron tune (i.e., the number of betatron
oscillations per revolution) on the momentum deviation of a
particle. A nonzero vertical chromaticity introduces non-
linear coupling between the y and s planes and in turn alters
the excitation of the vertical emittance by crab cavities.
We conducted an analytic study to investigate the

dependence of vertical emittance on the vertical chroma-
ticity of a storage ring with crab cavities. This is done by
calculating the excitation of the decoupled normal modes
by photon emissions. The normal form approach is applied
to obtain the nonlinear transformation between the usual
phase space coordinates and the decoupled normal mode
coordinates. Through the analysis, we derived an expres-
sion of the vertical emittance in electron storage rings with
crab cavities, which explicitly demonstrates the quadratic
dependence on the vertical chromaticity. Simulation stud-
ies, using simplified or full lattice models, are conducted to
verify the analysis.
This paper is organized as follows: In Sec. II, we will

present the theoretic analysis. Section III shows the
simulation results. The conclusion is given in Sec. IV.

II. THEORETIC ANALYSIS

With three degrees of freedom, the beam motion can be
decomposed into three eigenmodes (also referred to as
normal modes). The emittances defined for the eigenm-
odes, or eigenemittances, are preserved quantities through
symplectic transport and thus true measures of the beam
quality. During photon emission by synchrotron radiation,
an electron loses an energy quantum within a finite
formation length much shorter than the periods of betatron
and synchrotron oscillations, resulting in a change in its
momentum deviation coordinate. Because of the coupled
motion, a change in momentum coordinate may correspond
to a shift in phase space that spans all three eigenmodes.
The excitation of the eigenemittances can be computed by
projecting this shift to the eigenmodes, using the trans-
formation between the usual Frenet-Serret coordinates and
the eigenmode coordinates.
For linearly coupled motion, the decoupling transforma-

tion between the usual coordinates and the eigenmode
coordinates can be determined by diagonalizing the transfer
matrix. When there is nonlinear coupling, the motion can
still be decoupled into three normal modes. In general,
the transformation between the usual coordinates and the
normal mode coordinates will also be nonlinear. The
nonlinear transformation to the normal modes can be found
with the normal form methods [8].

A. Decoupling of linear motion with crab cavity

We consider the excitation of vertical emittance in a
storage ring with crab cavities as in Ref. [7]. For simplicity,
a single crab cavity is assumed in the storage ring, with the
coupling strength given by

χ ¼ eVk
E

; ð1Þ

where V is the deflecting voltage, k ¼ ω=c is the angular
wave number, ω is the angular frequency of the crab cavity,
and E is the beam energy. Assuming the crab cavity
location is free of horizontal dispersion and the x − y
coupling is weak, we can ignore the horizontal motion in
this analysis. The phase space coordinates of a particle in
the vertical-longitudinal planes are X ¼ ðy; py; z; δÞT ,
where T stands for the transpose of a vector or matrix.
The coupled linear motion of the particle observed at a

given location is represented by the one-turn transfer matrix
of the phase space coordinates. Suppose the one-turn
transfer matrix for X is

T ¼
�
M m

n N

�
; ð2Þ

where the sub-blocks are all 2 × 2 matrices, the decoupling
transformation is [9],

Xa ¼ V−1X; V ¼
�

rI C

−Cþ rI

�
; ð3Þ

where Cþ is the symplectic conjugate of matrix C.
The decoupled coordinates are Xa ¼ ðya; pya ; zb; pzbÞT ,
r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jjCjjp
, and

C ¼ −HsgnðTr½M −N�Þ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr½M −N�Þ2 þ 4jjHjj

p ; ð4Þ

where H≡mþ nþ and sgnð·Þ stands for the sign of its
argument. Reference [7] gave formulas for the elements of
matrix C to the first order in χ.
Similar to the betatron coordinates in the uncoupled case,

the decoupled coordinates can be normalized via a coor-
dinate transformation, with

�
ȳa
p̄ya

�
¼ A−1

y

�
ya
pya

�
;

�
z̄b
p̄zb

�
¼ A−1

z

�
zb
pzb

�
; ð5Þ

where

Ay ¼

0
B@

ffiffiffiffiffi
βy

p
0

− αyffiffiffiffi
βy

p 1ffiffiffiffi
βy

p

1
CA; Az¼

0
B@

ffiffiffiffiffi
βz

p
0

− αzffiffiffiffi
βz

p 1ffiffiffiffi
βz

p

1
CA; ð6Þ

and βy;z and αy;z are vertical and longitudinal Courant-
Snyder parameters, respectively. To the first order of χ, the
Courant-Snyder parameters for the decoupled coordinates
are the same as their uncoupled counterparts. The action
variables of the decoupled coordinates are given by
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J̄y ¼
1

2
ðȳ2a þ p̄2

yaÞ; J̄z ¼
1

2
ðz̄2b þ p̄2

zbÞ: ð7Þ

The decoupled and normalized coordinates, X̄a ¼
ðȳa; p̄ya ; z̄b; p̄zbÞT , are related to the original phase space
coordinates through

X̄a ¼ A−1V−1X; ð8Þ

with

A ¼
�
Ay 0

0 Az

�
: ð9Þ

B. Quantum excitation for coupled linear motion

When an electron emits a photon in a storage ring, the
excitation in the original coordinates is ΔX ¼ ξ ¼
ð0; 0; 0;−uÞT , where u is the energy of the photon. The
excitation to the normalized coordinates is thus

ΔX̄a ¼ A−1V−1ξ ¼ ð−uÞ

0
BBBBBB@

− C12ffiffiffiffi
βy

p

− αyC12þβyC22ffiffiffiffi
βy

p
0

r
ffiffiffiffiffi
βz

p

1
CCCCCCA
; ð10Þ

from which we obtain the quadratic terms in the changes to
the action variables

ΔJy ¼
u2

2βy
ðC2

12 þ ðαyC12 þ βyC22Þ2Þ; ð11Þ

ΔJz ¼
r2u2βz

2
: ð12Þ

Equation (11) reproduces the result in Eqs. (74)–(75) of
Ref. [7]. Integrating all photon emissions around the ring
and considering radiation damping, one can derive the
vertical emittance due to linear coupling by the crab cavity.
Equation (12) gives the excitation to the longitudinal

action. To the first order of the coupling strength, χ, the crab
cavity has no impact on the longitudinal excitation.
Following the same derivation, as was done in Ref. [2],
the longitudinal equilibrium emittance can be derived to
give

ϵz ¼ Cqγ
2
hβz=jρj3i
Jzh1=ρ2i

; ð13Þ

where Jz is the longitudinal damping partition.
Equation (13) agrees with the usual formula for equilibrium
momentum spread for the weak longitudinal focusing

cases [2]. However, it also applies to the longitudinal
strong focusing case where βz can substantially vary around
the ring.

C. Quantum excitation of nonlinearly coupled motion

In the general case when the beam motion is nonlinear
and coupled between the two planes, the one-turn map (for
the usual coordinates X) can be represented by a Lie map.
The linear and nonlinear beam motion can be separated by
expressing the Lie map as [10]

M ¼ e∶f2∶e∶fnon∶; ð14Þ

where f2 is a quadratic polynomial and represents the linear
motion and fnon contains higher order terms and represents
the nonlinear motion. The decoupling coordinate trans-
formation can also be separated into linear and nonlinear
parts

Xn ¼ e∶F∶X; e∶F∶ ¼ e∶F2∶e∶Fnon∶; ð15Þ

where Xn denotes the decoupled coordinates and F2 and
Fnon are the generating functions for the linear and non-
linear parts of the transformation, respectively. The linear
transformation can be found from the linear map e∶f2∶ with
the eigenanalysis of the latter, or, for the two-dimensional
case, with the procedure described in Ref. [9] and
adopted here.
The nonlinear portion of the decoupling transformation

can be found from the nonlinear map and the eigenbasis of
the linear motion. Considering only the third order poly-
nomials in the nonlinear motion, i.e., assuming fnon ¼ f3,
with

f3 ¼
X3

a;b;c;d¼0

Cð3Þ
abcdjabcdi; ð16Þ

where jabcdi is an eigenvector of the linear map f2,

∶f2∶jabcdi ¼ i½ða − bÞμy þ ðc − dÞμzÞ�jabcdi; ð17Þ

with integers a, b, c, and d that satisfy aþ bþ cþ d ¼ 3,
μy ¼ 2πνy, μz ¼ 2πνz, and νy and νz are the vertical and
longitudinal betatron tunes, respectively. The third order
terms in Fnon are given by [10]

F3 ¼
X3

f a;b;c;d¼0
a≠b or c≠d:

Cð3Þ
abcdjabcdi

1 − ei½ða−bÞμyþðc−dÞμzÞ� ð18Þ
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D. Nonlinear coupled motion with crab cavity
and chromaticity

Including the effect of vertical chromaticity, the
Hamiltonian of beam motion in a ring with a crab cavity is

H ¼ μyJyðy; pyÞ þ μzJzðz; δÞ þ χδDðθ − θ0Þyz
þ 2πξyJyðy; pyÞδ; ð19Þ

where Jy and Jz are the uncoupled vertical and longitudinal
action variables, respectively, ξy is the vertical chromaticity,
δDð·Þ is the Dirac delta function, and we are using θ ¼ 2πs

C
as the free variable, with s being the path length and C, the
circumference of the ring. The χ term represents the
coupling effect by the crab cavity located at θ0.
With normalized and linearly decoupled coordinates, the

Hamiltonian becomes

H¼ μyJ̄yðȳa; p̄yaÞþμzJ̄zðz̄b; p̄zbÞþ 2πξyJyðy;pyÞδ; ð20Þ

where y, py, and δ are connected to the decoupled
coordinates through the linear transformation in Eq. (8)
and we have omitted the small changes in the tunes due to
the crab cavity.
The generating functions for the linear and nonlinear

parts of the Lie map for the beam motion corresponding
to the above Hamiltonian are f2 ¼ −μyJ̄y − μzJ̄z and
f3 ¼ −2πξyJyδ, respectively.
To proceed, we first normalize the original phase space

coordinates X̄ ¼ ðȳ; p̄y; z̄; p̄zÞ, which can be transformed
from X with Courant-Snyder parameters X̄ ¼ A−1X. To
the first order of χ, the Courant-Snyder parameters for the
original coordinates are the same as their decoupled
counterparts. Therefore, the normalized coordinates, before
and after decoupling, are related through

X̄a ¼ A−1V−1AX̄ ¼ V̄−1X̄; ð21Þ

where the normalized decoupling matrix V̄ is related
to V by

V̄ ¼ A−1VA ¼
�

rI C̄

−C̄þ rI

�
; ð22Þ

whose off-diagonal submatrix C̄ is given by

C̄ ¼ A−1
y CAz: ð23Þ

With the notations in Eqs. (21)–(23) and the approxi-
mation that r ≈ 1, we can transform the normalized original
coordinates X̄ to linearly decoupled and normalized coor-
dinate X̄a

ȳ ¼ ȳa þ C̄11z̄b þ C̄12p̄zb

p̄y ¼ p̄ya þ C̄21z̄b þ C̄22p̄zb

p̄z ¼ p̄zb þ C̄21ȳa − C̄11p̄ya : ð24Þ

The nonlinear map f3 can therefore be expressed with
decoupled and normalized coordinate X̄ as

f3 ¼ −πξyðȳ2 þ p̄2
yÞδ

≈ −
πξyffiffiffiffiffi
βz

p ½ðp̄zb − C̄11p̄ya þ C̄21ȳaÞðȳ2a þ p̄2
yaÞ

þ 2ðC̄11p̄zb ȳaz̄b þ C̄12p̄2
zb ȳa

þ C̄21p̄zb p̄ya z̄b þ C̄22p̄2
zb p̄yaÞ�; ð25Þ

where we only keep the terms to the first order of the
elements of C̄. Using Eq. (18), we obtain the generating
function for the nonlinear transformation,

F3 ¼
−πξyffiffiffiffiffi

βz
p

�
A1p̄yap̄zb z̄b þ A2ȳap̄zb z̄b

þ A3ȳap̄2
zb þ A4p̄ya p̄

2
zb

þ A5p̄ya z̄
2
b þ A6ȳaz̄2b

þ 1

2

�
p̄zb þ z̄b cot

μz
2

�
ðȳ2a þ p̄2

yaÞ
�
; ð26Þ

where Ai, i ¼ 1–6, are functions of the elements in matrix
C̄ and the betatron phase advances,

A1 ¼ C̄21 þ
C̄11 sin μy þ C̄22 sinð2μzÞ

cos μy − cosð2μzÞ

A2 ¼ C̄11 þ
−C̄21 sin μy þ C̄12 sinð2μzÞ

cos μy − cosð2μzÞ

A3 ¼ C̄12 þ
1

2
C̄22 cotðμy=2Þ

−
1

2

C̄22 sin μy þ C̄11 sinð2μzÞ
cos μy − cosð2μzÞ

A4 ¼ C̄22 −
1

2
C̄12 cotðμy=2Þ

þ 1

2

C̄12 sin μy − C̄21 sinð2μzÞ
cos μy − cosð2μzÞ

A5 ¼
1

2

C̄21 sinð2μzÞ − 2C̄12 cotðμy=2Þsin2μz
cos μy − cosð2μzÞ

A6 ¼
1

2

C̄11 sinð2μzÞ þ 2C̄22 cotðμy=2Þsin2μz
cos μy − cosð2μzÞ

: ð27Þ

It is worth noting that when μy ≈ 2μz, the small denom-
inators in Eq. (27) lead to divergence. This signifies a
nonlinear resonance condition for which our perturbation
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approach breaks down. In practice, such a condition is to be
avoided to prevent the beam from blowing up.
The nonlinearly decoupled coordinates, or normal coor-

dinatesXn ¼ ðyn; pyn; zn; pznÞT , can be obtained by apply-
ing the nonlinear transformation to the linearly decoupled
coordinates, i.e., with

yn ¼ e∶F3∶ȳa; pyn ¼ e∶F3∶p̄ya ; etc: ð28Þ

Considering an electron with an initial energy deviation δ
and longitudinal position z that emits a photon of energy u,
we can derive the quadratic terms in the changes to the
action variables for the ðyn; pynÞ plane, Jyn ¼ 1

2
ðy2n þ p2

ynÞ,
which are found to be

ΔJyn ¼
1

2
βzðC̄2

12 þ C̄2
22Þu2 þ

1

2
ξ2yðfzz2 þ fδδ2Þu2

¼ 1

2
Hcu2; ð29Þ

where fz and fδ are functions of Ai representing the
nonlinear coupling. The first term on the right hand of
Eq. (29) is the emittance from linear coupling and is
consistent with the results in Eq. (11). The second term
shows the effects of nonlinear coupling, which increases
quadratically with the vertical chromaticity ξy. By integrat-
ing all emitted photons, the vertical emittance of a beam
with nonlinear coupling by crab cavities and vertical
chromaticity is found to be

ϵy ¼ Cq
γ2hHci
Jyρ

¼ JzhHciσ2δ
Jy

: ð30Þ

III. PARTICLE TRACKING SIMULATION

A. A simplified case

The emittance dependence on chromaticity derived in the
above can be verified with particle tracking simulations. A
simplified model is first considered. The model consists of
an element representing the ring lattice with vertical
chromaticity, a radio-frequency (rf) cavity element, a crab
cavity, and a radiation element at which the damping and
quantum excitation are applied to the particle coordinates.
The ring lattice is implemented with a one-turn transfer
matrix but with tune dependence on the momentum
deviation coordinate. The parameters of the lattice used
in the simulation are listed in Table I. Because the radiation
effect is modeled with a single, discrete element, the matrix
C̄ is simplified as

C̄ ¼ −
1

2
χ

ffiffiffiffiffiffiffiffiffi
βyβz

q � sin μy
cos μy−cos μz

0

1
sin μz

cos μy−cos μz

�
ð31Þ

Correspondingly the calculation of hHci for this model is
relatively simple, yielding

hHci¼
βyχ

2η̄2

16
csc4πνy

þξ2y
βyχ

2π2σ2δ
8

ð2β2z −15η̄2þ17η̄2csc2πνyÞcsc4πνy:
ð32Þ

The first term in Eq. (32) is the linear term originated from
the linear coupling by the crab cavity as found in Ref. [7],
although in a different form corresponding to the simple
model. The second term comes from the nonlinear coupling
effect due to the vertical chromaticity and is simplified
using the approximation σz ≈ βzσδ.
About 1000 particles are tracked with the simplified

model until the beam reached an equilibrium distribution,
from which the vertical emittance is calculated. The
simulation results are shown in Fig. 1. There is a good
agreement between the simulation and the theory.
The key result in the derivation is the decoupling

transformation, Eq. (26), which can be validated directly.
This is done by tracking one off-energy particle with the

TABLE I. Parameters of simplified model.

Parameters Value Unit

Energy 3 GeV
Crab cavity voltage Vd 2 MV
Crab cavity frequency fcb 2857.8 MHz
rf frequency frf 476.3 MHz
Momentum compaction αc 1.18 × 10−3

Scaled momentum compaction η̄ 0.2763 m
Beta functions βy, βz 2.5, 5.1 m
Momentum spread σδ 9.5 × 10−4

Longitudinal partition J z 1.697
Synchrotron tune νs 0.010
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FIG. 1. Vertical emittance as a function of vertical chromaticity
at vertical tune νy ¼ 6.22 for the simple model, simulation
compared to theory.
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radiation element turned off. We performed Fourier trans-
form on the original coordinate y, linearly decoupled
coordinate ȳa, and nonlinearly decoupled coordinate yn
and analyzed their frequency components, respectively.
The spectra for the three coordinates are shown in Fig. 2.
They spectrum shows the two synchrotron sidebands besides
the νy tune line, as well as a strong synchrotron component
at νz. After the linear decoupling, the peak at νz disappears.
However, the two synchrotron sideband peaks at νy þ νz and
νy − νz remain. A peak at 2νz is also manifested. Those side
peaks arise from the nonlinear coupling due to chromaticity.
By applying the nonlinear transformation, all three side
peaks are suppressed. This clearly shows the validity of the
nonlinear decoupling transformation.

B. Simulation on SPEAR3 lattice

Particle tracking with a full ring model has also been
conducted to verify the theory, using the SPEAR3 storage
ring achromatic lattice and the tracking code ACCELERATOR

TOOLBOX [11], with a setup similar to Ref. [7]. The
particles are tracked for 30,000 turns when the equilibrium
distribution is reached. When applying the theory to
calculate the vertical emittance, integration over all bending
magnets is needed. For simplicity, we assume that the
synchrotron phase advance is linearly proportional to the
distance traveled in bending magnets. The expression of
vertical emittance in a real ring is given by

hHci ¼
βyχ

2η̄2

48
csc4πνyð2þ cos 2πνyÞ

þ ξ2y
βyχ

2π2σ2δ
360

ð120β2z − 299η̄2

þ 15η̄2csc2πνyð7þ 30csc2πνyÞÞcsc2πνy ð33Þ

The first term in Eq. (33) is the linear term originated
from the coupling of the crab cavity. It is identical with the
Eq. (76) in Ref. [7].
Using the same SPEAR3 parameters, with vertical

beta function βy ¼ 2.80 m, momentum compaction αc ¼
1.169 × 10−3, bunch length σz ¼ 4.915 mm, and other
parameters as listed in Table I, the calculated vertical
emittance is compared to the simulation in Fig. 3. The
simulation and theoretic results agree reasonablywell though
small deviations are also found. It could be caused by other
nonlinearities in the full ring (e.g., geometric effect from
sextupoles), which are not accounted for the present model.

IV. CONCLUSION

In conclusion, we, for the first time, presented a case for
which the storage ring equilibrium beam emittance depends
on the lattice nonlinearity. In this case, the nonlinear
longitudinal-vertical coupling due to crab cavities and
the nonzero vertical chromaticity affects the excitation of
the vertical eigenmode by photon emission and in turn the
vertical emittance. This phenomenon was studied theoreti-
cally and by simulation. Analytic formulas for decoupling
the longitudinal and vertical eigenmodes and the emittance
dependence on chromaticity were derived. The simulation
results were found to agree well with the predictions by the
analytic formulas. The dependence of equilibrium emit-
tance on lattice nonlinearity revealed in this study could
enter future lattice design considerations and provide new
ways for machine control.

10-2

100

z

2
z

y

y
 - 

z y
 + 

z

(a)

10-2

100

F
ou

rie
r 

S
pe

ct
ru

m (b)

0 0.05 0.1 0.15 0.2 0.25 0.3
Tune

10-2

100

(c)

FIG. 2. Decoupling of the vertical turn-by-turn trajectory for a
case with νy ¼ 6.22 and ξy ¼ 10. The Fourier spectra for three
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lation compared to theory.
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