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This study presents a general analysis of how the transverse rotational symmetry of a beam
imposes equality constraints among transverse beam moments. Efficient analytic methods are
developed to derive symmetry-imposed constraints among kth order moments in beams with
continuous or n-fold rotational symmetry for arbitrary k and n. The formalism also enables one
to construct symmetry arguments based on how discrete and continuous rotational symmetries
manifest themselves differently in terms of beam moments. Three case studies on beams with
continuous, twofold, and threefold rotational symmetries are conducted. We prove that, regardless of
their triangulation, beams with threefold rotational symmetry (e.g., from electron cyclotron resonance
ion source) always have the same rms properties as beams with cylindrical symmetry. These
counterintuitive results derived purely from symmetry considerations have clarified beam dynamics at
the Facility for Rare Isotope Beams.
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I. INTRODUCTION

In theoretical analysis, a beam is commonly assumed to
have inherited the rotational symmetry of the beam line,
which often exists in the form of twofold rotational
symmetry (e.g., quadrupoles) or cylindrical symmetry
(e.g., solenoids and einzel lens). The possession of any
nontrivial rotational symmetry imposes conditions on the
beam’s phase space distribution, and a question to be asked
is how or whether these conditions are manifested in the
transverse beam moments. Two familiar cases are (i) for
beams with cylindrical symmetry, second order moments
obey a set of equality constraints [1]; and (ii) for beams
with twofold rotational symmetry, no constraint is imposed
upon second order moments. In this paper, we present a
general analysis of how rotational symmetries constrain
beam moments and explore its implications. The analysis
applies to moments of arbitrary order k and any rotational
symmetry, both continuous and discrete with arbitrary
order n.

A. Notation

We denote rotational symmetries by the commonly
adopted notation for their respective symmetry groups.
A beam with n-fold rotational symmetry is said to have
Cn symmetry or is called a Cn beam. For beams with
continuous rotational symmetry, the symbol SO(2) is used
and the symmetry is occasionally referred to as cylindrical
symmetry.
It should be emphasized that, in this paper, we never use

“axisymmetry” or “axisymmetric” as a stand-alone term to
refer to continuous rotational symmetry. In the discussion
on the relationship between discrete and continuous rota-
tional symmetry in Sec. IV B, we will define the concept of
“k-th order axisymmetry.” To avoid confusion, the term
“axisymmetry” will only be used as part of a phrase in that
context.

B. Organization

This paper is organized as follows: Section II presents a
general discussion on how rotational symmetry imposes
equality constraints among transverse beammoments of the
same order. These constraints can be derived efficiently
using analytic methods developed in Sec. III. Section IV
distills symmetry arguments from the formalism by exam-
ining how discrete and continuous rotational symmetries
manifest themselves differently in terms of beam moments.
Beams with SO(2), C2, and C3 symmetries are analyzed in
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Sec. V using the tools and arguments constructed in the
previous sections. The analysis of C3 beams contains
highly counterintuitive results which have implications
on both beam transport and rms characterization of the
transverse phase space. The results are applied to electron
cyclotron resonance (ECR) ion sources and help elucidate
beam dynamics in the front end of the Facility for Rare

Isotope Beams (FRIB) [2]. Section VI concludes this study
with an outlook on future work.

II. EFFECT OF SYMMETRY
ON BEAM MOMENTS

Define transverse beam moments

hxb1x0b2yb3y0b4i≡
R∞
−∞

R∞
−∞

R∞
−∞

R∞
−∞ Fðx; x0; y; y0Þxb1x0b2yb3y0b4dxdx0dydy0R∞

−∞
R∞
−∞

R∞
−∞

R∞
−∞ Fðx; x0; y; y0Þdxdx0dydy0

where Fðx; x0; y; y0Þ is the distribution function in four-
dimensional transverse phase space with transverse
positions x, y and transverse angles x0, y0, and b1; b2;
b3; b4 ∈ Z≥0. The moment is said to be of kth order with
k ¼ b1 þ b2 þ b3 þ b4. Note that the moments are calcu-
lated assuming each variable has zero mean, i.e., all four
first order moments vanish. This corresponds physically to
the beam centroid following the design (reference) orbit
and must be true for beams with rotational symmetry, as
will be proved in subsequent arguments.
For a beam with n-fold rotational symmetry

(i.e., Cn), the distribution function Fðx; x0; y; y0Þ is invariant
under a rotation by θ ¼ 2π=n. This implies all trans-
verse beam moments remain unchanged under the trans-
formation:
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For an SO(2) beam (i.e., beam with continuous rotational
symmetry), the invariance ofF and beammoments holds for
any rotation angle θ. This is the only piece of information that
we need to extract from the rotational symmetry of the beam,
with no other assumption made or implied. The rest of this
paper explores its consequences and applications.
Given a beam distribution F with rotational symmetry,

its beam moments must satisfy certain constraints in order
for them to be invariant under the corresponding rotational
transformations. Since rotations amount to linear trans-
formations among phase space coordinates, one expects the
constraints to arise from systems of linear equations among
beam moments of the same order. Formally, denote
ðx; x0; y; y0Þ as ðx1; x2; x3; x4Þ and given the rotation matrix:

R ¼

0
BBB@

cos θ 0 − sin θ 0

0 cos θ 0 − sin θ

sin θ 0 cos θ 0

0 sin θ 0 cos θ

1
CCCA; ð2Þ

where θ is a rotation angle of the symmetry, the relation

hxb11 xb22 xb33 xb44 i ¼
��X4

j¼1

R1jxj

�b1�X4
j¼1

R2jxj

�b2�X4
j¼1

R3jxj

�b3�X4
j¼1

R4jxj

�b4�
ð3Þ

holds for every b1; b2; b3; b4 ∈ Z≥0. Equation (3) can be
rewritten in the form

hxb11 xb22 xb33 xb44 i ¼
X
a1

X
a2

X
a3

X
a4

Cðb1; b2; b3; b4; a1; a2; a3; a4Þhxa11 xa22 xa33 xa44 i ð4Þ

where a1;a2;a3;a4∈Z≥0 and a1þa2þa3þa4¼b1þb2þ
b3þb4. Each coefficient Cðb1;b2;b3;b4;a1;a2;a3;a4Þ is a
polynomial of matrix elements of R, which means it is
either zero or a polynomial of degree k in sin θ and cos θ.

Thus, the set of all kth order beammoments in Eq. (4) for
non-negative integers bj forms a linear system:
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that describes relations among beam moments resulting
from invariance under rotation by angle θ. AðθÞ is a mat-
rix whose elements equal the respective coefficients
Cðb1; b2; b3; b4; a1; a2; a3; a4Þ in Eq. (4) which depend
on θ, and so the relations change with the order of rotational
symmetry.
While Eq. (5) is a general result that already contains the

properties of beammoments under rotational symmetry, the
expressions are complicated because most elements in
AðθÞ are nonzero. It is difficult to know whether or how
the equations in Eq. (5) can be manipulated to obtain simple
equality constraints that are practically useful. One trick to
achieving some simplification exploits the fact that Eq. (5)
holds for all θ ¼ 2mπ=n with 0 ≤ m < n. Therefore, for a
beam with Cn symmetry, a sum over the set of θ that
preserves symmetry can be taken to obtain
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Each coefficient contains summations of polynomials P
with two trigonometric variables:

Xn−1
m¼0

P

�
sin

�
2mπ

n

�
; cos

�
2mπ

n

��
; ð7Þ

which may be reducible. For k ¼ 2, this method invokes the
same identities as the alternative proof presented in the
Appendix B and enables the derivation of simple con-
straints among second order beam moments. The k ¼ 2
results suggest that simple equality constraints exist for
k > 2, but the method of Eq. (6) is difficult to generalize to
k > 2 because the elements of A [i.e., coefficients
Cðb1; b2; b3; b4; a1; a2; a3; a4Þ of Eq. (4)] grow exceed-
ingly complicated as the moment order k increases.
Here we take a step back and note that Eq. (5) can be

interpreted as the action of an element of a rotation group R
on the space of polynomials of degree k. Hence, the search
for constraints is fundamentally a problem in representation
theory where efforts can be greatly reduced if one finds a
simple representation of the symmetry group. For example,
one may exploit the properties of spherical functions and
such treatment will readily afford generalizations to higher-
dimensional rotational symmetries such as SO(3).
With this in mind, we employ an efficient method to

derive moment constraints specifically for SO(2) or Cn
symmetries in Sec. III.

III. DERIVATION OF MOMENT CONSTRAINTS
FROM SYMMETRY

Having developed the intuition on the relationship
between rotational symmetry and beam moments in
Sec. II, we devised a more abstract and efficient method
to derive clean expressions of the equality constraints.
Complex numbers are used extensively by exploiting the
fact that a 2D rotational transformation

�
x

y

�
↦

�
cos θ − sin θ

sin θ cos θ

��
x

y

�
ð8Þ

can be expressed using complex numbers in polar form as
follows:

w ↦ eiθw ð9Þ

for w ¼ xþ iy with i≡ ffiffiffiffiffiffi
−1

p
, and

eiθ ¼ cos θ þ i sin θ ð10Þ

by Euler’s formula.
The method we develop below was inspired by the

treatment on symmetry properties of transfer maps in
Chapter 5 of Ref. [3] and is readily applicable to moments
of arbitrary order in beams with any transverse rotational
symmetry.
To begin, we define two complex conjugate pairs

composed of transverse phase space coordinates:

0
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w
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w0

1
CCCA≡

0
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xþ iy
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x0 − iy0

1
CCCA: ð11Þ

From Eq. (12), this is how they transform upon a coordinate
rotation by θ:
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1
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1
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0
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w
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1
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In analogy to Sec. II, we construct complex moments
hwa1w̄a2w0a3w0a4i where a1; a2; a3; a4 ∈ Z≥0 and a1þ
a2 þ a3 þ a4 ¼ k. The real and imaginary parts of
hwa1wa2w0a3w0a4i each comprise sums of physical kth
order beam moments. Upon a rotation by θ, the complex
moment undergoes the following transformation in accor-
dance with Eq. (12):

hwa1w̄a2w0a3w0a4i↦eiða1−a2þa3−a4Þθhwa1w̄a2w0a3w0a4i: ð13Þ
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If rotation by θ is a symmetry of the beam,
hwa1w̄a2w0a3w0a4i remains unchanged upon the transforma-
tion which gives

hwa1w̄a2w0a3w0a4i¼ eiða1−a2þa3−a4Þθhwa1w̄a2w0a3w0a4i: ð14Þ

Equation (14) is the key equation that efficiently gen-
erates equality constraints among beam moments due
to symmetry. For every 4-tuple ða1; a2; a3; a4Þ where
eiða1−a2þa3−a4Þθ ≠ 1, hwa1w̄a2w0a3w0a4i ¼ 0 must follow;
this gives

Reðhwa1w̄a2w0a3w0a4iÞ ¼ 0; ð15Þ

Imðhwa1w̄a2w0a3w0a4iÞ ¼ 0: ð16Þ

For a Cn beam (i.e., beam with n-fold rotational
symmetry), each 4-tuple ða1; a2; a3; a4Þ that satisfies the
following conditions:
Condition III 1. a1 þ a2 þ a3 þ a4 ¼ k.
Condition III 2. ða1 þ a3Þ − ða2 þ a4Þ > 0.
Condition III 3. ða1 þ a3Þ − ða2 þ a4Þ ≠ 0 ðmod nÞ.

gives two unique constraints on the kth order trans-
verse moments of the beam, in the form of Eqs. (15)
and (16). Condition III. 1 is merely a restatement of the
moment being kth order, while condition III. 3 asserts
eiða1−a2þa3−a4Þθ ≠ 1. Condition III. 2 removes redundant
constraints for the following reason. Suppose a 4-tuple
ða1; a2; a3; a4Þ fulfills conditions III. 1 and III 3 but not III. 2:

hwa1w̄a2w0a3w0a4i ¼ 0 ða1 þ a3Þ − ða2 þ a4Þ < 0: ð17Þ
Its complex conjugate

hwa2w̄a1w0a4w0a3i ¼ 0 ða2 þ a4Þ − ða1 þ a3Þ > 0 ð18Þ
is equivalent to and contains the same information as

hwb1w̄b2w0b3w0b4i ¼ 0 ðb1 þ b3Þ − ðb2 þ b4Þ > 0: ð19Þ
Therefore, the constraints generatedby ða1; a2; a3; a4Þ,which
violates condition III 2, are already covered by another 4-tuple
ðb1; b2; b3; b4Þ that satisfies condition III. 2.
For an SO(2) beam (i.e., beam with continuous rotational

symmetry), rotation by any angle θ keeps hwa1w̄a2w0a3w0a4i
unchanged. Therefore, eiða1−a2þa3−a4Þθ ≠ 1 can always be
satisfied for some θ so long as a1 − a2 þ a3 − a4 ≠ 0. In
this case, conditions III. 1 and III. 2 suffice for a 4-tuple
ða1; a2; a3; a4Þ to impose unique constraints upon kth order
transverse moments.
An immediate corollary of these analytic arguments is

the fact that any beam with rotational symmetry must have
zero means (i.e., first order centroid moments) in all
transverse phase space coordinates. For moments of

order k ¼ 1, when n ≠ 1, ða1; a2; a3; a4Þ ¼ ð1; 0; 0; 0Þ
and ða1; a2; a3; a4Þ ¼ ð0; 0; 1; 0Þ always satisfy condi-
tions III. 1, III. 2, and III. 3. Therefore, hwi ¼ 0 and
hw0i ¼ 0must hold, which imply hxi ¼ hyi ¼ 0 and hx0i ¼
hy0i ¼ 0, respectively.

IV. RELATIONSHIP BETWEEN DISCRETE AND
CONTINUOUS ROTATIONAL SYMMETRY

With a general method to derive equality constraints
imposed upon beam moments due to the rotational sym-
metry possessed by the beam, it is illuminating to ask: how
do continuous and discrete rotational symmetries manifest
themselves differently in beam moment constraints?
This question, which explores deep connections between

beam moments and rotational symmetries, was one of the
primary motivations for developing the analytic tools in
Sec. III. Its answer will also form the basis for robust
symmetry arguments that enable simple proofs of certain
useful results. In particular, the arguments will be used to
derive highly counterintuitive results for C3 beams in
Sec. V C which have wide implications for ECR ion
sources in general and helped clarify beam dynamics at
the FRIB front end.

A. Number of moment constraints

Let Sk;Cn
and Sk;SOð2Þ be the sets of constraints governing

kth order moments of a Cn beam and an SO(2) beam,
respectively, where each constraint has the form of Eq. (15)
or (16). Since Cn is a subgroup of SO(2), every constraint
imposed upon a Cn beam due to symmetry must also hold
for an SO(2) beam. Therefore,

Sk;Cn
⊆ Sk;SOð2Þ: ð20Þ

One important question is whether Sk;Cn
⊊ Sk;SOð2Þ or

Sk;Cn
¼ Sk;SOð2Þ for given k and n. This can be answered

by comparing the cardinalities of the respective sets.
Define (a) χðkÞ as the number of 4-tuples ða1; a2; a3; a4Þ

that satisfy conditions III. 1 and III. 2; and (b) ηðk; nÞ as
the number of 4-tuples ða1; a2; a3; a4Þ that satisfy
conditions III. 1 and III. 2, but not condition III. 3, for
the given n.
We prove in Appendix A 1 that

χðkÞ ¼

8>>><
>>>:

ðkþ 3Þðkþ 2Þðkþ 1Þ
12

if k is odd;

kðkþ 2Þð2kþ 5Þ
24

if k is even:

ð21Þ

χðkÞ is the number of 4-tuples that correspond to unique
vanishing hwa1w̄a2w0a3w0a4i for an SO(2) beam. Since each
vanishing complex moment generates two equations,
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jSk;SOð2Þj ¼ 2χðkÞ; ð22Þ

where jSk;SOð2Þj, the cardinality of the Sk;SOð2Þ, is the total
number of equality constraints governing kth order trans-
verse moments of an SO(2) beam.
Equation (20) implies 2χðkÞ is the maximum number of

constraints that can be imposed upon kth order moments of
a beam due to rotational symmetry. For beams with discrete
rotational symmetry, the number of constraints is given by

jSk;Cn
j ¼ jSk;SOð2Þj − 2ηðk; nÞ ¼ 2½χðkÞ − ηðk; nÞ�; ð23Þ

where ηðk; nÞ accounts for the fact that some
4-tuples ða1; a2; a3; a4Þ that satisfy condition III.1 and
condition III. 2 may violate condition III. 3.
Stated explicitly, ηðk; nÞ is the number of 4-tuples for

which

ða1 þ a3Þ − ða2 þ a4Þ > 0; and

ða1 þ a3Þ − ða2 þ a4Þ ¼ 0 ðmod nÞ:

ηðk; nÞ ¼ 0 is quite common and always holds if (a) n > k;
or (b) k is even and n is odd, or vice versa.
For k ≥ n and kþ n ¼ 0 ðmod 2Þ, ηðk; nÞ is given by

ηðk; nÞ ¼
Xbk=nc
j¼1

�
1

2
ðkþ jnÞ þ 1

��
1

2
ðk − jnÞ þ 1

�
ð24Þ

where bk=nc denotes the largest integer ≤ k=n. The proof is
given in Appendix A 2. One special case to be observed is

ηðn; nÞ ¼ nþ 1 ð25Þ

which can also be shown by noting that the number of
2-tuples ða1; a3Þ where a1 þ a3 ¼ n equals nþ 1.
The question of whether Sk;Cn

⊊ Sk;SOð2Þ or Sk;Cn
¼

Sk;SOð2Þ can thus be answered by checking whether
ηðk; nÞ ≠ 0 or ηðk; nÞ ¼ 0. The implications for these
two possibilities are discussed below.

B. kth order axisymmetry

We define k-th order axisymmetry as a beam property
that is related to the beam’s kth order moments. A beam
has k-th order axisymmetry, or is said to be “k-th order
axisymmetric,” if its moments obey all constraints in
Sk;SOð2Þ, i.e., the set of 2χðkÞ constraints obeyed by kth
order moments of an SO(2) beam.
kth order axisymmetry merely concerns relationships

among kth order moments. Such a property makes no
reference to any moments of other orders, so a beam can be
kth order axisymmetric but not lth order axisymmetric for
any l ≠ k. It should be emphasized that kth order axisym-
metry is a much weaker notion than SO(2), i.e., continuous

rotational symmetry, which implies kth order axisymmetry
for all k.
When ηðk; nÞ ¼ 0, Sk;Cn

¼ Sk;SOð2Þ which means that a
Cn beam is kth order axisymmetric, since its kth order
moments obey the same set of constraints as those of an
SO(2) beam. This is true despite the fact that Cn and SO(2)
are different rotational symmetries. This equivalence indi-
cates that kth order axisymmetry renders the Cn beam
indistinguishable from an SO(2) beam in terms of kth order
beam moments. As a result, the Cn beam must share all
properties of an SO(2) beam which only depend on kth
order moments. For example, the kth order spatial moment
hxki of an SO(2) beam remains the same regardless of the
orientation of the transverse coordinate system. Using the
indistinguishability argument above, we can immediately
conclude that the same statement also holds for any beam
that is kth order axisymmetric. A detailed application of
this argument can be found in Sec. V C 1.
We also know from the last part of Sec. IVA that, given

n, k ¼ n is the smallest k at which ηðk; nÞ ≠ 0 occurs. In
other words, a Cn beam is not nth order axisymmetric, but
is kth order axisymmetric for all k < n. This agrees with the
heuristic picture where, the higher the order of discrete
rotational symmetry n, the closer the beam is to being SO
(2) and the higher the order of moments it takes for
deviations to start. From Eq. (25), we know that Sk;SOð2Þ
contains 2ðnþ 1Þmore elements (i.e., moment constraints)
than Sk;Cn

. With n being the lowest moment order at which
Cn and SO(2) are distinguishable, the difference between
Sk;Cn

and Sk;SOð2Þ can be interpreted as a manifestation of
the difference between Cn and SO(2) in terms of beam
moments. Such a perspective may enable one to employ
beam moments to quantify how close a Cn beam is from
cylindrical symmetry.

V. THREE CASE STUDIES

To demonstrate the analytic tools and symmetry argu-
ments developed in Secs. III and IV, we conduct case
studies on beams with SO(2), C2, and C3 symmetries by
deriving equality constraints imposed upon their respective
second and third order moments.
The analysis on symmetries that are commonly encoun-

tered, SO(2) and C2, obtains results which are in agreement
with expectations. The case on C3 beams, however,
contains highly counterintuitive results on both the rms
characterization and transport behavior of the beam. The
connection to ECR ion sources is made and we discuss how
the results have been applied to elucidate beam dynamics in
the front end of FRIB.

A. Beams with SO(2) symmetry

A beam has SO(2) symmetry when there is no a priori
reason for azimuthal angular dependence or if such
dependence is assumed to be negligible. SO(2) symmetry
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would be preserved by transport through cylindrically
symmetric elements such as solenoids and einzel lens.

1. Second order moments

For k ¼ 2, Eq. (21) gives χð2Þ ¼ 3, which means three
complex moments satisfy conditions III. 1 and III. 2.
They are easily found to be hwwi, hww0i, and hw0w0i.
The equality constraints they impose on transverse beam
moments are given as follows:

Re ðhwwiÞ ¼ 0 ⇒hxxi ¼ hyyi;
Re ðhww0iÞ ¼ 0 ⇒hxx0i ¼ hyy0i;
Re ðhw0w0iÞ ¼ 0 ⇒hx0x0i ¼ hy0y0i;
Im ðhwwiÞ ¼ 0 ⇒hxyi ¼ 0;

Im ðhww0iÞ ¼ 0 ⇒hxy0i ¼ −hx0yi;
Im ðhw0w0iÞ ¼ 0 ⇒hx0y0i ¼ 0; ð26Þ

which recover known results (e.g., [1]) effortlessly. The
first three equations show that the rms phase space ellipse
in x − x0 and y − y0 is identical, as one should expect from
an SO(2) beam. The last three equations say that the only
x − y correlation that is allowed to exist arises from the
angular momentum of the beam L. L can be expressed in
terms of beam moments by

L
pz

¼ hxy0i − hx0yi ¼ 2hxy0i ¼ −2hx0yi;

where pz is the axial momentum.

2. Third order moments

All third order moments of an SO(2) beam must vanish.
In fact, the same conclusion holds for all other odd-order
moments as well. This can be seen immediately if one
applies a rotation by θ ¼ π which gives

hxa1x0a2ya3y0a4i ¼ ð−1Þa1þa2þa3þa4hxa1x0a2ya3y0a4i
¼ −hxa1x0a2ya3y0a4i:

B. Beams with C2 symmetry

A beam has C2 symmetry throughout a quadrupole
transport line if it has SO(2) or C2 symmetry as it enters,
which is a common assumption in simulations and theo-
retical studies. A C2 beam also retains its symmetry in a
cylindrically symmetric transport line.

1. Second order moments

C2 symmetry does not impose any constraint among
second order moments. Since χð2Þ ¼ 3 and ηð2; 2Þ ¼ 3, we
know from Eq. (23) that jS2;C2

j ¼ 0. Given the ubiquity of
C2 beams, this result should come as no surprise. While C2

beams may rarely be considered from a symmetry per-
spective, any other result would have already become
common knowledge.

2. Third order moments

All third order moments of a C2 beam vanish due to the
same argument as Sec. VA 2. Alternatively, we can prove
the same result using the fact that ηð3; 2Þ ¼ 0 (because k ¼
3 and n ¼ 2 have different parities). ηð3; 2Þ ¼ 0means aC2

beam is third order axisymmetric, so its third order
moments must follow the same set of constraints as that
of an SO(2) beam.

C. Beams with C3 symmetry

Although much less common than C2 and SO(2), one
can imagine a beam having C3 symmetry if a sextupole
exists in an otherwise cylindrically symmetric configura-
tion. One notable example is ECR ion sources whose
cylindrical plasma chambers have external applied fields
from both solenoids and sextupoles for confinement
purposes. Simulation results of an ECR beam at the
extraction plane are shown in Fig. 1 where, due to the
strong sextupole field of the ECR, the beam has a
triangulated spatial density profile that would remain
unchanged upon a rotation by 2π=3. Note that the dominant
triangulation is shown over the plasma chamber extent but
is still manifest within the extraction aperture.
We will derive counterintuitive results about beam

moments of C3 beams and discuss their implications for
beam transport and phase space characterization. We show
how these analytic results can be utilized to clarify beam
dynamics in the front end of FRIB.

1. Second order moments

Following the argument in Sec. IV B, since k ¼ 2 <
n ¼ 3, we know that ηð2; 3Þ ¼ 0, which means a C3 beam
is second order axisymmetric, i.e., it is indistinguishable
from a beam with SO(2) symmetry in terms of second order
moments. In addition to the immediate conclusion that a C3

beam must obey Eq. (26), the indistinguishability also
entails the two propositions:
Proposition V. 1 A C3 beam obeys Eq. (26) regardless

of the orientation of the transverse coordinate system.
Proposition V. 2 Values of all second order moments

remain unchanged regardless of the orientation of the
transverse coordinate system.
Proposition V. 2 obviously implies Proposition V 1, and

we make the distinction to illustrate the importance of the
concept of second order axisymmetry. Let uðφÞ ¼
x cos φþ y sin φ be a rotated coordinate. Analytic meth-
ods in Sec. III only prove Proposition V. 1, which says that,
for all φ,

huðφÞuðφÞi ¼ huðφþ ϕÞuðφþ ϕÞi ð27Þ
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holds when ϕ ¼ �π=2. Note that Proposition V 1 has
nothing to say concerning other values of ϕ. On the other
hand, second order axisymmetry means the beam’s second
order moments have the exact same properties as those of
an SO(2) beam. This equivalence implies Proposition V. 2
and guarantees that Eq. (27) holds for any ϕ. If we do not
invoke symmetry arguments, it is still possible to prove
Proposition V. 2 from Proposition V. 1 by expanding
uðφþ ϕÞ, but the approach is much more tedious.
The results we proved above are rather surprising.

Consider Fig. 1 where the beam has a strongly triangulated
spatial density profile and a u-axis makes angle φ with the
x-axis. Although the beam’s projected distribution in u − u0
phase space varies significantly with φ, all second order
phase space moments, and hence the rms phase space
ellipse, always remain identical for every such distribution.
This conclusion also implies that the azimuthal orientation
of the ECR sextupole has no effect on second order
moments of the ECR beam.
An alternative proof of the fact that Eq. (26) holds for a

beam with threefold rotational symmetry is provided in
Appendix B. The treatment employs a less elegant, yet
more direct, formalism that invokes trigonometric identities
upon rotations in cylindrical coordinates. The proof is
applicable to any n-fold rotational symmetry where n > 2.

2. Third order moments

For k ¼ 3, we know from Eqs. (21) and (25) that χð3Þ ¼
10 and ηð3; 3Þ ¼ 4, respectively. These two quantities tell
us that ten complex moments satisfy conditions III. 1 and

III. 2 while four among them violate condition III. 3 when
k ¼ n ¼ 3. The six complex moments that also satisfy
condition III. 3 must vanish when the beam has C3

symmetry and impose 12 conditions on third order
moments. This result is also captured by Eq. (23) which
states that

jS3;C3
j ¼ 2½χð3Þ − ηð3; 3Þ� ¼ 12: ð28Þ

The four complex moments that provide no information
are

hwwwi; hwww0i; hww0w0i; and hw0w0w0i:

They have no reason to vanish because e3iθ ¼ 1
for θ ¼ 2π=3.
The six complex moments that vanish give

Reðhwww̄iÞ ¼ 0 ⇒ hxxxi ¼ −hxyyi;
Imðhwww̄iÞ ¼ 0 ⇒ hyyyi ¼ −hxxyi;
Reðhwww0iÞ ¼ 0 ⇒ 2hxyy0i ¼ hx0yyi − hxxx0i;
Imðhwww0iÞ ¼ 0 ⇒ 2hxx0yi ¼ hxxy0i − hyyy0i;
Reðhww̄w0iÞ ¼ 0 ⇒ hxxx0i ¼ −hx0yyi;
Imðhww̄w0iÞ ¼ 0 ⇒ hxxy0i ¼ −hyyy0i;
Reðhw̄w0w0iÞ ¼ 0 ⇒ hxx0x0i ¼ −hxy0y0i;
Imðhw̄w0w0iÞ ¼ 0 ⇒ hx0x0yi ¼ −hyy0y0i;
Reðhww0w0iÞ ¼ 0 ⇒ 2hx0yy0i ¼ hxy0y0i − hxx0x0i;
Imðhww0w0iÞ ¼ 0 ⇒ 2hxx0y0i ¼ hx0x0yi − hyy0y0i;
Reðhw0w0w0iÞ ¼ 0 ⇒ hx0x0x0i ¼ −hx0y0y0i;
Imðhw0w0w0iÞ ¼ 0 ⇒ hy0y0y0i ¼ −hx0x0y0i:

The 12 constraints can be further simplified into the
following eight equations on third order moments:

hxxxi ¼ −hxyyi;
hyyyi ¼ −hxxyi;
hxyy0i ¼ hx0yyi ¼ −hxxx0i;
hxx0yi ¼ hxxy0i ¼ −hyyy0i;
hx0yy0i ¼ hxy0y0i ¼ −hxx0x0i;
hxx0y0i ¼ hx0x0yi ¼ −hyy0y0i;
hx0x0x0i ¼ −hx0y0y0i;
hy0y0y0i ¼ −hx0x0y0i: ð29Þ

Note that the number of constraints is consistent with
previous results. We know from Sec. VA 2 that all third
order moments of an SO(2) beam vanish. To make all

FIG. 1. Simulated spatial distribution of Ar9þ ions at the
extraction plane of the Artemis [4] ECR ion source at FRIB.
The inner circle indicates the extraction aperture. Subsequent
analysis will show that, despite severe triangulation, the rms
envelope and emittance of the beam is the same along any
transverse direction. Simulation results are courtesy of the
code developed by Vladirmir Mironov and his colleagues at
Joint Institute for Nuclear Research [5,6].
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equations in Eq. (29) equal zero requires eight additional
constraints, which is indeed the number provided by the
four complex moments that vanish for an SO(2) beam but
not for a C3 beam.

3. Implications for beam transport

A comparison between moment constraints forC3 beams
against those for SO(2) and C2 beams reveals interesting
implications for beam transport. Although the approxima-
tion of linear optics is often made, beam transport inevi-
tably involves nonlinear terms in the transfer map. Consider
a beam with some specific rotational symmetry entering a
beam line with the nonlinear map:

xl ¼
X4
i¼1

Rlixi þ
X4
i¼1

X4
j¼1

Tlijxixj þOðx3i Þ; ð30Þ

where subscripts can all attain integer values from 1 to 4
with l, m denoting final phase space coordinates and i, j, k
denoting initial phase space coordinates. Rli and Tlij are
coefficients of first and second order terms in the map,
respectively. Second order moments of the beam exiting the
beam line are given by

hxlxmi ¼
X4
i¼1

X4
j¼1

RliRmjhxixji þ
X4
i¼1

X4
j¼1

X4
k¼1

ðRliTmjk

þ RmiTljkÞhxixjxki þOðhx4i iÞ ð31Þ

which have a dependence on initial moments higher than
second order due to nonlinear terms in the map. For C2 and
SO(2) beams, all of their third order moments vanish, so the
leading correction to linear optics arises from fourth order
moments. For C3 beams, however, third order moments are
probably nonzero and can affect the final second order
moments. Hence, in terms of the order of the residual terms
that are neglected, linear optics is a better approximation
when the incoming beam is C2 or SO(2) than when it has
C3 symmetry.
Note that C2 and SO(2) are the most commonly occur-

ring rotational symmetries in beam lines due to the ubiquity
of quadrupoles and solenoids. This fact may render linear
optics a surprisingly poor assumption when it is applied to
C3 beams. The assumption may be poor because second
order terms in the transfer map act more strongly on the rms
evolution of C3 beams than on that of C2 or SO(2) beams,
and the poorness may be surprising because most of our
experience is built upon the less error-prone cases of C2

and SO(2).

4. Application to FRIB front end

The FRIB front end constitutes a concrete example
which demonstrates how results derived solely from sym-
metry arguments can provide insight on beam dynamics

and commissioning activities. A schematic of the FRIB
front end [7] is shown in Fig. 2. As is common among
heavy ion accelerators, the FRIB front end consists of an
ECR ion source which has C3 symmetry, followed by a
transport line with SO(2) symmetry. In the ideal case, the
accelerator considered as a whole has C3 symmetry up to
dipole fringe fields illustrated by the green curves.
One question can be asked which is central to the quality

and transport of an ECR beam: does εx ¼ εy before the
dipole? Under conventional assumptions, the question is
purely empirical and εx ≠ εy before the dipole would be
deemed an unsurprising phenomenon caused by the beam’s
triangulated spatial density profile and x − y coupling in
solenoids. However, theoretical results from Sec. V C 1
have invalidated such an explanation.
Consider the statements:

P∶ The beam hasC3 symmetry

Q∶ The beam has the same emittance along any

transverse direction

We proved in Sec. V C 1 that P ⇒ Q. This proposition is a
consequence of symmetry alone, so it holds even in the
presence of radial field nonlinearities, chromatic aberra-
tions due to beam energy spread, and multispecies space
charge with arbitrary intensity and species composition.
Furthermore, the proposition applies to both the entire
multispecies beam and each individual species therein.
The contrapositive of P ⇒ Q, i.e., ¬Q ⇒ ¬P, points to

an insightful fact: there is only one fundamental cause for
εx ≠ εy in a cylindrically symmetric beam line downstream
of an ECR ion source and it is broken symmetry. This
clarifies the beam dynamics and imparts greater meaning to
the question of whether εx ¼ εy before the dipole.
At the FRIB front end, phase space diagnostics are

located downstream of the dipole shown in Fig. 2 and their
measurements on the target species often show εx ≠ εy [9].
While it is possible for εx to increase due to dispersion
generated by the dipole, and for εy to couple to εx via space
charge, the sign and magnitude of the difference between εx
and εy were found to depend on the solenoid strengths.
Since εy > εx also occurred, dispersion cannot be the sole
reason for εx ≠ εy downstream of the dipole, and we
conclude that εx ≠ εy upstream of nonzero dipole fields
as depicted in Fig. 2.
We can then deduce from ¬Q ⇒ ¬P that the beam does

not have C3 symmetry when it enters the dipole. This
motivates an investigation on how the symmetry is broken.
Three possible causes are (i) imperfect elements; (ii) mis-
alignments; and (iii) neutralization effects from backflow-
ing electrons. The first two causes are related to the
properties of applied fields from the ECR ion source
and transport line. Among them, our colleagues at FRIB
determined the first solenoid was a likely culprit—it was
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later found via 3D magnet simulations [10] to have strong
multipole fields due to a nonoptimal design of the current
leads. Discussion on replacing the solenoid ensued. The
third possibility, electron neutralization, concerns the back-
flow of electrons from residual gas ionization in down-
stream regions where no nontrivial rotational symmetry
exists. The extent to which these electrons break the C3

symmetry of self-fields remains to be studied.

VI. CONCLUSION

We performed a general analysis of how the rotational
symmetry of a beam imposes equality constraints among
transverse beammoments. These constraints can be derived
efficiently using analytic methods developed in this paper,
and the formalism enabled us to conclude that, for some k
and n, SO(2) and Cn symmetries can impose identical
constraints on kth order moments. Such a relationship
between discrete and continuous rotational symmetries led
to the concept of k-th order axisymmetry which can be used
to construct elegant symmetry arguments.
Three case studies were conducted to demonstrate the

utility of these analytic tools. The cases on SO(2) and C2

beams exhibited an effortless derivation of familiar results.
The case on C3 beams featured counterintuitive results that
were both theoretically interesting and practically impor-
tant. Their successful application to the FRIB front end
constituted a concrete example on how arguments derived
purely from symmetry considerations can provide insight
on beam dynamics and facilitate commissioning activities
at a large project.
All theoretical results in this paper explore the con-

sequences of perfect rotational symmetry. Two extensions
to this work will be interesting. First, it is worthwhile to
incorporate mirror symmetry into the analysis and study
its interplay with rotational symmetry. Second, one can
investigate the effects of small errors (e.g., misalignments
and multipole fields) that break the rotational symmetry
of a beam line. The existing framework is already
relevant, for one can deduce by transposition that beam
line imperfections exist when phase space measurements
deviate from analytic predictions. This was done in the

FRIB example, and it would be beneficial to look for
other applications which can employ similar reasoning.
However, while these conclusions are instructive, they
are limited to qualitative statements. More investigations
are needed to quantitatively analyze how beam moment
constraints change when the rotational symmetry is
slightly violated and to examine whether the source
and degree of violation can be inferred from phase space
diagnostics.
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APPENDIX A: COUNTING THE NUMBER OF
MOMENT CONSTRAINTS

In this Appendix, we count the number of 4-tuples
ða1; a2; a3; a4Þ that satisfy or violate conditions III. 1–III. 3
for given k and n to prove Eqs. (21) and (24).

1. Proof of Eq. (21)

We first define (a) ξðkÞ as the number of 4-tuples
ða1; a2; a3; a4Þ that satisfy condition III. 1; and (b) χ̂ðkÞ
as the number of 4-tuples ða1; a2; a3; a4Þ that satisfy
conditions III. 1 and ða1 þ a3Þ − ða2 þ a4Þ ¼ 0.
ξðkÞ is the number of distinct kth order moments,

which applies equally to real moments hxa1x0a2ya3y0a4i

FIG. 2. Schematic of the ARTEMIS beam line at the FRIB front end. Ideally, the ECR ion source has C3 symmetry while the transport
line consisting of two solenoids and an electrostatic acceleration gap is cylindrically symmetric. This image is based on the original
from Ref. [8].
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and complex moments hwa1w̄a2w0a3w0a4i. Akin to the
number of microstates under Bose-Einstein statistics
[11], ξðkÞ is equivalent to the total number of ways to
distribute k indistinguishable balls into four distinguishable
boxes, which gives

ξðkÞ ¼
�
kþ 3

k

�
¼ ðkþ 3Þ!

3!k!
¼ ðkþ 3Þðkþ 2Þðkþ 1Þ

3 × 2 × 1
:

ðA1Þ

To find χðkÞ, we use the fact that the number of 4-tuples
satisfying ða1 þ a3Þ − ða2 þ a4Þ > 0 and ða1 þ a3Þ −
ða2 þ a4Þ < 0 are equal. Therefore,

χðkÞ ¼ 1

2
½ξðkÞ − χ̂ðkÞ�: ðA2Þ

For odd k, ða1 þ a3Þ − ða2 þ a4Þ ¼ 0 cannot occur.
For even k, ða1 þ a3Þ − ða2 þ a4Þ ¼ 0 occurs whenever
a1 þ a3 ¼ a2 þ a4 ¼ k=2. The number of 2-tuples ða1; a3Þ
such that a1 þ a3 ¼ k=2 equals 1þ k=2, likewise for
ða2; a4Þ. Since ða1; a3Þ and ða2; a4Þ are independent, we
obtain

χ̂ðkÞ ¼
	
0 if k is odd;

ðk
2
þ 1Þ2 if k is even:

ðA3Þ

Summarizing the results in Eqs. (A1)–(A3) gives Eq. (21)
in Sec. IVA. More specifically, when k is even,

χðkÞ ¼ 1

2

�ðkþ 3Þðkþ 2Þðkþ 1Þ
3 × 2 × 1

−
�
k
2
þ 1

�
2
�

¼ kðkþ 2Þð2kþ 5Þ
24

: ðA4Þ

2. Proof of Eq. (24)

To find ηðk; nÞ, we have to count the number of
4-tuples that satisfy conditions III .1 and III. 2 but violate
condition III. 3. In other words, we have to count the
number of 4-tuples that satisfy the two following equations:

a1 þ a2 þ a3 þ a4 ¼ k; ðA5Þ

ða1 þ a3Þ − ða2 þ a4Þ ¼ jn; ðA6Þ

where j ∈ fj ∈ Z>0jj ≤ k=ng. Note that it is impossible
for j to be larger than k=n because ða1 þ a3Þ−
ða2 þ a4Þ ≤ k.
For a given j, Eqs. (A5) and (A6) are true if and only if

a1 þ a3 ¼
1

2
ðkþ jnÞ; ðA7Þ

a2 þ a4 ¼
1

2
ðk − jnÞ: ðA8Þ

There are ½1
2
ðkþ jnÞ þ 1� 2-tuples ða1; a3Þ which satisfy

Eq. (A7). Similarly, ½1
2
ðk − jnÞ þ 1� 2-tuples ða2; a4Þ sat-

isfy Eq. (A8). Hence, the total number of 4-tuples that
satisfy Eqs. (A5) and (A6) for a given j is

�
1

2
ðkþ jnÞ þ 1

��
1

2
ðk − jnÞ þ 1

�
: ðA9Þ

Summing over the number of 4-tuples for all possible
values of j, we get

ηðk; nÞ ¼
Xbk=nc
j¼1

�
1

2
ðkþ jnÞ þ 1

��
1

2
ðk − jnÞ þ 1

�
ðA10Þ

where bk=nc denotes the largest integer ≤ k=n.

APPENDIX B: ALTERNATIVE PROOF OF
CONSTRAINTS GOVERNING SECOND ORDER

MOMENTS OF Cn BEAMS

This Appendix presents an alternative, more direct, proof
of the fact that, for all n > 2, the second order moments of a
beam with n-fold rotational symmetry (i.e., Cn) obey the
same constraints as those of an SO(2) beam, i.e.,

hxxi ¼ hyyi;
hxx0i ¼ hyy0i;
hx0x0i ¼ hy0y0i;
hxyi ¼ 0;

hx0y0i ¼ 0;

hxy0i ¼ −hx0yi: ðB1Þ

This is true regardless of the orientation of the coordinate
axis on the transverse plane. Methods outlined here would
become increasingly cumbersome when applied to higher-
order moments.

1. Spatial density and local velocity

Define Fðr; θ; vr; vθÞ as the beam distribution function in
4D transverse phase space where r and θ are the usual
cylindrical polar spatial coordinates and vr and vθ denote
the corresponding angles in a cylindrical polar representa-
tion. The usual transverse particle angles (i.e., transverse
velocity normalized by vz, x0 ¼ vx=vz) are related to vr and
vθ by

x0 ¼ vr cos θ − vθ sin θ;

y0 ¼ vr sin θ þ vθ cos θ:
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A conveniently normalized spatial distribution function
fðr; θÞ with R

2π
0

R∞
0 fðr; θÞrdrdθ ¼ 1 is defined as

fðr; θÞ ¼
R∞
−∞

R∞
−∞ Fðr; θ; vr; vθÞdvrdvθR

2π
0

R
∞
0

R
∞
−∞

R
∞
−∞ Fðr; θ; vr; vθÞrdrdθdvrdvθ

:

The local average flow angle of particles within the
distribution is denoted V⃗ðr; θÞ ¼ Vrðr; θÞr̂þ Vθðr; θÞθ̂
(components vary locally as a function of r and θ)
and is obtained by averaging over angular degrees of
freedom:

V⃗ðr;θÞ ¼
R∞
−∞

R∞
−∞Fðr;θ; vr; vθÞðvrr̂ðθÞ þ vθθ̂ðθÞÞdvrdvθR

2π
0

R
∞
0

R
∞
−∞

R
∞
−∞Fðr;θ; vr; vθÞrdrdθdvrdvθ

:

For a beam with n-fold rotational symmetry, its spatial
density and local flow angle of the particle distribution
must remain unchanged upon a coordinate rotation by
angle ϕ ¼ 2jπ=n∀ j ∈ Z, i.e.,

fðr; θÞ ¼ f

�
r; θ þ 2jπ

n

�
; ðB2Þ

Vrðr; θÞ ¼ Vr

�
r; θ þ 2jπ

n

�
; ðB3Þ

Vθðr; θÞ ¼ Vθ

�
r; θ þ 2jπ

n

�
: ðB4Þ

A sufficient, but not necessary, condition for these
constraints to hold is the even stronger statement that
Fðr; θ; vr; vθÞ satisfies

Fðr; θ; vr; vθÞ ¼ F

�
r; θ þ 2jπ

n
; vr; vθ

�
∀ j ∈ Z:

In that case, Eqs. (B2) and (B3) can be verified from

fðr;θÞ ¼
R
∞
−∞

R
∞
−∞Fðr;θ; vr; vθÞdvrdvθR

2π
0

R∞
0

R∞
−∞

R∞
−∞Fðr;θ; vr; vθÞrdrdθdvrdvθ

¼
R∞
−∞

R∞
−∞Fðr;θþ 2jπ

n ; vr; vθÞdvrdvθR
2π
0

R
∞
0

R
∞
−∞

R
∞
−∞Fðr;θþ 2jπ

n ; vr; vθÞrdrdθdvrdvθ
¼ f

�
r;θþ 2jπ

n

�
;

and

Vrðr;θÞ¼ r̂ðθÞ · V⃗ðr;θÞ

¼
R
∞
−∞

R
∞
−∞Fðr;θ;vr;vθÞvrdvrdvθR

2π
0

R∞
0

R∞
−∞

R∞
−∞Fðr;θ;vr;vθÞrdrdθdvrdvθ

¼
R
∞
−∞

R
∞
−∞Fðr;θþ 2nπ

3
;vr;vθÞvrdvrdvθR

2π
0

R
∞
0

R
∞
−∞

R
∞
−∞Fðr;θþ 2nπ

3
;vr;vθÞrdrdθdvrdvθ

¼Vr

�
r;θþ2nπ

3

�
: ðB5Þ

Similarly, Vθðr; θÞ ¼ Vθðr; θ þ 2nπ
3
Þ.

2. Useful trigonometric identities

In this section, several trigonometric identities are
proved in anticipation of their utility in subsequent argu-
ments. The first identity is
Identity B.1

Xn
j¼1

cos

�
θ þ 4jπ

n

�
¼

Xn
j¼1

sin

�
θ þ 4jπ

n

�
¼ 0 ∀ n > 2:

Identity B. 1 can be efficiently proven in a complex number
representation with Euler’s formula eix ¼ cos xþ i sin x
with i≡ ffiffiffiffiffiffi

−1
p

:

Xn
j¼1

exp

�
i

�
θþ4jπ

n

��
¼ exp

�
4πi
n

�Xn
j¼1

exp

�
i

�
θþ4jπ

n

��
:

For expð4πin Þ ≠ 1, this implies that

Xn
j¼1

exp

�
i

�
θ þ 4jπ

n

��
¼ 0:

The fact that both the real and imaginary parts of the
lhs must vanish individually gives us Identity B. 1.
Note that when n ¼ 2, the proof does not work because
expð4πi=2Þ ¼ 1.
Next we define sums:

S2 ≡
Xn
j¼1

cos
�
θ þ 2jπ

n

�
sin

�
θ þ 2jπ

n

�
; ðB6Þ

S3 ≡
Xn
j¼1

cos2
�
θ þ 2jπ

n

�
; ðB7Þ

S4 ≡
Xn
j¼1

sin2
�
θ þ 2jπ

n

�
; ðB8Þ

to prove two corollaries of Identity B. 1 as follows:
Identity B.2 S2 ¼ 0 ∀ n > 2.
Identity B.3 S3 ¼ S4 ∀ n > 2.

Identity B.2 can be proven using the trigonometric identity
sin x cos x ¼ 1

2
sinð2xÞ to rewrite S2 as
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S2 ≡
Xn
j¼1

cos

�
θ þ 2jπ

n

�
sin

�
θ þ 2jπ

n

�

¼ 1

2

Xn
j¼1

sin

�
2θ þ 4jπ

n

�
:

It then follows from Identity 1 with θ → 2θ that
S2 ¼ 0 ∀ n > 2.
Similarly, Identity B.3 can be proven using the trigo-

nometric identities cos2 x ¼ 1
2
þ 1

2
cosð2xÞ and sin2 x ¼ 1

2
−

1
2
cosð2xÞ and adding in zero symmetrically:

S3 ≡
Xn
j¼1

cos2
�
θ þ 2jπ

n

�

¼ n
2
þ 1

2

Xn
j¼1

cos

�
2θ þ 4jπ

n

�

¼ n
2
þ 0 by Identity B:1

¼ n
2
−
1

2

Xn
j¼1

cos

�
2θ þ 4jπ

n

�
by Identity B:1

¼
Xn
j¼1

sin2
�
θ þ 2jπ

n

�

≡ S4:

3. Proof of beam moment constraints

In this section, we prove the second order axisymmetric
beam moment constraints in Eq. (B1) hold for a beam with
Cn symmetry by the following trick. For such a beam, all
moments remain the same when the coordinate system
rotates by 2jπ=n where j is an integer. By summing over
j ¼ 1 to j ¼ n, the trigonometric identities derived in
Sec. B 2 can be applied to simplify resulting trigonometric
functions and show that the second order axisymmetric
moment constraints hold. All constraints are proven for
completeness, but with decreasing levels of detail in each
successive subproof as the underlying manipulations are
analogous.

a. Proof of hxyi= 0
To prove hxyi ¼ 0, we note that

hxyi ¼
Z

2π

0

Z
∞

0

r2 cos θ sin θ fðr; θÞ rdrdθ:

By symmetry, for all integer j,

hxyi ¼
Z

2π

0

Z
∞

0

r2 cos

�
θ þ 2jπ

n

�
sin

�
θ þ 2jπ

n

�
f

�
r; θ þ 2jπ

n

�
rdrdθ

¼
Z

2π

0

Z
∞

0

r2 cos

�
θ þ 2jπ

n

�
sin

�
θ þ 2jπ

n

�
fðr; θÞrdrdθ: ðB9Þ

Using Eq. (B9), we can write

nhxyi ¼
Xn
j¼1

Z
2π

0

Z
∞

0

r2 cos

�
θ þ 2jπ

n

�
sin

�
θ þ 2jπ

n

�
fðr; θÞrdrdθ

hxyi ¼ 1

n

Z
2π

0

Z
∞

0

r2S2fðr; θÞrdrdθ

¼ 0 by Identity B:2:

b. Proof of hxxi= hyyi

hxxi ¼
Z

2π

0

Z
∞

0

r2cos2θfðr; θÞrdrdθ

¼ 1

n

Z
2π

0

Z
∞

0

r2S3fðr; θÞrdrdθ;

hyyi ¼
Z

2π

0

Z
∞

0

r2sin2θfðr; θÞrdrdθ

¼ 1

n

Z
2π

0

Z
∞

0

r2S4fðr; θÞrdrdθ:

S3 ¼ S4 from Identity B. 3. Therefore, hxxi ¼ hyyi.
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c. Proof of hxx0i= hyy0i

hxx0i ¼
Z

2π

0

Z
∞

0

r cos θ½Vrðr; θÞ cos θ − Vθðr; θÞ sin θ�fðr; θÞrdrdθ

¼ 1

n

Z
2π

0

Z
∞

0

½S3Vrðr; θÞ − S2Vθðr; θÞ�fðr; θÞr2drdθ;

hyy0i ¼
Z

2π

0

Z
∞

0

r sin θ½Vrðr; θÞ sin θ þ Vθðr; θÞ cos θ�fðr; θÞrdrdθ

¼ 1

n

Z
2π

0

Z
∞

0

½S4Vrðr; θÞ þ S2Vθðr; θÞ�fðr; θÞr2drdθ:

S3 ¼ S4 from Identity B.3 and S2 ¼ 0 from Identity B.2.
Therefore, hxx0i ¼ hyy0i.
Henceforth, we will suppress angular arguments of

Vrðr; θÞ, Vθðr; θÞ, and fðr; θÞ to further abbreviate.

d. Proof of hxy0i= − hx0yi
hxy0i ¼

Z
2π

0

Z
∞

0

r cos θ½Vr sin θ þ Vθ cos θ�frdrdθ

¼ 1

n

Z
2π

0

Z
∞

0

r½S2Vr − S3Vθ�frdrdθ;

hx0yi ¼
Z

2π

0

Z
∞

0

r sin θ½Vr cos θ − Vθ sin θ�frdrdθ

¼ 1

n

Z
2π

0

Z
∞

0

r½S2Vr þ S4Vθ�frdrdθ:

S3 ¼ S4 from Identity B.3 and S2 ¼ 0 from Identity B.2.
Therefore, hxy0i ¼ −hx0yi.

e. Proof of hx0x0i= hy0y0i

hx0x0i ¼
Z

2π

0

Z
∞

0

½Vr cos θ − Vθ sin θ�2frdrdθ

¼ 1

n

Z
2π

0

Z
∞

0

½S3V2
r − 2S2VrVθ þ S4V2

θ�frdrdθ;

hy0y0i ¼
Z

2π

0

Z
∞

0

½Vr sin θ þ Vθ cos θ�2frdrdθ

¼ 1

n

Z
2π

0

Z
∞

0

½S4V2
r þ 2S2VrVθ þ S3V2

θ�frdrdθ:

S3 ¼ S4 from Identity B.3 and S2 ¼ 0 from Identity B.2.
Therefore, hx0x0i ¼ hy0y0i.

f. Proof of hx0y0i= 0

hx0y0i ¼
Z

2π

0

Z
∞

0

½Vr cos θ − Vθ sin θ�½Vr sin θ þ Vθ cos θ�frdrdθ

¼ 1

n

Z
2π

0

Z
∞

0

fS2½V2
r þ V2

θ� þ VrVθ½S3 − S4�gfrdrdθ:

S3 ¼ S4 from Identity B.3 and S2 ¼ 0 from Identity B.2.
Therefore, hx0y0i ¼ 0.
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