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There has been a renewed interest in applying multiobjective (MO) optimization methods to a number
of problems in the physical sciences, including to rf structure design. The results of these optimizations
generate large datasets, which makes visualizing the data and selecting individual solutions difficult.
Using the generated results, Pareto fronts can be found giving the trade-off between different objectives,
allowing one to utilize this key information in design decisions. Although various visualization
techniques exist, it can be difficult to know which technique is appropriate and how to apply them
successfully to the problem at hand. First, we present the setup and execution of MO optimizations of
one standing wave and one traveling wave accelerating cavity, including constraint handling and an
algorithm comparison. In order to understand the generated Pareto frontiers, we discuss several
visualization techniques, applying them to the problem, and give the benefits and drawbacks of each.
We found that the best techniques involve clustering the resulting data first to narrow down the possible
choices and then using multidimensional visualization methods such as parallel coordinate plots and
decision maps to view the clustered results and select individual solutions. Finally, we give some
examples of the application of these methods and the cavities selected based on arbitrary design
requirements.
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I. INTRODUCTION

The ideas of multicriteria decision making in economics
were first introduced in the mid-1800s by Edgeworth and
Pareto, and since then they have steadily developed and
are now ubiquitous in many fields including engineering
and the life sciences [1]. The key idea is that real world
scenarios often exist where one faces several conflicting
criteria and an optimum balance needs to be found between
them. Multiobjective optimization methods can be
employed in these cases to explore the trade-offs between
the desired objectives.
In these types of problems, a unique global optimum

solution does not exist, and instead it is necessary to find a
set of points that define the trade-off between the objec-
tives. One way that an optimum point can be defined is with
the idea of Pareto optimality. A point is considered Pareto
optimal if there are no further changes of the inputs that can

improve at least one objective function without detriment to
at least one other function. When this set of solutions is
found and mapped from the decision space to the objective
space, they make up an N-dimensional Pareto frontier, as
shown in Fig. 1 for the 2D case where the Pareto front
can be discrete or continuous. The decision space repre-
sents the N-dimensional space containing all values of the
inputs to the optimization, and the objective space is the
N-dimensional space containing the outputs or objective
values that the optimization produces.
Although a variety of techniques exist to solve multi-

objective (MO) optimization problems and estimate the
Pareto frontiers, two of the most popular methods are to

FIG. 1. Mapping decision space to objective space and Pareto
optimal points to the Pareto front in 2D.
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combine individual objective functions together using
weightings and then use single-objective optimization
methods [2] or to solve the problems directly using genetic
algorithms [3]. The weighted sum approach involves
selecting scalar weights wi and minimizing a combined
function given by

U ¼
Xk
i¼1

wifiðxÞ; ð1Þ

where k is the number of objective functions and fi are
the individual objective functions [2]. Although single-
objective methods can be effective if the information about
trade-offs is not needed, they require multiple optimization
runs in order to obtain an approximation of thePareto-optimal
set, which can lead to a large computational complexity. The
weighted sum approach utilizes a convex combination of
objectives, and, therefore, nonconvex regions cannot be
detected as shown in Fig. 2. This is because the sum of
the weights is constant and negative weights are not allowed.
Choosing the correctweightingsmay also not be immediately
obvious andmay take time to determine, again increasing the
complexity of the optimization. Therefore, for large search
spaces and complex objectives, genetic algorithms are pre-
ferred, as they can findmultiple objective trade-offs in a single
optimization run.

A. Optimization of rf structures

The requirements for any rf accelerating structure are,
typically, a high shunt impedance, a high accelerating
gradient, and low peak electromagnetic fields to avoid rf
breakdown and heating effects. These objectives are nor-
mally conflicting, and, therefore, MO methods are ideal for
exploring the trade-offs between different cavity geometries

to find a set of optimal solutions. Traditionally, rf accel-
erating structures have been optimized by sweeping the
various cavity parameters while holding others constant and
generating parameter curves or by combining individual
objectives into a single-objective function and then using
single-objective optimization methods to minimize the
combined function [5]. While these methods can work well,
there are a number of drawbacks. First, when using a
combined goal function, trade-offs where a small change
in the weighting of one of the objectives may lead to large
improvements in the others. Also, often the requirements for
a design can change, and in this case the optimized solution
is likely no longer optimal, and an optimization would need
to be performed again. An advantage of estimating the
Pareto frontier and obtaining a set of Pareto-optimal sol-
utions is that a designer can quickly select an optimum cavity
design based on the new requirements while also being able
to explore the entire design space with the optimization
potentially leading to cavity geometries with improved
performance that may not be considered otherwise. It also
allows the designer to easily reconsider the limits of the
design and use this information in a more holistic analysis of
the system.
Within the accelerator field, MO methods have previ-

ously been used for a wide range of optimization problems
including dc photoinjectors [6,7], heat load and trip rates
[8], beam dynamics [9], and resonator design under geo-
metric uncertainties [10]. Recently, genetic algorithms
have also been used for a wide variety of rf cavity designs
[11–15], and, with improvements in parallelization and
integrated commercial optimization tools, this trend is likely
to continue. After estimating the Pareto frontier using a
multiobjective genetic algorithm (MOGA), the designer
must select the “best” design from a pool of appropriate
candidates. In 2D, this selection is relatively straightforward,
as the trade-off is easy to visualize, but, as the number of
objectives is increased, this becomes more difficult. An array
of dimension reduction methods and visualization tech-
niques have been proposed to assist the decision maker in
this process (see Sec. V), and these are explored and applied
in this work to the problem of rf cavity design.
The rest of this paper is organized as follows. The cavity

modeling, optimization objectives, and constraints used are
described in Sec. II. The optimization methodology includ-
ing algorithms, frequency handling, and convergence is
discussed in Sec. III. A comparison between multiobjective
and single-objective methods is given in Sec. IV.
Visualization methods are introduced in Sec. V along with
the clustering methods used for the analysis. Section VI
explores the application of the visualization methods to the
results for a generic standing wave and traveling wave
cavity optimization. Section VII gives two examples of
how the best methods can be applied to select a final design.
Finally, Sec. VIII discusses the findings and draws con-
clusions from the rest of the paper.

FIG. 2. Pareto front for two objectives showing the benefits of
MO methods over weighted sum optimization methods. Adapted
from Ref. [4].
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II. APPLYING MOGAS TO RF CAVITIES

Mathematically, MO problems can be summarized as
follows:

min=max fmðxÞ; m ¼ 1; 2;…;M; ð2Þ

subject to gjðxÞ ≥ 0; j ¼ 1; 2;…; J; ð3Þ

xilb ≤ xi ≤ xiub; i ¼ 1; 2;…; n; ð4Þ

where fm are the objectives, gj are the constraints, and
xilb=iub are the upper and lower bounds of the input
parameters. In order to formulate the optimization problem,
the objectives, constraints, and geometrical limits need to
be determined. The objectives define the targets of the
optimization and can be either to maximize, minimize, or
target a specific value. The constraints, on the other hand,
impose hard limitations on the objectives of optimization
and define a feasible design. The optimization may find a
solution with the best objective value, but if it does not
satisfy the constraints, then it is not considered feasible.

A. Objectives

rf cavities broadly fall into two categories: standing
wave and traveling wave, each having a slightly different
design process. In either case, for the highest efficiency, the
particle energy gain per unit power dissipation must be
maximized, a quantity known as the shunt impedance,
which is given by

rs ¼
V2
0

P
;

Z≡ rs
L
¼ E2

0

P=L
; ð5Þ

where rs is the shunt impedance, P is the power dissipated
in the cavity walls, E0 is the axial electric field, and Z is the
quantity to be maximized, the shunt impedance per unit
length. V0 is the axial cavity voltage given by

V0 ¼
Z

L=2

−L=2
Eð0; zÞdz; ð6Þ

where L is the cavity length. Z can be increased with the
addition of nose cones as shown in Fig. 3 that increase the
axial electric field relative to the total stored energy [16].
By doing this, though, the peak surface electric fields are
increased, which can eventually lead to rf breakdown if
they exceed a certain limit; therefore, the quantity Epk must
be minimized to avoid this, leading to the first set of
conflicting objectives. Another quantity that has recently
been found to give a good indication of rf breakdown is the
modified Poynting vector [17] given by

Sc ¼ jjReðS̄Þjj þ gc · jjImðS̄Þjj; ð7Þ

where S̄ is the complex Poynting vector and gc is a constant
obtained from fitting to experimental data, normally taken
as 1=6. This is the second quantity to be minimized.
Finally, high surface magnetic fields cause rf pulsed
heating, which can eventually lead to cracks and surface
roughening, essentially limiting the accelerating gradient
[18]. This needs to be avoided, and, therefore, the final
objective to be minimized is the peak magnetic field (Bpk).
Normalizing the peak fields to the accelerating gradient and
putting them into appropriate units, the four final objectives
are shown in Table I.

B. Constraints

For both the standing wave and traveling wave cavities,
the frequency of the fundamental accelerating mode
(TM010) must be kept constant. In reality, it is difficult

FIG. 3. Standard and spline geometries for the X-band traveling
wave cavity (top) and the C-band standing wave cavity (bottom),
showing input parameters.

TABLE I. Optimization objectives.

Quantity Min=Max Units

Epk=Eacc Min Unitless
Bpk=Eacc Min mT=MVmffiffiffiffiffi
Sc

p
=Eacc Min

ffiffiffi
A
V

q
Z Max MΩ

m
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to keep exactly constant, and, therefore, a small value of ϵ is
chosen for simulation purposes such that

fTM010
¼ fdesired � ϵ ð8Þ

with typical values for ϵ of 5–30 MHz. The frequency can
later be tuned to the exact value with little effect on the
other objectives. For the traveling wave cavity, another
important parameter that must be considered is the group
velocity vg. The group velocity is given by

vg ¼
dω
dk

; ð9Þ

and it defines the velocity of the energy flow through the
structure, shown by the rf power flow:

Prf ¼ vgU; ð10Þ

whereω is the angular frequency, k is the wave number, and
U is the cavity stored energy per unit length. vg can either
vary along the length of a linac or remain constant, and it is
normally chosen to balance the electromagnetic fill time
and the field amplitude or power dissipation requirements.
A number of methods for dealing with this constraint in the
optimization are explored in the next section.

C. Modeling methods

Two types of cavity modeling methods were considered,
one using standard shapes such as circular radii and angles
to define the nose cone geometry (referred to as the
standard parameters model henceforth) and the other a
model generated using nonuniform rational basis splines
(NURBS). This method uses a series of control points with
a spline interpolated between them to define the cavity
geometry. This allows for much greater control of the nose
cone and outer cavity wall shapes and has been shown to
increase the shunt impedance by as much as 13% [19]. The
two generic cavities that have been used in this optimiza-
tion are shown in Fig. 3. The first (top) is an X-band
(12 GHz), β ¼ 1, 2π=3 traveling wave cavity, and the
second (bottom) is a C-band (5.712 GHz), β ¼ 1, π=2
biperiodic standing wave cavity. The positions of the
control points were related back to the standard cavity
parameters by defining a minimum nose cone gap and a
minimum nose cone radius, chosen by estimating the
minimum values that could feasibly be manufactured. In
both cases, the control point positions were set in such a
way that concave nose cone shapes were not possible in
order to reduce the search space.

III. OPTIMIZATION

To calculate the electromagnetic fields in the cavities,
the eigenmode solver in the commercial code CST Studio
Suite® [20] was used. The optimizations were performed

using Isight® [21], a software package for design optimi-
zation and exploration. The two main MOGAs used for the
cavity optimization were the well-known fast nondomi-
nated sorting genetic algorithm (NSGA-II) [22] and the
archive-based micro genetic algorithm (AMGA), which
offers an improvement over NSGA-II by using an archive
to maintain its search history [23].

A. Algorithms

An example of a generic MOGA flow chart is shown
in Fig. 4. These methods are inspired by the process of
evolution in biology. An initial population is sampled from
the design space and then progressed using selection,
crossover, and mutation to form offspring. This process
is then repeated, improving the population characteristics
until a stop criterion is achieved.
The baseline algorithm parameters shown in Table II

were selected based on the number of inputs with the
parameters kept as close as possible for a fairer comparison
of the algorithms. The crossover probability controls the
probability of whether parent solutions are recombined to
generate the offspring, and the mutation probability con-
trols the probability that an offspring is mutated; this is left
as the optimum choice of 1/n, where n is the number of
design variables. Both the crossover distribution index and
mutation distribution index are inversely proportional to the
amount of perturbation in the design variables; therefore,
smaller values improve the resilience to premature con-
verge but reduce the focus of the search. The number of
generations defines the number of times the processes of
mutation and crossover are completed, and the number

FIG. 4. Generic MOGA flow chart showing how the algorithm
progresses, improving the population through successive
generations.
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of total evaluations can be calculated by multiplying the
population size and the number of generations. The
simulations can be initialized in various ways, including
initializing the population with random points within the
defined parameter bounds; seeding the simulation with a
single point, from which it generates an exponentially
decaying cloud of points around the initial point to explore
similar designs; and seeding with a starting population from
an earlier simulation which then acts as the first generation
of the simulation.

B. Pareto front convergence

An example of a generated 2D Pareto front is shown in
Fig. 5, showing the trade-off between Z and Epk=Eacc.
Although the “true” Pareto frontier is not known, informa-
tion about the convergence characteristics can be obtained
by plotting the Pareto front vs the generation number for a
particular simulation as shown in the figure. Between the
values of Epk=Eacc ¼ 2.5–5, the front has already con-
verged after approximately 125 generations, while future
generations increase the spread of the front at the extreme

ends. The difference between the Pareto fronts for 200 and
250 generations is negligible with most of the points falling
on the same curve, meaning that, for this particular set of
simulation parameters and constraints, there is little benefit
to running for more generations.

C. Group velocity condition

Figure 6 shows some of the results of an investigation
into the algorithms and various methods for dealing with
the vg condition for the traveling wave cavity. One of the
main parameters that affects vg is the aperture radius, and,
therefore, this had to be taken into consideration in the
simulations. The options considered for handling the vg
requirements included having vg as a constraint, similar to
the frequency, and allowing the aperture radius to vary;
having vg as an objective with an appropriate choice of the
aperture radius upper and lower bounds constraint; choos-
ing a fixed value of the aperture radius based on estimates
and allowing vg to vary between constrained bounds, e.g.,
0.95%–1.05% c; and having vg as both an objective and a
constraint.
With vg as a constraint (�0.05% c) only, the algorithm

convergence speed was slow, with a maximum Z of
104 MΩ=m achieved after 12 000 evaluations. With the
large range of possible aperture radii, the algorithm
struggled to converge on values that would provide a large
shunt impedance as it was not actively searching. When
using vg as an objective, both the NSGA-II and AMGA
algorithms were able to find more appropriate values for
the aperture radius, but many of the obtained values for vg
fell outside of the �0.05% c range, meaning they were
unfeasible. Better performance was obtained by estimating
a good value of the aperture radius and keeping it fixed.

TABLE II. Baseline algorithm parameter selections.

Parameter NSGA-II AMGA

Initial size 60 500
Population size 60 40
No. function evaluations � � � 12 000
Archive size limit � � � 500
Crossover probability 0.9 0.9
Mutation probability 1=n 1=n
Crossover distribution index 9 9
Mutation distribution index 18 18
No. generations 200 � � �

FIG. 5. Z vs Epk=Eacc Pareto front convergence example
showing how the Pareto front converges after 250 generations
for the C-band standing wave (SW) structure.

FIG. 6. Algorithm and constraint handling method comparison
for the traveling wave (TW) X-band structure, showing the Z vs
Epk=Eacc Pareto fronts. The legend follows the format algorithm/
number of individual evaluations/initialization mode/fixed or
varying aperture radius/constraint handling technique.
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The estimate was made by using the standard parameter
cavity and changing the nose cone gap to achieve a large
value of Z while keeping vg within the acceptable bounds.
Both algorithms converged to around 120 MΩ=m, which is
a significant improvement, but Z is dependent on the
aperture radius, so, by fixing it, the maximum value of
Z also becomes limited. The best results were obtained by
having vg as an objective while also constraining it to
�0.05% c values. This meant that the algorithms were able
to search for the best values of the aperture radius while
also remaining within the feasible limits. Figure 6 also
shows that the AMGA algorithm performance was signifi-
cantly better for the objective and constraint case, although
the opposite is true when the aperture radius took a fixed
value with NSGA-II outperforming AMGA slightly. Based
on this, for the final optimizations, AMGAwas used for the
traveling wave cavity and NSGA-II for the standing wave.
The optimization results shown here are for a single TW cell,
although typically vg will vary along the length of the linac.
Performing an individual optimization for each individual
cell would be computationally expensive; therefore, we
would propose that one optimization would be performed
for a group of 5–10 TW cells, with the aperture radius being
adjusted for each to obtain the required vg. This would then
be repeated for the next group of cells along the linac until
the total desired number of cells is reached.

D. Frequency handling

Figure 7 shows the feasible points in the Z vs Epk=Eacc

2D objective space with a total frequency constraint of
60 MHz. By reducing ϵ from 30 to 1 MHz and finding the
Pareto frontier each time, the relative effect of the fre-
quency constraint on the final estimated Pareto frontier can
be found. At higher values of Z, there is a more noticeable

shift in the Pareto frontier, most likely because of the
dependence of Z on the cavity radius and frequency. As ϵ is
reduced to 1 MHz, a larger shift in the frontier is seen
with increased noise due to the lower number of feasible
solutions. A second simulation with a reduced ϵ that is
seeded with individuals from the first run could be used to
converge to a more accurate frontier, although this would
be at the expense of a longer total simulation time.
Reducing ϵ by 10 MHz approximately halves the number
of feasible points and, therefore, doubles the time (6000 to
12 000 evaluations) to a similar level of convergence.
As the time to convergence is directly related to the ϵ
value, the use of ϵ ¼ 20 MHz is justified as a trade-off
between simulation time and accuracy. Individual solutions
can also eventually be tuned to the correct frequency within
the bounds with minimal effect on the other objective
parameters.

E. Geometry results

Figure 8 shows the results of a comparison between the
converged SW cavities, one modeled with the NURBS and
one with standard parameters. We can see that the spline
performance at lower values of Epk=Eacc is ≈10% better
with the difference between the two decreasing as Epk=Eacc

increases, confirming the findings in Ref. [19]. This
difference can be explained by observing the geometries
of the spline model at low Epk=Eacc. These geometries are
difficult to realize with only the standard parameters,
whereas as the nose cone increases in size and length it
becomes increasingly easy to recreate a similar geometry
with the standard parameters. It is noted that it could also be
the case that the true Pareto front has been missed and
that the differences exist only for Epk=Eacc < 3, although
further investigation will be required.

FIG. 7. Frequency handling investigation results, showing all
optimization points and the variation in the Z vs Epk=Eacc Pareto
fronts for different values of ϵ (the feasible difference from the
ideal frequency).

FIG. 8. Comparison of Z vs Epk=Eacc Pareto fronts for spline
model vs standard parameters for the C-band cavity, showing an
improvement when splines are used.

S. SMITH et al. PHYS. REV. ACCEL. BEAMS 25, 062002 (2022)

062002-6



IV. SINGLE- VS MULTIOBJECTIVE
OPTIMIZATION

In order to illustrate the power of this approach, an
example is provided in Fig. 9. The cavity used in this
example is described in Ref. [19] and is an S-band SW
structure that was optimized with a combined optimization
function of

optimization function ¼ Z

Max½Epk

Eacc
; 2�

: ð11Þ

This was used along with a NURBS geometry and evolu-
tionary algorithm to find a cavity with Epk=Eacc ¼ 2 and
Z ¼ 113 MΩ=m within 20 000 evaluations. This cavity is
shown in Fig. 9(c). In order to compare with this result, a
similar geometry was set up and ran with the AMGA
algorithm for 15 000 evaluations with the weightings
chosen to explore the region where the original cavity
lies. The algorithm manages to find a very similar point to
the original [Fig. 9(d)], and the Pareto front provides new
information about the objective space. For example, we
now know that we can reduce the peak fields by ≈25%
[Fig. 9(a)] for only an 11% reduction in Z, possibly
allowing for a higher gradient before breakdown. We could
also move up to Epk=Eacc ¼ 3.3 [Fig. 9(b)] for an improved
Z of 129 MΩ=m at the expense of Epk=Eacc.

V. VISUALIZING THE N-DIMENSIONAL PARETO
OPTIMAL OBJECTIVE SPACE

After the chosen MOGA is applied to the single-cell
design space, the output solutions construct the objective
space. A subset of the objective space is the Pareto optimal
subspace that constructs the Pareto frontier. Within the
Pareto optimal subspace, by definition, no further solutions

can be removed, as no single solution is dominated by all
other solutions. Certain solutions within this subset will
have more desirable objective values, however to the
detriment of other objective values.
Considering two objectives, we can construct a 2D

Pareto front, showing the set of optimal solutions. Often,
a 2D Pareto front makes a convex or concave shape, and the
trade-off between the two objectives is easily visualized.
Although 2D fronts do not provide information about all
the objectives, as a first check the 2D fronts can be plotted
to immediately explore the trade-offs between two objec-
tives. For example, Fig. 10(a) shows the Pareto front for Z
vs Epk=Eacc while also showing the values of

ffiffiffiffiffi
Sc

p
=Eacc and

Bpk=Eacc in color. By including the geometry at select
points, the trade-off between Epk=Eacc and Z can be
understood—a longer nose cone increases Z but also
causes the peak electric field to increase, as expected.
Both

ffiffiffiffiffi
Sc

p
=Eacc and Epk=Eacc increase with increasing Z,

although a Pareto front between them does exist, with slight
differences in the geometry favoring one over the other.
This has been confirmed in other work [24], with the Pareto
frontier in Fig. 10(b) allowing this transition to be visu-
alized for the traveling wave cavity case with solutions to
the left minimizing

ffiffiffiffiffi
Sc

p
=Eacc and solutions on the right

minimizing Epk=Eacc.
Although these 2D plots can be useful for exploring the

trade-offs to some extent, if the number of objectives
increases from two to N, the Pareto front is now a
(N − 1)-dimensional hypersurface. There is no guarantee
that points that lie on one Pareto front are close to the
others. This is demonstrated in Fig. 11, where the points
from each 2D Pareto front are plotted on the same axes. The
Pareto front of Z vs

ffiffiffiffiffi
Sc

p
=Eacc is shown in green, along with

the points that fall on the other two Pareto fronts and points
that fall on more than one front. It should be noted that no
points fall on all three Pareto fronts and very few fall on
two, meaning that selecting candidates using 2D plots alone
is not feasible. In light of this, more intricate methods of
visualization must be implemented when N ≥ 3 in order to
assist in the selection process.
In this study, we wish to select a single-cell design based

upon how it performs with respect to the four objectives
discussed in Sec. II. The MOGA provides a single set of
solutions which puts limits on the visualization techniques
that can be implemented. As each MOGA solution refers to
an independent cell geometry, they must be visualized
independently, which leaves the techniques shown in the
red solid and dashed box in Fig. 12.

A. Issues associated with dimensionality reduction

While the techniques shown in the dashed red box in
Fig. 12 provide methods to visualize independent solutions
of a single set objective space, the original objective values
are transformed and displayed. This is undesirable, as the

FIG. 9. Z vs Epk=Eacc Pareto front for an S-band SW cavity
optimization. SLAC image reproduced from Ref. [19].
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aim is to provide a set of plots that allow a user to
understand the trade-offs between the original single-cell
objectives. Many visualization techniques rely on dimen-
sionality reduction (DR) or goal functions. While these

methods can be appropriate, they can lead to the loss of
individual objective information. Some common examples
of DR are prosection [26] and 3D radial coordinate visuali-
zation (3dRadVis) [27]. Prosection is a DR technique that
combines two objectives into one by using the Pythagoras
theorem on a localized section of the Pareto optimal sub-
space. This method is highly effective at combining objec-
tives; however, as this study requires the conservation of
original objective values, it is not appropriate.
3dRadVis is a DR technique that performs a reduction

(N → 2) and plots the solution as a point within a unit
circle. Objective nodes are placed evenly spaced around a
unit circle, and solutions with higher objective values are
plotted closer to the respective objective node. It can be
thought that a solution is connected to each objective node
via a spring with the spring constant proportional to the
value of that objective (normalized to the maximum
objective value). The solution is then plotted where the
N springs would equilibrate. Figure 13 displays a 3dRadVis
plot with three objective nodes (three peak fields), and the
color dimension is Z. While the plot does show some
insight into the objective space, such as the relative trade-
offs between objectives for high and low Z, it does not give

FIG. 10. Pareto fronts showing cavity geometry. (a) Z vs Epk=Eacc, SW, with Bpk=Eacc and
ffiffiffiffiffi
Sc

p
=Eacc in color; (b) Epk=Eacc vsffiffiffiffiffi

Sc
p

=Eacc, TW, with Z and vg in color.

FIG. 11. Z vs
ffiffiffiffiffi
Sc

p
=Eacc objective space. Points that fall on the Z

vs Epk=Eacc, Epk=Eacc vs Bpk=Eacc, and multiple fronts are shown.
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any indication of individual values. In addition, there is no
information regarding whether points close to an objective
node are large in that objective, very small in other
objectives, or a mixture of the two. This leads us to search
for techniques that show trade-offs between objective
values while also preserving the individual objective
values, so that a selection process can occur. Note that
DR can be split into two sections, feature extraction
(reducing the dimension of the dataset, what we mean
when we say DR), and feature selection (reducing the

dataset to a subset holding interesting features; the MOGA
does this for us) [28].
Not all datasets retain all useful information when acted

upon with a DR operator. This can be interpreted as
follows; suppose we wish to reduce a solution of N
dimensions to N − 1. The solution can be represented with
an (N × 1) vector of objective values. If we now acted upon
this vector with an (N − 1 × N) DR matrix, the resulting
vector will be (N − 1 × 1):

�
A B C

D E F

�0B@
X

Y

Z

1
CA¼

�
AXþBYþCZ

DXþEYþFZ

�
¼
�
X0

Y 0

�
; ð12Þ

where ðX; Y; ZÞ is a vector of objectives and ðX0; Y 0Þ is the
new vector of objectives after DR has been applied. It is
clear that reducing the dimension by one has lost all
information regarding the original objective values; instead,
the remaining vector can be thought of as a goal function.
As the dimension has been reduced, the DR matrix is
nonsquare and does not have an inverse. This means,
given a vector ðX0; Y 0Þ, the original values ðX; Y; ZÞ cannot
be determined.
As an example, consider a circular particle distribution

with Gaussian particle density. The dataset can be reduced
in dimension (x; y → r). While the original values of x, y
are lost, the original circular distribution can be recreated as
the lost information has little importance. This reflects the

FIG. 12. Summary of methods that aid the visualization of a Pareto optimal subset for various types of dataset. Adapted from Ref. [25].

FIG. 13. 3dRadVis example showing three surface fields as
objectives with color dimension showing Z.
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fact that the dataset has rotational symmetry. If, instead, the
particle distribution is elliptical, performing DR (x; y → r)
will lose important information regarding the rotation angle
of the ellipse. In the context of this study, combining
Epk=Eacc and

ffiffiffiffiffi
Sc

p
=Eacc into one objective (as is done in

prosection) will enable good points to be selected; however,
all information of individual objectives, which is important
in single-cell design, is forfeit. The aim is to provide
visualization methods that can be repeated for all single-
cell design studies and preserve all original objective values.

B. Clustering Pareto optimal subspace

From the definition of a nondominated solution, it is
possible that a MOGA finds two similar solutions, with one
slightly better than the other in one objective but slightly
worse in another. Various clustering algorithms exist that
group similar solutions based on objective values [29], that
could be used to reduce the dataset, while still retaining the
important information. The algorithm we have chosen to
implement in this study is the agglomerative hierarchical
clustering algorithm [30]. The term agglomerative refers to
the merging of data from N clusters and N solutions into n
clusters for N solutions, where n ≤ N. The algorithm
creates clusters based on the Euclidean distance between
solutions in objective space. The user selects the number of
clusters created. The question of the optimal number of
clusters is not trivial, however. The objective space is, in
theory, continuous. Clusters do have discrete boundaries
but have a specific chosen cutoff, where a solution could be
in either cluster 1 or cluster 2, based on the total numbers of
clusters chosen. If the number of clusters is too few,
dissimilar solutions are clustered together, rendering the
clustering meaningless. If too many clusters are chosen, the
visualisation can look overcrowded, reducing the effective-
ness. As each cluster of solutions will be displayed using a
visualization technique as a single solution, it must be as
representative of the cluster as possible. The chosen
solution is found by giving each solution within a cluster

a weighted value. The equation used to determine the
individual solution weight is as follows:

Wsoln ¼
X4
n

½obj × range�n;

where objn is the nth objective normalized value and rangen
is the normalized range for that objective. This weighting
provides an accurate way to represent the individual cluster,
which can then be used for visualization.
In order to investigate the effect of clustering on the

points, parallel coordinate plots (PCPs) have been used.
PCPs display a solution as a line crossing equally spaced
axes. Each axis represents an objective, and the objective
value is given by the point at which the solution crosses the
axis. The production of a parallel coordinate possesses four
degrees of freedom: (i) objective axis order, (ii) axis scale
(logarithmic, linear, etc.), (iii) axis rotation (maximizing or
minimizing), and (iv) plot order of solutions (important for
larger datasets). PCPs are able to display as many objec-
tives as the screen resolution will allow, making them a
popular choice for multiobjective visualization problems.
An example of the use of parallel coordinate plots is shown
in Fig. 14(a), where the four objectives are shown on the
four y axes, with the inverse of Epk=Eacc, Bpk=Eacc, andffiffiffiffiffi
Sc

p
=Eacc used so that all objectives require maximizing,

making the PCP easier to read, as better solutions are those
with the highest value for each objective.
Figure 14 also shows how the number of total clusters

changes the intercluster structure. Figure 14(a) shows that
ten clusters is too few, as a large variance can be observed
within the cluster. When 30 clusters are used, as shown in
Fig. 14(b), the variance is reduced, and all solutions have
similar values for the objectives. Going from 30 clusters to
100 clusters in Fig. 14(c) does not improve the situation
enough to allow for the increased number of solutions,
which reduces the use of visualization techniques as the
plots become harder to read. Another way to look at this is

FIG. 14. Three PCPs showing the objective values inside of a single cluster for different numbers of total clusters: (a) 10, (b) 30, and
(c) 100 clusters. The opened clusters are the ones with the highest value of Z.
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to use the standard deviation of the clusters. The standard
deviation of a cluster can be defined by squaring the
standard deviation of each objective in a cluster and
summing together. Figure 15 shows how the number of
clusters affects the error associated with clustering.
Increasing the number of clusters from five decreases
the mean standard deviation quickly until around 20
clusters. As the number of clusters increases over 20,
the mean standard deviation drops at a slower rate while
also increasing the number of refined data points. A natural
choice of clusters resides somewhere between 20 and 30.

C. Cluster variance

In order to visualize the variance within each cluster,
PCP plots were created for cases with 12, 24, 36, and 48
clusters. The results are shown in Fig. 16, with only the first

FIG. 15. Mean standard deviation of objective cluster as a
function of the number of clusters.

FIG. 16. PCP plots for four different clustering cases. Each line represents one cluster, and the width of the shaded regions represents
the 25% and 75% percentiles within each cluster. (a) 12 clusters, (b) first 12 clusters from 24 clusters, (c) first 12 clusters from 36
clusters, and (d) first 12 clusters from 48 clusters.
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12 clusters from each group being shown. The clusters are
represented with a shaded region which is their 25% and
75% percentiles. In Fig. 16(a), with only 12 clusters there is
a significant overlap between the clusters, meaning that, by
selecting one for specific objective traits, other solutions
that fall into the nearby clusters could be missed. Clearly, as
the number of clusters is increased, the variance is reduced,
and it becomes easier to select an individual cluster with the
objective values required. As the number of clusters
becomes too large (> 40), the PCP plots of the centroids
become too difficult to read, defeating the purpose of
clustering. For 24–36 clusters, the clusters are easily
distinguishable and can be read on a single-line PCP plot,
allowing individual clusters to be selected. Although some
overlap still exists, this can be overcome by inspecting two
or three clusters that are close together instead of one in
order to select a final solution.

VI. VISUALIZATION TECHNIQUES APPLIED
TO RF SINGLE CELLS

The visualization methods discussed here will explore
their application to the results of the C-band SW single-cell
and X-band TW single-cell optimization.
The methods discussed are as follows: parallel coordi-

nate plots [31], radar charts [32], polar plots, decision
maps (DMs) [33], heat maps [34], and 3D Pareto surface
approximations.
We show how using the methods aids the selection

process for two example single-cell designs. It is worth
noting that the visualization techniques shown are used to
aid a selection, not provide a final design. In reality,
different designs possess different design specifications,
and those design requirements coupled with the methods
shown can lead to the final selection.

A. Parallel coordinate plots

Figure 17 shows a PCP for a C-band SW single cell. The
plot is shown twice with different plot order, showcasing
degree of freedom 4. The left plot prioritizes showing low-
Z Pareto optimal solutions and the relationship between
low-Z single cells and the surface field values. The right
plot shows high-Z solutions more clearly. A selection
process is not readily obvious due to the large number
of solutions, hence the need for clustering. PCPs can also
be used to explore the entire input and objective space; this
is particularly useful if the plot is color coded with the
density of lines as shown in Fig. 18. It is clear from this plot
which variables have the largest effects on the objectives
and can also inform the choice of geometrical constraints or
values of the input parameters for future optimization runs.
A refined PCP is plotted in Fig. 19. The plot is more

readable than Fig. 17, as all solutions can be traced fully.
High-Z solutions also have low peak surface magnetic
fields; however, they have high S1=2c =Eacc and Epk=Eacc.

Conversely, low-Z solutions have low S1=2c =Eacc and
Epk=Eacc; however, they can adopt a large range of values
for Bpk=Eacc. A particular solution can be selected by
observing the plot. Very high values of Z result in very large
surface peak electric and Sc fields. Similarly, low peak
electric field returns very low Z. This essentially omits
solutions at the two extremes in Z (the yellow and black
lines in Fig. 19). Solutions that give small peak fields while
not compromising massively on Z are the solutions in
purple. Another way to arrive at this is to take the only
solutions we have not discussed, orange solutions. Orange
solutions offer high Z and peak surface magnetic fields;
however, they have high Sc and surface electric field. This
means we achieve highly in two objectives and low in the
remaining two. Purple solutions allow for high values in

FIG. 17. PCPs showing the Pareto optimal space for a C-band SW single cell. The same plot is displayed twice with different plot
order, where (b) is the reverse of (a). All objectives require maximising.
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three objectives while compromising only slightly on the
remaining objective, Z. If shunt impedance per unit length
was of particular importance, the pink band of solutions
between the orange and purple solutions are possible. PCPs
allow the user to understand how the range of objective
values interact. This can be realized in Fig. 19, where the
majority of clustered solutions pass through the same point
on the Eacc=Bpk axis.

B. Radar charts

Radar charts (RCs, also known as spider charts) are
similar to PCPs, the difference being the solutions are
plotted across axes equally spaced in θ, as opposed to
the x or y Cartesian axis. RCs are visually more interesting
than PCPs; however, comparing objectives for a single

solution is more difficult, as the distance along each axis
is harder to assess relative to parallel axes. When many
solutions are plotted, RCs aid visualizing certain features of a
dataset due to the periodicity of the plot. Each solution makes
one complete turn and as a result provides an additional
objective interaction relative to PCPs. An RC is shown in
Fig. 20 for a C-band SW single cell with 20 clusters.
The RC shows essentially the same information as the

PCP in Fig. 19, however with fewer clusters. The RC shows
a symmetry between Eacc=Epk and Eacc=S

1=2
c in addition to

a symmetry between Eacc=Bpk and Z. Again, it is easy to
see the solutions in purple offer good solutions that
minimize the peak fields while not minimizing Z. The
RC also shows the pink solution as the best trade-off
between all four objectives, provided they are of equal

FIG. 18. Density PCP for X-band traveling wave cavity, showing input and output spaces. The density of the lines represents the
number of solutions in a certain region, and red lines show where initial input space constraints could potentially be reduced for
improved convergence speed [35].

FIG. 19. Refined PCP for C-band SW single cell, showing four
objectives with 30 clustered solutions.

FIG. 20. Refined RC showing four objectives for the C-band
SW single cell with 20 clustered solutions.
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importance. The orange and yellow solutions show very
strong values for Z and Bpk=Eacc; however, they require the
user to tolerate high Epk=Eacc and Sc.
PCPs and RCs allow datasets with a large number of

objectives to be compared with a single plot, making them
an attractive technique for multiobjective visualization. The
addition of a color scale incorporates an additional level of
clarity, which can allow objectives physically far away on a
plot to be compared with more ease. While all visualization
techniques display the data in a way that allows the user to
draw connections between various objectives, PCPs and
RCs have the ability to display this information in a very
simple form. The relationship between Z and Epk=Eacc is
far more easily interpreted from a PCP than a DM. This is
because PCPs display raw data. PCPs and RCs can also
quickly show when there is not a clear correlation between
objectives. An example of this is shown in Fig. 20, which
demonstrates the lack of structure between Bpk=Eacc and

S1=2c =Eacc. Relationships between nonadjacent objectives
are easier to understand using an RC. RC solutions
complete one full turn when plotted and, as a result,
provide an additional objective connection than a PCP.
RCs are also able to show subtle symmetry between
objectives. This can be seen in Fig. 20, where the clustered
data can be effectively separated further into two main
clusters. The first main cluster creates a flat diamond shape
(in yellow) and corresponds to all high-Z solutions. The
other main cluster (purple and black) creates a lopsided kite
that is maximized in all peak fields and has relatively low Z.
The solutions that offer the best trade-off are the solutions
that do not readily fit into either of these main clusters or
have properties that can be linked with both main clusters
(solution in pink).
PCPs and RCs, however, are useful for selecting a final

design only if the user has compressed the original dataset
into a small number of clusters. The PCP or RC becomes
rapidly less useful as the number of plotted solutions
increases and effectively works only when the number
of solutions is already small. Clustered PCPs and RCs
provide a wide array of clustered solutions from which a
final design can chosen based upon design requirements.

C. Decision maps

Standard decision maps display biobjective Pareto fronts
as a function of a third objective [33]. Recently, animated
interactive DMs have been developed in order to display
additional objectives. Figure 21 displays four objectives in
the form of a DM; the 2D Pareto front of Epk=Eacc vsffiffiffiffiffi
Sc

p
=Eacc is shown as a function of binned Z and the

surface magnetic field. A candidate can again be selected
by omitting other candidates. Minimum-Z solutions with
small peak surface fields can be omitted, as can maximum-
Z solutions. In order to best compromise between objec-
tives, the Pareto fronts that have Z in the range

86–91 MΩ=m possess solutions with the best trade-off
between all four objectives. Some of the advantages of
DMs are that a large number of initial points do not reduce
the efficacy of the plot, as the data are binned during the
process. Increasing the number of points will actually
improve the accuracy of the individual points, meaning
it is an attractive way of dealing with very large datasets.
Another advantage of a DM is that the raw objective values
can be inferred more easily than the PCP or RC. A
disadvantage is that the number of objectives is limited
to four, unless an interactive method is employed, where
five objectives can be used with scroll bars. As a result, for
a large dimensional set, PCPs and RCs provide a more
appropriate choice of visualization technique.

D. Heat maps

Another approach is to use heat maps (HMs), which can
be useful for visualizing the entire design and objective
space while also allowing individual solutions to be
explored. Heat maps display the interaction between two
matrix elements as a color of varying intensity. The entire
design and objective space can be visualized in this way,
giving a complementary method to PCPs for visualizing
entire datasets, although they can suffer from the same
problem of overcrowding. For the single-cell study, the
matrix rows show all feasible solutions, and the matrix
columns display the inputs and/or objectives. The corre-
sponding map provides a 2D visualization of how each
objective interacts with a solution as well as how the
objectives interact for any given solution. If the data are
plotted in no particular order, heat maps are of little use, as
it is hard to extract meaningful information due to the
random order of the solutions. If the data are clustered or
ranked by similarity, then it becomes easier to see param-
eter and objective interactions, as explained in Ref. [36].

FIG. 21. DM for C-band SW cell. The Pareto fronts of Epk=Eacc

vs Sc1=2=Eacc for each bin in Z are displayed as a function of high
and low values of Bpk=Eacc.
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Figure 22 shows the heat map for the Pareto optimal
points for the SW cavity with the frequency within the
bounds 5.712� 5 MHz. On the left, the entire objective
space is shown, normalized and clustered using hierarchical
clustering but keeping all of the solutions. By knowing the
maximum and minimum values of the objectives, regions
of interest can be identified and the cluster expanded to
zoom in. This can be repeated until a small subset of
solutions is obtained, and then the individual geometries
can be explored. One advantage of heat maps is that, by
clustering the entire input and output space, the clusters
can also provide insight into cavity shapes that perform
similarly. An example of a solution selection using this
method is shown in the figure. An area where Epk=Eacc is
≈4–5 and high values of Z occur is expanded, and then a
solution is selected. This method is not ideal for finding an
optimal solution, as individuals with better performance
can easily be missed, but a general feel for the design space
can be easily obtained, and the interactive element makes
exploring the space quite simple. Also, if large values of an
objective exist in a set with smaller values, then this may
skew the heat map, causing the full range of colors to not be
used, meaning that certain datasets may need to be filtered
beforehand.

E. 3D visualization

Another option for visualizing the optimization results
would be to use a 3D scatter plot or 3D bubble plot. These
were found to be difficult to read, and it becomes increas-
ingly more difficult to select individuals as the number of
Pareto optimal points increases. In 3D, for a continuous
solution space the Pareto optimal points can be an approxi-
mation of a smooth 3D Pareto surface, and, therefore,

another method explored was to interpolate between the
points or fit a polynomial surface to construct an approxi-
mation of the 3D surface. Although this can give a good
indication of what the surface may look like, the plots were
not useful for selecting individual candidates. One way to
plot the 3D surface and retain useful information about
individuals is by binning the data in one of the variables
and then constructing 2D Pareto fronts for each bin. An
example of the application of this method is shown in
Fig. 23 for the SW cavity. By projecting the fronts onto the
three axes and using color to represent a fourth objective

FIG. 22. (a) Heat map showing both design and objective space. (b) Heat map showing only objective space. (c) Enlarged section with
low values of Epk=Eacc and high Z. (d) Example of a selected cavity using the heat map method.

FIG. 23. Z vs Epk=Eacc vs
ffiffiffiffiffi
Sc

p
=Eacc 3D scatter plot of Pareto

optimal space for a C-band SW single cell. Individual 2D fronts
are projected onto the planes of the plot for clarity.
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(Bpk=Eacc in this case), one can clearly identify the 3D
Pareto surface shape and potential regions of interest.
3D Pareto front approximations provide a simple method

for visualizing four objectives and enable preservation
of the entire 3D front shape, showing clearly how the
objectives interact with each other. One can then hone in on
regions to select individual solutions or repeat the plots
with smaller bin sizes or a reduced objective space. The
main drawbacks are that, for more than four objectives,
multiple plots would be required in order to visualize all
the Pareto fronts and that some information is lost when
binning in one objective, as points that do not fall on the
individual 2D Pareto fronts are not shown.

VII. SOLUTION SELECTION

In this section, the two most useful visualization tech-
niques are explored and applied to select solutions for both
the SWand TW cavities, each having different design goals.

A. Standing wave cavity selection

The DM in Fig. 24 shows the
ffiffiffiffiffi
Sc

p
=Eacc vs Epk=Eacc

Pareto fronts inside the 1 MΩ=m bins for the high-Z cases
where Z > 86 MΩ=m. The points have been clustered
using the method discussed in Sec. V, using 200 clusters as
the individual points are small enough to see when plotted
on the scatter plot, allowing for more clusters. It can be
clearly seen that to get the lowest possible values of
Epk=Eacc and

ffiffiffiffiffi
Sc

p
=Eacc a higher value of Bpk=Eacc must

be tolerated. An application of this method for solution
selection is now explored assuming that the design is
limited by the peak electric field (Epk=Eacc < 4.5) and a
high shunt impedance is required for maximum efficiency.
First, the region of 4.4–4.6 is explored to find potential
solutions that are close to Epk=Eacc ¼ 4.5, as solutions

close to the limit will provide the highest values of Z, which
can be seen in Fig. 24. Looking at the solutions in this
region, three candidates are selected: SW1 with the lowest
value of

ffiffiffiffiffi
Sc

p
=Eacc and a smaller value of Bpk=Eacc if this is

required in the design, SW2 with the maximum value of Z,
and SW3, a solution with a trade-off somewhere in the
middle. The selected solutions are shown in the plot and
also given in Table III.

B. Traveling wave cavity selection

The TW cavity selection was performed using the
clustering and PCP visualization technique. First, all
solutions with vg ¼ 0.97%–1.03% c were clustered into
24 clusters as shown in Fig. 25. Two design choices were
considered, one where the design was Epk=Eacc limited and
the other limited by

ffiffiffiffiffi
Sc

p
=Eacc. This led to the choice of

cluster 1 for the first case and cluster 2 for the second.
Although there was a cluster with a smaller value of
Epk=Eacc, it had a significantly lower value for the shunt
impedance and was, therefore, not considered. The two
selected clusters were opened to inspect the individual
solutions and perform the final selection; the opened

FIG. 24. 2D clustered scattered points with DM overlaid for the
SW cavity to enable solution selection. Dashed lines show
regions of interest if a limit of Epk=Eacc < 4.5 is imposed.
Circles show selected solutions based on other objective values.

TABLE III. SW and TW example selections.

Quantity SW1 SW2 SW3 TW1 TW2

Epk=Eacc 4.3 4.57 4.51 2.99 2.08
Bpk=Eacc (mT=MVm) 3.59 3.70 3.53 3.16 3.68ffiffiffiffiffi
Sc

p
=Eacc (

ffiffiffi
A
V

q
) 0.0295 0.038 0.035 0.0182 0.0253

Z (MΩ
m ) 92.05 96.5 95.2 124.3 118.4

vg (% c) � � � � � � � � � 0.978 0.99

FIG. 25. TW cavity objective space with four objectives
showing 24 clusters. Clusters 1 and 2 are the selected clusters
for opening and picking a solution.
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clusters are shown in Fig. 26. For cluster 1, there is little
variance in the value of Epk=Eacc, and, therefore, the choice
was based on the best value for the other three objectives;
the final chosen solution is shown in Fig. 27. For cluster 2,
there is more variance in the value of Bpk=Eacc, with the
outliers having a lower Z value and, therefore, not
considered. The solutions with the smallest values of

ffiffiffiffiffi
Sc

p
=Eacc also have a reduced Z, and, therefore, a solution

with a larger Z was chosen, as the variance in
ffiffiffiffiffi
Sc

p
=Eacc

was small enough to justify taking the solution with larger
Z. The final solutions are shown in Table III.

VIII. DISCUSSION AND CONCLUSIONS

In this work, MOGAs have been applied to both X-band
TW and C-band SW single-cell designs. The single-cell
design was constructed using the NURBS method,
allowing for more complexity in the shape, which has
been shown to improve the performance in the low
Epk=Eacc region by up to 10%. The benefits of MO
optimization methods as opposed to single objective have
been explored, showing that MO methods provide more
insight into the design space and trade-offs with a com-
parable amount of computational effort. The best ways of
dealing with the optimization constraints of the frequency
and group velocity for rf cavity design have also been
explored. The algorithms produced a set of individually
unique solutions that are termed nondominated. If no
subjective weight is applied to an objective, all solutions
are deemed as optimal as each other in the Pareto optimal
objective space. In order to select the final single-cell
design, the trade-off between Pareto optimal solutions has
been explored through the use of multiobjective visuali-
zation techniques. Various techniques that preserve initial
objective values have been identified, and the application of
these techniques to aid in the solution selection process has
been demonstrated.
As the optimizations produce a large number of Pareto

optimal points, clustering methods have been used to group
very similar solutions to allow visualization methods to be
used more effectively. This technique can be applied to any
optimization results without the loss of important solutions,

FIG. 26. Opened clusters from Fig. 25. (a) Cluster 1. (b) Cluster 2.

FIG. 27. Two potential final designs for an X-band TW single
cell, chosen using clustering and the PCP visualization method
[top from left to right: S1 (low Epk=Eacc) and S2 (low

ffiffiffiffiffi
Sc

p
=Eacc)]

and a C-band SW single cell, chosen using the DM method
[bottom from left to right: S1 (low

ffiffiffiffiffi
Sc

p
=Eacc), S2 (high Z), and

S3 (trade-off between Z and
ffiffiffiffiffi
Sc

p
=Eacc)]. Field shown is the

absolute value of the electric field for 1 J stored energy.
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as individuals with the best characteristics within the
clusters are preserved. It was found that if the number
of objectives is ≥ 4, then clustered parallel coordinate plots
are the superior option for selecting individual solutions, as
they are scalable to a large number of objectives and allow
the designer to view the entire objective space easily and
identify trade-offs. If the number of objectives is ≤ 4, then
decision maps overlaid onto 2D scatter plots were found to
be the best for selecting solutions, as all objectives and
more solutions can be displayed on one plot. These
methods can be used to aid designers, as the limits and
requirements can easily be modified to select new designs.
The results can also be incorporated into a systemwide
design including the rf power parameters such as the pulse
length, repetition rate, and power levels, for example.
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