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Tuning machine parameters of particle accelerators is a repetitive and time-consuming task
that is challenging to automate. While many off-the-shelf optimization algorithms are available, in
practice their use is limited because most methods do not account for safety-critical constraints in each

iteration, such as loss signals or step-size limitations. One notable exception is safe Bayesian optimization,
which is a data-driven tuning approach for global optimization with noisy feedback. We propose and
evaluate a step-size limited variant of safe Bayesian optimization on two research facilities of the PSI:
(a) the SwissFEL and (b) HIPA. We report promising experimental results on both machines, tuning up to

16 parameters subject to 224 constraints.
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I. INTRODUCTION

Particle accelerators are complex machines consisting of
many elements and are typically built according to an
idealized design. However, in reality, there are always
systematic and time-varying errors that will reduce the
performance with respect to the design performance. These
errors need to be corrected by parameter tuning to achieve
the optimal performance. Therefore, empirical parameter
tuning is a required and often reoccurring task for any
particle accelerator. Common tuning objectives include the
beam shape, beam trajectory, beam loss minimization, or a
combination of multiple objectives.

In this paper, we present a method that allows for safe
optimization of particle accelerators. Our approach follows
recent work by Kirschner et al. [1] on safe Bayesian
optimization. The main idea behind Bayesian optimization
is to compute regression estimates of the target and loss
functions using the data collected during optimization
[2,3]. The estimates and associated statistical uncertainty
are then used to systematically explore the parameter space,
while guaranteeing that the query points are safe. Our main
contribution is an experimental evaluation of safe Bayesian
optimization on the High Intensity Proton Accelerator
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(HIPA) and the Swiss Free Electron Laser (SwissFEL).
Further, we address practically relevant challenges in the
context of tuning particle accelerators, including step-size
constraints and user feedback for hyper-parameter tuning.

Tuning of accelerators is a challenging task for several
reasons. Typically, simulation models are not accurate
enough to allow off-line optimization, and the parameters
have to be tuned empirically by evaluating different settings
on the machine. Among many other considerations, the
following points are of particular importance, including on
the machines we used for experimentation.

Safety—Beam optimization is a delicate task because
improper settings can cause beam losses that potentially
damage the machine. While modern machines have safety
measures implemented that are designed to prevent hard-
ware damage by stopping the beam, it is desirable to avoid
triggering such safety measures. On one hand, restarting the
machine is time consuming and breaching the safety level is
often considered off limit. Further, an effective method
should concentrate on sampling feasible points for fast
convergence.

Step-size control.—Classical optimization methods are
often based on the principle of making small adjustments to
an incumbent solution, such as a small step in the gradient
direction. Global search methods are an attractive alter-
native since they do not require gradient estimates and
make less restrictive assumptions such as convexity of the
target functions. Popular choices include NeLpberMead [4],
CMA-ES [5] and Particle-Swarm optimization [6]. However,
these methods do not impose a step-size constraint. Large
changes to input parameters of particle accelerators can be
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problematic because feedback systems are often in place
to stabilize the beam, which might not be able to follow
abrupt changes. This limitation can be circumvented by
slowly changing the machine parameters to the requested
target values. Such a process, however, increases the
measurement time on the machine and slows down the
optimization.

User feedback.—Optimization methods are usually not
designed to provide user feedback other than the progress
on the target value. In particular, it is difficult to monitor
the optimization trajectory and the user essentially has to
trust the method to not induce an unwanted state on the
machine.

As our main contribution and addressing the chal-
lenges outlined above, we demonstrate feasibility and
efficacy of safe Bayesian optimization for parameter
tuning on particle accelerators. Our approach is based
on the LineBO method of Kirschner et al. [1], and we
develop a version of the same method with step-size
control. The LineBO approach combines Bayesian opti-
mization with a line-search technique, thereby allowing
to scale the method to high-dimensional settings. We
compare performance with the nonsafe global search
methods, CMA-ES [5] and NELDERMead [4]. Our claims are
corroborated with experimental data on two machines:
The High Intensity Proton Accelerator (HIPA, introduced
in Sec. IB) and the Swiss Free Electron Laser
(SwissFEL, introduced in Sec. I1C).

A. A brief overview on optimization methods

For many accelerators, parameter tuning has been
automated to achieve significant speedups compared to
manual operator tuning [7-9]. Since only point evaluations
of the objective function are available, one has to rely on so-
called zero-order or black-box optimization methods.
There are a large variety of optimization methods in use.
Due to their simplicity, the NELDERMead (Simplex) [4]
algorithm and random walk optimizers have become
popular choices to assist operator tuning [8,10,11].
Further methods that have been successfully applied on
accelerators  include Extremum Seeking [12-14] and
robust conjugate direction search (RCDS) [15,16]. The
advantage of local descent methods is their simplicity,
although convergence guarantees only apply under strong
assumptions like convexity. Other gradient-based optimi-
zation algorithms are more difficult to deploy as additional
samples are required to estimate the gradient, e.g. via finite
differences.

Another class of zero-order optimization methods
are evolutionary algorithms such as Particle-Swarm opti-
mization [16] and genetic algorithms [17-19]. A popular
choice due to its simplicity is CMA-ES [5], which is
shown to achieve competitive performance on standardized
benchmarks [e.g., [20]], although we are not aware of an
application on particle accelerators.

As an alternative, Bayesian optimization [3,21] has
recently gained interest in the accelerator community
[22-25]. Bayesian optimization is a framework for zero-
order optimization that deals with observational noise in a
principled way, allows the use of prior data or knowledge
about the objective, and comes with theoretical conver-
gence guarantees for some variants [21].

When tuning particle accelerators, there are often safety-
relevant constraints, e.g., physical or safety limits that
cannot be violated, of which the typical optimization
algorithm is unaware. For example, at the Swiss Free
Electron Laser the pulse energy should be maximized while
keeping low undulator losses. At the High Intensity Proton
Accelerator the situation is more rigid: It is important to
keep the overall losses as low as possible while not
exceeding any of the individual loss limits; violating the
limit of a single loss monitor triggers the safety system,
causes downtime, or possible damages to the machine.

It is natural to formulate this setup as a constrained
optimization problem, where the goal is to optimize a target
function subject to a feasibility condition. Established
algorithms for the constrained setting include sequential
quadratic programming [26] and interior point methods
[27]. Variants for constrained Bayesian optimization have
been proposed in, e.g., [28-30]. Gradient descent methods
can be applied in the constrained setting via a Lagrangian
(primal-dual) formulation of the objective that penalize
infeasible points [31]. We emphasize that the methods for
constrained optimization ought to return a feasible final
solution but evaluating infeasible parameters is tolerated
during optimization; hence these methods do not address
the safety requirement for tuning particle accelerators. This
is opposed to safe optimization, where the complete
optimization trajectory has to satisfy the feasibility con-
dition. To achieve safe optimization that guarantees fea-
sibility for all evaluation points with high probability, Sui
et al. [32] proposed safe Bayesian optimization. We
describe this method and extensions in detail in Sec. IL
A variant of safe Bayesian optimization was evaluated on
SwissFEL in previous work [1].

B. HIPA

The high intensity proton accelerator (HIPA) provides
the primary beams to Paul Scherrer Institut’s (PSI’s)
versatile experimental facilities. HIPA generates a proton
beam with 590 MeV kinetic energy and presently 1.3 MW
average beam power [33]. This corresponds to a proton
current of about 2.2 mA. The HIPA accelerator consists of a
Cockcroft-Walton preaccelerator and a chain of two isoch-
ronous cyclotrons, the injector II and the ring cyclotron.
The beam is produced in continuous wave (cw) mode at a
frequency of 50.6 MHz. The high intensity proton beam is
used to produce pions and muons by interaction with two
graphite targets. After collimation the remaining beam with
roughly 1 MW is then used to produce neutrons in a
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spallation target. A pulsed source for ultracold neutrons is
also in operation [34].

In practice, the performance is limited by the beam losses
at the extraction of the ring cyclotron and in the high energy
beam line downstream. In the ring cyclotron longitudinal
space charge leads to an increase in energy spread that
transforms into transverse beam tails, which reduces the
turn separation at extraction [33]. Furthermore, significant
emittance growth occurs in the graphite targets and results
in unavoidable collimation loss in specially shielded
collimators. These losses are controlled by several rf and
orbit feedback systems to keep the machine stable and by
empirical operator tuning.

C. SwissFEL

The Swiss free electron laser (SwissFEL) is PSI’s state of
the art source for ultrashort x-ray pulses [35,36]. A photo-
cathode is used to generate short electron pulses which are
then brought up to 6 GeV by a series of linear accelerator
modules and compressed down to a pulse length of only a
few femtoseconds in two bunch compressor chicanes. Inside
an undulator line, the electron pulses self-modulate and emit
x-ray pulses with laserlike properties by a process called
self-amplified spontaneous emission. These ultrashort x-ray
pulses are then used for various user experiments (e.g., pump
probe experiments, x-ray spectroscopy). At SwissFEL, there
are two undulator lines—Aramis and Athos—that can be
used to generate photons for different end stations where the
user experiments take place.

The settings of the accelerator (e.g., the photon energy or
the pulse compression) are often adjusted to fit requests of the
users. Typically subsequent parameter optimization is nec-
essary in order to maximize the photon pulse energy at the
experiment. The pulse energy is measured with a gas detector
[37] that provides readings on a shot-to-shot basis. When
performing the optimization, various tuning parameters
(~100) can have a strong impact on the resulting beam
quality, but also on the losses that can cause radiation damage
to delicate equipment. Especially, in the undulator region,
losses should be kept low while tuning on the SwissFEL
output, to avoid long-term damage due to demagnetization of
the permanent magnets inside the undulators.

II. BAYESIAN OPTIMIZATION WITH
CONSTRAINTS

Bayesian optimization (BO) [2,3,21] is a flexible, data-
driven approach for global optimization with noisy feed-
back. The main idea is to fit a statistical regression model
on the target function, using the data collected during
optimization, and possibly, any available prior data. The
next evaluation point is then chosen to reduce the model
uncertainty about the unknown optimal solution. The
approach was shown highly effective in many real-world
applications, including optimization of particle accelerators

[1,23,38]. Variants for safety-critical tuning were devel-
oped by [32,39,40], where the algorithm learns a model of
additional constraints on-line. The constraint models are
used to estimate a feasible “safe” set of parameters. The
method then only evaluates such safe inputs and thereby
ensures that no query point violates the safety constraints
(with high probability).

A. Line Bayesian optimization

In the following, we introduce a variant of safe Bayesian
optimization developed in [1]. The main idea is to alternate
between two phases (see Fig. 1). First, data is collected
within a small ball around the current incumbent solution.
Then a line search is performed in the direction of the
(predicted) largest increase. In both phases, the data points
are chosen to maximize an upper-confidence bound (UCB)
of the regression estimate, which is known to be an
effective search surrogate [41]. This procedure is repeated
until a satisfactory solution is found, or the search budget is
exhausted. The intuition for these choices is twofold: First,
by concentrating samples on a one-dimensional domain or
a small enough ball we obtain reliable function estimates
with few samples in a local region of interest. Second,
determining the acquisition points is computationally much
simpler compared to standard Bayesian optimization,
which requires to solve a nonconvex optimization problem
over the full input domain in each round.

To formally introduce the algorithm, we write the tuning
objective (maximized) and / constraints as follows:

gilx) < 0
max f(x) s.t.

glx) < 0.

Here, f(x) is the unknown target function with input
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FIG. 1. The A-LineBO algorithm alternates between a local

search (left; line 2 to 8 in Algorithm 1) and a line search (right;
line 9 to 16 in Algorithm 1). On the left the search domain is
restricted to a ball centered around the initial point. On the right,
the search domain is chosen as a line in the direction of the
estimated steepest ascent. The procedure is repeated at the best
point found during the line search.
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corresponding to the set of d tuning parameters on an
allowed range. The functions g;(x),...,g;(x) are con-
straints that need to be satisfied during operation, such
as a loss limit. Note that the g, (x), ..., g;(x) are assumed to
be unknown initially [like the target f(x)], and the only
way of accessing the constraint functions is by evaluating a
parameter on the machine. Provided an input parameter
x, € X at step t, the machine interface [denoted
MACHINE-EVAL(x,)] returns a set of noisy measure-
ments,

Ve = f(xt) +e€
21 = G1(x) + &

20 = gi(x,) + &0,

where €, and &, |, ..., £, ; is measurement noise. In practice,
we average multiple evaluations to reduce the noise
variance. Also note that the constraint limit is zero without
loss of generality, because we can always redefine a
constraint g;(x) < ¢ as g;(x) = g;(x) — ¢ < 0. We say that
an evaluation procedure is safe if it guarantees that with
very high probability, all evaluation points satisfy g;(x,) <
0 forall i =1,...,[ and time steps ¢ > 1.

The next step is to compute a regression model given the
available data D, = {(x,,y,, 251, ..., Z5s) }._;- In general,
this is a user choice which we abstractly encapsulate in the
REGRESSION(+) oracle function. Given the data D,, the
regression oracle produces a model estimate 71,. We assume
that the model provides the following estimates for the
target function and the constraints (h € {f, g, ....,g;}):
(i) MEAN,, (71, x)—the mean estimate of the target func-
tion evaluated at x, typically a consistent estimator of /(x);
(ii) UCBy, (1, x, §)—an upper confidence bound (UCB) on
the true function, which takes a confidence parameter 6 €
[0, 1] and satisfies:

P[Vx € X:h(x) < UCB, (i, x.8)] > 1 -6,

where the randomness is due to noisy evaluations;
(iii) LCB, (i, x,8), a lower confidence bound (LCB) on
the true function, defined analogously to UCB,; and

(iv) CW,, (i, x, ) défUCBh(ﬁLx, 5) — LCB,, (i, x, ), the
width of the confidence band at x € X

The most common regression model used in Bayesian
optimization is Gaussian process (GP) regression (or kernel
least squares) [42], which we also use in our experiments. A
brief, illustrative introduction to GP regression and the
exact specification of our regression function is given in the
Appendix A.

Finally, Bayesian optimization acquires points that are
targeted to reduce the model uncertainty of the true
maximizer x* = arg max,cyf(x). To account for the safety

constraints, at any step #, the acquisition is restricted to the
safe set with margin 7 > 0,

St = {x € X:maxUCB,, (i, x,8) < —1}.

i€(l]

The safe set is defined as the subset of the domain X where
with probability at least 1 — &, the model does not predict a
constraint violation with margin z. A larger safety margin
makes the algorithm more conservative. Also note that the
model predicts the average constraint level for a given input
parameter. Therefore a positive safety margin is needed
when the constraint measurements are noisy and the goal is
to avoid constraint violations with high probability (i.e.,
controlling the tail of the constraint distribution).

The candidate solution X} in iteration i is defined as the
maximizer of the mean estimate on S7,

s r oA o def N
%* = CANDIDATE(S?, in,) = arg max MEAN; (7, x).

Evaluating just the incumbent solution however does not
induce enough exploration, and the algorithm would get
stuck in local optima. Instead, the next sequential meas-
urement is chosen to maximize the upper confidence bound
score function, which is a well-behaved surrogate to reduce
the uncertainty of the true maximizer:

x, = arg max UCB (s, x,5). (1)

XES}

This choice leads to evaluation of points where the model
predicts either a high reward or large uncertainty (or both).
Upper confidence bound algorithms are widely studied in
the literature [43] and convergence guarantees for these
algorithms are known for the unconstrained case [41,44].
The constrained case requires additional care to ensure that
model obtains sufficient data to expand the safe set [32].
The exact acquisition procedure that we use is specified in
Algorithm 2. Since finding a maximizer of the acquisition
score (1) is challenging in high-dimensional domains, we
rely on the LineBO approach by Kirschner et al. [1]. Instead
of searching the full domain, LineBO restricts the search
space to an adaptively chosen sequence of one-dimensional
subspaces. Let A(x,w) = {x +aw:a € R} be an affine
subspace for offset x € RY and direction w € R?. To
determine direction and offset we first collect data points
in a small ball B(%}_,,7) around the previous incumbent
solution X}_; to compute a new candidate %;. The offset is
then set to the new candidate X} and the search direction is
chosen as w = X7 — X7_,.

For step-size control during the line-search phase, the
algorithm constrains the next evaluation point x at any time
to B(x},n). The complete approach is summarized in
Algorithm 1. An illustration is given in Fig. 1 and the line
search phase is shown in Fig. 2.
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FIG. 2. The plots show one-dimensional slices of a synthetic objective (blue, maximized) and constraints (red). The left, middle and
right columns correspond to different GP models with length scales 0.1, 0.2 and 0.5, respectively, on the same objective. We produce
such plots live during optimization to evaluate model fit and confidence bands relative to the measurements (crosses). The vertical
dashed line indicates the best parameter prior to optimizing the one-dimensional subspace, and the vertical solid line indicates the
updated best parameter. Green and red intervals on the x axis correspond to predicted safe and unsafe parameters. Note that the safe
region is expanded as more data is collected (cf. top to bottom plot). When choosing hyperparameters such as the kernel length scale,
system experts can visually inspect the predicted safe set, and make adjustments accordingly. A smaller length scale leads to a more
conservative method that expands the safe set in smaller steps. Note that in the right column, the length scale is chosen too large. At the
first evaluation the safe set is predicted incorrectly (see upper right plot), which consequently leads to an unsafe query point (orange

circle, bottom plot).

B. Variants

In our experiments, we evaluate the following variants of
the proposed approach.

A-LineBO-loc.—This is the main (ascent & localized)
variant shown in Algorithm 1. We use n = 0.1 relative
to a domain that is normalized to [0, 1]¢.

A-LineBO.—For this variant, we do not enforce the step
size constraint in line 12 of Algorithm 1, which corre-
sponds to the variant proposed in [1,22].

C-LineBO-loc.—This variant uses coordinate aligned
search directions, also known as coordinate descent.
Specifically, we replace lines 2-8 in Algorithm 1 by setting
W; = €; mod 4> Where ey, ..., e, are the basis vectors.

C-LineBO.—Similar to A-LineBO, this variant does not
enforce the step size constraint in line 12. Note, this variant
(without the step-size constraint) was proposed and evalu-
ated by Kirschner et al. [1,22].

C. Choice of hyperparameters

Algorithm 1 relies on several hyperparameters that are
configured by the user. We first explain our choices in the
following. Then we briefly discuss more general methods
for adjusting the hyperparameter parameters.

For the number of evaluations per round, we set
Jpan = 2d and jj,e = 10. From our experience, this
allows to estimate a reasonable search direction and

make sufficient progress on each line (and the method
can revisit the same search direction in the next
iteration). When the signal is very noisy, a larger
number of evaluations per iteration can be appropriate.
On systems with a large number of hyperparameters
(d > 50) but low effective dimensionality, it can be
effective to choose search direction uniformly at random
[1]. The step-size # and margin z are provided by the
user. The exact choice is usually based on system
considerations. We use a maximum step size of 0.1
(i.e., 10% of the allowed input range) and z = 0.1 (i.e.,
10% below the critical value).

Parameters of the GP model encode regularity assump-
tions on the objective and constraints. Choosing suitable
model parameters is essential for the effectiveness of
Bayesian optimization. In a first step, we normalize input
ranges to obtain a normalized domain X’ = [0, 1]¢. Further,
we normalize the observed objective values to [0, 1], and
the range of feasible constraint values to [—1, 0]. The latter
is important to ensure that the prior upper-confidence
bound predictions of the constraints are positive. This
corresponds to assuming that an input parameter is unsafe
in the absence of data.

We then use a Matern52 kernel with length scale 0.2 and
unit prior variance, which we found effective and robust
choices across all our experiments. For the observation
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Algorithm 1: A-LineBO

Input: domain X, initial evaluation point %, initial data Dy, confidence & € [0, 1], step-size > 0, safety margin

7 >0, Jpas Jine € N inner loop evaluations
QOutput: Estimated maximizer
11«1, i<0, X5<<x
2 while not stopped by user do
/l Determine best search direction w;

3 for j=1,..., jpu do

4 i, < REGRESSION(D,_,)

5 x, < SAFE-ACQUISITION|[B(%}_,,n) N X, #iy;, 7]
6 D, < D,_; U [x,, MACHINE-EVAL(x,)]

7 t—t+1

// initialization

// evaluation counter

// Update candidate and search direction

8 %f < CANDIDATE[B(%_,.n) N X, i, 7]
9 wp < X =X

/I Search line in direction w; & offset &}

10 for j =1, ..., jjjp do

11 i, < REGRESSION(D,_,)
12 xf « CANDIDATE[A(X, w;) n B(3i,n7) N X, iy, 7]
13 x, « SAFE-ACQUISITION[A(&}, w;) n B(;,n) N X, iy, 7]
14 D, < D,y U [x;, MACHINE-EVAL(x,)]
/| Optional user feedback:
15 LINE-PLOT(D,, i1, X,, w;)
16 te—1t+1 /I evaluation counter
17 i—i+1 /l next iteration

18 return %/,

noise likelihood, we use a Gaussian distribution with an
empirical variance estimate. We choose to keep all hyper-
parameters fixed during optimization, but adaptive choices
are possible in principle.

The above choice of kernel and length scale is appro-
priate when a small change in the input parameters (e.g.,

Algorithm 2: SAFE-ACQUISITION

Input: search domain X, model 7, confidence &,
safety margin 7
Output: acquisition point x
/| Define safe-set:
1 8 « {x € X: max,g; UCB,, 5(n,x) < —7}
// UCB and Safe UCB parameter:

2 xUCB — arg max,. 3 UCB (i1, x, 6)
3 xYBS — arg max,cs-UCB (i, x, 5)
4 if xUCB = xUCB-S then
5 return xVCB-S
/I Compute expanding point towards xU¢E:
6 xPXP — arg min,gllx — xVUCB|
7 if max;e)) CW,, (7, XX 5) > cwiy(1m, xUBS,5) then
8 return xFXP
9 else
10 return xVCB-S

< 10% relative to the input range) leads to a moderate
change in the output, e.g., does not suddenly increase the
constraint level to a critical value. This requires to choose
suitable allowed ranges of tuning parameters, which we
determined together with system experts.

To adjust these parameters on a new system, the
practitioner can inspect the model predictions after the
initial (safe) point has been evaluated. Most importantly,
the predicted safe set for each parameter can be plotted and
evaluated by a system expert. Based on the visual feedback,
the length scale or input ranges of each parameter can be
adjusted to meet the operators expectation on the safety of
the method. The method acts more conservatively for larger
safety-margin 7z, smaller step-size n, and smaller length
scale parameter used for the kernel estimation. The visual
inspection procedure is illustrated in Fig. 2.

We also produce the line plots on-line during the line-
search phase. We found this to be an extremely valuable
tool to further calibrate hyperparameters and obtain feed-
back on the optimization progress. Specifically, too
conservative parameter choices (e.g., a very small length
scale) lead to slow expansion of the safe set and no/little
extrapolation of the target values beyond the data points.
On the other hand, if the regression estimate appears too
smooth relative to the observed data points, or the algo-
rithm evaluates points close or above the constraint limit,
more conservative hyperparameters are advisable.
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In applications where prior data or a physics simulation
is available, an alternative approach is to estimate hyper-
parameters in advance, e.g., using a maximum likelihood or
marginalized likelihood estimation [42]. For a successful
approach to extract kernel hyperparameters from a physics
model, see the work by Hanuka ef al. [24]. Some previous
work has also explored adaptive model selection, e.g., [45],
although this is still largely an active research area today.

Lastly, a word of caution is unavoidable. Safety and
effectiveness of the methods is subject to the modeling
assumptions, and therefore, choice of hyperparameters. In
the absence of any assumptions on the system, a principled
choice is limited. The challenge is amplified for safe
optimization, because no method can guarantee safety if
the system behaves in a way not anticipated by the algorithm.

D. Remarks on computation

GP regression requires to compute the inverse of the
kernel matrix, which can be done in O(#*) basic operations
per round. With incremental updates, the complexity is
reduced to O(#?). In practice, this effectively limits the
number of data points that can be handled without signifi-
cantly increasing computation time to ~1000-2000. See
Appendix A for further comments.

The SAFE-ACQUISITION subroutine requires solving
nonconvex optimization problems over continuous
domains. When the domain is one dimensional as in the
line search, a fine uniform (equidistant) discretization of the
domain easily produces a solution below the system
accuracy/noise level, such that the approximation error
translates to a negligible difference on the objective value
(we used 300 points per line). Maximizing the acquisition
score within in the ball B(%*,7) is computationally expen-
sive in general. Nevertheless, since the domain is relatively
small compared to the full domain, we found a random
search to be effective in our experiments. We compute the
UCB score at 500 points sampled uniformly from B(3*, )
and choose the maximizer among these. An alternative is to
maximize the UCB score using any standard optimization
algorithm such as gradient descent with random restarts.

Lastly, we note that in time-critical applications with a
large number of constraints, a significant speedup can be
obtained by using a joined covariance matrix for all
constraints. Further, the most expensive step in computing
the estimates is the inversion of the covariance matrix,
which can be precomputed while waiting for the machine to
return the next evaluation.

E. Limitations

Enforcing a step-size sometimes limits the algorithm’s
ability to escape local optima. However, theoretical analy-
sis suggests that such an approach at least finds a local
optimum [46,47]. In our experiments we did not see any
performance degradation from enforcing a step size (see
Sec. III). This indicates that, perhaps surprisingly, high-

quality local solutions exist in the optimization surfaces
that we encountered. On systems where local optima
prevent the algorithm from progressing, one can use
multiple starting points and drop the step-size constraint
during the line-search phase. Another option is to replace
the line search by a search over higher-dimensional
subspaces.

Another challenge is model misspecification. If a param-
eter is incorrectly predicted as safe, the parameter can
become infeasible under the model’s predictions after the
evaluation (cf. Fig. 2, right column). With a small step size,
this can lead to a situation where the predicted safe set is
empty. A simple resolution is to back-track and restart the
method from an earlier safe point. In such cases, it is further
advisable to choose a smaller length scale, to prevent
evaluation of infeasible points in the first place.

III. EXPERIMENTAL EVALUATION

We first present empirical results on HIPA, and then an
additional experiment on SwissFEL below.

A. HIPA

The different versions of the BO algorithm with con-
straints have been tested in several dedicated experiments at
HIPA. The target of these experiments has been to reduce the
overall beam losses around the machine by minimizing a
target signal defined as a weighted sum of about 60 beam
loss monitors (or loss related monitors) spread across the
machine. This weighted sum reflects that the beam loss
monitors are not distributed equidistantly along the machine
and that losses at lower energies cause less activation.

For each beam-related signal that could trigger a beam
interruption (interlock), a safety constraint function is
defined as the difference between the signal and its beam
interruption limit. If available, the warning limit of each
signal is used and not the actual limit that would produce a
beam interruption when crossed, which allows a safety
margin in case the safety constraint is accidentally violated
when operating near the limit. For optimization of HIPA,
we used 224 of such signals, mostly current and temper-
ature measurements in collimators and beam loss monitors.
We normalized each of the safety signals g\ (x) to define
constraint functions,

loss P
g; (x) _ gl (.X) gl,]lmlt )

i limit
where g;;mi 1S the limit of constraint i. Therefore the
constraint reads g;(x) <0, and the safe outcome range is
[—1, 0] [assuming that gi°*(x) > 0]. For faster computation,
it is possible to take the maximum over multiple con-

straints. However, this can lead to less smooth functions
that are harder to learn by the GP model.
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Step-by-step evolution of the target function for the different optimization algorithms. We performed optimization at low beam

intensity, using five quadrupole strengths on a manually detuned initial point. The left plot shows the target values. The faint lines
represent the measurement of the target function at each step. The solid lines depict the measurement of the target function at the best set
of parameters predicted by the optimization models (updated only every five steps). The right plot shows the maximum constraint value
at each step, where a value above zero corresponds to a constraint violation. Note that NELDERMead and A-LineBO (unsafe) caused
interlocks at step 12 and 19 respectively. Note that the exact values of the corresponding constraint violations are unknown, because the
machine protection system stops beam operation before the measurement is registered. CMA-ES and NELDERMead caused constraint
violations that did not trigger interlocks at steps 12 and 2-4 respectively.

At HIPA, a beam current regulation and several beam
orbit feedbacks are in continuous operation to ensure stable
operation without drifts. Every time a new evaluation point
is set, the algorithms wait for these feedbacks to stabilize
before acquiring data. Larger steps typically result in more
time required until the machine is stable and the measure-
ment is taken.

In our experimental validations, the variables used to
optimize the target function are the field strengths of
quadrupoles in the 870 keV transport beam line after the
Cockcroft-Walton preaccelerator towards the first of the
two cyclotrons, the injector II, with an allowed empirical
range of =2 A. This range is equivalent to an integrated
field gradient of about £0.01 T, and is a typical range
operators use for tuning. In the center of injector II the
beam is collimated from 10 mA to about 2 mA with several
collimators [48]. By adjusting the quadrupole strengths
upstream, the beam can be shaped and matching in the
cyclotron can be improved [49], which will avoid beam
tails and reduce beam losses throughout the accelerator
downstream.

In order to protect the machine, the first experiments
were performed at low intensity (100 pA), which also
allows a larger margin in the constraint functions limits as
the losses are in general lower at low intensity. To give
some headroom to the automatic algorithms and to simulate
a suboptimal machine, the selected quadrupole settings are
manually moved away from the default settings. These
detuned settings are recorded to have a consistent initial
point. In later sessions the algorithms were tested without
detuning at full production current (about 1930 pA).

The left plot in Fig. 3 shows the target evolution of the
different algorithms at low beam intensity. The faint lines
show the evaluation of the target function at every new

parameter configuration (step). The solid line shows the
measurement of the target function for the best set of
parameters predicted by the algorithms after every five
steps (evaluating the candidate solution more frequently
slows down the overall optimization). The right plot
shows the constraint closest to the limit at each evaluation
point (that is, the maximum over the normalized constraint
levels). Note that NELDERMead and A-LineBO (unsafe)
caused beam interruptions due to constraint violations.
These constraint violations are not visible on the con-
straint plot because the machine projection system stops
beam operation before the measurement is registered.
Further, CMA-ES and NELDERMead show constraint viola-
tions that did not lead to beam interruptions. This can
happen in our setup when the warning level of a loss
monitor is reached, but not the beam interruption level. All
safe methods and CMA-ES successfully optimize the loss to
a final level of about 0.1, where A-LineBO-loc converges the
fastest.

Our second experiment at full production intensity is
shown in Fig. 4, where we optimize 16 quadrupoles (all the
quadrupoles in the 870 keV beam line). The target
reduction is less steep because, in order to avoid putting
the machine in a dangerous state, in this case the parameters
were not manually detuned and the initial point was already
fairly close to the optimum. Notice also the difference on
the magnitude of the target function due to the higher
intensity and therefore higher losses around the machine.
The C-LineBO-loc and CMA-ES algorithms stopped early as
they triggered beam interruptions in their last parameter
settings.

This experiment was performed with an earlier configu-
ration of our method without safety margin (z = 0).
Moreover, we used a single constraint defined as the
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FIG. 4. (HIPA) Experiment at high beam intensity with 16

tuning parameters. Both CMA-ES and C-LineBO-loc caused inter-
locks, and the run was stopped after 50 and 110 steps respec-
tively. Note that the exact constraint value of the constraint
violation is not known as the machine protection system prevents
the measurement. A-LineBO-loc successfully tunes the machine at
high intensity (repeated twice). This experiment used an earlier
configuration of the LineBO methods, where we used a single
constraint defined as the maximum over the 224 (normalized)
loss signals and no safety margin (r = 0). We think that this
configuration led to misspecified confidence intervals, and there-
fore an interlock of C-LineBO-loc. In such an event we recommend
to use more conservative hyperparameters.
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maximum over the 224 loss monitors. Consequently, an
interlock was caused by C-LineBO-loc, either because of
model misspecification (e.g., the maximum over the con-
straints was non-smooth) and consequently invalid con-
fidence intervals, or noise of constraint monitor that was
very close to its limit. In such cases we recommend more
conservative hyperparameters (bigger margin z, smaller
length scales of the GP models), as was used in the
experiment shown in Fig. 3. A-LineBO-loc completed the
optimization successfully twice, without triggering any
beam interruption.

Figure 5 shows an analysis of the step sizes and their
impact on the speed of the optimization of the different
algorithms. The plots show data from the low intensity
experiment. The C-LineBO algorithm has no limitations on
the step sizes and therefore is allowed to navigate the whole
safe region in single steps. Compared with the A-LineBO-loc
algorithm with limits on its step size it can be seen on the
left plot how the unrestricted algorithms take much larger
steps. The impact of these large steps can be seen on the
right column plot, as due to the large steps taken by the
unrestricted algorithm the optimization took about 1.5x as
long to complete because it takes the machine feedbacks
and regulation systems much longer to converge for these
large steps. We remark that the high computation time for
the safe BO methods is due to the use of 224 constraints.
We expect that significant speedups are possible when
using a joint kernel matrix for all constraints. Further, the
most expensive step of inverting the covariance matrix can
be precomputed while waiting for the machine to return the
next measurement.

A closer analysis (see Appendix B) shows that the step
sizes taken by the CMA-ES diverge as the algorithm
approaches the optimization solution, as the target function
becomes close to invariant to the change of the parameters
in this region and tries to spread the sampling points. This is

10.0
7.5
5.0

2.5 4

Mean Time/Step (sec)

0.0 -

(HIPA) Observed average step sizes (T-bars: maximum) for different algorithms measured in Euclidean norm distance between

parameter vectors with normalized input range (left). The right plot shows time used per step, where the solid part of each bar
corresponds to machine evaluation time, and the faint part to compute time (on a single core Intel® Xeon® Gold 6140 2.3 GHz with 4 GB
RAM), i.e., A-LineBO-loc: 1.54 s, A-LineBO: 1.72 s, C-LineBO: 1.51 s, A-LineBO (unsafe): 0.01 s, cMA-ES: 0.0004 s, NELDERMead: 0.0004 s.
The significant increase in computation time for the constraint method is due to the large number of constraints (224). This can be
improved by using a joined covariance matrix for all constraints, see the remarks in IID. A-LineBO and C-LineBO are not step-size
constrained, which leads to larger machine evaluation times. C-LineBO-loc has an explicit step-size limit which leads to shorter machine
evaluation times. Note that A-LineBO (unsafe) and NELDERMead caused interlocks after few steps (see Fig. 3).
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an undesirable behavior with respect to potential constraint
violations or unstable machine states caused by large steps.

In conclusion, the experiments at HIPA demonstrate that
the BO optimization algorithms successfully reduce the
losses around the machine in a safe and efficient way, both
at low intensity and full intensity operational setting.
Particularly, the A-LineBO-loc algorithm outperforms or
matches CMA-ES and the loss level achieved by human
operators, while staying in general below the limits that
would trigger beam interruptions. The constrained step
sizes of this method also allow for faster and more stable
tuning.

B. SwissFEL

Previous work [22] established that LineBO outperforms
NELDERMead [4] for tuning the beam intensity on
SwissFEL. Here, we provide an additional experiment
on SwissFEL, including CMA-ES, A-LineBO, and the step-
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FIG. 6. (SwissFEL) Step-by-step evolution of the SwissFEL
single pulse intensity (top) and average step size (T-bars:
maximum) during optimization of 24 beam position monitor
target values. The results demonstrate that the same methods can
be used on different accelerators. We emphasize that, similar to
the experiments on HIPA, the step-size constraints did not affect
optimization performance while resulting in significantly smaller
variation in the input space, and therefore a more stable machine.
This can be seen in the top plot, where the faint lines depict
the objective value observed at the evaluation points during
optimization.

size constrained variant A-LineBO-loc. As mentioned in
Sec. IC the tuning signal is a shot-by-shot signal of the
gas detector that gives a signal proportional to the amount
of photons in a single pulse. As optimization variables, we
use ten (horizontal and vertical) beam position monitor
target values for the trajectory feedback in the undulator
section. We used as constraints 16 individual loss monitors
that were combined into a single constraint. During
optimization with the specified parameters, we did not
observe any losses.

The top plot of Fig. 6 shows the target evolution of the
different algorithms. The faint lines show the evaluation of
the target function at every new parameter configuration
(step). The solid line shows again the measurement of
target function for the best set of parameters predicted by
the algorithms every ten steps. While all three tested
algorithms achieve a similar final target value, it can be
seen that the target value often drops for A-LineBO. This is
due to large steps in the parameter space, as shown in the
bottom plot of Fig. 6, where the average (normalized) step
size is plotted. It can also be seen that the A-LineBO-loc
performs slightly better than CMA-ES in this respect. Having
a low variability and a high average of the target value is
especially important during parasitic tuning, i.e., tuning
during user’s experiments. For this reason the step size
constrained A-LineBO-loc is the preferred algorithm.

IV. CONCLUSIONS

While tuning particle accelerators remains a challenging
task, we demonstrated the feasibility of safe Bayesian
optimization for automated parameter tuning. Safe
Bayesian optimization does not rely on any specific
machine model, and accounts for an arbitrary number of
safety constraints. By both optimizing and exploring the
target and constraint functions, the algorithm continuously
improves its estimate and uncertainty of these functions,
and in this way uses all available data to evaluate promising
but safe parameters. Multiple variants of safe Bayesian
optimization have been described in detail, including a
newly developed variant with step-size control. This is an
important feature for tuning particle accelerators, since
large parameter steps can lead to an unstable machine state
as fast feedbacks might not be able to follow. These variants
have been applied and compared with nonsafe search
methods CMA-ES, NELDERMead and Bayesian optimization
without constraints. We presented experimental data for
two accelerators, HIPA and SwissFEL, showing efficacy
and reproducibility in several optimization runs. Overall,
we find that the different variants of Bayesian optimization
and CMA-ES are both effective tools for beam optimization.
However, safe Bayesian optimization is shown to cause
constraint violations much less likely, and consequently,
avoid beam interruptions. In addition, the step-size con-
trolled variants allow for a faster and more stable tuning,
which is less disruptive for the users.
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APPENDIX A: GAUSSIAN PROCESS
REGRESSION

1. Kernel regression

With 7 evaluation-feedback pairs D, = {(x1,y;), ...,
(x,,y,)} available from previous steps or data collected
prior to optimization, we can compute an estimate f, to
approximate the unknown true function, and the estimate is
used to inform the next evaluation point. Most commonly,
Bayesian optimization uses kernel least-squares regression
to estimate the target and constraint functions:

ft = arg mlnz

JeH s=1

=) +IfI3, (AL

The minimization is over functions of a reproducing kernel
Hilbert space H; (see, e.g., [42]), which is defined by a
kernel function k: X' x X - R, and || - ||, denotes the

associated Hilbert norm. The estimate j‘t can be conven-
iently computed in analytic closed form as follows:

]Act(x) = k,(x)T (K, +1,)7"y, (A2)
where 1, € R™ is the identity matrix, K, is the # X ¢ matrix
containing (K,);; = k(x;, x;) formed by pointwise evalu-
ation of the kernel function, y is a vector of responses and
lastly k;(x); = k(x,x;) interpolates the measurement x to
other data points. A direct implementation requires the
inversion of the kernel matrix K, with computational
complexity O(#}). Iterative updates using the Sherman-
Morrison identity reduce the complexity to O(z*) per
round. If the computational burden is too large, methods
relying on approximation tools for kernel spaces have been

developed with near-linear dependence for low dimen-
sional problems [50,51].

Frequentist confidence bands f,(x ):l:ﬁté c,(x) have
been derived in the literature, which contain the true function
with high probability in the realizable case [41,52]. The
quantity o, corresponds to the estimation uncertainty and
can likewise be derived in closed form,

\/kxx

where K, and k,(x) as above. The parameter ﬂ,l’{sz is a
confidence parameter that determines the coverage and can
be chosen according to frequentist theoretical results or
tuned as a hyperparameter (we used fB,;=1 in our
experiments).

Using the notation from Sec. II, this leads to the
following model estimates:

ki (x) T K7k (x), (A3)

MEAN(f,.x) = J,(x)
UCB(F,.x.8) = J:(x) + B500(x)
LCB(f,. x.6) = J,(x) = 85 0,(x)
CW(f,.x.8) = 28,5 0,(x).

The Bayesian viewpoint offers an alternative interpreta-
tion where the kernel estimator corresponds to the posterior
mean of a Gaussian process regressor [53] which was
exploited in deriving tighter predictive bands in [41].

4
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Exponential = Squared
7 4 Exponential
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0 0 -
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FIG. 7. The plots show functions sampled from a Gaussian

process defined for different kernels. In addition, the top-right
plot shows the mean estimate f along with the 95% confidence
bands in gray.
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Each plot shows the step size (measured in Euclidean norm) for the different methods. Note that without step-size constraints,

LineBO takes large steps throughout (top middle/right). We also observed that CMA-ES was slowly increasing step sizes, likely due to
invariant subspaces of the objective. Unsafe LineBO and NELDERMead stopped early because of interlocks, therefore interpretation of the

data is limited.

2. Kernel choice

The choice of the kernel is crucial for obtaining a data
efficient model. Depending on the kernel choice, we can
represent a different class of functions. Failure to identify
the right kernel for the application leads to misspecified
confidence sets and hence potential failure of the method.
Different choices for the kernel are demonstrate2d in Fig. 7
for squared exponential k(x,y) = exp (- (x;—zy)) Matérn
kernel [42] and linear kernel k(x,y) = x"y. In the case
of squared exponential kernel (as well as Matérn), y is often
referred to as length scale or bandwidth, and determines the
smoothness of the estimated functions.

3. Bayesian optimization

Classical Bayesian optimization [2] usually revolves
around a simple procedure depicted in Fig. 2, where a
utility function—in this case the UCB—is maximized to
determine the next evaluation point. Other acquisition
functions are possible, see e.g., Shahriari et al. [21].

APPENDIX B: ADDITIONAL
EXPERIMENTAL DATA

Figure 8 shows the step sizes for each algorithm,
measured as the Euclidean distance between two consecu-
tive input parameters on a normalized scale. Note that the
step-size constrained variant takes significantly smaller
steps throughout. We also found that CMA-ES was increas-
ing its internal step size during this run. This is due to

invariant subspaces on the objective, which leads to an
increased sampling (co)variance along these directions.
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