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We have developed a new chromatic compensation scheme for the electron storage ring with two low-
beta interaction regions in the Electron-Ion Collider. The hybrid scheme consists of the modular chromatic
matching of periodic systems and beamlines. The first-order chromatically matched solutions are linearly
parameterized with the local linear chromaticities that control the higher order chromatic beatings. The
parameterization enables an efficient optimization of dynamic aperture. As a result, we successfully
achieve the 1% design criterion for the momentum aperture in the ring.
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I. INTRODUCTION

To achieve a factory level of luminosity, 1034 cm−2 s−1 in
circular colliders, it has been always challenging to focus
the colliding beams to an extremely small size at the
interaction point (IP) while maintaining an adequate
momentum aperture. In the B-factories [1,2], 1% of the
off-momentum dynamic aperture was sufficient to accom-
modate the energy spread of the beam due to synchrotron
radiation. For the future eþe− colliders [3,4] at much higher
beam energy, the required momentum acceptance becomes
twice larger for accommodating the beamstrahlung [5].
This requires that the chromatic aberrations generated from
the final focusing quadrupoles are locally compensated by
the pairs of sextupoles with -I separation in the dedicated
module [6,7].
On the other hand, the chromatic compensation in the

hadron colliders is carried out by the families of sextupoles
in adjacent arcs [8,9], largely because of less chromatic
aberrations and smaller momentum aperture required in
comparison to the eþe− accelerators. Since the Electron-
Ion Collider (EIC), as shown in Fig. 1, is a hadron and
electron collider, it inherits the characteristics from both the

FIG. 1. Schematic layout of the EIC at Brookhaven National
Laboratory.
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hadron and the eþe− colliders. The challenge to be
addressed in this paper is how to achieve the momentum
bandwidth of 1% in the new electron storage ring (ESR)
with two neighboring low-beta interaction regions (IRs)
using the sextupole families in the adjacent arcs.
The EIC will be based on the existing Relativistic Heavy

Ion Collider (RHIC) complex, which has a hexagon shape
as shown in Fig. 1. As a result, the regions in the ESR,
which will be installed in the RHIC tunnel, are named
according to a clock: the IRs and straights using even and
the arcs odd integers. The ESR will provide polarized
electron beams circulating clockwise as indicated in Fig. 1.
The electron beam will be brought into collision with
polarized protons or light ions, or with unpolarized heavy
ions, stored in the existing hadron storage ring. The design
of the ESR with one low-beta IR (IR6 centered at a 6-hour
position) based on the semilocal chromatic compensation
scheme was successfully completed [10]. Including a
second low-beta IR (IR8 centered at an 8-hour position)
remains a challenge [11] because of the extra chromaticity.
The required center-of-mass energy range of the EIC

from 29 to 140 GeV will be realized by proton energies that
range from 41 to 275 GeV and by electron energies that
range from 5 to 18 GeV. The main design parameters

relevant to the performance of single-particle dynamics are
tabulated in Table I. The 18-GeV energy is chosen for this
study because of its largest value of the rms energy spread,
approaching 0.1%. This leads to an absolutely minimum
required momentum aperture of 0.6% to ensure an adequate
quantum lifetime for the electron beam. Along with the
largest chromaticity of two IRs, this set of parameters
presents the most difficult case for the chromatic compen-
sation and dynamic aperture.
The betatron tunes are selected by the optimization of the

spin dynamics as well as the beam-beam interaction. They
are very close to integers, making the chromatic compen-
sation even more difficult. In this study, they are fixed to the
values in the table.

II. LATTICE

It is always challenging to design a final focusing system
in a circular collider. In the EIC, it becomes even more
so because of a small β�y and a very large L�, resulting
in the high beta peaks shown in Fig. 2 and large natural
chromaticity in Table I.
Moreover, because of the polarization requirement, spin

rotators are necessary between the arcs and the low-beta
IRs to rotate the polarization from the vertical direction in
the arcs to the longitudinal direction at the IP. As a result, a
local chromatic compensation with -I paired noninterlaced
sextupoles cannot be deployed due to a lack of space for
dedicated sextupole optics in the IR. Therefore the correc-
tion has to be carried out by the sextupoles far away in the
arcs. Finally, the crossing angle, crab cavities, spectrometer
dipole, and the need of mitigating the synchrotron radiation
into the detector make the IR more complicated and even
asymmetric as shown in Fig. 2.
A 90° phase advance of regular FODO cells in the arcs is

chosen to obtain the required emittance at 18 GeV to match
the horizontal beam sizes in the collision. We place two

TABLE I. Main parameters of the electron storage ring.

Parameter Value

Beam energy, E0 [GeV] 18.0
Circumference, C [m] 3834
Emittance, ϵx [nm] 28.4
Energy spread, σδ [10−4] 9.6
Damping time, τx, τy, τs [ms] 12.4, 12.5, 6.3
Tune, νx, νy, νs 52.12, 45.10, 0.055
Natural chromaticity, ξ0x; ξ0y −106;−110
IP beta, β�x; β�y [m] 0.59, 0.057
Distance from IP to quad, L� [m] 5.3
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FIG. 2. Lattice functions in the interaction region 6 (left) and 8 (right).
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families of sextupoles in 16 regular cells of each arc to
compensate for the linear chromaticity. Since every four
cells make a unit transformation of betatron oscillation, the
third-order driving terms within one betatron unit are all
canceled out [12]. The ring consists of six arcs and six
straight sections as depicted in Fig. 1. The full lattice
including two low-beta IRs is shown in Fig. 3.
To characterize the nonlinear property of the lattice, we

compute the tune shifts along with the high-order chro-
maticities using the normal form analysis [13,14] and
tabulate the result in Table II. The linear chromaticity is
set to one unit in both planes using two families of
sextupoles. The second-order chromaticities are reasonably
small values because the phase advances between the two
IPs are set at 11.25 × 2π and 7.25 × 2π in the horizontal
and the vertical planes, respectively, to cancel the large

first-order chromatic beta beatings from the IR final focus
quadrupoles. Based on our experience, the values of the tune
shift vs amplitude seem sufficiently small, but the high-order
chromaticities are far too large to achieve 1% momentum
aperture. These very high values are confirmed by the
numerical computation presented in the right plot of
Fig. 4, where chromaticity walls are seen at �0.4% in the
vertical plane. How to reduce the nonlinear chromaticity and
eliminate thewalls are the challenges addressed in this paper.
We evaluate the dynamic aperture of the ESR by tracking

the particles with various momenta. The tracking is carried
out with both synchrotron oscillations and radiation damp-
ing. The left plot of Fig. 4 shows the dynamic aperture in
terms of beam sigmas. The horizontal emittance is quoted
in Table I, whereas the vertical emittance has been set as
half of the horizontal one in the assumption of full
coupling. The degradation of the off-momentum aperture
is so large that there is not sufficient momentum acceptance
to retain the particles in the energy distribution expected
from synchrotron radiation. It is clear that we have to make
proper chromatic compensation for the IRs in order to
increase the momentum aperture of the ESR.

s (m)
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FIG. 3. Lattice functions in the electron storage ring with two
interaction points starting from the center of straight-4.

TABLE II. Normal form analysis in the ring with two global
families of sextupoles.

Derivatives of tunes Value

∂νx;y=∂δ 1, 1
1
2!
∂
2νx;y=∂δ2 −204; − 15

1
3!
∂
3νx;y=∂δ3 −8.36 × 104; − 3.02 × 105

1
4!
∂
4νx;y=∂δ4 −5.17 × 106; − 1.23 × 108

∂νx=∂Jx ½m−1� 2.91 × 103

∂νx=∂Jy ½m−1� −1.52 × 104

∂νy=∂Jy ½m−1� 9.74 × 103
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FIG. 4. Dynamic aperture (left) and chromatic tune (right) in the lattice with two global families of sextupoles.
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III. PERTURBATION THEORY

We start with the well-known transport matrix from position 1 to position 2,

M12 ¼

0
B@

ffiffiffiffi
β2
β1

q
ðcosψ12 þ α1 sinψ12Þ

ffiffiffiffiffiffiffiffiffi
β1β2

p
sin ψ12

− 1ffiffiffiffiffiffiffi
β1β2

p ½ð1þ α1α2Þ sinψ12 þ ðα2 − α1Þ cos ψ12�
ffiffiffiffi
β1
β2

q
ðcos ψ12 − α2 sin ψ12Þ

1
CA; ð1Þ

where β1;2 and α1;2 are the Courant-Snyder parameters
at the positions 1 and 2, respectively and ψ12 is the
phase advance between them. Given the lattice parameters
at a position s1 in the ring, we may define an “ascript”
matrix A as

A ¼
 ffiffiffiffiffi

β1
p

0

− α1ffiffiffiffi
β1

p 1ffiffiffiffi
β1

p
!
: ð2Þ

Denoting with M12, the transport matrix from s1 to any
other point s2, it is easy to verify that the Twiss parameters
in s2 are given by

β ¼ B2
11 þ B2

12;

α ¼ −ðB11B21 þ B12B22Þ;
ψ ¼ tan−1ðB12=B11Þ: ð3Þ

with B defined as

B ¼ M12A: ð4Þ

Now we consider a small quadrupole error represented by
a matrix,

Mq ¼
�
1 0

−q 1

�
; ð5Þ

at the position 2 and calculate the perturbed lattice
functions at the position 3 down the beamline. The trans-
port matrix is M ¼ M23 ·Mq ·M12, where M23 is the
transport matrix from the position 2 to 3 which of course
has the same form as in Eq. (1) with replaced indices. Then
the perturbed matrix B is given by B ¼ M · A and using
Eq. (3), we have the perturbed lattice functions at the first
order of q,

β ¼ β3 − qβ2β3 sin 2ψ23; ð6Þ

α ¼ α3 þ qβ2ðcos 2ψ23 − α3 sin 2ψ23Þ; ð7Þ

ψ ¼ ψ13 þ qβ2ð1 − cos 2ψ23Þ=2: ð8Þ

We see that the beating wave propagates at twice the
betatron phase from the source of the error down to the

observation position even in the phase advance itself.
Focusing on the perturbed parts in Eqs. (6) and (7) and intro-
ducing the functions, a ¼ Δα − α3Δβ=β3 and b ¼ Δβ=β3,
we obtain,

a ¼ qβ2 cos 2ψ23; ð9Þ

b ¼ −qβ2 sin 2ψ23; ð10Þ

which simply propagate orthogonally at the twice of the
betatron phase. With multiple quadrupoles, we simply sum
all individual contributions as the first-order perturbation,

a ¼
X
i

qiβi cos 2ψ i; ð11Þ

b ¼ −
X
i

qiβi sin 2ψ i; ð12Þ

where ψ i is the phase advance from the source position “i” to
the end of the beamline. For the first-order chromatic
perturbation due to quadrupoles, it is q ¼ −δK1LQ, where
δ ¼ ðp − p0Þ=p0 is the momentum deviation, K1 and LQ

are the strength and length of the quadrupole, respectively.
Focusing strength of a sextupole due to δ is q ¼ δηxK2LS,
where ηx is the horizontal dispersion and K2 and LS are the
strength and length of the sextupole, respectively. In general,
we need to consider the chromatic beatings in both horizontal
and vertical planes. Assuming our previous analysis is for
the horizontal plane, then the result in the vertical plane
can be obtained by a substitution of q → −q, βx → βy, and
ψx → ψy.ax;y are related to theMontague functionsAx;y [15]
by Ax;y ¼ a0x;y and Bx;y ¼ b0x;y, where the prime represents
the derivativewith respect to δ. FromEqs. (11) and (12), their
expression at the end of the beamline, s0, is given by

Ax;yðsoÞ ¼ ∓
Z

so

0

½K1ðsÞ − ηxðsÞK2ðsÞ�βx;yðsÞ

× cos 2½ψx;yðsoÞ − ψx;yðsÞ�ds; ð13Þ

Bx;yðsoÞ ¼ �
Z

so

0

½K1ðsÞ − ηxðsÞK2ðsÞ�βx;yðsÞ

× sin 2½ψx;yðsoÞ − ψx;yðsÞ�ds; ð14Þ

where s ¼ 0 is the beginning of the considered beamline,
in our case the IP. Integrals are used instead of sums because
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the quadrupoles near the IP can be very strong often with
large variation of beta functions inside. The amplitude of

the Montague functions,Wx;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
x;y þ B2

x;y

q
, is known as

the W function.
Since the IR is a part of beamline in the collider ring, we

need to not only correct the chromatic beta beating, as we
have shown, but also its linear chromaticity, ξx;y ¼ ψ 0

x;y=2π.
Using Eq. (8), we similarly derive the integrals,

ξx;y¼∓ 1

4π

Z
so

0

½K1ðsÞ−ηxðsÞK2ðsÞ�βx;yðsÞds−
1

4π
Ax;yðs0Þ;

ð15Þ

where the term Ax;yðs0Þ is given by Eq. (13).

IV. SEMILOCAL CHROMATIC COMPENSATION

As one can see from Eqs. (13) and (14), the beta beating
propagates at twice the betatron phase, therefore the
conventional two families of sextupoles (one per plane)
in the 16 regular cells do not generate any beating because
of 90° phase advance per cell. So we split the two families
into four families as illustrated in Fig. 5. This pattern of the
sextupoles for the optics with 90° cells was investigated
[16] for the HERA (Hadron–Elektron Ring Anlage) design
but not used. However, HERA feathered a similar pattern
with three families of sextupoles per plane in 60° cells for
compensating linear chromaticity and beta-beating.
The difference in strengths of the two sextupoles in two

adjacent cells generates beating which adds up linearly in
the arc. However, the generated beating from the sextupoles
is in the same phase due to the 90° cells. Therefore, it is
necessary to introduce a phase trombone that aligns the
beating with the chromatic aberration in the IR. On the
other hand, two sextupoles of equal strengths 90° apart do
not contribute to the beatings but add up to the linear
chromaticity.

A. Beta beating

Considering one side of the IR and the adjacent arc

shown in Fig. 5, we can find the difference strengthsΔSF ¼
KðF1Þ

2 − KðF2Þ
2 and ΔSD ¼ KðD1Þ

2 − KðD2Þ
2 and the two phase

shifts Δψx and Δψy introduced by the trombone using

Eqs. (13) and (14). Let us start with the Montague functions
created by quadrupoles with the trombone (see Fig. 5)
which can be written as,

Ax;y ¼ Að<Þ
x;y cos 2Δψx;y þ Bð<Þ

x;y sin 2Δψx;y þ Að>Þ
x;y ; ð16Þ

Bx;y ¼ Bð<Þ
x;y cos 2Δψx;y − Að<Þ

x;y sin 2Δψx;y þ Bð>Þ
x;y ; ð17Þ

where,

Að<Þ
x;y ¼ ∓

Z
st

0

K1ðsÞβx;yðsÞ cos 2½ψx;yðsoÞ − ψx;yðsÞ�ds;

ð18Þ

Bð<Þ
x;y ¼ �

Z
st

0

K1ðsÞβx;yðsÞ sin 2½ψx;yðsoÞ − ψx;yðsÞ�ds;

ð19Þ

where st is the position of the trombone and the superscript
“<” indicates the integration region before the trombone
and

Að>Þ
x;y ¼ ∓

Z
so

st

K1ðsÞβx;yðsÞ cos 2½ψx;yðsoÞ − ψx;yðsÞ�ds;

ð20Þ

Bð>Þ
x;y ¼ �

Z
so

st

K1ðsÞβx;yðsÞ sin 2½ψx;yðsoÞ − ψx;yðsÞ�ds;

ð21Þ

are the integrals in the region after the trombone. Since
the final focusing quadrupoles are the largest sources of

the chromatic beta beatings, it is Að<Þ
x;y ðBð<Þ

x;y Þ larger than

Að>Þ
x;y ðBð>Þ

x;y Þ. Note that ψx;y are the phase advances without
the trombone. The strengths of the sextupoles required to
cancel the quadrupole beta beatings can be obtained by
solving two linear equations in the horizontal plane and are
given by

ΔSF ¼ −
1

NSLSβFηF
ðAx cos 2ψF − Bx sin 2ψFÞ; ð22Þ

FIG. 5. Scheme of chromatic compensation on one side of low-beta IR using the four sextupole families in the adjacent arc where the
vertical bars are quadrupoles and the hexagons are sextupoles.
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ΔSD ¼ 1

NSLSβDηD
ðBx cos 2ψF þ Ax sin 2ψFÞ; ð23Þ

where NS is the number of sextupoles per family, βF;D and
ηF;D are the horizontal beta and dispersion functions at the
position F or D, and ψF is the horizontal phase advance
from the first “F” sextupole to the end of the beamline.
Similarly in the vertical plane, we have,

ΔSF ¼ 1

NSLSβDηF
ðAy cos 2ψF − By sin 2ψFÞ; ð24Þ

ΔSD ¼ −
1

NSLSβFηD
ðBy cos 2ψF þ Ay sin 2ψFÞ: ð25Þ

Here we have used the relations of the horizontal and
vertical lattice functions in the 90° FODO cells to simplify
the expressions. In order to have an univocal solution,
the right-hand side of Eqs. (22) and (24) and of Eqs. (23)
and (25) must be equal, that is

1

βF
ðAx cos 2ψF − Bx sin 2ψFÞ

þ 1

βD
ðAy cos 2ψF − By sin 2ψFÞ ¼ 0; ð26Þ

1

βD
ðBx cos 2ψF þ Ax sin 2ψFÞ

þ 1

βF
ðBy cos 2ψF þ Ay sin 2ψFÞ ¼ 0: ð27Þ

These two coupled equations can be used to find the phase
shifts Δψx andΔψy of the trombone. Analytic solutions are
not known in general. But their numerical solutions can be
searched easily. Multiple solutions should be expected
because of the trigonometric functions involved.
Once the phase shifts are found, the difference in

strengths of the sextupoles, ΔSF ¼ KðF1Þ
2 − KðF2Þ

2 and

ΔSD ¼ KðD1Þ
2 − KðD2Þ

2 , can be obtained using Eqs. (22)
and (23) or Eqs. (24) and (25). It is worth noting that these
differences can be implemented by changing beta functions
at the sextupoles using a dedicated on-momentum beta
beating along the arc [8]. However, these beta beatings may
reduce the dynamic aperture due to the high-order multi-
pole errors in the dipole in proton storage rings or increase
the emittance in electron rings.

B. Chromaticity

Since the IR is a part of thebeamline in the collider ring,we
need tonot only correct the chromatic beta beating aswehave
shown but also the linear chromaticity. Here, we consider the
beamlinewhere theMontague functions have been corrected

as described in the previous section. Equation (15) for the
linear chromaticity can be simplified to

ξx;y ¼ ∓ 1

4π

Z
so

0

½K1ðsÞ − ηxðsÞK2ðsÞ�βx;yðsÞds: ð28Þ

It can be seen that only the sum of the strengths ΣSF ¼
KðF1Þ

2 þ KðF2Þ
2 andΣSD ¼ KðD1Þ

2 þ KðD2Þ
2 contribute to linear

chromaticity. They can be derived by solving two linearly
coupled equations. The result is given by

ΣSF ¼ 4π

NsLSηFðβ2F − β2DÞ
½βFðξx − ξð0Þx Þ þ βDðξy − ξð0Þy Þ�;

ð29Þ

ΣSD ¼−
4π

NsLSηDðβ2F − β2DÞ
½βDðξx− ξð0Þx Þþ βFðξy− ξð0Þy Þ�;

ð30Þ

where ξð0Þx;y is the natural chromaticity,

ξð0Þx;y ¼ ∓ 1

4π

Z
so

0

K1ðsÞβx;yðsÞds: ð31Þ

Given the chromaticity ξx;y, the strengths of the four families
of sextupoles are completely determined. Combining the
difference solution in Eq. (22) or Eq. (24) with the sum
solution in Eq. (29), we obtain the settings of the two families
ofF sextupoles, and correspondingly, for the twoD families.
It is easy to show that the settings can be linearly para-
meterized by the two continuous values of linear chroma-
ticity for a given phase trombone. The parameterization
enables an efficient optimization of the dynamic aperture.

C. Numerical solution

Meanwhile, we also use the previously developed
code [17] that is capable of computing an arbitrary order
of derivatives of the lattice functions with respect to the
momentum. Using the downhill simplex optimizer [18], we
find directly the settings of the four families of the sextu-
poles along with two-phase shifts of the trombone. The
six equally weighted goals are four Montague functions
Ax;y ¼ Bx;y ¼ 0 and the linear chromaticity ξx and ξy at
selected values at the end of the beamline. For a simplified
interaction region without solenoid, we find excellent
agreement between the perturbation theory and the numeri-
cal method for the case with no initial chromatic beatings at
the beginning of the beamline.
We first consider the region from the beginning of the

lattice (center of straight-4) to the first interaction point
(IP6) in Fig. 3. The optimal solution obtained by the
numerical search is shown in the left plot of Fig. 6 in terms
ofWx;y. TheW functions are nearly zero at the IP6 and rise
to the peak at the final focusing quadrupoles. Then they are
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linearly reduced by the sextupoles in the adjacent arc,
finally reaching zero at the center of the straight 4. The
periodically reducing peaks along the arc correspond to
the eight periods of the sextupole scheme. Note that the
direction of the beamline in Fig. 6 (left) is opposite
compared to Fig. 3. The initial condition is obtained by
enforcing a periodic solution between the IP6 and IP8 and
tabulated in the third column of Table III. Since the
matching beamline goes backward, the signs of αx;yðδÞ
are flipped. The linear chromaticity is set at −6 and −2 in
the horizontal and the vertical planes, respectively. The
values are optimized in the tracking for maximum dynamic
aperture in the ring. It is worth noting that the vertical phase
difference between the final focusing quadrupole and the
strongest D sextupole family is 2.5 × 2π, which differs
from a multiple of 2π in the achromatic telescopic squeez-
ing (ATS) scheme [8]. Similarly, we match the first-order
chromatic optics from the IP8 to the center of the straight
10, where the rf cavities are placed. There is no need to
switch the signs of αx;yðδÞ since the matching beamline is
not reversed. TheW functions are depicted in the right plot of
Fig. 6. The best linear chromaticity is 3.5 and 7 in the
horizontal and the vertical planes, respectively. Interestingly,

in this case, the vertical phase difference between the final
focusing quadrupole and the strongestD sextupole family is
2 × 2π, as is expected from the ATS scheme.

D. Chromatic mismatch parameter

To consider the higher order chromatic beta beatings,
we begin with the well-known mismatch parameter [19],

BmagðδÞ ¼
1

2
½γð0ÞβðδÞ − 2αð0ÞαðδÞ þ βð0ÞγðδÞ�; ð32Þ

where γðδÞ ¼ ½1þ αðδÞ2Þ�=βðδÞ. This parameter is often
used to measure the mismatch between the linear optics
and the beam ellipse [20]. Here we use it to measure the
mismatch between the design (on-momentum) and the
chromatic optics (off-momentum) optics. Expanding α, β, γ
to the first order and Bmag to the second order of δ, we find,

Bmag ≈ 1þ 1

2
W2δ2; ð33Þ

where W is the Montague function we have introduced
previously. This relationship between Sands Bmag and

TABLE III. The nonlinear chromaticities and chromatic beatings at the IPs.

Minimized parameters Two families Eight families

∂νx;y=∂δ −14.57, −16.89 −12.72; − 10.48
1
2!
∂
2νx;y=∂δ2 −6.37 × 104; − 6.35 × 104 −9.60 × 10; − 1.52 × 102

1
3!
∂
3νx;y=∂δ3 −2.02 × 1011; − 2.02 × 1011 2.45 × 104; 3.46 × 103

Wx;y 8.56, 5.90 0.91, 1.44

Wð2Þ
x;y 1.73 × 105; 1.69 × 105 38.70, 34.39

Wð3Þ
x;y 5.53 × 1011; 5.59 × 1011 3.09 × 104; 2.25 × 104
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sextupoles in the adjacent arcs, where IP is at s ¼ 0.
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Montague W should not be too surprising since both are
concerned about the invariance of the mismatch. To extend
the expression to higher orders, let us define the nth-order
Montague functions as,

AðnÞ ¼ 1

n!

�
∂
nαðδÞ
∂δn

−
αð0Þ
βð0Þ

∂
nβðδÞ
∂δn

�
; ð34Þ

BðnÞ ¼ 1

n!
1

βð0Þ
∂
nβðδÞ
∂δn

; ð35Þ

where n! is introduced to be consistent to the coefficients
of the Taylor expansion. In general, the high order of
expansion of Bmag is too complicated to be useful. For the
purpose of chromatic compensation, we assume that all the
lower order of Montague functions have been perfectly
corrected, namely AðiÞ ¼ BðiÞ ¼ 0 for i < n. As a result, we
obtain a similar expression,

Bmag ≈ 1þ 1

2
WðnÞ2δ2n; ð36Þ

where WðnÞ is the amplitude of the nth-order Montague

functions, WðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðnÞ2 þ BðnÞ2

p
.

Clearly, the high-order W functions precisely quantify
the residual of the chromatic perturbation. Our best first-
order solution of matching the chromatic beta beatings also
dramatically reduces the second-order ones as shown in
Fig. 7. This may well be an important ingredient to achieve
a larger momentum aperture in the ring. It is worth noting
that the choice of the beamline linear chromaticity also
controls the second-order W functions.

V. CHROMATIC COMPENSATION IN A
PERIODIC SYSTEM

Now, we investigate the most critical region from the IP6
to the neighboring IP8, where twice chromaticities are
generated in two halves of the IRs. Naturally, we first
consider the semilocal schemes outlined in the previous
section.Here,we use two identical trombones on each side of
the arc and four families of sextupoles tomatch the first-order
chromatic optics. Again, the solutions are parameterized by
the two linear chromaticities for the optimization of the
dynamic aperture in the ring. After having corrected the
chromaticity of the beamline upstream of IP6 and down-
stream of IP8, the achieved maximum momentum is 0.8%,
slightly short of reaching our goal of 1%. The shortage is due
to the steep dependence on the betatron tunes on momentum
similar to the ones shown in the right side plot of Fig. 4.
In order to reach the goal, it is necessary to better control

the higher order chromatic aberrations. We double the
number of the variables by splitting the sextupole families
at the middle of arc 7 (between IR6 and IR8) and using two
trombones independently. Another reason for such a choice
is to accommodate the asymmetry in the upstream and
downstream of the IRs.
Since the beta functions at the IPs are identical and alpha

functions are zero, it is convenient to optimize chromatic
optics of this beamline as a periodical system. The 12
variables allow us to minimize up to the third-order
chromaticities and chromatic beatings, characterized by
12 quantities in the first column of Table III. Their best
values are tabulated in the third column in comparison to
the case of the conventional two-family scheme. The
improvement is dramatic, especially for the third order.
The solutions are obtained by scanning the targeted linear
chromaticity from −20 to 0 in both planes in this beamline.
We choose the best one targeted at the value −13.
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The initial condition in the optimization is the semilocal
solution with the same linear chromaticity. The first and
second order W functions are plotted in Fig. 8. The two

spikes inWð2Þ
x;y are generated by the spin rotator quadrupoles

between two solenoids, where the horizontal and vertical
planes are coupled.

VI. CHROMATIC MATCHING OF THE RING

So far, we have matched the first-order chromatic optics
in the first half of the ring where the two IPs are located.
To match the second half, we again group the sextupoles
in the remaining three arcs, namely arc-11, 1, and 3, into
four families and use the trombone in the middle of the
straight 12. Moreover, we insert another trombone at the

center of the straight 2 to minimize the amplitudes of theW
functions in the entire half of the ring. Again, the solution
can be parameterized in terms of the two linear chroma-
ticities for given phase settings of the trombones. But they
are not free parameters anymore and are instead determined
by the required linear chromaticities in the entire ring. In
this paper, we always set the linear chromaticity to one unit
in both planes.
Globally, we use two more trombones with equal phase

advances at the boundaries of the two halves of the ring to
retain the design tunes. Since the W functions in each half
of the ring are matched to zero at the boundaries, the two
halves are matched to each other. The matched solution of
the entire ring is shown in the left plot of Fig. 9. However,
the second-order dispersion (the first derivative in δ) in the
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horizontal plane, as depicted in the right plot, is too large.
It is in the order of a meter for an off-momentum particle
with 1% deviation, resulting in strong synchro-betatron
resonances [21].
So where is the second-order dispersion generated?

Every sextupole in the regular arcs shown in Fig. 5 is
paired with another one via -I transformation. As a result,
they cannot be the sources. In fact, the main sources are the
bending magnets in the two IRs, where the conditions of
geometry, linear optics, and spin rotation all have to be
satisfied.
Fortunately, the second-order dispersion can be signi-

ficantly reduced by two additional F sextupoles in the
irregular cells at the edge of the arcs 3 and 11, as shown in
the right plot of Fig. 10. Since the two sextupoles also
change the W functions, the second half of the ring has to
be rematched. The optimal solution is shown in the left
plot of Fig. 10. The larger amplitudes of theW functions are
a trade-off with better correction of the second-order
dispersion.

VII. DYNAMIC APERTURE

The first-order chromatic matching and the correction
of the second-order dispersion allow us to increase the
off-momentum dynamic aperture to 1%. However, the two
newly added sextupoles are so strong (K2 ¼ 1; 5 m−3) that
they severely degrade the on-momentum aperture. To
understand the degradation, we compute the accumulated
driving terms of the third-order resonances using the
symplectic transfer map and the Lie factor f3 [22] and
then use harmonic sextupoles to correct the resonance
driving terms.
The results are depicted in Fig. 11. There are no net

driving terms in the first half of the ring, where all
chromatic sextupoles are paired. One can clearly see huge

step rises at the end of the fourth arc (arc 11), where
the strongest F sextupole correcting the second-order
dispersion is resided. In order to reduce these large driving
terms, we use 12 harmonic sextupoles located in the
straight 2, where the horizontal dispersion is zero. They
are used to perform resonance driving terms correction
which restores the on-momentum aperture.
The strengths of the 12 harmonic sextupoles are dis-

played in red color in Fig. 12 along with all other sextu-
poles. The length of all sextupoles is LS ¼ 0.7 m. The
settings are obtained using the simplex optimizer [18] to
zero out all five driving terms given in Fig 11. We find that
instead of 100% cancelation of the driving terms, the
solution with 75% cancelation is optimal for the dynamic
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aperture as shown in the left plot of Fig. 13 along with the
chromatic tunes on the right.
As we have shown in Sec. IV, the solutions of the first-

order chromatic matching can be linearly parameterized by
their local linear chromaticities. Here, there are two con-
straints on the linear chromaticity of the ring. So, we vary
four independent parameters to optimize the dynamic
aperture by tracking. A simple manual search yields the
best result shown in the left plot of Fig. 13. With this
compensation scheme, we increase the momentum aperture
from 0.5% (see Fig. 4) to 1% while retaining the good on-
momentum aperture. The 1% momentum bandwidth is
confirmed also by the direct calculation of the chromatic
tunes in the right plot. The steep tune dependence on the
momentum is removed.

VIII. PHASE TROMBONE

In our study, the phase trombone has been represented
by a symplectic matrix constructed as the product of the
three matrices [17]: a linear and symplectic transformation
to the normalized coordinates, a rotation using the phase
shifts, and the inverse transformation back to the physical
coordinates.
Once an optimal solution is found, we need to imple-

ment it with actual changes of quadruples and sometimes
drifts. Typically, it takes a few iterations to converge,
depending on the values of the phase shifts. For imple-
menting the trombone solution we have presented, only one
iteration was required. The lattice with physical quadru-
poles achieves 1.1% momentum aperture while retaining
the on-momentum aperture.

IX. CONCLUSION

The optimization of the chromatic optics is essential in
the design of storage rings. Historically, the computer
codes, for example, HARMON [23] and SAD [24], allow
us to minimize the chromatic aberrations by numerically
adjusting the settings of sextupoles. This kind of optimi-
zation is useful and often adequate. Now, enormous
computing power enables us to directly optimize the
momentum aperture by tracking [7,25]. But the tracking
method hardly provides any insights into the underlining
physics, especially when it fails.
Driven by necessity, we have developed a new hybrid

chromatic compensation scheme for the ESR with two
neighboring IRs in the EIC. The scheme consists of the
modular chromatic matching of periodic systems and
beamlines. The first-order chromatic optics can be matched
similarly to the linear optics: first finding a good periodic
cell and then matching it to the other modules. The method
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allows more refined and direct control of the chromatic
optics, for example, achieving extremely small first-order
chromatic beatings at the positions of the beam-beam
collisions and rf cavities.
Moreover, we show that the first-order chromatically

matched solutions are linearly parameterized with the local
linear chromaticities that control the higher order chromatic
beatings. The parameterization enables an efficient opti-
mization of dynamic aperture. We find that the ring
constructed by the first-order chromatically matched mod-
ules is adequate for 1% momentum aperture.
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