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Combined effects of crab dispersion and momentum dispersion
in colliders with local crab crossing scheme
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In this paper, we present the effects of linear transverse-longitudinal coupling on beam size at the
interaction point (IP) of a collider with a local crab crossing scheme, when time-dependent transverse
deflection (crab kicks) and dispersive orbit intertwine near IP. The analytic propagation formula and the
closed orbit form of the crab dispersion and momentum dispersion are derived. The nonzero momentum
dispersion at crab cavities and the nonideal phase from crab cavities to IP are detailed with the derived
propagation formula to predict the beam size distortion at IP with or without the beam-beam interaction.
The linear results are compared with nonlinear simulation using the weak-strong beam-beam code.
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I. INTRODUCTION

A large crossing angle in the interaction region (IR) is
necessary for the fast separation of two colliding beams in
ring-ring type colliders to achieve high collision rates, IR
background minimization, and overall detector component
and IR magnet arrangements. Crab cavities, first proposed
for linear colliders [1], can compensate for the geometrical
luminosity loss induced by crossing angle. This idea was
later expanded to include circular colliders [2].

The crab cavity generates a transverse kick, depending
on the longitudinal coordinate z of a particle. Due to
symplecticity, the particle always receives an energy kick
from the crab cavity as a function of transverse offset x
simultaneously, as shown in Eq. (1).

Apx = —/Asin (kcz + ¢C)/kc
AS = —Acos (k.z + ¢ )x, (1)

where Ap, and A§ are horizontal and momentum kick from
the crab cavity, A is the kick strength normalized by the
momentum of the reference particle, k. and ¢, are the wave
number and synchronous phase of the crab cavity, respectively.

In the crab crossing scheme, both colliding beams are
tilted by half crossing angle in the x-z plane to restore
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the head-on collision. There are two configurations to
accomplish this: global and local schemes. In a global
scheme, the crab cavity is placed at a particular location and
the horizontal and longitudinal dynamics is coupled all over
the ring. In a local scheme, a pair of crab cavities are
installed at both sides of the IP. The upstream crab cavity
tilts the beam in the x-z plane, and the downstream crab
cavity rotates the beam back. In the rest of the rings, both
planes stay unaffected.

The global scheme was first successfully implemented at
the KEKB B-Factory (High Energy Accelerator Research
Organisation) [3], where a world record luminosity of 2.1 x
1073 cm~2s~! was obtained. The local scheme was also
demonstrated for the hadron beam in CERN’s Super Proton
Synchrotron (SPS) [4]. The Electron-Ion Collider (EIC) also
adopts the local scheme to achieve the desired luminosity
(1 x 10** ecm™2s71) [5]. A schematic of the local crabbing
compensation scheme is shown in Fig. 1 where two sets of
crab cavities are placed on both sides of IP for each ring.

The single crab cavity dynamics in the global crabbing
scheme has been studied in detail. In the absence of
longitudinal motion, the linear effect of crab cavities on
the closed orbit is described by the concept of z-dependent
dispersion [6], which is referred as the crab dispersion
throughout this study. The linear transverse and longi-
tudinal coupled motion due to crab cavities is analyzed
through the transfer matrix in [7]. The synchro-betatron
stop bands due to a single crab cavity are calculated in [8].
The impact on the luminosity or the dynamical aperture is
discussed in [9,10].

However, the crab cavity voltage in the global scheme
depends on the linear beam optics which is distorted by the
beam-beam interaction. The crab dispersion all over the

Published by the American Physical Society
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FIG. 1.

EIC local crabbing compensation scheme.

ring excites various synchro-betatron resonances. From
KEKB operation experiences, the global scheme may be
sensitive to the chromatic coupling and machine errors
[10]. These can be avoided or mitigated in a local crabbing
scheme as the crab dispersion is constrained within IR.

In the ideal local crabbing scheme, the two crab cavities,
located at the location with the betatron phase advance of
+7/2 from IP, create desired crab dispersion “bump”
between them. The crab dispersion outside the crab cavity
pair vanishes. Under this ideal assumption, the nonlinear z
dependence from rf curvature and its impact on beam
dynamics is described in [11].

On the other hand, nonideal crab-crossing setups also
impact the dynamics of the colliding beams. The imper-
fections include the presence of dispersion at crab cavities
which are first discussed in [12] and unmatched betatron
phase advance between the crab cavity pair. They break
the closure of the crab dispersion bump and may cause
degradation of beam quality and luminosity. We present a
theoretical treatment for the interplay of momentum and
crab dispersion with these imperfections, then verify the
predictions with the presence of the beam-beam effect in
weak-strong simulations.

This paper is organized as follows: Section II extends the
concept of crab dispersion and momentum dispersion to
the 6D phase space. Section III applies the theory to explain
the effects of nonzero momentum dispersion at crab
cavities and nonideal phase advance from crab cavities
to IP. Section IV shows the results of combining the
momentum/crab dispersion effects with the beam-beam
effect in a weak-strong simulation. The conclusion is given
in Sec. V.

II. CRAB DISPERSION AND MOMENTUM
DISPERSION

When the transverse coordinates x,p,,y, and p, are
coupled with the longitudinal offset z as well as the rela-
tive momentum deviation &, neither z nor 6 is constant.
In consequence, the regular momentum dispersion is no
longer well defined. We can instead define it as follows:

Let M be a canonical transformation

(xvpx’yvpy’z’é)T:M(x’vay’py’zv(_s)T’ (2)

where the superscript “T” denotes the transformation of a
vector or a matrix. In the new phase space of {x,p,,
. Dys 2,3}, the longitudinal and transverse motion is
decoupled. Then the momentum dispersion and the crab
dispersion are defined as

Q
>
S|

n= ¢ : (3)

35’
where X is the abbreviation of (x, p,.,y. p,)T. Z and & are
connected by the longitudinal oscillation. As a result, the
two kinds of dispersion are also interchangeable.

When the crab dispersion is not present, the trans-
formation is well known [13]

| VY 04y 7
M, =|-(m)" 1 0], 4)
014 0 1

where J is the 4-by-4 symplectic form matrix

01 0 0
-1 0 0 0

J= (5)
0 0 0 1
0 0 -1 0

Similarly, the transformation of the crab dispersion is

14><4 é‘ 04><1
Mg = 01 x4 1 0 . (6)
JoOr o 1

When both kinds of dispersion are present, we can make a
succession of the two canonical transformations [Egs. (4)
and (6)],

M= MM,
14x4—§(J’1)T e n
=| -t 10 .
/98 0 1+

Substituting it back into Eq. (2), it is straightforward to
check that the transformation in Eq. (7) accommodates the
definition in Eq. (3),

X = MX + &2 + 5, (8)

where M is the 4-by-4 block of M.
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The transformation M, M, also holds true for the
definition in Eq. (3). However, MM, is a better choice
from the viewpoint of beam-beam study. From Hirata [14],
the linear map for the Lorentz boost in the crab crossing
scheme is

1 0 0 0 6. 0
0O I 0 0 0 O
0O 0 1 0 0 O
L~ ) )
O 0 01 0 O
O 0 00 1 o0
|0 -6, 0 0 0 1]

where 6, is the half crossing angle, and the approximation
0. =~ 0 is used. The linear Lorentz boost L is literally a crab
transformation with & = (6., 0,0,0)T. To provide an effec-
tive head-on collision, the crab dispersion and the momen-
tum dispersion are found to be

£M :16><6 :C* = (—90,070,0)T, ’1* :04><17 (10)
where the superscript symbol “*” denotes IP. The property
M (E)M(&2) = M (81 + &) is used in Eq. (10).

The linear motion through a section can be expressed
via the 6-by-6 transfer matrix R. In the phase space of
{X. Py, 3. Py 20 6}, the transfer matrix will be

Q:MEIRMl or MQT?,:RMI, (11)
where points 1 and 2 are the entrance and the exit of
this section, respectively. According to the definition, the
matrix R is block diagonalized, i.e.,

Fis =0, Fig =0,

I_"Sl‘ — 0, 1_"61‘ — O, (12)
wherei = 1,2, 3,4, and 7; j are the matrix elements of R at
ith row, jth column.

There are eight free variables in M,. In the meantime,
the number of independent constraints in Eq. (12) is also 8.
In principle, £, and 77, are determined by Eqs. (11) and (12).
The propagation of the crab dispersion and momentum
dispersion can be resolved.

When the particle travels through a momentum dis-
persing section without any crab cavities or rf cavities, the
6-by-6 transfer matrix will be

R; 04, D
Rais = BT 1 I'se | » (13)
01><4 0 1

where R, is the 4-by-4 block, and D is the momentum
dispersion generator. The symplectic condition requires

RYJR,=J. BT=DTJR,. (14)

The block diagonalized matrix Ry, has a form of
Rd 04><1 04><1

014 Tss  Tse |» (15)

04 O Te6

7?'dis =

with the symplectic constraint

R};JRd — J, ?55?66 — 1 (16)

Substituting Egs. (7), (13), and (15) into Eq. (11), it follows
that

Fss =1+ BT¢g), & = RyE1/¥ss,
Fso = BTy + rsg[1 + (J&;) ],
1, = Fss{Ram +D[1 + (J&)"m]} — FseRs&y. (17)

When &, = 04, the propagation turns into

§r = 04y, = Rgm + D, (18)
which is the same as the normal dispersion propagation.

When the particle passes by a cavity-like element, the
linear transfer matrix is

Rc C 04><1
Rcav = 01 x4 1 0 ’ (19)
AT res 1

with the symplectic constraint

RYJR. =, A =RUJC, (20)

where R, is also the 4-by-4 block, and C is the crab
dispersion generator.
The block diagonalized matrix R, is

Rc 04><1 04><1
7_?'cav = 01><4 1 0 ’ (21)

0154 Tes 1
with the symplectic constraint
RUR, = J. (22)

Substituting Egs. (7), (19), and (21) into Eq. (11), it follows
that

m = R.m

(res + ATE))m,
14+ (J&) 'n + ATy,

&H=RSE +C- (23)

071002-3



DERONG XU, YUN LUO, and YUE HAO

PHYS. REV. ACCEL. BEAMS 25, 071002 (2022)

When 5, = 04, the propagation turns into

& =R.E +C, M = 041 (24)
Equations (13) and (19) include the most common
accelerator components in a real machine. For a one-turn
map in which both momentum dispersion generator D and
crab dispersion generator C are present, the closed orbit
condition is imposed on the two dispersion functions

&1 =6 (25)

This fixed point problem can be resolved with the help of
Edwards-Teng approach [15,16].

To use the Edwards-Teng approach, the discussion is
limited within the 4D phase space {x, p,,z,5}. A general
4-by-4 transfer matrix in terms of 2-by-2 blocks is

Ry R,
R= . (26)
R R,

m =mnm,

X
Following [17], R is block diagonalized by

R=VUV~! (27)
with

1, w U, 0,
V:[sz ] U:[ 2x2

. (28)
W gly, 05,0 Uzz]

where W, U,,, U, are 2-by-2 blocks, W is the symplectic
conjugate of W, and g is given by
g + (det W) =1, (29)

where “det” means taking the determinant. This paper does
not include the concrete formula of W, which the reader can
find in [17].

With the closed orbit condition, Eq. (11) turns into

R = MRM™. (30)

Comparing it with Eq. (27), M is related to V by a
longitudinal scaling transformation, i.e.,

P 02><1 02><1
gl W
M= |00 1/g 0 |, (31
W gly,
0,2 0 g

where P is a 2-by-2 matrix. From Eq. (31), the two kinds of
closed orbit dispersion are

(32)

[c,n]=W[1/g O}

0 g

and the matrix P follows

o v
0 1/g

The crab dispersion and the momentum dispersion at any
point are related to the closed orbit form in Eq. (25) by the
propagation formulas [Egs. (17) and (23)]. Equation (7)
presents a technique to decouple the transverse and the
longitudinal phase space following acknowledgment of the
two types of dispersion.

WP = [ wt. (33)

III. APPLICATIONS WITHOUT BEAM-BEAM

In this section, the subscript “b” denotes before IP,
whereas the subscript “a” denotes after IP. Without loss of
generality, our discussion focuses in the 4D phase space
{x, ps» 2, 6}. The propagation of the crab dispersion and the
momentum dispersion does not involve the vertical plane.
The lattice is assumed symmetrical around IP. The crab
cavity before IP (CCB) and the crab cavity after IP (CCA)
are placed at a, = 0, as shown in Fig. 2.

A. Nonzero momentum dispersion at crab cavities

When the crab cavities are turned off, the momentum
dispersion vanishes at IP. Let the momentum dispersion at
CCB be (d, d")T. Then the transfer matrix from CCB to IP is

0 A 0 —-Ad
“1/A 0 0 d/A
Ry = : , (34)
d _d 1 s
0 0 0 1

where A = /ff*, p, and * are the horizontal beta functions
at crab cavities and IP. From the symmetry of the lattice, the

Ry

CCA R, R, ,CCB

\Ip/b

FIG. 2. The local crabbing scheme in a storage ring. “CCB”
stands for the crab cavity before IP, and R, is the transfer matrix
from CCB to IP. “CCA” stands for the crab cavity after IP, and R,
is the transfer matrix from IP to CCA. R, is the transfer matrix
from CCA to CCB.
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momentum dispersion at CCA is (d, —d')T, and the transfer
matrix from IP to CCA is

0 A 0 d
-1/A 0 0 -4
=Y (33)
—d/A Ad’ 1 r'se
0 0 0 1
The periodic transfer matrix at IP should be
R =RyR,Ra
cosp,  fFsin p, 0 0
- Si;*” X COS Uy 0 0
= o,sinp, | (36)
0 0 cospu; =
0 0 — I o8,

where R, is the transfer matrix from CCA to CCB, p, /. is
the periodic phase advance in horizontal/longitudinal plane,
o, is the rms bunch length, and o is the rms momentum
spread.

When the crab cavities are turned on, from Eq. (1), the
linear transfer matrix of CCB and CCA are

1 0 0 O 1 0 0 O
0O 1 -4 O 0O 1 -4, O
Cb - ) Ca - )
0O 0 1 o0 0 O 0
-4, 0 0 1 -1, 0 0 1
(37)
where 4, and 4, are the strength of the crab cavity.
Starting with
Lo =(0.0)%, 79 =(0.0)" (38)

after transported to CCB by R;!, deflected by C,, and
transported back to IP by R, the crab dispersion and the
momentum dispersion before collision read,

Ay T
— (= 0] .
& < 1+ 2,d’ >

d\T
N, = (1 + lbd)ﬂbd</\d/, —K> + r56(1 - lbd)(Mb,O)T

(39)

Expanding Eq. (39) to the first order of 4,,

Cb ~ (_Mb’ O)Ta

d2 T
ny = Mb <dd/ —+ I's¢, ——*> . (40)

pp

The Lorentz boost in Eq. (10) will cancel the crab dis-
persion when 4, = 6./A. However, the momentum disper-
sion does not vanish when d # 0 or d’ # 0. Therefore, the
horizontal coordinate x will depend on the momentum
spread ¢ in the head-on frame, as shown in Fig. 3.

Due to the nonzero dispersion, the transverse coordinates
relate to the momentum spread in the head-on frame by

X = X + 1,0, 5=20. (41)
The dispersion 7, can then be calculated from the second
order moments as

(x.0) (Px6)
= N = N 42
My x 0(% nb,p, Gg ( )

where (-) denotes taking the average over the particle
distribution. Figure 4 compares the dispersion calculated
from the analytic formula [Eq. (40)] and from the beam
distribution [Eq. (42)].

1.0

N
(o) 0 0.8
N
-2 >
Fan
‘@
©
-4 0.6 o
o
=)
£
©
(=
(]
4 04>
5
f©
Q
2 o
e
L o 02
3> .
-2
-4 :
- 0.0
-4 -2 0 2 4
X/0x
FIG. 3. Beam distribution before collision in x-z (top) and x-6

(bottom) plane. Both horizontal and vertical axes are normalized
by rms beam size. The dispersion at the crab cavity is d = 1 m,
d' = 1. The half crossing angle is 6. = 12.5 mrad. The rsq
element from CCB to IP is chosen as rss =2 m. The crab
cavity strength is determined by 4, = 0./A. The horizontal beta
functions at IP and the crab cavity are f* = 0.5 m, f = 200 m.
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3.0 1

—— analytic
2.5 y

B simulation

2.0 1
1.5 1
1.0 1
0.5 -

nb,xlec [m]

0.0 -
—-0.5

—1.0 1

-20 -15 -1.0 05 00 05 10 15 20
rse [m]
FIG. 4. The horizontal momentum dispersion in the head-on
frame versus the rsq element from CCB to IP. The analytic line
(blue) is obtained from Eq. (40), and the simulation data (yellow)

are obtained from the statistics of the beam distribution. Other
parameters are same as in Fig. 3.

Projecting the crab dispersion and the momentum
dispersion at the other side back to IP, it follows

Ad T
- 4 70 9
=rD

d T
na = (1 —|— ﬂad)/,{ad</\d/,x) + }"56(1 - lad)(Ma,O)T.

(43)
Expanding Eq. (43) to the first order of 4,,
Ca ~ (A/la’ O)Ta
B2\T
n, ~ Md <dd/ + r56’ﬂ—ﬁ*> . (44)

Taking both sides into consideration, the crab dispersion
can be closed when

Ay == 0. /A (45)
Then the residual momentum dispersion is
N + n, = 290 (dd/ + 565 O)T (46)

The leakage of the momentum dispersion will lead to the
coupling between the horizontal and longitudinal plane,
and it is necessary to consider the closed orbit form of the
two types of distribution.

Define

k,, = 296 (dd’ + r56). (47)

With both crab cavities on, the periodic transfer matrix
at IP is

Rt2 = (RbRrRa)(Rt;lcaRa)(Rbch;l)

=

cosu, prsinp, 0 ky, cos u,

A cos 0 _Kysin S/;n fx

o, sin

0 ky,cos p,  cosp, -

0 __kyossing,  opsinp;
[ [

COS Ji,

Following the procedure in [17], we define

kr 5~A z
l—ﬁﬂiim” k,(cos p, — cosuz)]
H= : ,

k,, sinp
0 — Ky st
B

1 N 1 (cos p, — cos u, )?
I7N\2"2 (cos p, — cos p,)? + det H'

(49)

and then

H

W = .
291/ (cos pt, — cos p, ) + det H

(50)

The stability criterion is

k% sin p, sin i,

ﬁ*az/o-é (51)

(COS/JX - COS/"Z)Z +

Similar to the betatron resonance, the sum resonance
U, + p, = 0 is dangerous, while the motion on difference
resonance u, — u, = 0 is stable. However, the longitudinal
average action is usually much larger than the horizontal
rms emittance, the coupling has to be weak enough to
prevent the luminosity loss,

- H
" 2| cos p, — cos p,|

g=1, (52)

From Eq. (32), the two kinds of closed orbit dispersion are

Lo ky sin u,
o 2| COS { — COS :uz|az/66
1
o = 5 Kysn(cos i, — cos ). (53)
where
-1, for x<0
sgn(x) = . 54
g() {—H, for x>0 ( )
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To prevent the horizontal beam size blows up,

o
|Cco,x| < — ’
(o

O-X
|’700,x| <, (55)
z Os

so that the constraints are given by

ky| o] cospu, —cosp| (56)
2 Ossinpu,
and
k
) O (57)
Os

From Eq. (47), k, and 6, are within the same order of
magnitude. As a result, the constraint of Eq. (57) is
generally satisfied. However, when y, is close to ., even
if the stability criterion Eq. (51) holds, the constraint of
Eq. (56) may be broken. In other words, the leakage of
momentum dispersion will result in a significant closed
orbit crab dispersion, and the luminosity will be reduced
hereafter.

The theory is verified by tracking. The macropar-
ticles are randomly generated at IP from the Gaussian
distribution,

1
x? b Z’ 6 =7~ v
p(x: Prs2:9) (2m)%0,0, 0,05

2 2 2 52
xew (-2 Lo D) (s

The parameters are listed in Table I. The working point is
chosen close to the difference resonance. The sinusoidal
kick Eq. (1) from the crab cavities is used during tracking.
Figure 5 presents the beam size evolution caused by the
momentum distribution leakage. In our model, all elements
are linear except for the crab cavities. As a result, the beam
envelope oscillates. The oscillation amplitude is determined

TABLE I. Initial beam size and crab cavity parameters in the
tracking of dispersion leakage.

Parameter Unit Value
Horizontal size o, um 95
Horizontal divergence o), urad 211
Longitudinal size o, cm 2
Momentum spread o; 107 55
Horizontal § at IP m 0.45
Horizontal f§ at crab cavity m 222
Crab cavity frequency MHz 200

Crab cavity phase rad 0
Half crossing angle 6. mrad 12.5

by k, in Eq. (47) or dd' +- rs to the first order, which leads
to the yellow, green, and red curves overlap with each other.
When the horizontal tune v, is close to the longitudinal tune
v, the motion is still stable, but the envelope oscillation
amplitude becomes much larger. If the coupling is weak
enough, the oscillation frequency is determined by |v, — v, |
[13]. The envelope oscillation will lead to the horizontal
beam size blowup when the nonlinearity is present, such as
the beam-beam interaction, the chromaticity, or high-order
magnetic fields.

From Fig. 5, the horizontal size reaches maximum at
about 500th turn. Figure 6 shows the beam distribution in
x-z and x-0 plane at that moment. It demonstrates that
the horizontal coordinate is substantially associated with
the longitudinal coordinate z, but weakly depending on the
momentum spread 6. It proves that the closed orbit crab
dispersion is significantly bigger than the momentum
dispersion when the horizontal tune is close to the longi-
tudinal tune.

Vx =0.08, v,=0.069

99 1 —— d=0.0m, d'=0.0, rss=0.0m
—— d=0.0m, d'=0.0, rsg=0.1m
08 —— d=0.5m, d'=0.2, rs¢=0.0m
_ —— d=02m, d'=0.5, rss=0.0m
£
= 974
&
96 1
95 -
0 200 400 600 800 1000
Tracking time [turns]
vy =0.07, v,=0.069
240
220
200 1
_ d=0.0m, d'=0.0, rss=0.0m
£ 1801 — d=0.0m, d'=0.0, rss=0.1m
< 160 —— d=0.5m, d'=0.2, rsc=0.0m
b —_— ! — -—
140 1 —— d=02m, d'=0.5,rs6=0.0m
120
100
0 200 400 600 800 1000
Tracking time [turns]
FIG. 5. The horizontal beam size evolution due to the mo-

mentum distribution leakage. v, is the horizontal tune, v, the
longitudinal tune, and (d,d’) the horizontal momentum
dispersion at the crab cavities when the crab cavities are turned
off. 54 is the matrix element from CCB to IP, or from IP to CCA.
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FIG. 6. Beam distribution in x-z (top) and x-0 (bottom) plane at
500th turn for the green curve in the bottom of Fig. 5. Both
horizontal and vertical axes are normalized by rms beam size.

B. Nonideal phase from crab cavities to IP

The crab dispersion from the crab cavities at both sides
will cancel with each other when the horizontal phase
advance from the crab cavity to IP is exactly z/2. However,
this is not always true in IR design. As a result, the crab
dispersion will leak out of IR.

Let ¥, be the horizontal phase from CCB to IP, and ¥, is
the horizontal phase from IP to CCA. The f functions at
both crab cavities are still assumed identical. We also omit
the momentum dispersion in this section to simplify our
discussion. The transfer matrices between the crab cavities
and IP are given by

e

Fceos¥, Asin¥, 0 0
R — — ¥y 7 cos'¥, 0 0
b — )
0 0 1 0
0 0 0 1
_[% cos®, Asin¥, 0 0]
sin'¥, i
R,=| & ﬁxcos Y, 0 0 (59)
0 0 1 0
0 0 0 1

Following the same procedure in Sec. III A, the crab
dispersion before collision is

W AT
Cb = —Allb (Sin le, C();—*b> (60)

when ¥, # /2, the second term in £, will not be equal to
0. It will introduce additional synchro-betatron resonance
and will degrade the beam-beam performance.

Projecting the crab dispersion from CCA back to IP,

cos ‘Pa> T
p '

It is easy to show that the residual crab dispersion vanishes
when

&, =—-A, (—sin‘Pa, (61)

~ Asin¥,’

\Pb + lPa =T, /1(1 = /1[) (62)

There will be a leakage of crab dispersion when the total
phase ¥, + ¥, deviates from z.

Let
0. 0.
A= Asin¥,’ Aa = Asin¥,’ (63)
Then the leakage of the crab dispersion will be
cot®, + cot P, \T
Lot & =90<0,——*") - (64)
p
Define
tY t¥
a— (%) (65)

With the crab dispersion leakage, the periodic transfer
matrix at IP is

Ri = (RyR,Ro)(R7'C,R,) (RyCyR;)

1 0 0 O
0 1 k 0
=Ru
0 0 1 O
ke 0 0 1
cosp,  prsinp, frkesinp, 0
—Mi cosp, ke coSpy 0
keo_sinp, o, siny.
— 0 COS i, B
ke cos p, 0 - % COS f,

(66)
The stability criterion becomes

(cos p, — cos ;) + kZ sinp, sinp fp*(0./05) > 0. (67)
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vy =0.08, v;=0.069

101 1
100
99
= —— Y,=90°, ¥,=90°
3 981 — Y,=91°, Y,=89°
& o —— Y,=89.5°, ¥,=90°
96 1
95 1
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Tracking time [turns]
vy =0.07, v,=0.069
3501
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'S 250 — W,=90°, ¥,=90°
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& 200 —— ¥,=89.5°, ¥,=90°
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100 |
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Tracking time [turns]

FIG. 7. The horizontal beam size evolution due to the crab
distribution leakage. v, is the horizontal tune and v, is the
longitudinal tune. ¥,, is the horizontal phase advance from CCB
to IP and W, is the horizontal phase advance from IP to CCA.

Assuming the longitudinal-horizontal coupling is weak
enough, the two kinds of closed orbit dispersion are

Pk sinp,
2| cosu, —cosu,|’

Cco,x = Neox = 0. (68}

Then a constraint is given by

ke
2

6x| COS fy — COS:“Z|

pro sinp,

‘ < (69)

The bunch length o, is usually much larger than the
transverse size o,. Accordingly, Eq. (69) places a strict
constraint on k.

Figure 7 presents the beam size evolution caused by the
crab distribution leakage. The simulation parameters are
listed in Table I. We can see that even 0.5° deviation from z
driving a notable envelope oscillation for the tunes v, =
0.07 and v, = 0.069. Figure 8 shows the distribution in
x — z and x — 0 plane when the horizontal envelope reaches
maximum. It turns out that it is the closed orbit crab

1.0
4
2
S o 0.8
N
_2 >
2
@
06 &
@
o
£
©
a.
(]
4 043
©
()
o
2
e}
5 o
[7e) 0.2
-2
-4
0.0
-4 -2 0 2 4
X[Ox

FIG. 8. Beam distribution in x-z (top) and x-6 (bottom) plane at
500th turn for the green curve in the bottom of Fig. 7. Both
horizontal and vertical axes are normalized by rms beam size.

dispersion dominated the envelope oscillation, as predicted
by Eq. (68).

IV. APPLICATIONS WITH BEAM-BEAM

The leakage of the crab dispersion and momentum
dispersion will impose additional constraints on the lattice
design. Weak-strong simulation is a widely used approach
in beam-beam study [18,19]. In this part, we will inves-
tigate the influence of dispersion leakage on beam-beam
performance using a self-written weak-strong code.

Table II presents the beam parameters used in the
simulation to demonstrate the combined effects of crab
dispersion and momentum dispersion. In the simulation,
the ion beam is rigid with the horizontal centroid as [11]

4 sin(kc,iz) 1 Sin(ZkC,iZ)
3 kc,i 3 ch,i ul

(70)

X = _06

where k_ ; is the wave number of the crab cavities in the ion
ring. A second order harmonic crab cavity is used to flatten
the ion bunch in the head-on frame. The ion bunch is cut
into multiple slices. Each slice is represented by a 2D
Gaussian distribution in x-y plane.

The weak electron beam is simulated by a number of
macroparticles. As in Secs. III A and III B, both the one-
turn map and the betatron map from the crab cavities to IP
are described by the linear transfer matrix. The crab cavity
kick follows Eq. (1). The beam-beam kick from a Gaussian
distribution is calculated with the Bassetti and Erskine
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TABLE II. Beam parameters in weak-strong simulation. The
parameters come from EIC Conceptual Design Report [5].

Parameter Proton Electron
Circumference [m] 3833.8

Energy [GeV] 275 10
Particles per bunch [10''] 0.6881 1.7203
Crossing angle [mrad] 25

Crab cavity frequency [MHz] 200 400
B/ By [em] 80/7.20 55/5.6
RMS emittance (H/V)[nm] 11.3/1 20/1.30
RMS bunch size (H/V)[um] 95/8.50 105/8.50
RMS bunch length [cm] 6 2
RMS energy spread [1074] 6.6 5.5
Transverse fractional tune (H/V) 0.228/0.210  0.08/0.06
Synchrotron tune 0.010 0.069
Transverse damping time [turns] 0 4000
Longitudinal damping time [turns] 0 2000
Beam-beam parameter (H/V) 0.009/0.009  0.09/0.10

formula [20]. The effects of radiation damping and quan-
tum excitation are represented by a lumped element [21].

Figure 9 shows the beam size evolution without any
dispersion leakage. Compared with the nominal working
point, v, = 0.08, v, = 0.06, in the EIC Conceptual Design

=
o
v

—
o
o

\\

Horizontal o, [um]
[o°] O
(9] o

@
o

—— W =0.08,v,=0.06,v,=0.069

75 v =0.07,v,=0.12, v, = 0.069
0 20 40 60 80 100
Tracking time [x1000 turns]
9.5
9.0
£
=2 85
>
(<]
© 8.0
=)
£
L 75
—— v =0.08,v,=0.06,v, =0.069
7.0 Vv =0.07,vy,=0.12,v,=0.069

0 20 40 60 80 100
Tracking time [x1000 turns]
FIG.9. Weak-strong simulation results for the case without any

dispersion leakage. The v,, vy, v, are horizontal, vertical and
longitudinal tunes, respectively.

Report, the new working point, v, = 0.07, v, =0.12,
predicts smaller horizontal and vertical beam sizes after
equilibrium. The horizontal size benefits from the smaller
horizontal tune which reduces the dynamical S, under
beam-beam interaction [22]. The vertical size benefits from
a larger difference |v, — vy| so that the new working point
moves away from the main diagonal line in the tune space.
From the viewpoint of beam-beam, the new working point,
v, = 0.07, vy = 0.12, is a better choice.

A. Nonzero momentum dispersion at crab cavities

Figure 10 presents the final beam sizes after equilibrium
with different momentum dispersion d and d' at both crab
cavities. The rsq term from CCB (IP) to IP (CCA) is set to 0
in all simulations. Compared with the simulations without
beam-beam interaction in Sec. IIl A, Figure 10 shows a
quite different pattern. The vertical size after equilibrium
is also affected due to the nonlinearity from the beam-
beam interaction. The horizontal blowup is less severe
even for the new working point where the horizontal tune
v, = 0.07 is quite close to the longitudinal tune v, = 0.0609.
The equilibrium size is mainly determined by d’ instead
of dd' + rs.

110.0
107.5
105.0
102.5
100.0

Ox [um]

97.5
95.0

oy [um]

9.0 . ........ '.u::iiii‘ié
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 10. Weak-strong simulation results for different d and d'.
(d,d’) is the horizontal momentum dispersion at CCB when the
crab cavities are turned off. The solid curves are for the working
point (0.08,0.06,0.069), whereas the dashed curves are for
(0.07,0.12,0.069). The horizontal size o, and the vertical size
o, are averaged from the last 1000 turns.
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The reason is that the horizontal tune and f function are
modified by the beam-beam interaction. With the near axis
approximation, the beam-beam kick can be represented by
a linear quadrupole in the head-on frame,

1 0 0 O
-1 1 0 O
o |1 | -
0 01 0
0 0 0 1

where f, is the horizontal focal length and can be expressed
with the beam-beam parameter &, by

1 4xg,
fo B

(72)

For simplicity, the vertical dynamics is not included here.
Back into the Frenet-Serret frame, the linear beam-beam
transformation is given by

1 0 0 0
-1 1 -6 0
ﬁ_IBEZ /fx c/fx ’ (73)
0 0 1 0
_Qc/fx 0 _gg/fx 1

where L is the linear Lorentz boost, as shown in Eq. (9).

Turning the crab cavities on, the total transfer matrix
including the crab system and the beam-beam interaction
follows:

Rip = (RZ'C,R)(L'BL)(RyCyR;)

l1—a, af, 0 K,
ky
N - %‘ 1 —+ a, 0 m
~%(1+a,) kﬂ(1+ax+“§) 10
0 0 0 1
(74)
where
2A0.d
ay = ——. 75
7 (75)
Then the periodic transfer matrix is
Ry = R Rep. (76)

Due to k, o 6., the longitudinal-horizontal coupling is
still weak. The horizontal dynamic tune and f are then
given by

0.1481 —’///
=
S
= 0.1441
g
S —— 1x=0.08
= 0.140
S —— Vx=0.07
5
T 0.1361 —
g i
S I
0.1321
0.0 0.1 02 03 0.4 05
d/
FIG. 11. Dynamical tune in the presence of beam-beam

interaction. (d,d') is the horizontal momentum dispersion at
CCB when the crab cavities are turned off.

_ LB aif) .
COS iy = COS iy — ]T+ 5 sin
X

FSinﬂx = a)chx COS [ +:B* (1 + ax) Sinﬂx' (77)

Figure 11 shows the dynamical tune as a function of &'
For both working points, the horizontal tune with the
beam-beam interaction is larger than 0.13, which is far
enough away from the longitudinal tune 0.069. Therefore,
the closed orbit of the momentum dispersion and crab
dispersion is negligible. Figure 12 shows the dynamical
beta as a function of d’. The dynamical beta increases as d’
gets larger, which explains why the horizontal size depends
mainly on d' instead of dd' + rsg.

It is worthwhile to mention that the dynamical beta is
not the only source of beam size growth. The nonzero
momentum dispersion d or d' at crab cavities will excite
higher-order synchro-betatron resonances through the
nonlinear beam-beam interaction.

In summary, from the weak-strong simulation, when the
dispersion satisfies the constraints,

0.46 1
0] T v, =0.08
= —— Vx=0.07
« 0421
xQ
© 0.401
(0]
o)
— 038
©
9O
£ 036
2
S 034 /
&) -

0.32 _—

0.0 0.1 0.2 0.3 0.4 0.5

dl

FIG. 12. Dynamical beta function in the presence of beam-
beam interaction. (d, d’) is the horizontal momentum dispersion
at CCB when the crab cavities are turned off.
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|d| < 0.5 m, d ~0, (78)
the beam size growth caused by the momentum dispersion
is small. The closed orbit crab dispersion or momentum dis-
persion without beam-beam interaction is also negligible.

B. Nonideal phase from crab cavities to IP

For symplecticity, we still omit the momentum disper-
sion here. Substituting Eq. (73) into Eq. (23), the crab
dispersion deflected by the beam-beam kick is

Lll/fx ﬂg“w [—Gf/fx] =&, (719)

where &, takes the form of Eq. (60), and the crab cavity
strength is determined by Eq. (63). Because the beam-beam
kick has no effect on crab dispersion, the criteria Eq. (69)
still holds true, with the exception that the horizontal phase
must be replaced by the dynamical phase

le COs ﬁx — COS”Z|

kg
= << - 80
120
g 110
x
)
< 100 /
-t
c
o
N 90 — Y, =W, =90.0"
2 W, =¥, =895"
80 — WY, =Y,=89.0"
0 5 10 15 20 25
Tracking time [x1000 turns]
14
13
E 1
=
> 11
5
< 10
9
£ 9 — W, =¥,=900°
> 8 W, =V,=895"
7 — Y, =Y,=89.0"
0 5 10 15 20 2

Tracking time [x1000 turns]

FIG. 13.  Weak-strong simulation results with nonideal phase at
the working point of (0.08,0.06,0.069). ¥}, is the horizontal phase
advance from CCB to IP and ¥, is the horizontal phase advance
from IP to CCA.

or specifically,

|cot¥, + cot¥,| < x| COS i = cOS |

, 81
56,0, siny, (81)

where the dynamical phase ji, is determined by Eq. (77),
and the upper boundary is set as 1/10 in Eq. (80).

Let ¥, =¥, = /2 — AY. Then the criterion becomes
numerically,

|AY| < 0.80°
|AY| < 0.58°

when v, = 0.08
when v, = 0.07. (82)

Figures 13 and 14 show the weak-strong simulation results
for different AW at both working points. Both figures
demonstrate that the constraint Eq. (82) has to be satis-
fied. Otherwise, the horizontal beam size will increase
dramatically.

However, the constraint of Eq. (82) may be too strict to
meet in reality because of the compact layout of the IR. A
possible alternative is to move the crab cavities in one ring
to the phase of 37/2 or further.

180
— 160
£
=
X 140 — Wy =¥,=900°
E 120 Wb=wa=89.5.
g — Y=Y, =89.0
N
5 100
T
80
0 5 10 15 20 25
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=
2 9.0
o]
_S 8.5
-t
E 8.0 — Y, =¥, =90.0
WY, =W,=89.5"
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Tracking time [x1000 turns]

FIG. 14. Weak-strong simulation results with nonideal phase at
the working point of (0.07,0.12,0.069). ¥, is the horizontal phase
advance from CCB to IP and ¥, is the horizontal phase advance
from IP to CCA.
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V. CONCLUSION

In this study, we extended the concept of crab dispersion
and momentum dispersion in the presence of synchrotron
motion. We derived the propagation law of the two types of
dispersion traveling via common accelerator elements.
Edward-Teng’s block diagonalization technique was also
used to find the closed orbit form of dispersions. It enabled
us to deduce the leakage of crab dispersion and momentum
dispersion in the local crabbing scheme.

This paper then investigated the momentum dispersion at
the crab cavities and the nonideal phase from the crab
cavities to IP. The stability criterion was derived. A lattice
requirement criterion was calculated using the weak hori-
zontal-longitudinal coupling assumption. It turned out that
the beam size at IP became sensitive to the leakage of
dispersions when the horizontal tune was close to the
longitudinal tune. The Monte Carlo simulations were
carried out to demonstrate the theoretical analysis.

The beam-beam interaction was taken into consideration
in the weak-strong simulations. It showed that the momen-
tum dispersion at crab cavities had less impact on the beam
size at IP because of the beam-beam tune shift. However,
the phase advance from crab cavities to IP cannot stay too
far from z/2. The numerical criteria of the electron ring
lattice were given for the EIC beam parameters. The
simulation results agreed with the criteria.
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