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The study of collective beam instabilities has long been an important and active research topic in particle
accelerators. The collective effects are typically divided into two categories: the short-range single-bunch
instabilities and the long-range multibunch or multiturn instabilities. Robinson instability can be the mostly
encountered long-range multiturn instability. We recently explored a collective multiturn instability driven
by the short-range coherent undulator radiation in the laser cavity modulator of a steady-state micro-
bunching (SSMB) storage ring. In this paper, we formulate and compare such an instability with the
Robinson instability. Considering the radiation slippage effect and the finite duration, the functional form
of the radiation wakes is essentially different from that of the Robinson case. We also relate a special case of
the newly explored instability to the high-gain free-electron laser process and find that a similar cubic
dispersion equation can be obtained. The discussions and comparisons presented in this paper may shed
light on the underlying physical mechanisms of the collective beam dynamics in the laser cavity modulator
of an SSMB storage ring.
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I. INTRODUCTION

The study of collective beam instabilities has long been
an important and active research topic in particle accel-
erators, as the collective effects set important limitations on
the beam intensity, the stability of machine operations, and
the ultimate machine performances (see, for example,
Refs. [1,2]). According to the length scales of wakefields,
their effects may be typically divided into two categories:
the short-rangewakefield induced single-bunch instabilities
and the long-range wakefield induced multibunch or multi-
turn instabilities. Typical examples of the former may
include the single-bunch beam breakup (BBU) instability
[3–5], the head-tail instability [6,7], the microbunching
instability (MBI) in single-pass linear accelerators [8–13],
in circular accelerators or storage rings [14–18], and in
recirculating accelerators [19,20]. The latter category for
the long-range instabilities is constituted by the subcases of
the single-pass multibunch, multiturn single-bunch, or
multiturn multibunch instabilities, e.g., the multibunch
BBU [21–24], Robinson instability [25,26] (for more

detailed introduction, see Refs. [1,2] and references
therein). The concepts of the wakefield and impedance
have long been developed and later become a building
block of the standard collective instability analyses
[1,2,27,28]. It should be mentioned that the analyses of
the aforementioned collective effects usually neglect any
possible slippage between the wakefields and the test
particles during the beam-wake interaction. In addition
to the above two categories, the free-electron laser (FEL)
instability [29] may be classified as a separate, third one
because the essence involves the radiation slippage in the
beam-wake interaction.
As mentioned, the types of collective dynamics depend

on the characteristic wavelength of the wake function or the
characteristic frequency of the corresponding impedance
spectrum. In a radio-frequency (rf) cavity, those frequencies
largely satisfying the cavity resonance condition will be
trapped inside the cavity structure and more or less form a
discrete spectrum. The decay rate of the wakefield ampli-
tude can be determined by the quality factor Q. In contrast,
fields at frequencies higher than c=b, with b the beam pipe
radius, will leak out of the cavity and propagate in the beam
pipe, establishing a continuous spectrum. Since the typical
bunch length in an electron storage ring lies in the
millimeter (mm) range, the collective beam motions subject
to the rf cavity induced wakefields belong to the long-
ranged, multiturn dynamics. For a radiation field, e.g., the
coherent synchrotron radiation (CSR) generated by an
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electron traversing a bending magnet, it typically exhibits a
broadband impedance [30–34]. Such a beam-wake inter-
action would result in a self-modulation in the beam phase
space distribution, leading to the so-called microbunching
or microwave instability [8–20]. The CSR may also occur
in an undulator [35] and establishes both broadband and
narrowband impedance spectrum. The resonant peaks with
relatively high Q values locate around the undulator
resonant frequency and its integer multiples [36]. The
collective beam dynamics subject to the coherent radiation
effects can be referred to as single-bunch or multibunch,
depending on the bunch length, bunch spacing, and the
characteristic length of the beam-wake interaction.
A typical rf cavity in a conventional storage ring plays

two key roles: to boost or compensate for energy loss and to
provide longitudinal focusing for a circulating electron
bunch. A specialized cavity design, e.g., a harmonic rf
cavity, may aim to manipulate the bunch in order to
mitigate the coupled-bunch instabilities [37]. The recently
proposed steady-state microbunching (SSMB) concept
[38–43] may separate the aforementioned roles in two
independent devices. An induction linac may be used to
compensate for the energy loss due to synchrotron and
undulator radiation emissions, while a laser modulator can
be employed to provide the longitudinal focusing. An
enhancement cavity may be installed to further increase the
longitudinal focusing, called the laser cavity modulator.
Due to the replacement of an rf cavity by the laser
modulator in the SSMB storage ring, the distance between
the adjacent bunches can be very small, in fact 5 orders of
magnitude smaller, compared with that in a conventional rf-
based storage ring. These closely spaced electron bunches
form a microbunch train. In the situation when the
undulator configuration remains the same, the radiation
wake function generated by the traversing electron bunch
can now introduce a relatively long-range beam-wake
interaction, with the characteristic length compared with
the bunch spacing and the microbunch length. Such a long-
range radiation wake may bring about new instability
mechanisms, e.g., the recently explored single-pass multi-
bunch instability [44] or the single-bunch multiturn
instability [45].
The above mentioned single-pass multibunch instability

can be considered as a longitudinal BBU in the undulator of
a laser modulator. A laser modulator, being a single-pass
device, contains an external laser with an undulator, along
which the laser and the electron resonate and copropagate.
The external laser and the undulator magnetic field will
form a phase space bucket to provide longitudinal focusing
for an electron beam. Let us now consider the single-bunch
multiturn instability [45] in the laser cavity modulator of an
SSMB storage ring. A laser cavity modulator is now a
multipass device and is comprised of an external laser, an
undulator, and a set of cavity mirrors to store and
accumulate the laser fields. When an electron bunch

traverses the undulator, it emits coherent undulator radia-
tion. After the electron bunch leaves the undulator, it would
no longer emit radiation but the already generated radiation
fields will be trapped inside the cavity. Due to the resonance
condition, the undulator radiation wavelength is close to the
central wavelength of the external laser and can be as well
stored inside the cavity for a while. To ensure effective
interaction of the external laser with the circulating electron
bunch (in order to provide longitudinal focusing) requires
their phase to be locked. Such a phase lock guarantees that
the electron bunch would see the same phase space bucket
when completing a revolution and returning back to the
undulator entrance. Inside the undulator, the electron bunch
will receive energy kicks of radiation wake functions period
by period from the previous turns. As the radiation fields
would have been stored in the cavity for a long time, a
circulating electron beam perturbed by the radiation fields
turn by turn may eventually become unstable. Possible
differences between the radiation wake and the conven-
tional one lie in the former being a finite duration and
propagating inside the cavity. In contrast, the conventional
wake is localized in a cavity structure and the decay rate of
the field amplitude is determined by the cavity Q factor.
Moreover, the summation of the generated wake functions
is of convolution type for the case of the conventional rf
cavity wake, while of nonconvolution type for the case of
the coherent undulator radiations in the SSMB storage ring.
In this paper, we extend from the instability analyses

[44,45] to more systematic discussions and comparisons of
the aforementioned different situations. We will formulate
the two problems, the Robinson instability and the recently
explored multiturn instability in a laser cavity modulator,
by writing the macroparticle equations of motion (as the
difference equations) and solving for the asymptotic
behaviors of the instabilities. We will begin from
Robinson instability and obtain the existing results based
on the z-transform. Following a similar treatment, we
formulate the coherent radiation induced multiturn insta-
bility in an SSMB storage ring. Considering the radiation
slippage effect and the finite duration, the functional form
of the radiation wake is essentially different from the
Robinson case. As a special case of the radiation wake,
we relate the multiturn instability in an SSMB storage ring
to the FEL instability, finding that a similar cubic
dispersion or secular equation can be obtained.
It deserves here to summarize the contributions of this

paper. First, we formulate a new instability mechanism, the
coherent undulator radiation induced long-range single-
bunch instability in the cavity modulator of an SSMB
storage ring. Second, we compare the instability with the
classic Robinson instability, particularly the essence that
leads to the cubic and quadratic dispersion equations.
Finally, we apply our developed formulation to a special
case, which we relate to the FEL instability. It is hoped that
the discussions and comparisons presented in this paper
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may shed light on the underlying physical mechanisms of
collective beam dynamics in the laser cavity modulator.
This paper is organized as follows: In Sec. II, we review

the theoretical formulation of Robinson instability based on
the macroparticle model, solve for the dispersion or secular
equation, and illustrate a simple practical example. As a
recently explored collective effect, the coherent undulator
radiation induced single-bunch multiturn instability is then
introduced and analyzed in Sec. III with a set of preliminary
SSMB laser modulator design parameters as an example.
Section IV discusses and compares the Robinson instability
and the recently explored multiturn instability in the laser
cavity modulator, particularly the differences between the
wake function and the resultant dispersion equation. As a
special case, we relate the multiturn instability to the FEL
instability and obtain a similar cubic dispersion equation,
elaborated in Sec. V. Finally, we summarize the main
results in Sec. VI.

II. ROBINSON INSTABILITY DRIVEN BY
RF CAVITY WAKEFIELD

In this section, we outline a typical single-bunch multi-
turn instability mostly encountered in circular accelerators,
called Robinson instability [1,2,25,26]. There have been
developed many different approaches to analyze such an
instability; here the macroparticle model will be adopted.
By defining the relative energy deviation of the macro-
particle as δ ¼ γγ0

γ0
with γ0 the Lorentz relativistic factor of

the on-momentum reference energy, the physical mecha-
nism can be described as follows. Consider a storage ring
operating above transition with phase stability, if an
electron with δ > 0 will lose less energy than that of an
electron with δ < 0 due to the rf cavity induced wakefield
turn after turn, one expects that the beam will soon become
unstable. This undesired situation indeed occurs when the
frequency of the rf cavity ωR is lower than the harmonics of
the revolution frequency hω0 with h the harmonic number.
In the following subsection, we will reformulate the
Robinson instability.

A. Theoretical formulation

First, the rf cavity impedance can be well described by an
RLC-type impedance. For the single-mode case, the longi-
tudinal impedance can be written as [1,2]

ZkðωÞ ¼
RS

1þ iQðωR
ω − ω

ωR
Þ ; ð1Þ

where ωR is the natural resonant frequency of the rf cavity,
RS is the shunt impedance, andQ is the quality factor. Here,
a fine-tuning of ωR can be allowed. The corresponding
wake function can be derived by the following definition:

WkðzÞ ¼
1

2π

Z
∞

−∞
ZkðωÞeiωczdω; ð2Þ

where z < 0 refers to the tail of the source particle and c is
the speed of light. There is no rf cavity wake ahead of
the source particle, i.e., Wkðz > 0Þ ¼ 0. Substituting
Eq. (1) into Eq. (2), the wake function can be analytically
obtained [1,2]

Wkðz < 0Þ ¼ 2αRSeαz=c
�
cos

ω̄z
c

þ α

ω̄
sin

ω̄z
c

�
; ð3Þ

where the damping coefficient α ¼ ωR=2Q and
ω̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − α2

p
. When an electron traverses an rf cavity,

it leaves a wake function as Eq. (3). The wake function
starts to decay in time, while the electron circulates in the
storage ring. When the electron comes back to the rf cavity,
it would see the temporally decaying wake function.
A moment’s reflection will show that the electron bunch
on the nth turn will experience the wake function from the
kth turn WkðkC − nCþ zn − zkÞ, with C being the storage
ring circumference and zn, zk being the longitudinal
displacement on the nth and kth turn, respectively. Due
to jðk − nÞCj ≫ jzn − zkj, we may Taylor expand the wake
function

WkðkC − nCþ zn − zkÞ ≈WkðkC − nCÞ
þW0

kðkC − nCÞðzn − zkÞ; ð4Þ

where the first term on the right-hand side refers to the
static parasitic loss, the second term znW0

kðkC − nCÞ
characterizes the potential well distortion, and the third
term zkW0

kðkC − nCÞ serves as a resonant driving mecha-
nism. It is the third term that leads to the Robinson
instability.
Having obtained the proper argument of the wake

function, we can formulate the macroparticle equations
of motion. Since the entire bunch is represented as a
macroparticle, only the bunch centroid or the dipole motion
is revealed. The effects of the finite energy spread or the
internal phase space structure would be excluded. Inside the
rf cavity, we have

( zn;fin ¼ zn;ini

δn;fin ¼ δn;ini þ
h
k2s0C
η − 4πϵ0Nre

γ0

P
n
k¼0W

0
kðkC − nCÞ

i
zn;ini þ 4πϵ0Nre

γ0

P
n
k¼0 W

0
kðkC − nCÞzk;ini

; ð5Þ
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where N is the number of electrons in the bunch, ϵ0 is
the vacuum permittivity, and re is the classical electron
radius. The subscript n is used to denote the quantities on
the nth turn, the subscript ini refers to the location at the
rf cavity entrance, and fin to the rf cavity exit. The ks0
reflects the longitudinal focusing provided by the rf
cavity. Outside the cavity in the remaining storage ring,
we have

�
znþ1;ini ¼ zn;fin − ηCδn;fin
δnþ1;ini ¼ δn;fin

; ð6Þ

in which η is the storage ring phase slip factor. By writing

down
k2s0C
η zn in Eq. (5), we have assumed that the bunch

length is much shorter than the rf wavelength and
the incoherent synchrotron radiation loss is compensated
by the rf cavity. The original form may be written as
k2s0C
ηkR

ðsin kRzn − sinϕsÞ, with ϕs the synchronous phase and
kR ¼ ωR=c. For the convenience of the following discus-
sion, let us define a shorthand notation W 0

kðkC − nCÞ≡
4πϵ0Nre

γ0
W0

kðkC − nCÞ. The above Eqs. (5) and (6) may be
cast into a matrix formalism

�
z

δ

�
nþ1;ini

¼
�
1 −ηC
0 1

��
z

δ

�
n;fin

¼
�
1 −ηC
0 1

��� 1 0
k2s0C
η −

P
n
k¼0 W

0
kðkC − nCÞ 1

��
z

δ

�
n;ini

þ
Xn
k¼0

�
0 0

W 0
kðkC − nCÞ 0

��
z

δ

�
k;ini

�
ð7Þ

or in a compact form

Ynþ1 ¼ R

�
MnYn þ

Xn
k¼0

Wn−kYk

�
; ð8Þ

with Y ¼ ½zδ�T . Neglecting the effect of the potential well
distortion, i.e., dropping the time dependence of M, we
have

Ynþ1≈
�1−k2s0C

2 −ηC
k2s0C
η 1

�
Ynþ

Xn
k¼0

�
0 0

W 0
kðkC−nCÞ 0

�
Yk

¼AYnþ
Xn
k¼0

Bn−kYk: ð9Þ

Here we note that the 1 × 1 term of matrix Bn−k in Eq. (9)
should be 0. The reason is that in the turn-by-turn analysis,
the wake effect is considered a first-order effect in one
revolution. The zeroth-order effect refers to the case of pure-
optics transport. In the first-order analysis, the first-order
wake effect shall correspond to the change of the particle’s
energy coordinate δ. In the same order, the change of the
particle’s position coordinate z due to δ should be accounted
for. If the nonzero 1 × 1 element were retained, it means that
within a single revolution the change of the particle’s position
coordinate z is not only from the first-order δ but also from
the second-order correction of δ explicitly due to the wake.
Since the analysis is assumed a first-order analysis, we
neglect this second-order contribution.
Equation (9) is a standard matrix equation, representing a

dynamical system with memory. The stability of Eq. (9) can
be solved by the z-transform [46]. The z-transform of Yn
can be defined as

Z½Yn� ¼ ỸðzÞ≡X∞
j¼0

Yjz−j ¼ Y0 þ Y1z−1 þ Y2z−2 þ � � � :

ð10Þ
Now let us take the z-transform on both sides of Eq. (9)

zỸðzÞ − zY0 ¼ AỸðzÞ þ B̃ðzÞỸðzÞ; ð11Þ

where we have used the convolution theorem

Z
�Xn
k¼0

Bn−kYk

�
¼ B̃ðzÞỸðzÞ ð12Þ

and the shifting property

Z½Ymþk� ¼ zkỸðzÞ −
Xk−1
r¼0

Yrzk−r: ð13Þ

Solving Eq. (11) for ỸðzÞ gives

ỸðzÞ ¼ z

zI −A − B̃ðzÞY0; ð14Þ

with I the identity matrix.
The system stability is determined by detðzI −

A − B̃ðzÞÞ ¼ 0 or

det

 
z − 1þ k2s0C

2 ηC

− k2s0C
η − W̃ 0

kðzÞ z − 1

!
¼ 0; ð15Þ

where the explicit expression of W̃ 0
k can be found in

Appendix A [Eq. (A3)]. Note that W̃ 0
k is not exactly equal

to the impedance function Zk. Equation (15) can be
expanded as
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ðz − 1Þ2 þ ηC

�
k2s0C
η

þ W̃ 0
kðzÞ

�
¼ 0: ð16Þ

For the moment we have obtained the dispersion or
secular equation of the dynamical system. In the next
subsection, we will solve Eq. (16) for the system
(in)stability.

B. Solving secular equation

To solve the secular equation, Eq. (16), we let z ¼ eiΩT0

with T0 the revolution period and Ω in general a complex
quantity and assume jΩT0j ≪ 1. Substituting into Eq. (16)
gives

−Ω2T2
0 þ k2s0Cþ ηCW̃ 0

kðzÞ ¼ 0: ð17Þ

After replacing W̃ 0
k with the explicit expression

Eq. (A3), Eq. (17) can be written in a familiar form

− Ω2T2
0 þ k2s0Cþ i

4πϵ0Nreη
γ0

×
X∞
p¼−∞

ðΩþ pω0ÞZkðΩþ pω0Þ ¼ 0 ð18Þ

or

Ω2−ω2
s0 ¼ i

4πϵ0Nreη
γ0T2

0

X∞
p¼−∞

ðΩþpω0ÞZkðΩþpω0Þ ð19Þ

with c ¼ C=T0. Considering ReΩ ≈ ωs0, we have the
imaginary part that represents the instability growth rate

τ−1 ≡ ImðΩ − ωs0Þ ≈
4πϵ0Nreη
2γ0T2

0ω
0
s

×
X∞
p¼−∞

ðΩþ pω0ÞReZkðΩþ pω0Þ; ð20Þ

where a negative value indicates that the system is unstable.
There is a sign difference in Refs. [1,2] because of the
different notations adopted. Equation (20) is a well-known
result [1,2]. For the RLC-type narrowband impedance,
ωR ≈ hω0, we have the simplified expression

τ−1ana;Z¼
2πϵ0Nreηhω0

γ0T2
0ωs

½ReZkðhω0þωsÞ−ReZkðhω0−ωsÞ�;

ð21Þ

or, with substitution of Eq. (1) and assuming Δω ¼
ωRhω0 ≪ ωR=2Q [1,2]

τ−1ana;RLC ≈
4NreηRSQ2Δω

πγ0T0h
: ð22Þ

Here we use τ−1ana;Z to denote Eq. (21) because the
respective impedances would be evaluated from Eq. (1).
The τ−1ana;RLC stands for Eq. (22) based on the narrowband
approximation. Before ending this subsection, we remind
that at the beginning of this section, the described phy-
sical picture of Robinson instability can be confirmed
by Eq. (21).

C. Example

In this subsection, we take a simple numerical example
to illustrate the Robinson instability. Consider the beam and
the storage ring parameters with η ¼ 0.03, N ¼ 1011, the
reference energy E ¼ 1 GeV, ω0 ¼ 9.4 × 106 rad= sec,
νs0 ¼ 0.01, h ¼ 240, hω0=2π ¼ 360 MHz, RS ¼ 1 MΩ,
Q ¼ 2000, and Δω=2π ¼ 10 kHz. According to Eq. (22)
the predicted instability growth rate τ−1 ≈ 1.2 ms. Given
these input parameters, Fig. 1 shows the turn-by-turn
tracking simulation results based on Eqs. (5) and (6).
The theoretical predictions based on Eqs. (21) and (22)
are also drawn in the figure, showing good agreement with
tracking simulations. Besides, we see that different initial
conditions only lead to a phase offset; the collective
dynamical behaviors remain the same. The frequency
detuning Δω=2π > 0 is such that the beam becomes
unstable for η > 0; a proper detuning Δω=2π < 0 would
stabilize the beam.

III. MULTITURN INSTABILITY DRIVEN BY
COHERENT RADIATION

In this section, we consider a recently explored insta-
bility mechanism, motivated by the recent proposal of
the SSMB scheme in a storage ring [38]. A laser cavity
modulator consists of an external laser, a set of cavity

0 1 2 3
Time (ms)

100

102

104

n
|

(s
) 

 (
m

m
)

z
0
 = 0, 

0
 = 10-3

z
0
 = 10 mm, 

0
 = 10-3

ana,Z
-1

ana,RLC
-1

FIG. 1. Longitudinal displacement as a function of time. The
red and blue lines are obtained by tracking simulations. The black
solid and dashed lines are from analytical predictions, i.e.,
Eqs. (21) and (22), respectively.
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mirrors to accumulate a sufficient laser intensity, and an
undulator. The external laser and the undulator magnetic
field will form a series of phase space buckets, similar to the
role of an rf cavity in a conventional storage ring. When
the bunch traverses the undulator, it emits radiation. After
the electron leaves the undulator, the generated radiation
fields are confined in the laser cavity, for example, in the
four-mirror ring cavity shown in Fig. 2. The phase-lock
condition ensures that the electron bunch would meet the
same phase space bucket when returning to the undulator
entrance.
The finite duration of the radiation wake is Nwλr, with

Nw the number of undulator periods and λr the undulator
resonant wavelength. Different from the long-range wake
induced in an rf cavity, the radiation wake in an undulator is
relatively short-ranged. However, the radiation wakes
propagate, bounce back and forth among the cavity mirrors,
and meet/overlap the electron bunch completing one
revolution in the remaining storage ring. Moreover, an
electron traverses along the undulator at a certain passage at
the speed of βzc, while both the emitted radiation and the
external laser propagate at the speed of light c. The speed
difference results in the fact that the radiation fields slip
over one resonant wavelength with respect to the electron
per undulator period. The resulting beam dynamics may
exhibit a long-range, multiturn behavior.

A. Theoretical formulation

The radiation wake function Wk, emitted by an electron
moving in an undulator, can be obtained by inverse Fourier
transformation of the radiation impedance [1,2]

Wkðz > 0Þ ¼ 2c
π

Z
∞

0

ReZkðkÞ cos kzdk; ð23Þ

where k is the wavenumber and Re takes the real part
of the radiation impedance Zk. Here z > 0 refers to the head
of the source particle. In this expression, we require
Wkðz < 0Þ ¼ 0. The undulator radiation impedance per
unit length per unit undulator wavenumber at a specific
harmonic can be written as [47–49]

ReZkðωÞ
Lwkw

¼ Z0Ḡðθ1Þ
�
1þ K2

2

��
ω

ωr

�
−1
; ð24Þ

where Z0 ≈ 377 Ω is the free space impedance, kw ¼ 2π=λw
with λw the undulator period,Lw ¼ Nwλw the undulator length
with Nw the number of undulator periods. The frequency-

dependent polar angle isθ1 ¼ 1
γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ K2

2
ÞðH ωr

ω − 1Þ
q

,where

the positive integer H is the harmonic number, K is dimen-
sionless undulator parameter, and the resonant fre-
quency ωr ¼ ckr ¼ 2πc=λr with the undulator resonant
wavelength λr satisfying λr ¼ λw

2γ2
0

ð1þ K2

2
Þ. The azimuthal

angle ϕ-averaged function

ḠðθÞ ¼ 1

2π

Z
2π

0

Gðθ;ϕÞdϕ; ð25Þ

with Gðθ;ϕÞ ¼ Gσðθ;ϕÞ þ Gπðθ;ϕÞ

Gσðθ;ϕÞ ¼
1

2

�
HðKD1 þ γθD2 cosϕÞ

1þ K2

2
þ γ2θ2

�
2

ð26Þ

and

Gπðθ;ϕÞ ¼
1

2

�
HγθD2 sinϕ

1þ K2

2
þ γ2θ2

�
2

; ð27Þ

where

D1 ¼ −
1

2

X∞
m¼−∞

JHþ2m−1ðHαÞ½JmðHζÞ þ Jm−1ðHζÞ� ð28Þ

and

D2 ¼
X∞

m¼−∞
JHþ2mðHαÞJmðHζÞ; ð29Þ

where Jm is the mth order Bessel function of the first kind,

α ¼ 2Kγθ cosϕ

1þK2
2
þγ2θ2

, ζ ¼ K2=4

1þK2

2
þγ2θ2

.

When multiple harmonics are concerned, the overall
radiation impedance function ReZk can be obtained by
summing the individual harmonic H in Eq. (24), i.e.,
ReZkðωÞ ¼

P
H ReZk;HðωÞ. The corresponding radiation

FIG. 2. Schematic layout of the SSMB storage ring with a laser
cavity modulator. The laser fields, together with the undulator
magnetic field, in the cavity provide longitudinal focusing to the
circulating electron bunch. A Nw-period undulator will produce
radiation wakefields, each with the finite duration Nwλr with λr
the undulator resonant wavelength. The propagating radiation
fields bounce back and forth among the mirrors in the cavity
modulator.
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wake function can be calculated via Eq. (23). For simplicity
we consider only the fundamental harmonic H ¼ 1 and
assume the cavity mirrors are perfect. As for the choice of
the maximum harmonic number and the possible effects of
the cavity mirrors, the interested readers are referred to
Refs. [44,45,50]. The proper argument of the radiation
wake function can be inferred by the beam-wake inter-
action in the laser cavity modulator and the remaining
storage ring, as we have outlined in the Introduction and the
beginning of this section. A moments reflection reveals that
a circulating electron at the nth undulator period on themth
turn will suffer the radiation wake of the following form:

Xm−1

k¼0

Xn−1
p¼0

Wk½ðNw − pÞλr þ zðpÞm − zð0Þk �: ð30Þ

Notice that the phase-lock condition is reflected in zð0Þk .
We also remind that the radiation wake functions are with
finite duration, i.e., Wkðz < 0Þ ¼ 0;Wkðz > NwλrÞ ¼ 0.
Now we are ready to formulate the macroparticle

equations of motion for the longitudinal dynamics in an
SSMB storage ring. Inside the undulator, we denote the
period-by-period mapping of the longitudinal phase space

coordinate from the undulator entrance ðzð0Þm ; δð0Þm Þ to the

exit ðzðNwÞ
m ; δðNwÞ

m Þ, with the subscripts m being the revolu-
tion index and the superscript indicating the location of the
undulator in terms of the undulator period. The superscript
(0) refers to the undulator entrance and ðNwÞ corresponds to
the undulator exit. On the mth turn, the equation of motion
for the longitudinal displacement at the (nþ 1)th undulator
period can be expressed as [45]

zðnþ1Þ
m ¼ zðnÞm − ηwλwδ

ðnþ1Þ
m ; ð31Þ

with the undulator slippage factor ηw ¼ −ð1þ K2

2
Þ=γ20. The

relative energy deviation δ ¼ ðγ − γ0Þ=γ0 can be perturbed
by the radiation wake

δðnþ1Þ
m ¼ δðnÞm þ k2s0λw

ηw
zðnÞm

−
Xm−1

k¼0

Wk½ðNw − nÞλr þ zðnÞm − zð0Þk �; ð32Þ

where the scaled wake function is similarly defined
as Wk ≡ 4πε0Nreλw

γ0
Wk. Here ks0 is characteristic of the

longitudinal focusing provided by the external laser in
the cavity modulator [44,45]. When the electron bunch
leaves the undulator, let us define ðzm;fin; δm;finÞ ¼
ðzðNwÞ

m ; δðNwÞ
m Þ. The phase space mapping from the undulator

exit to the entrance of the next turn ðzm;fin; δm;finÞ →
ðzmþ1;ini; δmþ1;iniÞ ¼ ðzð0Þmþ1; δ

ð0Þ
mþ1Þ can be formulated using

the linear matrix

�
zmþ1;ini

δmþ1;ini

�
¼
�
1 −ηringðCtot − LwÞ
0 1

��
zm;fin

δm;fin

�
; ð33Þ

where ηring refers to the storage ring phase slippage factor,
the total circumference Ctot involves the modulator and the
remaining storage ring, Ctot ¼ Lw þ Cring.
To further simplify Eqs. (31)–(33) on the turn-by-turn

basis, we define the undulator-averaged phase space
coordinates as [45]

z̄m ¼ 1

Nw

XNw

n¼1

zðnÞm ; δ̄m ¼ 1

Nw

XNw

n¼1

δðnÞm ; ð34Þ

then Eqs. (31)–(33) can be combined into one set of
difference equations

dz̄m
dm

¼ −ðηwLw þ ηringCringÞδ̄m; ð35Þ

with Cring ¼ Ctot − Lw

dδ̄m
dm

¼ k2s0Lw

ηw
z̄m −W0Xm−1

k¼0

ðz̄m − z̄kÞ; ð36Þ

in which the longitudinal synchrotron oscillation tune for the

entire ring ν2s0;tot ¼ k2s0L
2
w

4π2
ηwLwþηringCring

ηwLw
. The explicit expres-

sions of W0 with detailed derivations can be found in
Appendix B. Here, we note that W0 has no m-dependence
after the sum over p; the information of the radiation fields
generated by a turn-by-turn circulating electron was con-
tained in z̄k. Equations (35) and (36) are coupled linear
equations and can be cast into a matrix equation

�
z̄mþ1

δ̄mþ1

�
¼
�
1 −ηringCring

0 1

��� 1 −ηwLw

k2s0Lw

ηw
−mW0 1

��
z̄m
δ̄m

�
þ
Xm−1

k¼0

�
0 0

W0 0

��
z̄k
δ̄k

��

≈
� 1 −ðηwLw þ ηringCringÞ

k2s0Lw

ηw
−mW0 1

��
z̄m
δ̄m

�
þ
�

0 0

W0 0

�Xm−1

k¼0

�
z̄k
δ̄k

�
ð37Þ
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or in a more compact form

Ymþ1 ¼ AmYm þB
Xm−1

k¼0

Yk: ð38Þ

The matrix A will not have time dependence if the
potential well distortion effect is neglected. Similar to
Sec. II A, we will solve Eq. (38) for the system (in)stability
in the next subsection.

B. Obtaining secular equation

Similar to the Robinson instability case, we can perform
the z-transform on Eq. (38) to obtain the secular equation.
Using Eqs. (10) and (13), we have

zỸðzÞ − zY0 ¼ AỸðzÞ þB
ỸðzÞ
z − 1

; ð39Þ

where we have used

Z
�Xm−1

k¼0

Yk

�
¼ ỸðzÞ

z − 1
: ð40Þ

Solving Eq. (39) for Ỹ gives

ỸðzÞ ¼ z
zI −A − B

z−1
Y0: ð41Þ

The system stability is determined by detðzI −A−
B
z−1Þ ¼ 0. That is

det

� z − 1 ηwLw þ ηringCring

− k2s0Lw

ηw
− W0

z−1 z − 1

�
¼ 0 ð42Þ

or

ðz− 1Þ2þðηwLwþ ηringCringÞ
�
k2s0Lw

ηw
þ W0

z− 1

�
¼ 0: ð43Þ

Similarly, we let z ¼ eiΩT0 , with Ω in general a complex
quantity. Then Eq. (43) can be written as

Ω3 − ω2
s0;totΩþ iŴ ¼ 0; ð44Þ

with ω2
s0;tot ¼ k2s0L

2
w

T2
0

ηwLwþηringCring

ηwLw
and Ŵ ¼ W0

T3
0

ðηwLw þ
ηringCringÞ. Here the explicit expression of W0 can be found
in Eq. (B4). Note that Ŵ is a real quantity. Here we remind
that the longitudinal single-particle optics stability
requires ηwLw þ ηringCring < 0.
For the moment we have obtained the secular equa-

tion [Eq. (44)] for the coherent undulator radiation
induced multiturn instability in a laser cavity modulator.

Equation (44) can be solved analytically or numerically,
given the ωs0;tot and Ŵ. The analytical expressions of the
three roots can be involved [45]; we will not present them
here. In the next subsection, we will demonstrate the above
analysis with the turn-by-turn tracking simulations by
taking a preliminary design example based on an SSMB
storage ring.

C. Example: SSMB

In this section, we illustrate a preliminary SSMB
design example as a practical application of the developed
theoretical formulation. The SSMB storage ring aims to
produce continuous wave, high average power, coherent
radiations with the targeted radiation wavelength at
13.5 nm. The relevant beam and undulator parameters,
for example, are largely based on Ref. [43] with slight
modifications. To be specific, the reference electron energy
is 400 MeV, the microbunch charge 6.4 fC (≈0.4 × 105

electrons), the undulator parameter K ¼ 4.2, the correspon-
ding undulator slippage factor about −ð1þ K2=2Þ=γ20≈
−1.6 × 10−5, the undulator period 2 cm, the total number of
undulator periods Nw ¼ 100, and the total storage
ring circumference Ctot ¼ 50 m. For simplicity, we
assume ηring ¼ 0. Moreover, the laser modulator voltage
Vm ¼ 0.51 kV is much smaller than the targeted value of
0.51 MV. The corresponding ks0 ≈ 0.017 ≈ 2π=367 rad=m
[45]. The smaller synchrotron oscillation in the undulator
makes the theoretical prediction close and accurate to the
turn-by-turn tracking simulations [see also Eq. (34)]. Both
the numerical turn-by-turn tracking simulation and the
theoretical predictions are shown in Fig. 3, where we have
assumed the linearized wake function and neglected the
potential well distortion effect. Figures 3(a) and 3(b)

FIG. 3. Turn-by-turn evolution of the undulator-averaged
phase space coordinates. In the tracking simulation, the radiation
wake is linearized [Eq. (36)] and the laser modulator voltage
Vm ¼ 0.51 kV. The analytical prediction τ−1ana is obtained by
solving Eq. (44).
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illustrate the undulator-averaged longitudinal phase space
coordinates z̄n and δ̄n for the first 50 turns. The macro-
particle tracking simulations are performed by numerically
iterating Eqs. (31) and (32) period by period inside
the undulator and Eq. (33) turn by turn in the remaining
storage ring. The theoretical prediction is also plotted in
Fig. 3(a) as a comparison. Here we explain how the
theoretical prediction (the blue curve) may be obtained.
From Eq. (44), we first find the three instability growth
rates ImΩ (ImΩ < 0 for the exponential growth and
ImΩ > 0 for the exponential damping). The asymptotic
behavior of the longitudinal displacement z̄n can be
approximately written as the sum of the three roots in

the form jz̄nj ∝
P

2
j¼0 e

−τ−1j T0 ≈
P

2
j¼0 e

−ðImΩj;IÞT0 . To better
compare with the tracking simulations, an initial value on
the 10th turn is used as the starting value of the theoretical
prediction. When evaluating the radiation impedance
[Eq. (B4)], both using the continuous integration and the
discrete sum give consistent and comparable predictions,
and show reasonable agreement to the tracking simulation
results.
Here we refer the interested reader to Ref. [45] for further

discussions regarding this newly explored instability. In this
section, we have formulated the single-bunch multiturn
instability in the laser cavity modulator of an SSMB storage
ring. In the following section, we will discuss and compare
such an instability with the Robinson instability introduced
in Sec. II and later the FEL instability in Sec. V.

IV. DISCUSSION

We have introduced in the previous two sections the
single-bunch multiturn instabilities driven by the long-
range rf cavity wake in a conventional storage ring (Sec. II)
and the coherent undulator radiation in the laser cavity
modulator of an SSMB storage ring (Sec. III). In this
section, we will compare and discuss the two instabilities
on the respective wake functions and the underlying
mechanisms. Figure 4 illustrates the wake functions a
circulating bunch on the fourth turn (k ¼ 3) may experi-
ence in the rf cavity [Fig. 4(a)] and in the laser cavity
modulator [Fig. 4(b)]. The wake functions produced on the
previous three turns k ¼ 0, 1, 2 are marked as red, orange,
and green, respectively. In Fig. 4(a), the wake functions
exhibit a translational or shift pattern with the ring circum-
ference (plus small correction due to synchrotron oscil-
lation of the circulating bunch). The localized rf cavity
wakes behave like the standing waves (the finite Q value
leads to field decay) and the beam bunch samples the
successive parts of the wakes on each turn. Typically the rf
cavity is considered a lumped element with zero length and
a vanishing phase slippage factor. The situation becomes
different in Fig. 4(b). Now the finite-duration radiation
wakes are not localized but propagate along the undulator,
although confined in the cavity modulator. The phase-lock

condition, as a result of the effective interaction between
the external laser and the circulating bunch, assures that the
bunch always meets the same phase space bucket at the
undulator entrance. On each turn at the undulator entrance,
the beam bunch can only sample the radiation wakes within
the bucket width. See the rightmost gray microbunch in
Fig. 4(b). When the bunch traverses along the undulator,
the radiation field slips ahead for λr per undulator period.
Then the beam bunch receives the varying parts of the
wakes period by period from the undulator entrance to the
exit. The small black box enclosing an electron bunch in
Fig. 4(b) illustrates the bunch at the third undulator period.
Here we note that Figs. 4(a) and 4(b) represent distinct
physical length scales, though the two plots are drawn on a
visually comparable scale.
The distinctive features of the respective wake functions

lead to the different summation forms of the wake functions
in the macroparticle equations of motion in the time domain
[see Eqs. (9) and (38)]. When transforming to the frequency
domain, such a distinction results in different secular
equations. For the case of Robinson instability, it is the
convolution-type sum Eq. (9) that leads to the quadratic
secular equation [Eq. (16)]. The two roots represent the
exponential growth and damping rate. For the case of the
coherent undulator radiation induced multiturn instability,
the wake sum of nonconvolution type Eq. (38) makes
the cubic equation [Eq. (43)]. The three solutions, after a
proper transformation, would represent exponential
growth, exponential damping, and purely sinusoidal oscil-
lation. Moreover, it is the real part of the impedance that
contributes to the instability growth rate for the Robinson
case [see Eq. (20)], while for our case, the instability
growth is determined by the imaginary part of the imped-
ance [see Eqs. (44) and (B4)]. Here we provide another

FIG. 4. Illustration of (a) the conventional long-range wake
functions generated in an RF cavity; (b) the radiation wake
functions produced by the circulating electrons in a laser cavity
modulator. In (a) the wake function is localized and the negative
longitudinal bunch coordinate z is to the right, referring to the
bunch tail. In (b) the radiation wake is propagating to the right
with the positive longitudinal bunch coordinate z. A small black
box enclosing an electron bunch indicates a relative position, at
which the passing bunch receives the energy kick from the wake
functions. The gray microbunches in (b) correspond to different
locations in the undulator due to the radiation slippage effect. See
context for more explanation.
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aspect to draw an analogy between the two instabilities
from plasma physics [51]. As the rf cavity wakes are
localized, the Robinson instability can be considered as a
type of absolute instability, where the unstable motion
grows in time (turn after turn). In contrast, the coherent
radiation wakes propagate inside the cavity modulator, and
the unstable motion of the circulating bunch may exhibit
growth both in time (turn after turn) and in space, i.e.,
travelling along the region of the perturbing source of finite
duration inside the undulator. This belongs to the con-
vective instability in plasma physics.
Before ending this section, we summarize the compari-

son of the two instability mechanisms in Table I. In the next
section, we shall consider a special case of the multiturn
instability in the laser cavity modulator in order to relate to
the FEL instability.

V. FEL INSTABILITY

In formulating the multiturn instability in a laser cavity
modulator, we have obtained the cubic dispersion or secular
equation. Since the dispersion relation of the FEL insta-
bility is also a cubic equation [50,52], we might be tempted
to relate the multiturn instability to the FEL instability in
some special situation.

A. A special case of multiturn instability

When an electron bunch circulates in an SSMB storage
ring, it would not suffer the radiation fields generated in the
laser cavity modulator until the electron bunch would
complete one revolution and come back to the undulator.
If we try to draw an analogy between the multiturn situation
and the FEL process, we may treat the electron bunch that
would arrive after completing one revolution as the test
bunch. The test bunch will experience the radiation wakes
generated by the source bunches. Notice that it is still a
single bunch that plays the two roles. Moreover, we require
that the undulator to be a single-period undulator, i.e.,
Nw ¼ 1; Lw ¼ λw. The storage ring also must not introduce
any additional longitudinal slippage, i.e., ηring ¼ 0. Based
on the aforementioned special case, we have the macro-
particle equations of motion [see also Eqs. (35) and (36)]

dzm
dm

¼ −ηwλwδm ð45Þ

and

dδm
dm

¼ k2s0λw
ηw

zm −W 0
kðΔLÞ

Xm−1

k¼0

ðzm − zkÞ: ð46Þ

Here the bar has been removed because of the single-
period undulator. Similarly, the radiation wake does not
participate to the sum over the revolution turns. Here
ΔL ≈ λr. The two coupled difference equations can be
combined into one second-order difference equation,
neglecting the parasitic loss

d2zm
dm2

þ k2sλ2wzm ≈ −ηwλwW 0
kðΔLÞ

Xm−1

k¼0

zk; ð47Þ

where the potential well distortion effect can be absorbed
by redefining the synchrotron oscillation wavenumber

k2s ¼ k2s0 −
ηw
λw

W 0
kðΔLÞ

Xm−1

k¼0

zk: ð48Þ

In what follows, we will drop the potential well dis-
tortion term for simplicity. Now we solve Eq. (47) for the
corresponding secular equation. In Eq. (47), the second-
order term can be written as the central difference form

zmþ2 − 2zmþ1 þ ðk2s0λ2w þ 1Þzm ¼ −ηwλwW 0
kðΔLÞ

Xm−1

k¼0

zk:

ð49Þ

Taking the z-transform on both sides and using the
shifting property [Eq. (13)], we have

½z2z̃ðzÞ − ðz0z2 þ z1zÞ� − 2½zz̃ðzÞ − z0z�

þ ðk2s0λ2w þ 1Þz̃ðzÞ ¼ −ηwλwW 0
kðΔLÞ

z̃ðzÞ
z − 1

; ð50Þ

TABLE I. Comparison of the rf cavity wake induced Robinson instability and the single-bunch multiturn (SBMT)
instability in the laser cavity modulator.

Robinson SBMT

Mechanism Long-range wake in an rf cavity Short-range radiation wake in a cavity modulator

Wake sum
P

n−1
k¼0 W

0
kðnC − kCÞzk ðPNw−1

p¼0 W0
k½ðNw − pÞλr�Þð

P
m−1
k¼0 z̄kÞ

(Time domain)

Impedance term W̃0
kðzÞỸðzÞ W0

z−1 ỸðzÞ
(frequency domain)

Growth rate τ−1 ∝
Pðpω0 þ ωsÞReZkðpω0 þ ωsÞ τ−1 ∝

PðηwLw þ ηringCringÞnImZkðnÞ
Type Absolute Convective
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with z0;1 the initial conditions. The initial conditions are not
of our interest; we only care about the system (in)stability.
Solving Eq. (50) for z̃, we obtain

z̃ðzÞ ¼ z½z0zþ z1 − 2z0�
ðz − 1Þ2 þ k2s0λ

2
w þ ηwλwW 0

kðΔLÞ
z−1

: ð51Þ

Again, the system stability is determined by requiring
that the determinant of the denominator be zero, i.e.,

ðz − 1Þ2 þ k2s0λ
2
w þ

ηwλwW 0
kðΔLÞ

z − 1
¼ 0: ð52Þ

Now we let z ¼ eiΩT0 with jΩT0j ≪ 1, thus

Ω3 − ω2
s0Ωþ i

cηwW 0
kðΔLÞ
λ2w

¼ 0: ð53Þ

To further simplify the expression, we introduce the
shorthand notations

A ¼ −
cηwW 0

kðΔLÞ
λ2w

> 0 and μ ¼ i
Ω
A1=3 ; ð54Þ

with A being a real quantity and μ, in general, a complex
quantity. When ωs0 → 0, Eq. (53) can be simplified as

μ3 ¼ 1; ð55Þ

which gives the solutions μ ¼ 1; −1þ
ffiffi
3

p
i

2
; −1−

ffiffi
3

p
i

2
. These

three roots lie on the unit circle with jμj ¼ 1. Due to the
slightly different notations adopted in our analysis, the
most unstable root refers to μ ¼ 1, which corresponds to
the instability growth rate Ω ¼ −iA1=3. A more explicit
expression of the dominant instability growth rate can be
written as

τ−1 ¼ ImΩ ¼ −A1=3 ¼ −
�
−
cηwW 0

kðΔLÞ
λ2w

�1
3

: ð56Þ

B. Using collective variables

The most elegant description that captures the essence of
the 1D high-gain FEL model can be based on the collective
variable approach [50,52]. Here we will not derive but only
quote the three dynamical equations

dA
dŝ

¼ −B

dB
dŝ

¼ −iP

dP
dŝ

¼ A; ð57Þ

whereA is the scaled complex electric field,P is the energy
modulation, and B is the bunching factor, which reflects
the microbunching due to the longitudinal slippage in the
undulator. In Eq. (57), the scaled dimensionless path
length ŝ is defined as ŝ ¼ 2kwρs, with the Pierce parameter
[50,52]

ŝ ¼ 2kwρs; ρ ¼
�
1

8π

Ib
IA

�
K½JJ�
1þ K2

2

�
2 γλ2r
2πσ2⊥

�1
3

; ð58Þ

where

½JJ� ¼ J0ðχÞ − J1ðχÞ; ð59Þ

with χ ¼ K2

4þ2K2.
The three first-order differential equations can be com-

bined as a third-order differential equation

d3A
dŝ3

¼ iA: ð60Þ

The dispersion or secular relation can be obtained by
letting AðŝÞ ∝ e−iκŝ, with κ being a complex quantity [50].
Substituting into Eq. (60) leads to

κ3 ¼ 1: ð61Þ

Although Eq. (61) has the same form as Eq. (55), the

most unstable root corresponds to κ ¼ −1þ ffiffi
3

p
i

2
. This does

not affect the physical essence. The long-term behavior can
be obtained by substituting the imaginary part of κ to e−iκŝ.

C. Example

Let us now demonstrate the analyses in Sec. VA and
Sec. V B by a numerical, artificial example. Assume the
electron reference energy is 400 MeV, the bunch charge
10 fC (≈0.625 × 105 electrons), the undulator parameter
K ¼ 4.2, the undulator slippage factor still −1.6 × 10−5,
the undulator period 2 cm, and ηring ¼ 0. When considering
the dynamical system as a single-pass system (Sec. V B),
the number of undulator periods is set Nw ¼ 100. When
treating the system as the modified single-bunch multiturn
(SBMT) case (Sec. VA), we require Nw ¼ 1; Lw ¼ λw, and
the number of revolutions m ¼ 100. Based on the numeri-
cal setup, Fig. 5 shows the longitudinal displacement as a
function of s by comparing the results from the modified
SBMT model and the 1D FEL high-gain model. The black
solid line, based on the modified single-bunch multiturn
formulation (Sec. VA), is obtained by iterating Eqs. (45)
and (46) turn after turn and exhibits an exponentially
growing behavior at a larger ŝ. The blue dotted line is
evaluated by solving the secular equation [Eq. (56)] for the
instability growth rate, also based on Sec. VA. The
theoretical prediction of the red dashed line is based on
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the collective variable approach in the 1D high-gain
FEL model, very close to that predicted by the modi-
fied SBMT model. When using the collective variable
approach, we further assume σ⊥ ≈ 5 μm, σz ≈ λr, Ib ≈
Nec=2.35σz ≈ 800A, thus the corresponding Pierce param-
eter ρ ≈ 0.0285. Here we remind that this example is
somewhat artificial; some of the parameters may not be
practical. For example, the Pierce parameter is about 1
order of magnitude larger than the typical one (≈10−3),
resulting in a much reduced FEL gain length. However, it
may have been sufficient to demonstrate the physical
essence emphasized here.
In addition to the modified SBMT model, belonging to

the single-bunch multiturn case, i.e., Nw ¼ 1; m ¼ 100, we
further illustrate another similar situation based on the
coherent undulator radiation induced multibunch single-
turn (MBST) BBU model [44]. Here we shall consider
Nw ¼ 100, Nb ¼ 100, with Nb being the number of
microbunches. In Ref. [44], we have the macroparticle
equations of motion for the nth microbunch with the bunch
spacing equal to the resonant radiation wavelength

d2zn
ds2

þ k2s0zn ≈
4πϵ0Nreηw

γ

XNb−1

j¼0

ðzn − zjÞW0
k½ðn − jÞλr�

Θðpþ j − nÞ; ð62Þ

where p is defined such that pλw < s < ðpþ 1Þλw, and Θ
is the Heaviside step function, reflecting the radiation
slippage effect in the single-pass beam transport. The
function Θ assures that the radiation wake in Eq. (62)

can only take a value when the radiation field generated
from the trailing microbunch takes over the test bunch.
The gray solid line in Fig. 5, based on the numerical

results of Eq. (62), shows the longitudinal displacement of
the most leading microbunch. We note that the instability
growth rate of the most leading microbunch by such
longitudinal multibunch BBU is slower than those of the
modified SBMT and the FEL models. This is because the
intervals between the trailing microbunches and the test
bunch (the most leading one) are no longer λr for all
microbunches but ðn − jÞλr. The radiation wakes from
those farther microbunches have a relatively minor effect
on the test bunch. For the modified SBMT model, in
contrast, the driving sources always come from the follow-
ing source bunches with ΔL ≈ λr. This can be traced back
to the phase-lock condition. For the FEL case, the phase-
lock condition is reduced to the undulator resonance
condition. It is indeed such an internal phase lock that
leads to the high-gain FEL instability. While the radiation
field slips over the electron bunch, it coherently interacts
with the electron beam, e.g., continuously extracting the
energy from the electrons, when the system satisfies the
resonance condition.

VI. SUMMARY

In this paper, we have outlined the theoretical formu-
lation of the Robinson instability, a single-bunch multiturn
instability driven by the rf cavity wake. We then introduced
a recently explored multiturn collective effect driven by
coherent undulator radiation in the laser cavity modulator
of an SSMB storage ring. In both cases, the macroparticle
equations of motion are solved by the z-transform to obtain
the secular equation. A closer examination of the respective
physical mechanisms reveals that the different forms of the
secular equations can be traced back to the sum of the wake
functions. The summation of convolution type leads to the
quadratic secular equation, while that of nonconvolution
type may result in the cubic equation, as the recently
explored multiturn instability. Table I summarizes the key
differences between the two types of instabilities.
The obtained cubic dispersion equation can be related to

the FEL instability as a special case of the single-period
undulator with vanishing storage ring slippage factor,
Nw ¼ 1 and ηring ¼ 0. Using a numerical example, this
special case is compared with a 1D high-gain FEL model
based on the collective variable approach and is found that
the reduced secular equation can capture the 1D FEL
essence. The phase-lock condition plays an essential role in
the multiturn instability and, when reduced to a special case
this condition is connected to the resonance condition on
the FEL process. Throughout the comparative studies, we
shall gain a deeper understanding of this newly explored
instability mechanism.
All the above discussions are made from a view of the

theoretical formulation. From a practical aspect, a more

FIG. 5. Longitudinal displacement as a function of s. The black
solid line is obtained by the modified single-bunch multiturn
(SBMT) model; the red dashed line obtained by the FEL cubic
equation [Eq. (60)]; the blue dotted line from the cubic root of
the modified SBMT [Eq. (56)]. The gray solid line refers to
the multibunch single-turn (MBST) case. In the calculations,
we assume N ¼ 0.625 × 105 (10 fC), Vm ¼ 0,Hmax ¼ 1, and the
initial conditions are set z0 ¼ 3 × 10−3 nm and δ0 ¼ 0. Here the
analytical predictions are fitted at s ¼ 1.2 m.
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detailed, in-depth study on the coherent radiation induced
single-bunch multiturn instability in the laser cavity modu-
lator has been recently submitted [45], with an extension of
the analysis on the multibunch multiturn collective dynam-
ics is ongoing.
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APPENDIX A: DERIVATION OF W̃0
k IN EQ. (15)

This appendix is to evaluate W̃ 0
k in Eqs. (15)–(17).

According to the definition of the z-transform and
z ¼ eiΩT0 , we have

W̃ 0
kðzÞ ¼

4πϵ0Nre
γ0

Z½W0
kðzÞ�

¼ 4πϵ0Nre
γ0

X∞
j¼0

W0
kð−jCÞz−j

¼ 4πϵ0Nre
γ0

i
2πc

X∞
j¼0

Z
∞

−∞
ωZkðωÞe−ijωT0eþijΩT0dω

¼ 4πϵ0Nre
γ0

iω0

2πc

Z
∞

−∞
ωZkðωÞ

�X∞
j¼0

e−ijωT0eþijΩT0

�

× d
ω

ω0

; ðA1Þ

where the sum in the square bracket of the last equality can
be easily obtained

X∞
j¼0

e−ijωT0eþijΩT0 ¼ e−iðω−ΩÞT0

e−iðω−ΩÞT0 − 1
: ðA2Þ

Because Eq. (A2) as a function of ω behaves like a δ-
function train, we may further simplify Eq. (A1)

W̃ 0
kðzÞ ¼

4πϵ0Nre
γ0

iω0

2πc

Z
∞

−∞
ωZkðωÞ

�
e−iðω−ΩÞT0

e−iðω−ΩÞT0 − 1

�
d
ω

ω0

≈
4πϵ0Nre

γ0

iω0

2πc

Z
∞

−∞
ωZkðωÞ

� X∞
p¼−∞

δðω−Ω−pω0Þ
�

×d
ω

ω0

¼ 4πϵ0Nre
γ0

i
cT0

X∞
p¼−∞

ðΩþpω0ÞZkðΩþpω0Þ:

ðA3Þ

After substituting Eq. (A3) in Eq. (17), we
obtain Eq. (18).

APPENDIX B: DERIVATION OF W0 IN EQ. (36)

Here we complete the derivation of Eq. (36) by deter-
mining the explicit expression of W0. First, we linearize

Eq. (30) by assuming ðNw − pÞλr ≫ ðzðpÞm zð0Þn Þ

XNw−1

p¼0

Wk½ðNw − pÞλr þ zðpÞm − zð0Þk �

≈
XNw−1

p¼0

fWk½ðNw − pÞλr� þ ðzðpÞm − zð0Þk ÞW 0
k½ðNw − pÞλr�g:

ðB1Þ

The first term on the right-hand side corresponds to the
parasitic loss of the entire bunch. The second term propor-

tional to zðpÞm can be related to the effect of the potential well

distortion. The last term proportional to zð0Þk , of our most
interest, participates in the collective dynamics. Note that

the zð0Þk reflects the concept of the phase lock between the
circulating electron bunch and the external laser. Now W0
involves the sum of W 0

k over the undulator period p.

According to the definition of the wake function in terms of
the impedance, we have

W0 ¼
XNw−1

p¼0

W 0
k½ðNw − pÞλr�

¼ 4πϵ0Nreλw
γ0

XNw−1

p¼0

W0k½ðNw − pÞλr�

¼ 4πϵ0Nreλw
γ0

i
2πc

Z
∞

−∞
ωZkðωÞ

�XNw−1

p¼0

ei
ω
cðNw−pÞλr

�
dω;

ðB2Þ

in which the sum in the square bracket of the last equality
can be expressed as

XNw−1

p¼0

ei
ω
cðNw−pÞλr ¼ ei

ω
cðNwþ1

2
Þλr sin

Nw
2

ω
c λr

sin 1
2
ω
c λr

¼ ei2πk̃ð
Nwþ1

2
Þ sinNwπk̃

sinπk̃
;

ðB3Þ

where we have introduced the normalized wavenumber
k̃ ¼ k=kr. When Nw ≫ 1, the ratio of sine functions in
Eq. (B3) behaves like a δ-function train. Based on this
observation, Eq. (B3) can be further simplified as
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W0 ¼ 4πϵ0Nreλw
γ0

ik2rcNw

2π

Z
∞

−∞
k̃Zkðk̃Þ

×

�
ei2πk̃ð

Nwþ1
2

Þ sinNwπk̃

Nw sin πk̃

�
dk̃

≈
4πϵ0Nreλw

γ0

ik2rcNw

2π

X∞
n¼−∞

ð−1ÞNwnnZkðnÞ; ðB4Þ

in which use of
R ð…Þdk̃ ¼P∞

n¼−∞ð…Þδðk̃ − nÞ has been
made to convert the continuous integration to the discrete
sum. We will use Eq. (B4) to evaluate W0 in Eq. (36).
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