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In this paper, we present the effects of linear transverse-longitudinal coupling on beam size at the
interaction point (IP) of a collider with a local crab crossing scheme, when time-dependent transverse
deflection (crab kicks) and dispersive orbit intertwine near IP. The analytic propagation formula and the
closed orbit form of the crab dispersion and momentum dispersion are derived. The nonzero momentum
dispersion at crab cavities and the nonideal phase from crab cavities to IP are detailed with the derived
propagation formula to predict the beam size distortion at IP with or without the beam-beam interaction.
The linear results are compared with nonlinear simulation using the weak-strong beam-beam code.
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I. INTRODUCTION

A large crossing angle in the interaction region (IR) is
necessary for the fast separation of two colliding beams in
ring-ring type colliders to achieve high collision rates, IR
background minimization, and overall detector component
and IR magnet arrangements. Crab cavities, first proposed
for linear colliders [1], can compensate for the geometrical
luminosity loss induced by crossing angle. This idea was
later expanded to include circular colliders [2].
The crab cavity generates a transverse kick, depending

on the longitudinal coordinate z of a particle. Due to
symplecticity, the particle always receives an energy kick
from the crab cavity as a function of transverse offset x
simultaneously, as shown in Eq. (1).

Δpx ¼ −λ sin ðkczþ ϕcÞ=kc
Δδ ¼ −λ cos ðkczþ ϕcÞx; ð1Þ

where Δpx and Δδ are horizontal and momentum kick from
the crab cavity, λ is the kick strength normalized by the
momentum of the reference particle, kc and ϕc are the wave
number and synchronous phase of the crab cavity, respectively.
In the crab crossing scheme, both colliding beams are

tilted by half crossing angle in the x-z plane to restore

the head-on collision. There are two configurations to
accomplish this: global and local schemes. In a global
scheme, the crab cavity is placed at a particular location and
the horizontal and longitudinal dynamics is coupled all over
the ring. In a local scheme, a pair of crab cavities are
installed at both sides of the IP. The upstream crab cavity
tilts the beam in the x-z plane, and the downstream crab
cavity rotates the beam back. In the rest of the rings, both
planes stay unaffected.
The global scheme was first successfully implemented at

the KEKB B-Factory (High Energy Accelerator Research
Organisation) [3], where a world record luminosity of 2.1 ×
10−34 cm−2 s−1 was obtained. The local scheme was also
demonstrated for the hadron beam in CERN’s Super Proton
Synchrotron (SPS) [4]. The Electron-Ion Collider (EIC) also
adopts the local scheme to achieve the desired luminosity
(1 × 1034 cm−2 s−1) [5]. A schematic of the local crabbing
compensation scheme is shown in Fig. 1 where two sets of
crab cavities are placed on both sides of IP for each ring.
The single crab cavity dynamics in the global crabbing

scheme has been studied in detail. In the absence of
longitudinal motion, the linear effect of crab cavities on
the closed orbit is described by the concept of z-dependent
dispersion [6], which is referred as the crab dispersion
throughout this study. The linear transverse and longi-
tudinal coupled motion due to crab cavities is analyzed
through the transfer matrix in [7]. The synchro-betatron
stop bands due to a single crab cavity are calculated in [8].
The impact on the luminosity or the dynamical aperture is
discussed in [9,10].
However, the crab cavity voltage in the global scheme

depends on the linear beam optics which is distorted by the
beam-beam interaction. The crab dispersion all over the
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ring excites various synchro-betatron resonances. From
KEKB operation experiences, the global scheme may be
sensitive to the chromatic coupling and machine errors
[10]. These can be avoided or mitigated in a local crabbing
scheme as the crab dispersion is constrained within IR.
In the ideal local crabbing scheme, the two crab cavities,

located at the location with the betatron phase advance of
�π=2 from IP, create desired crab dispersion “bump”
between them. The crab dispersion outside the crab cavity
pair vanishes. Under this ideal assumption, the nonlinear z
dependence from rf curvature and its impact on beam
dynamics is described in [11].
On the other hand, nonideal crab-crossing setups also

impact the dynamics of the colliding beams. The imper-
fections include the presence of dispersion at crab cavities
which are first discussed in [12] and unmatched betatron
phase advance between the crab cavity pair. They break
the closure of the crab dispersion bump and may cause
degradation of beam quality and luminosity. We present a
theoretical treatment for the interplay of momentum and
crab dispersion with these imperfections, then verify the
predictions with the presence of the beam-beam effect in
weak-strong simulations.
This paper is organized as follows: Section II extends the

concept of crab dispersion and momentum dispersion to
the 6D phase space. Section III applies the theory to explain
the effects of nonzero momentum dispersion at crab
cavities and nonideal phase advance from crab cavities
to IP. Section IV shows the results of combining the
momentum/crab dispersion effects with the beam-beam
effect in a weak-strong simulation. The conclusion is given
in Sec. V.

II. CRAB DISPERSION AND MOMENTUM
DISPERSION

When the transverse coordinates x,px,y, and py are
coupled with the longitudinal offset z as well as the rela-
tive momentum deviation δ, neither z nor δ is constant.
In consequence, the regular momentum dispersion is no
longer well defined. We can instead define it as follows:

Let M be a canonical transformation

ðx; px; y; py; z; δÞT ¼ Mðx̄; p̄x; ȳ; p̄y; z̄; δ̄ÞT; ð2Þ

where the superscript “T” denotes the transformation of a
vector or a matrix. In the new phase space of fx̄; p̄x;
ȳ; p̄y; z̄; δ̄g, the longitudinal and transverse motion is
decoupled. Then the momentum dispersion and the crab
dispersion are defined as

η≡ ∂X
∂δ̄

; ζ ≡ ∂X
∂z̄

; ð3Þ

where X is the abbreviation of ðx; px; y; pyÞT. z̄ and δ̄ are
connected by the longitudinal oscillation. As a result, the
two kinds of dispersion are also interchangeable.
When the crab dispersion is not present, the trans-

formation is well known [13]

Mη ¼

2
64

14×4 04×1 η

−ðJηÞT 1 0

01×4 0 1

3
75; ð4Þ

where J is the 4-by-4 symplectic form matrix

J ¼

2
6664

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

3
7775: ð5Þ

Similarly, the transformation of the crab dispersion is

Mζ ¼

2
64

14×4 ζ 04×1
01×4 1 0

ðJζÞT 0 1

3
75: ð6Þ

When both kinds of dispersion are present, we can make a
succession of the two canonical transformations [Eqs. (4)
and (6)],

M ¼ MζMη

¼

2
64
14×4 − ζðJηÞT ζ η

−ðJηÞT 1 0

ðJζÞT 0 1þ ðJζÞTη

3
75: ð7Þ

Substituting it back into Eq. (2), it is straightforward to
check that the transformation in Eq. (7) accommodates the
definition in Eq. (3),

X ¼ MX̄þ ζ z̄þ ηδ̄; ð8Þ

where M is the 4-by-4 block of M.

FIG. 1. EIC local crabbing compensation scheme.
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The transformation MηMζ also holds true for the
definition in Eq. (3). However, MζMη is a better choice
from the viewpoint of beam-beam study. From Hirata [14],
the linear map for the Lorentz boost in the crab crossing
scheme is

L ≈

2
6666666664

1 0 0 0 θc 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 −θc 0 0 0 1

3
7777777775
; ð9Þ

where θc is the half crossing angle, and the approximation
θc ≈ 0 is used. The linear Lorentz boost L is literally a crab
transformation with ζ ¼ ðθc; 0; 0; 0ÞT. To provide an effec-
tive head-on collision, the crab dispersion and the momen-
tum dispersion are found to be

LM¼ 16×6 ⇒ ζ� ¼ ð−θc;0;0;0ÞT; η� ¼ 04×1; ð10Þ

where the superscript symbol “*” denotes IP. The property
Mζðζ1ÞMζðζ2Þ ¼ Mζðζ1 þ ζ2Þ is used in Eq. (10).
The linear motion through a section can be expressed

via the 6-by-6 transfer matrix R. In the phase space of
fx̄; p̄x; ȳ; p̄y; z̄; δ̄g, the transfer matrix will be

R̄ ¼ M−1
2 RM1 or M2R̄ ¼ RM1; ð11Þ

where points 1 and 2 are the entrance and the exit of
this section, respectively. According to the definition, the
matrix R̄ is block diagonalized, i.e.,

r̄i5 ¼ 0; r̄i6 ¼ 0;

r̄5i ¼ 0; r̄6i ¼ 0; ð12Þ

where i ¼ 1, 2, 3, 4, and r̄ij are the matrix elements of R̄ at
ith row, jth column.
There are eight free variables in M2. In the meantime,

the number of independent constraints in Eq. (12) is also 8.
In principle, ζ2 and η2 are determined by Eqs. (11) and (12).
The propagation of the crab dispersion and momentum
dispersion can be resolved.
When the particle travels through a momentum dis-

persing section without any crab cavities or rf cavities, the
6-by-6 transfer matrix will be

Rdis ¼

2
64

Rd 04×1 D

BT 1 r56
01×4 0 1

3
75; ð13Þ

where Rd is the 4-by-4 block, and D is the momentum
dispersion generator. The symplectic condition requires

RT
d J Rd ¼ J; BT ¼ DT J Rd: ð14Þ

The block diagonalized matrix R̄dis has a form of

R̄dis ¼

2
64

R̄d 04×1 04×1
01×4 r̄55 r̄56
01×4 0 r̄66

3
75; ð15Þ

with the symplectic constraint

R̄T
dJR̄d ¼ J; r̄55r̄66 ¼ 1: ð16Þ

Substituting Eqs. (7), (13), and (15) into Eq. (11), it follows
that

r̄55 ¼ 1þ BTζ1; ζ2 ¼ Rdζ1=r̄55;

r̄56 ¼ BTη1 þ r56½1þ ðJζ1ÞTη1�;
η2 ¼ r̄55fRdη1 þ D½1þ ðJζ1ÞTη1�g − r̄56Rdζ1: ð17Þ

When ζ1 ¼ 04×1, the propagation turns into

ζ2 ¼ 04×1; η2 ¼ Rdη1 þD; ð18Þ

which is the same as the normal dispersion propagation.
When the particle passes by a cavity-like element, the

linear transfer matrix is

Rcav ¼

2
64

Rc C 04×1
01×4 1 0

AT r65 1

3
75; ð19Þ

with the symplectic constraint

RT
c JRc ¼ J; A ¼ RT

c JC; ð20Þ

where Rc is also the 4-by-4 block, and C is the crab
dispersion generator.
The block diagonalized matrix R̄cav is

R̄cav ¼

2
64

R̄c 04×1 04×1
01×4 1 0

01×4 r̄65 1

3
75; ð21Þ

with the symplectic constraint

R̄T
c JR̄c ¼ J: ð22Þ

Substituting Eqs. (7), (19), and (21) into Eq. (11), it follows
that

η2 ¼ Rcη1

ζ2 ¼ Rcζ1 þC −
ðr65 þATζ1Þ η2

1þ ðJζ1ÞT η1 þAT η1
: ð23Þ
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When η1 ¼ 04×1, the propagation turns into

ζ2 ¼ Rcζ1 þ C; η2 ¼ 04×1: ð24Þ

Equations (13) and (19) include the most common
accelerator components in a real machine. For a one-turn
map in which both momentum dispersion generator D and
crab dispersion generator C are present, the closed orbit
condition is imposed on the two dispersion functions

η1 ¼ η2; ζ1 ¼ ζ2: ð25Þ
This fixed point problem can be resolved with the help of
Edwards-Teng approach [15,16].
To use the Edwards-Teng approach, the discussion is

limited within the 4D phase space fx; px; z; δg. A general
4-by-4 transfer matrix in terms of 2-by-2 blocks is

R ¼
�
Rxx Rxz

Rzx Rzz

�
: ð26Þ

Following [17], R is block diagonalized by

R ¼ VUV−1 ð27Þ
with

V ¼
�
g12×2 W

−Wþ g12×2

�
; U ¼

�
Uxx 02×2
02×2 Uzz

�
; ð28Þ

whereW;Uxx; Uzz are 2-by-2 blocks,Wþ is the symplectic
conjugate of W, and g is given by

g2 þ ðdet WÞ ¼ 1; ð29Þ

where “det” means taking the determinant. This paper does
not include the concrete formula ofW, which the reader can
find in [17].
With the closed orbit condition, Eq. (11) turns into

R ¼ MR̄M−1: ð30Þ

Comparing it with Eq. (27), M is related to V by a
longitudinal scaling transformation, i.e.,

M ¼
�
g12×2 W

−Wþ g12×2

�
·

2
64

P 02×1 02×1
01×2 1=g 0

01×2 0 g

3
75; ð31Þ

where P is a 2-by-2 matrix. From Eq. (31), the two kinds of
closed orbit dispersion are

½ζ; η� ¼ W

�
1=g 0

0 g

�
ð32Þ

and the matrix P follows

WþP ¼
�
g 0

0 1=g

�
Wþ: ð33Þ

The crab dispersion and the momentum dispersion at any
point are related to the closed orbit form in Eq. (25) by the
propagation formulas [Eqs. (17) and (23)]. Equation (7)
presents a technique to decouple the transverse and the
longitudinal phase space following acknowledgment of the
two types of dispersion.

III. APPLICATIONS WITHOUT BEAM-BEAM

In this section, the subscript “b” denotes before IP,
whereas the subscript “a” denotes after IP. Without loss of
generality, our discussion focuses in the 4D phase space
fx; px; z; δg. The propagation of the crab dispersion and the
momentum dispersion does not involve the vertical plane.
The lattice is assumed symmetrical around IP. The crab
cavity before IP (CCB) and the crab cavity after IP (CCA)
are placed at αx ¼ 0, as shown in Fig. 2.

A. Nonzero momentum dispersion at crab cavities

When the crab cavities are turned off, the momentum
dispersion vanishes at IP. Let the momentum dispersion at
CCB be ðd; d0ÞT. Then the transfer matrix from CCB to IP is

Rb ¼

2
6664

0 Λ 0 −Λd0

−1=Λ 0 0 d=Λ
d0 −d 1 r56
0 0 0 1

3
7775; ð34Þ

whereΛ ¼ ffiffiffiffiffiffiffi
ββ�

p
, β, and β� are the horizontal beta functions

at crab cavities and IP. From the symmetry of the lattice, the

FIG. 2. The local crabbing scheme in a storage ring. “CCB”
stands for the crab cavity before IP, and Rb is the transfer matrix
from CCB to IP. “CCA” stands for the crab cavity after IP, andRa
is the transfer matrix from IP to CCA. Rr is the transfer matrix
from CCA to CCB.

DERONG XU, YUN LUO, and YUE HAO PHYS. REV. ACCEL. BEAMS 25, 071002 (2022)

071002-4



momentum dispersion at CCA is ðd;−d0ÞT, and the transfer
matrix from IP to CCA is

Ra ¼

2
6664

0 Λ 0 d

−1=Λ 0 0 −d0

−d=Λ Λd0 1 r56
0 0 0 1

3
7775: ð35Þ

The periodic transfer matrix at IP should be

Rt1 ¼ RbRrRa

¼

2
666664

cos μx β� sin μx 0 0

− sin μx
β� cos μx 0 0

0 0 cos μz
σz sin μz

σδ

0 0 − σδ sin μz
σz

cos μz

3
777775; ð36Þ

whereRr is the transfer matrix from CCA to CCB, μx=μz is
the periodic phase advance in horizontal/longitudinal plane,
σz is the rms bunch length, and σδ is the rms momentum
spread.
When the crab cavities are turned on, from Eq. (1), the

linear transfer matrix of CCB and CCA are

Cb ¼

2
6664

1 0 0 0

0 1 −λb 0

0 0 1 0

−λb 0 0 1

3
7775; Ca ¼

2
6664

1 0 0 0

0 1 −λa 0

0 0 1 0

−λa 0 0 1

3
7775;

ð37Þ

where λb and λa are the strength of the crab cavity.
Starting with

ζ0 ¼ ð0; 0ÞT; η0 ¼ ð0; 0ÞT ð38Þ

after transported to CCB by R−1
b , deflected by Cb, and

transported back to IP by Rb, the crab dispersion and the
momentum dispersion before collision read,

ζb ¼
�
−

Λλb
1þ λbd

; 0

�
T
;

ηb ¼ ð1þ λbdÞλbd
�
Λd0;−

d
Λ

�
T
þ r56ð1 − λbdÞðΛλb; 0ÞT

ð39Þ

Expanding Eq. (39) to the first order of λb,

ζb ≈ ð−Λλb; 0ÞT;

ηb ≈ Λλb
�
dd0 þ r56;−

d2

ββ�

�
T

: ð40Þ

The Lorentz boost in Eq. (10) will cancel the crab dis-
persion when λb ¼ θc=Λ. However, the momentum disper-
sion does not vanish when d ≠ 0 or d0 ≠ 0. Therefore, the
horizontal coordinate x will depend on the momentum
spread δ in the head-on frame, as shown in Fig. 3.
Due to the nonzero dispersion, the transverse coordinates

relate to the momentum spread in the head-on frame by

X ¼ X̄þ ηbδ̄; δ ¼ δ: ð41Þ

The dispersion ηb can then be calculated from the second
order moments as

ηb;x ¼
hx; δi
σ2δ

; ηb;px
¼ hpx; δi

σ2δ
; ð42Þ

where h·i denotes taking the average over the particle
distribution. Figure 4 compares the dispersion calculated
from the analytic formula [Eq. (40)] and from the beam
distribution [Eq. (42)].

FIG. 3. Beam distribution before collision in x-z (top) and x-δ
(bottom) plane. Both horizontal and vertical axes are normalized
by rms beam size. The dispersion at the crab cavity is d ¼ 1 m,
d0 ¼ 1. The half crossing angle is θc ¼ 12.5 mrad. The r56
element from CCB to IP is chosen as r56 ¼ 2 m. The crab
cavity strength is determined by λb ¼ θc=Λ. The horizontal beta
functions at IP and the crab cavity are β� ¼ 0.5 m, β ¼ 200 m.
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Projecting the crab dispersion and the momentum
dispersion at the other side back to IP, it follows

ζa ¼
�

Λλa
1þ λad

; 0

�
T
;

ηa ¼ ð1þ λadÞλad
�
Λd0;

d
Λ

�
T
þ r56ð1 − λadÞðΛλa; 0ÞT:

ð43Þ

Expanding Eq. (43) to the first order of λa,

ζa ≈ ðΛλa; 0ÞT;

ηa ≈ Λλa
�
dd0 þ r56;

d2

ββ�

�
T

: ð44Þ

Taking both sides into consideration, the crab dispersion
can be closed when

λb ¼ λa ≈ θc=Λ: ð45Þ

Then the residual momentum dispersion is

ηa þ ηb ≈ 2θcðdd0 þ r56; 0ÞT: ð46Þ

The leakage of the momentum dispersion will lead to the
coupling between the horizontal and longitudinal plane,
and it is necessary to consider the closed orbit form of the
two types of distribution.
Define

kη ≡ 2θcðdd0 þ r56Þ: ð47Þ

With both crab cavities on, the periodic transfer matrix
at IP is

Rt2 ¼ ðRbRrRaÞðR−1
a CaRaÞðRbCbR−1

b Þ

≈ Rt1

2
6664
1 0 0 kη
0 1 0 0

0 kη 1 0

0 0 0 1

3
7775

¼

2
666664

cos μx β� sin μx 0 kη cos μx

− sin μx
β� cos μx 0 − kη sin μx

β�

0 kη cos μz cos μz
σz sin μz

σδ

0 − kησδ sin μz
σz

− σδ sin μz
σz

cos μz

3
777775: ð48Þ

Following the procedure in [17], we define

H ¼
"
− kησδ sin μz

σz
kηðcos μx − cos μzÞ

0 − kη sin μx
β�

#
;

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos μx − cos μzÞ2

ðcos μx − cos μzÞ2 þ det H

svuut ; ð49Þ

and then

W ¼ H

2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos μx − cos μzÞ2 þ det H

p : ð50Þ

The stability criterion is

ðcos μx − cos μzÞ2 þ
k2η sin μx sin μz

β�σz=σδ
> 0: ð51Þ

Similar to the betatron resonance, the sum resonance
μx þ μz ¼ 0 is dangerous, while the motion on difference
resonance μx − μz ¼ 0 is stable. However, the longitudinal
average action is usually much larger than the horizontal
rms emittance, the coupling has to be weak enough to
prevent the luminosity loss,

g ≈ 1; W ≈
H

2j cos μx − cos μzj
: ð52Þ

From Eq. (32), the two kinds of closed orbit dispersion are

ζco;x ¼ −
kη sin μz

2j cos μx − cos μzjσz=σδ
ηco;x ¼

1

2
kηsgnðcos μx − cos μzÞ; ð53Þ

where

sgnðxÞ ¼
�−1; for x ≤ 0

þ1; for x > 0
: ð54Þ

FIG. 4. The horizontal momentum dispersion in the head-on
frame versus the r56 element from CCB to IP. The analytic line
(blue) is obtained from Eq. (40), and the simulation data (yellow)
are obtained from the statistics of the beam distribution. Other
parameters are same as in Fig. 3.
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To prevent the horizontal beam size blows up,

jζco;xj ≪
σx
σz

; jηco;xj ≪
σx
σδ

; ð55Þ

so that the constraints are given by���� kη2
���� ≪ σxj cos μx − cos μzj

σδ sin μz
ð56Þ

and ���� kη2
���� ≪ σx

σδ
: ð57Þ

From Eq. (47), kη and θc are within the same order of
magnitude. As a result, the constraint of Eq. (57) is
generally satisfied. However, when μx is close to μz, even
if the stability criterion Eq. (51) holds, the constraint of
Eq. (56) may be broken. In other words, the leakage of
momentum dispersion will result in a significant closed
orbit crab dispersion, and the luminosity will be reduced
hereafter.
The theory is verified by tracking. The macropar-

ticles are randomly generated at IP from the Gaussian
distribution,

ρðx; px; z; δÞ ¼
1

ð2πÞ2σxσpx
σzσδ

× exp

�
−

x2

2σ2x
−

p2
x

σ2px

−
z2

2σ2z
−

δ2

2σ2δ

�
: ð58Þ

The parameters are listed in Table I. The working point is
chosen close to the difference resonance. The sinusoidal
kick Eq. (1) from the crab cavities is used during tracking.
Figure 5 presents the beam size evolution caused by the
momentum distribution leakage. In our model, all elements
are linear except for the crab cavities. As a result, the beam
envelope oscillates. The oscillation amplitude is determined

by kη in Eq. (47) or dd0 þ r56 to the first order, which leads
to the yellow, green, and red curves overlap with each other.
When the horizontal tune νx is close to the longitudinal tune
νz, the motion is still stable, but the envelope oscillation
amplitude becomes much larger. If the coupling is weak
enough, the oscillation frequency is determined by jνx − νzj
[13]. The envelope oscillation will lead to the horizontal
beam size blowup when the nonlinearity is present, such as
the beam-beam interaction, the chromaticity, or high-order
magnetic fields.
From Fig. 5, the horizontal size reaches maximum at

about 500th turn. Figure 6 shows the beam distribution in
x-z and x-δ plane at that moment. It demonstrates that
the horizontal coordinate is substantially associated with
the longitudinal coordinate z, but weakly depending on the
momentum spread δ. It proves that the closed orbit crab
dispersion is significantly bigger than the momentum
dispersion when the horizontal tune is close to the longi-
tudinal tune.

TABLE I. Initial beam size and crab cavity parameters in the
tracking of dispersion leakage.

Parameter Unit Value

Horizontal size σx μm 95
Horizontal divergence σpx

μrad 211
Longitudinal size σz cm 2
Momentum spread σδ 10−4 5.5
Horizontal β at IP m 0.45
Horizontal β at crab cavity m 222
Crab cavity frequency MHz 200
Crab cavity phase rad 0
Half crossing angle θc mrad 12.5

FIG. 5. The horizontal beam size evolution due to the mo-
mentum distribution leakage. νx is the horizontal tune, νz the
longitudinal tune, and ðd; d0Þ the horizontal momentum
dispersion at the crab cavities when the crab cavities are turned
off. r56 is the matrix element from CCB to IP, or from IP to CCA.
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B. Nonideal phase from crab cavities to IP

The crab dispersion from the crab cavities at both sides
will cancel with each other when the horizontal phase
advance from the crab cavity to IP is exactly π=2. However,
this is not always true in IR design. As a result, the crab
dispersion will leak out of IR.
LetΨb be the horizontal phase from CCB to IP, andΨa is

the horizontal phase from IP to CCA. The β functions at
both crab cavities are still assumed identical. We also omit
the momentum dispersion in this section to simplify our
discussion. The transfer matrices between the crab cavities
and IP are given by

Rb ¼

2
666664

β�
Λ cosΨb Λ sinΨb 0 0

− sinΨb
Λ

Λ
β� cosΨb 0 0

0 0 1 0

0 0 0 1

3
777775;

Ra ¼

2
666664

Λ
β� cosΨa Λ sinΨa 0 0

− sinΨa
Λ

β�
Λ cosΨa 0 0

0 0 1 0

0 0 0 1

3
777775: ð59Þ

Following the same procedure in Sec. III A, the crab
dispersion before collision is

ζb ¼ −Λλb
�
sinΨb;

cos Ψb

β�

�
T

ð60Þ

when Ψb ≠ π=2, the second term in ζb will not be equal to
0. It will introduce additional synchro-betatron resonance
and will degrade the beam-beam performance.
Projecting the crab dispersion from CCA back to IP,

ζa ¼ −Λλa
�
− sinΨa;

cosΨa

β�

�
T
: ð61Þ

It is easy to show that the residual crab dispersion vanishes
when

Ψb þΨa ¼ π; λa ¼ λb ¼
θc

Λ sinΨb
: ð62Þ

There will be a leakage of crab dispersion when the total
phase Ψb þ Ψa deviates from π.
Let

λb ¼
θc

Λ sinΨb
; λa ¼

θc
Λ sinΨa

: ð63Þ

Then the leakage of the crab dispersion will be

ζa þ ζb ¼ θc

�
0;−

cotΨa þ cotΨb

β�

�
T
: ð64Þ

Define

kζ ≡ −θc
�
cotΨa þ cotΨb

β�

�
: ð65Þ

With the crab dispersion leakage, the periodic transfer
matrix at IP is

Rt3 ¼ ðRbRrRaÞðR−1
a CaRaÞðRbCbR−1

b Þ

¼ Rt1

2
6664

1 0 0 0

0 1 kζ 0

0 0 1 0

kζ 0 0 1

3
7775

¼

2
666664

cos μx β� sin μx β�kζ sin μx 0

− sin μx
β� cos μx kζ cos μx 0

kζσz sin μz
σδ

0 cos μz
σz sin μz

σδ

kζ cos μz 0 − σδ sin μz
σz

cos μz

3
777775:

ð66Þ

The stability criterion becomes

ðcos μx − cos μzÞ2 þ k2ζ sin μx sin μzβ
�ðσz=σδÞ > 0: ð67Þ

FIG. 6. Beam distribution in x-z (top) and x-δ (bottom) plane at
500th turn for the green curve in the bottom of Fig. 5. Both
horizontal and vertical axes are normalized by rms beam size.
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Assuming the longitudinal-horizontal coupling is weak
enough, the two kinds of closed orbit dispersion are

ζco;x ¼
β�kζ sin μx

2j cos μx − cos μzj
; ηco;x ¼ 0: ð68Þ

Then a constraint is given by

���� kζ2
���� ≪ σxj cos μx − cos μzj

β�σz sin μx
: ð69Þ

The bunch length σz is usually much larger than the
transverse size σx. Accordingly, Eq. (69) places a strict
constraint on kζ.
Figure 7 presents the beam size evolution caused by the

crab distribution leakage. The simulation parameters are
listed in Table I. We can see that even 0.5° deviation from π
driving a notable envelope oscillation for the tunes νx ¼
0.07 and νz ¼ 0.069. Figure 8 shows the distribution in
x − z and x − δ plane when the horizontal envelope reaches
maximum. It turns out that it is the closed orbit crab

dispersion dominated the envelope oscillation, as predicted
by Eq. (68).

IV. APPLICATIONS WITH BEAM-BEAM

The leakage of the crab dispersion and momentum
dispersion will impose additional constraints on the lattice
design. Weak-strong simulation is a widely used approach
in beam-beam study [18,19]. In this part, we will inves-
tigate the influence of dispersion leakage on beam-beam
performance using a self-written weak-strong code.
Table II presents the beam parameters used in the

simulation to demonstrate the combined effects of crab
dispersion and momentum dispersion. In the simulation,
the ion beam is rigid with the horizontal centroid as [11]

xi ¼ −θc
�
4

3

sinðkc;izÞ
kc;i

−
1

3

sinð2kc;izÞ
2kc;i

− z

�
; ð70Þ

where kc;i is the wave number of the crab cavities in the ion
ring. A second order harmonic crab cavity is used to flatten
the ion bunch in the head-on frame. The ion bunch is cut
into multiple slices. Each slice is represented by a 2D
Gaussian distribution in x-y plane.
The weak electron beam is simulated by a number of

macroparticles. As in Secs. III A and III B, both the one-
turn map and the betatron map from the crab cavities to IP
are described by the linear transfer matrix. The crab cavity
kick follows Eq. (1). The beam-beam kick from a Gaussian
distribution is calculated with the Bassetti and Erskine

FIG. 7. The horizontal beam size evolution due to the crab
distribution leakage. νx is the horizontal tune and νz is the
longitudinal tune. Ψb is the horizontal phase advance from CCB
to IP and Ψa is the horizontal phase advance from IP to CCA.

FIG. 8. Beam distribution in x-z (top) and x-δ (bottom) plane at
500th turn for the green curve in the bottom of Fig. 7. Both
horizontal and vertical axes are normalized by rms beam size.
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formula [20]. The effects of radiation damping and quan-
tum excitation are represented by a lumped element [21].
Figure 9 shows the beam size evolution without any

dispersion leakage. Compared with the nominal working
point, νx ¼ 0.08, νy ¼ 0.06, in the EIC Conceptual Design

Report, the new working point, νx ¼ 0.07, νy ¼ 0.12,
predicts smaller horizontal and vertical beam sizes after
equilibrium. The horizontal size benefits from the smaller
horizontal tune which reduces the dynamical βx under
beam-beam interaction [22]. The vertical size benefits from
a larger difference jνx − νyj so that the new working point
moves away from the main diagonal line in the tune space.
From the viewpoint of beam-beam, the new working point,
νx ¼ 0.07, νy ¼ 0.12, is a better choice.

A. Nonzero momentum dispersion at crab cavities

Figure 10 presents the final beam sizes after equilibrium
with different momentum dispersion d and d0 at both crab
cavities. The r56 term from CCB (IP) to IP (CCA) is set to 0
in all simulations. Compared with the simulations without
beam-beam interaction in Sec. III A, Figure 10 shows a
quite different pattern. The vertical size after equilibrium
is also affected due to the nonlinearity from the beam-
beam interaction. The horizontal blowup is less severe
even for the new working point where the horizontal tune
νx ¼ 0.07 is quite close to the longitudinal tune νz ¼ 0.069.
The equilibrium size is mainly determined by d0 instead
of dd0 þ r56.

TABLE II. Beam parameters in weak-strong simulation. The
parameters come from EIC Conceptual Design Report [5].

Parameter Proton Electron

Circumference [m] 3833.8
Energy [GeV] 275 10
Particles per bunch [1011] 0.6881 1.7203
Crossing angle [mrad] 25
Crab cavity frequency [MHz] 200 400
β�x=β�y [cm] 80=7.20 55=5.6
RMS emittance (H/V)[nm] 11.3=1 20=1.30
RMS bunch size (H/V)[μm] 95=8.50 105=8.50
RMS bunch length [cm] 6 2
RMS energy spread [10−4] 6.6 5.5
Transverse fractional tune (H/V) 0.228=0.210 0.08=0.06
Synchrotron tune 0.010 0.069
Transverse damping time [turns] ∞ 4000
Longitudinal damping time [turns] ∞ 2000
Beam-beam parameter (H/V) 0.009=0.009 0.09=0.10

FIG. 9. Weak-strong simulation results for the case without any
dispersion leakage. The νx, νy, νz are horizontal, vertical and
longitudinal tunes, respectively.

FIG. 10. Weak-strong simulation results for different d and d0.
ðd; d0Þ is the horizontal momentum dispersion at CCB when the
crab cavities are turned off. The solid curves are for the working
point (0.08,0.06,0.069), whereas the dashed curves are for
(0.07,0.12,0.069). The horizontal size σx and the vertical size
σy are averaged from the last 1000 turns.
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The reason is that the horizontal tune and β function are
modified by the beam-beam interaction. With the near axis
approximation, the beam-beam kick can be represented by
a linear quadrupole in the head-on frame,

B ¼

2
6664

1 0 0 0

−1=fx 1 0 0

0 0 1 0

0 0 0 1

3
7775; ð71Þ

where fx is the horizontal focal length and can be expressed
with the beam-beam parameter ξx by

1

fx
¼ 4πξx

β�
: ð72Þ

For simplicity, the vertical dynamics is not included here.
Back into the Frenet-Serret frame, the linear beam-beam
transformation is given by

L−1BL ¼

2
6664

1 0 0 0

−1=fx 1 −θc=fx 0

0 0 1 0

−θc=fx 0 −θ2c=fx 1

3
7775; ð73Þ

where L is the linear Lorentz boost, as shown in Eq. (9).
Turning the crab cavities on, the total transfer matrix

including the crab system and the beam-beam interaction
follows:

Rbb ¼ ðR−1
a CaRaÞðL−1BLÞðRbCbR−1

b Þ

≈

2
666664

1 − ax a2xfx 0 kη

− 1
fx

1þ ax 0 − kη
2fx

− kη
2fx

ð1þ axÞ kη
	
1þ ax þ a2x

2



1 0

0 0 0 1

3
777775;

ð74Þ

where

ax ¼
2Λθcd0

fx
: ð75Þ

Then the periodic transfer matrix is

Rt2;bb ¼ Rt1Rbb: ð76Þ

Due to kη ∝ θc, the longitudinal-horizontal coupling is
still weak. The horizontal dynamic tune and β are then
given by

cos μ̄x ¼ cos μx −
1

2

�
β�

fx
þ a2xfx

β�

�
sin μx

β� sin μ̄x ¼ a2xfx cos μx þ β� ð1þ axÞ sin μx: ð77Þ

Figure 11 shows the dynamical tune as a function of d0.
For both working points, the horizontal tune with the
beam-beam interaction is larger than 0.13, which is far
enough away from the longitudinal tune 0.069. Therefore,
the closed orbit of the momentum dispersion and crab
dispersion is negligible. Figure 12 shows the dynamical
beta as a function of d0. The dynamical beta increases as d0
gets larger, which explains why the horizontal size depends
mainly on d0 instead of dd0 þ r56.
It is worthwhile to mention that the dynamical beta is

not the only source of beam size growth. The nonzero
momentum dispersion d or d0 at crab cavities will excite
higher-order synchro-betatron resonances through the
nonlinear beam-beam interaction.
In summary, from the weak-strong simulation, when the

dispersion satisfies the constraints,

FIG. 11. Dynamical tune in the presence of beam-beam
interaction. ðd; d0Þ is the horizontal momentum dispersion at
CCB when the crab cavities are turned off.

FIG. 12. Dynamical beta function in the presence of beam-
beam interaction. ðd; d0Þ is the horizontal momentum dispersion
at CCB when the crab cavities are turned off.
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jdj < 0.5 m; d0 ∼ 0; ð78Þ

the beam size growth caused by the momentum dispersion
is small. The closed orbit crab dispersion or momentum dis-
persion without beam-beam interaction is also negligible.

B. Nonideal phase from crab cavities to IP

For symplecticity, we still omit the momentum disper-
sion here. Substituting Eq. (73) into Eq. (23), the crab
dispersion deflected by the beam-beam kick is

�
1 0

−1=fx 1

�
ζb þ

�
0

−θc=fx

�
¼ ζb; ð79Þ

where ζb takes the form of Eq. (60), and the crab cavity
strength is determined by Eq. (63). Because the beam-beam
kick has no effect on crab dispersion, the criteria Eq. (69)
still holds true, with the exception that the horizontal phase
must be replaced by the dynamical phase

���� kζ2
���� ≪ σxj cos μ̄x − cos μzj

β�σz sin μx
ð80Þ

or specifically,

j cotΨa þ cotΨbj ≤
σxj cos μ̄x − cos μzj

5σzθc sin μx
; ð81Þ

where the dynamical phase μ̄x is determined by Eq. (77),
and the upper boundary is set as 1=10 in Eq. (80).
Let Ψb ¼ Ψa ¼ π=2 − ΔΨ. Then the criterion becomes

numerically,

jΔΨj ≤ 0.80° when νx ¼ 0.08

jΔΨj ≤ 0.58° when νx ¼ 0.07: ð82Þ

Figures 13 and 14 show the weak-strong simulation results
for different ΔΨ at both working points. Both figures
demonstrate that the constraint Eq. (82) has to be satis-
fied. Otherwise, the horizontal beam size will increase
dramatically.
However, the constraint of Eq. (82) may be too strict to

meet in reality because of the compact layout of the IR. A
possible alternative is to move the crab cavities in one ring
to the phase of 3π=2 or further.

FIG. 13. Weak-strong simulation results with nonideal phase at
the working point of (0.08,0.06,0.069).Ψb is the horizontal phase
advance from CCB to IP and Ψa is the horizontal phase advance
from IP to CCA.

FIG. 14. Weak-strong simulation results with nonideal phase at
the working point of (0.07,0.12,0.069).Ψb is the horizontal phase
advance from CCB to IP and Ψa is the horizontal phase advance
from IP to CCA.
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V. CONCLUSION

In this study, we extended the concept of crab dispersion
and momentum dispersion in the presence of synchrotron
motion. We derived the propagation law of the two types of
dispersion traveling via common accelerator elements.
Edward-Teng’s block diagonalization technique was also
used to find the closed orbit form of dispersions. It enabled
us to deduce the leakage of crab dispersion and momentum
dispersion in the local crabbing scheme.
This paper then investigated the momentum dispersion at

the crab cavities and the nonideal phase from the crab
cavities to IP. The stability criterion was derived. A lattice
requirement criterion was calculated using the weak hori-
zontal-longitudinal coupling assumption. It turned out that
the beam size at IP became sensitive to the leakage of
dispersions when the horizontal tune was close to the
longitudinal tune. The Monte Carlo simulations were
carried out to demonstrate the theoretical analysis.
The beam-beam interaction was taken into consideration

in the weak-strong simulations. It showed that the momen-
tum dispersion at crab cavities had less impact on the beam
size at IP because of the beam-beam tune shift. However,
the phase advance from crab cavities to IP cannot stay too
far from π=2. The numerical criteria of the electron ring
lattice were given for the EIC beam parameters. The
simulation results agreed with the criteria.
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