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Radio-frequency cavities used in modern particle accelerators operate in TMm10-like modes composed
of a single, dominant multipole of order m; m ¼ 0 modes are used for the longitudinal acceleration of a
particle beam and m ≠ 0 modes for controlling transverse beam dynamics. The practical design of the
latter, however, can be complex and require extensive analysis through the iteration of both approximate
mathematical models and computationally expensive simulations to optimize the performance of the
structure. In this paper we present a new, systematic method for designing azimuthally modulated rf
cavities that support modes composed of any number and magnitude of user-specified transverse
multipoles, either with or without a longitudinally accelerating component. Two case studies are presented
of rf cavity designs that support modes composed of a longitudinally accelerating field in addition to a
single transverse multipole, and designs that support modes composed of two transverse multipoles. We
discuss generalizing the discoveries and conclusions from the two case studies to designing cavities that
support modes composed of any number of multipoles. The theoretical work is verified with analysis of 3D
simulations and experimental measurements are presented of a cavity operating in a 3 GHz mode that
simultaneously longitudinally accelerates and transversely focuses a beam.
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I. INTRODUCTION

The rf cavities that control transverse beam dynamics by
operating in transverse magnetic TMm10-like modes com-
posed of a single, dominant transverse multipole of order
m ≠ 0 have a number of applications in particle acceler-
ators. For example, cavities operating in a TM110-like mode
with a dominant dipole component in the field have
applications in separating a single particle beam into
multiple beams [1–3], providing longitudinal diagnostic
measurements on a particle beam such as measuring its
emittance [4], controlling electron beams in free-electron
lasers by acting as emittance exchangers [5], compressing
x-ray pulses in synchrotron light sources [6], and providing
a head-tail rotation to particle bunches to allow for
luminosity control in particle colliders as crab cavities
[7]. The latter were investigated at the KEKB collider
at KEK [8] with several designs [9] proposed and

High-Luminosity LHC (HL-LHC) upgrade at CERN
[10]. Additionally, cavities operating in a TM210-like mode
with a dominant quadrupolar component are being inves-
tigated for application in Landau damping transverse beam
instabilities in the HL-LHC [11].
With m, n, and p respectively denoting the azimuthal,

radial and longitudinal order of the electromagnetic mode,
it is a known and well-studied result that a pillbox cavity,
which is an enclosed rf cavity with a circular cross section,
will support TMmnp-exact modes with unique resonant
frequencies for distinct values of m, n, and p [12]. In order
to use an rf cavity that operates in a m ≠ 0 TMmnp mode in
a particle accelerator, novel and elaborate designs [4,13,14]
that introduce azimuthal and/or longitudinal asymmetries
are required to separate out any degenerate TMmnp same-
order modes in frequency space, damp any lower-, same-,
and higher-order modes that interfere significantly with
beam dynamics, and to optimize the figures of merit such as
R/Q. Due to the complexity of such designs, the exact
mathematical form of the EM field of the desired mode,
and therefore its exact effect on beam dynamics, cannot
be solved for analytically. As a result, computationally
expensive simulations are required to optimize designs
[14,15], and these may be used in tandem with novel
mathematical models developed specifically to provide
quick but approximate insights into the optimization
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process [16]. Even more, the implementation of azimuthal
and longitudinal asymmetries introduces unwanted trans-
verse multipoles into the desired TMmnp mode, and
analysis is required to ensure these unwanted multipoles
do not exceed tolerance levels for the accelerator’s oper-
ation [17]. If tolerance levels are exceeded, then this may
require a redesign of the rf cavity system: for example, rf
cavities that operate in TM010-like modes can be designed
with dual-port power couplers instead of single-port cou-
plers to prevent the introduction of unwanted dipolar
components [18].
In addition to the application of rf cavities that operate

in modes composed of a single multipole, designing rf
cavities to operate in modes composed of numerous multi-
poles could have useful applications in particle acceler-
ators. For example, the use of elliptical irises to introduce
transverse quadrupolar focusing in accelerating rf cavities
was investigated [19–21] for use in the proposed future
linear collider CLIC [22].
In this paper, we present a systematic method for

designing rf cavities that support modes composed of
any desired number and magnitude of multipolar compo-
nents. We define these modes with the notation TMfMgηp.
fMg denotes the subset of integers representing the multi-
poles composing the mode: for example, the TMf0;1gηp
modes are solely composed of a longitudinally accelerating
monopolar component and a transverse dipolar component.
We use η to denote and distinguish the more complex radial
order of general TMfMgηp modes from the simpler TMmnp

modes, and p continues to denote the longitudinal order of
the mode. The method can be applied to modes with any
value of p. For simplicity, however, we study the subset of
p ¼ 0 modes with no longitudinal variation because the
vast majority of rf cavities in particle accelerators operate in
p ¼ 0 modes. The rf cavities that support TMfMgη0 modes
containing at least two distinct, multipolar components are
termed azimuthally modulated cavities because we find that
the cavity cross section, r0ðθÞ, must vary with the azimuth.
Such cavities have benefits and application in particle
accelerators because the TMfMgη0 mode can exactly intro-
duce any number and magnitude of desired multipolar
components, is nondegenerate which overcomes the need
to separate out a same-order mode in frequency space, and
has a field profile that can be expressed analytically
throughout the cavity.
Section II begins with the derivation of the transcen-

dental equation that must be numerically solved to deter-
mine the azimuthally modulated cross sections that support
specific TMfMgη0 modes. Insight into the properties of these
azimuthally modulated cavity shapes can be gained using
mathematical and graphical methods and we first introduce
these techniques by applying them to the simple case of the
TMmn0 modes, known to be supported by cavities with a
pillbox shape. We then present two case studies of the
azimuthally modulated rf cavity shapes that support the

TMf0;m1gη0 modes containing a longitudinally accelerating
monopole and a single transverse multipole, and those that
support the TMfm1;m2gη0 modes containing two transverse
multipoles. We afterwards discuss generalizing the dis-
coveries and conclusions made in these two case studies for
the design of cavity shapes that support modes with any
number of multipoles. In Sec. III, we present and analyze
simulation results of azimuthally modulated rf cavities
designed to support the TMf0;3gη0 modes containing a
monopolar and a sextupolar component. Finally, in
Sec. IV we show the results of experimental bead pull
measurements of a novel rf cavity operating in a 3 GHz
TMf0;2g20 mode.

II. THEORY

A. Deriving the form of a TMfMgη0 mode

In this paper, we study perfectly conducting, enclosed rf
cavities of longitudinal extent L and cross section r0ðθÞ.
The modes supported by these azimuthally modulated
cavities must have an electric field that satisfies the
boundary conditions Erðr; θ;�L=2Þ ¼ Eθðr; θ;�L=2Þ ¼
0 at the cavity end points and Ezðr0ðθÞ; θ; zÞ ¼ 0 at the
cavity surface. Imposing the former boundary condition
and assuming that the particle’s transverse momentum
is negligible compared to its longitudinal momentum,
Panofsky and Wenzel derive that the change in transverse
momentum of a particle that passes through an rf cavity
can be determined solely by the transverse gradient
of the longitudinal component of the electric field,
Ezðr; θ; zÞ [23]:

Δp⃗⊥ðr; θÞ ¼ −i
q
ω

Z
L=2

−L=2
∇⊥Ezðr; θ; zÞdz; ð2:1Þ

where q is the charge of the particle and ω is the resonant
angular frequency of the rf cavity mode. The inclusion of
the imaginary unit means the transverse force is π=2 out of
phase with the longitudinal force.
The Panofsky-Wenzel theorem therefore states that only

the longitudinal electric field of the mode needs to be
determined in order to calculate the effect of the transverse
forces that act on a particle beam passing through a cavity.
The general form of the electric field, E⃗ðr; θ; zÞ, of a mode
supported by an rf cavity of any design is derived in
Ref. [24]. This general form can be simplified to determine
the specific form of the longitudinal electric field in
azimuthally modulated cavities by applying the boundary
conditions at the end points and cavity surface. Applying
the end point boundary condition, we find that modes of
distinct longitudinal order p must independently satisfy the
boundary conditions. Applying the surface boundary con-
dition, we find that the allowed modes belong to one of
two familiar sets: either TM modes with no longitudinal
magnetic field or TE modes with no longitudinal electric
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field. In this paper, we only study TM modes with p ¼ 0:
TE modes are ignored as they are less frequently used in
particle accelerators and their effect on beam dynamics
cannot be analyzed using the Panofsky-Wenzel theorem.
The general form of the longitudinal electric field given

in Ref. [24] reduces in the case of TMfMgη0 modes to

Ezðr; θ; zÞ ¼ J0ðkrÞg̃0 þ
X∞
m¼1

JmðkrÞg̃m cos ðmθ − ϕmÞ;

ð2:2Þ

where k ¼ ω=c is the wave number of the mode, g̃m and ϕm
are arbitrary constants that respectively denote the magni-
tude and offset of the multipole of azimuthal order m, and
Jm denotes the Bessel function of the first kind of order m.
We note that ϕm ¼ 0 corresponds to a normal multipolar
field and ϕm ¼ π=2 to a skew multipolar field.
In this paper, the aim is to determine a method for

designing rf cavities that support desired modes composed
of multipoles of specified magnitudes. If we consider the
set of azimuthally modulated cavities with cross sections

rðηÞ0 ðθÞ that support a desired TMfMgη0 mode, then the

boundary condition EzðrðηÞ0 ðθÞ; θ; zÞ ¼ 0 must be satisfied
at the surface of each of these cavities. Applying this to
Eq. (2.2) gives

J0(kr
ðηÞ
0 ðθÞ)g̃0 þ

X∞
m¼1

Jm(kr
ðηÞ
0 ðθÞ)g̃m cos ðmθ − ϕmÞ ¼ 0:

ð2:3Þ

Equation (2.3) is transcendental and must, in general, be

solved using numerical methods to determine rðηÞ0 ðθÞ.
Doing so for user-specified values of k, g̃m and ϕm returns
the set of unique azimuthally modulated cross sections,

rðηÞ0 ðθÞ, that support the corresponding TMfMgη0 modes.

B. Modes with a single multipolar component

Although numerical methods must generally be used to
solve Eq. (2.3) for all θ, insight into the properties of the
azimuthally modulated rf cavities that support TMfMgη0
modes can be gained through analysis using mathematical
and graphical methods.
To introduce the techniques used for understanding the

properties of azimuthally modulated cavities that support
modes with more than a single multipole, we briefly
analyze the TMm1n0 modes that are known to be supported
by a circular pillbox shape [12]. For this case only, Eq. (2.3)
can be solved analytically:

Jm1
(krðnÞ0 ðθÞ)g̃m1

cos ðm1θ − ϕm1
Þ ¼ 0 ð2:4Þ

is solved for all θ if

Jm1
(krðnÞ0 ðθÞ) ¼ 0 →

ωrðnÞ0

c
¼ jm1n; ð2:5Þ

where we define ϕ0 ¼ 0 and jm1n is the nth root of the
Bessel function of order m1. This shows that the cross
section of the cavity that supports a TMm1n0 mode is a circle

of constant radius, rðnÞ0 ¼ cjm1n=ω, as expected.
There are a number of important, known results for the

TMm1n0 modes [12]. First, because all Bessel functions
have (n − 1) turning points in the range [0, jm1n] and the
field varies with the azimuth simply as cos ðm1θ − ϕm1

Þ,
the integer n is the number of poles (that is minima or
maxima) of Ez along any radial line that connects the center
of the cavity to its surface, except the nodal lines orientated
at θq ¼ð2qþ1Þπ=2m1þϕm1

(q ∈ Z). Second, the m1 ≠ 0

modes are degenerate because the boundary condition in
Eq. (2.4) is satisfied for all values of ϕm1

. In contrast, the
TM0n0 modes are not degenerate. Third, as jm1n is unique
for all distinct values of m1 and n, the resonant frequencies
of each of the TMm1n0 modes of distinct m1 and n are
unique. Thus to use the TMmn0 modes to introduce
numerous multipoles at the same frequency, multiple pill-
box cavities of different radii would have to be used.
Finally, the TM010 mode is the fundamental TMmnp mode
with the lowest resonant frequency.
We can also use a graphical method to argue that TMm1n0

modes will be supported by cavities with a circular cross
section. Considering the 3 GHz TM1n0 modes with g̃1 ¼ 1

and ϕ1 ¼ 0, Eq. (2.4) states that the rðnÞ0 ðθ0Þ solutions at a
particular angle θ0 occur where, if plotted as a function of r,
J1ðkrÞ cos θ0 intersects the horizontal r axis. Figure 1 plots
J1ðkrÞ (the case where θ0 ¼ 0) for r ¼ ½0; 25� cm. The first
three positive intersections with the r axis are indicated by

FIG. 1. J1ðkrÞ plotted against r with k ¼ 2π × 3 GHz=c. The
black, blue, and cyan dashed lines show three points of
intersection with the r axis.
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the dashed black, blue, and cyan lines that correspond
respectively to the rðnÞð0Þ solutions with n ¼ 1, 2, and 3.
We could next consider plotting J1ðkrÞ cos θ for many θ

values and determining where the intersections lie for each
θ. This is not necessary, however, because the cosine term
in J1ðkrÞ cos θ acts as a θ-dependent amplifying term on
the Bessel function and thus the locations of the inter-
sections with the r axis will not change. As a result, we

conclude that the rðnÞ0 ðθÞ solutions are constant with respect
to changes in θ and so plotting any rðnÞ0 ðθÞ solution in
Cartesian space plots a circle. This graphical argument can
be generalized to argue that TMm1n0 modes of any g̃m1

and
ϕm1

will be supported by a circular pillbox.

C. Modes with a monopolar and a single transverse
multipolar component

We now investigate the properties of the TMf0;m1gη0
modes and the corresponding azimuthally modulated cross
sections that support them. We begin with general math-
ematical analysis.
From Eq. (2.2), the subset of TMf0;m1gη0 modes with

ϕm1
¼ 0 has a longitudinal electric field of the form:

Ezðr; θ; zÞ ¼ J0ðkrÞg̃0 þ Jm1
ðkrÞg̃m1

cosm1θ; ð2:6Þ

and from Eq. (2.3), must satisfy the boundary condition:

J0(kr
ðηÞ
0 ðθÞ)g̃0 þ Jm1

(krðηÞ0 ðθÞ)g̃m1
cosm1θ ¼ 0: ð2:7Þ

The periodicity of the cos m1θ function in Eq. (2.7)
means that both the longitudinal electric field of a
TMf0;m1gη0 mode and the corresponding azimuthally modu-
lated cross section have m1-fold rotational symmetry.

Additionally, rðηÞ0 ð0Þ and rðηÞ0 ðπ=m1Þ are turning points of

opposite forms in the cross section and so if rðηÞ0 ð0Þ is a

maximum then rðηÞ0 ðπ=m1Þ is a minimum, or vice versa.
Furthermore, if we consider the specific angles θq ¼

ð2qþ 1Þπ=ð2m1Þ ðq ∈ ZÞ, the cosine term vanishes and
Eq. (2.7) becomes

J0(kr
ðηÞ
0 ðθqÞ)g̃0 ¼ 0 →

ω

c
rðηÞ0 ðθqÞ ¼ j0x; ð2:8Þ

where x ∈ Z.1 As well as relating the cavity frequency and
radial value at these angles to the Bessel roots j0x, Eq. (2.8)
defines η for the TMf0;m1gη0 modes as the number of poles
in Ez specifically along the θq ¼ ð2qþ 1Þπ=ð2m1Þ radial
lines. This can be contrasted with the generality of the
interpretation of n as the number of poles in a TMmnp mode
along any non-nodal, radial line.

As per the TM0n0 modes in the circular pillbox cavity,
the TMf0;m1gη0 modes supported by azimuthally modulated
cavities are also nondegenerate with no same-order mode.
Furthermore, by the Courant nodal domain theorem [25],
the TMf0;m1g10 modes are the fundamental TMmodes in the
azimuthally modulated cavities that support them.
Additionally, we note that if the ratio of the transverse

multipolar component to the monopolar component is zero,
g̃m1

=g̃0 ¼ 0, the form of Ez in Eq. (2.6) is equivalent to that
of a TM0n0 mode. Such modes are supported by a cavity
with a circular cross section, as discussed in Sec. II B. The
cross section of the cavity that supports a TMf0;m1gη0 mode
for a small ratio of transverse multipole to monopole,
g̃m1

=g̃0 ≪ 1, will therefore be perturbed only slightly from
circular. Taking the other extreme whereby the transverse
multipole to monopole ratio tends to infinity, g̃m1

=g̃0 → ∞,
the cavity cross sections do not tend back to circular but
instead tend to unique, noncircular shapes. This asymmetry
arises because the TMm1n0 modes are degenerate whereas
the TMf0;m1gη0 modes are nondegenerate for all ratios of
g̃m1

=g̃0.
Finally, we consider the azimuthally modulated cross

sections that support general TMf0;m1gη0 modes for any value
of ϕm1

. Introducing a ϕm1
≠ 0 term into Eqs. (2.6) and (2.7),

we find the set of general cavity cross sections are identical to
the subset of cavity cross sections withϕm1

¼ 0, except for a
physical rotation about the z axis of ϕm1

=m1.

1. Example: Modes with a monopolar
and a sextupolar component

It turns out that for certain combinations of m1 and η,
there is a limit on the ratio of transverse multipole to
monopole beyond which the cross section of the azimu-
thally modulated rf cavity becomes discontinuous. This is
best illustrated through an example and here we consider
3 GHz TMf0;3gη0 modes with ϕ3 ¼ 0. Inserting this, m1 ¼
3 and k ¼ 2π × 3 GHz=c into Eq. (2.7) gives the longi-
tudinal electric field profile of such a mode:

Ezðr; θ; zÞ ¼ J0 ðkrÞ g̃0 þ J3 ðkrÞg̃3 cos 3θ; ð2:9Þ

and the corresponding cross section can be determined
from Eq. (2.7) which we rearrange to

J0(kr
ðηÞ
0 ðθÞ) ¼ −

g̃3
g̃0

J3(kr
ðηÞ
0 ðθÞ) cos 3θ: ð2:10Þ

We first solve Eq. (2.10) numerically for a sextupole to
monopole ratio of g̃3=g̃0 ¼ 0.95. The cross sections of the
rf cavities that support the η ¼ 1, 2, and 3 modes are plotted
in Fig. 2(a). They have threefold rotational symmetry, as
expected.
To help understand the properties of these azimuthally

modulated cavities, we analyze Eq. (2.10) graphically.
1The reason x ≠ η is due to the possibility of conditional

modes, discussed in Sec. II C 2.
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Generalizing the monopole term to J0ðkrÞ and sextupole
term to −0.95J3ðkrÞ cos 3θ then, if we plot these two
functions against r for a given θ ¼ θ0, Eq. (2.10) states the
rðηÞðθ0Þ solutions are the points at which the two functions
intersect. Figure 2(b) plots J0ðkrÞ in red and the two
functions�0.95J3ðkrÞ in green, the latter corresponding to
the minimum and maximum values of cos 3θ0 ¼ ∓1. The
η ¼ 1, 2, and 3 points of intersection of the red and green
lines are indicated respectively by the black, blue, and cyan
vertical dashed lines.
Considering the intersections at other θ values, we note

that the monopole term has no θ dependence and thus
intersections will always lie on the red, monopolar line for

all θ. In contrast, the sextupolar term contains a cosine term
that acts as a θ-dependent amplifying term on −0.95J3ðkrÞ.
As Fig. 2(b) plots �0.95J3ðkrÞ which correspond to the
maximum and minimum amplification, intersections at all
other θ must occur between these maximum and minimum
intersections. The solid black, blue, and cyan lines on
Fig. 2(b) show the η ¼ 1, 2, and 3 intersections for all θ and
it is clear that each rðηÞðθÞ solution is bounded between its
corresponding vertical dashed lines.
This graphical analysis of Eq. (2.10) in Fig. 2(b) explains

why cavity shapes in Fig. 2(a) are physically larger for
larger η. Additionally, Fig. 2(b) shows j31 > j02, that is the
third order Bessel function first intersects the r axis after the

(a)

(b)

FIG. 2. 3 GHz TMf0;3gη0 modes with g̃3=g̃0 ¼ 0.95 and ϕ3 ¼ 0.

(a) The cavity shapes, rðηÞ0 ðθÞ, that support the η ¼ 1, 2, and 3
TMf0;3gη0 modes as black, blue, and cyan lines respectively.
(b) J0ðkrÞ and −0.95J3ðkrÞ cos 3θ plotted against r for θ ¼ 0,
π=3. The η ¼ 1, 2, and 3 solutions where the two functions
intersect for all θ are plotted as black, blue, and cyan lines.

(a)

(b)

FIG. 3. 3 GHz TMf0;3gη0 modes with g̃3=g̃0 ¼ 1.2 and ϕ3 ¼ 0.

(a) The cavity shapes, rðηÞ0 ðθÞ, that support the η ¼ 1, 2, and 3
TMf0;3gη0 modes as black, blue, and cyan lines respectively.
(b) J0ðkrÞ and −1.2J3ðkrÞ cos 3θ plotted against r for θ ¼ 0,
π=3. The η ¼ 1, 2, and 3 solutions where the two functions
intersect for all θ are plotted as black, blue, and cyan lines.
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zeroth order Bessel has intersected it twice. As a result,
both the η ¼ 1 and η ¼ 2 cross sections exist in the interval

r ¼ ½0; j31�=k ≈ ½0; 10� cm, and this explains why rð1Þ0 ð0Þ is
a maximum whereas rð2Þ0 ð0Þ is a minimum in Fig. 2(a). This
is also why we could not equate η with x in Eq. (2.8) as
there may be more than one solution in an inter-
val r ¼ ½jm1ðx−1Þ; jm1x�=k.
There is a further consequence from having multiple

solutions in an interval r ¼ ½jm1ðx−1Þ; jm1x�=k: if we con-
sider increasing the value of g̃3=g̃0 beyond 0.95 then
the η ¼ 1 and η ¼ 2 solutions at the angles cos 3θ0 ¼ 1
will further converge until, at a critical ratio of g̃3=g̃0,

rð1Þ0 ðθ0Þ ¼ rð2Þ0 ðθ0Þ. To see this graphically, consider the
green line representing −0.95J3ðkrÞ in Fig. 2(b): if g̃3=g̃0
was increased from 0.95, the η ¼ 1 (black) and η ¼ 2 (blue)
intersection points at r ≈ 5.5 cm will move closer together.

The critical value at which the rð1Þ0 ðθ0Þ and rð2Þ0 ðθ0Þ
converge is numerically calculated as ðg̃3=g̃0Þcrit ¼ 0.98.
The implication of trying to solve Eq. (2.10) with

g̃3=g̃0 ¼ 1.2 > ðg̃3=g̃0Þcrit is shown in Fig. 3: for a range
of θ values around cos 3θ ¼ 0, real η ¼ 1 and η ¼ 2
solutions do not exist because there is no intersection
between the Bessel terms, and therefore solution, at

r ≈ 5.5 cm. As a result, the rð1Þ0 ðθÞ and rð2Þ0 ðθÞ solutions
are discontinuous.

This can be contrasted to the continuous rð3Þ0 ðθÞ solution
in Fig. 3(b) whereby the two terms continuously intersect
for all θ. In fact, because there is only one root to the zeroth
order Bessel function in the interval ½j31; j32�, the η ¼ 3
solution is continuous for all values of g̃3=g̃0. We can also
see that the η ¼ 3 solution is bounded within the interval

½j31; j32�=k, specifically as g̃3=g̃0 → 0, rð3Þ0 ðθÞ → j03=k, and

as g̃3=g̃0 → ∞, rð3Þ0 ðθÞ → ½j31=k for cos 3θ > 0; j32=k
for cos 3θ < 0].
The mathematical solutions to Eq. (2.3) can inform the

practical and realistic design of cavities that support
TMfMgη0-like modes for useful application in particle
accelerators. The rf cavities used in particle accelerators
must have an enclosed cross section and may have
constraints on their maximum physical size and frequency

of operation. Therefore, although the rð3Þ0 ðθÞ structure
is continuous and enclosed for the multipolar ratio
g̃3=g̃0 ¼ 1.2, it is a physically larger cavity than the

discontinuous rð1Þ0 ðθÞ and rð2Þ0 ðθÞ shapes. As a potential
compromise between creating a mode with the desired
g̃3=g̃0 ¼ 1.2 multipolar ratio whilst minimizing the physi-
cal size of the cavity that supports it, we can consider
designing an rf cavity where the cross section jumps to the
η ¼ 3 solution at the angles where real η ¼ 1 and η ¼ 2
solutions do not exist. We define such cavities that mix
modes of differing η as hybrid cavities and these are further
discussed and analyzed in Sec. III.

2. Conditional modes

For the case of the TMf0;3gη0 modes, we showed that the
η ¼ 1 and η ¼ 2 solutions are discontinuous if g̃3=g̃0
exceeds a critical value. This arises because j31 > j02
and so there are two roots to the zeroth order Bessel
function in the interval ½0; j31�. In contrast, the η ¼ 3
solution is continuous for all values of g̃3=g̃0 because there
is only one root to the zeroth order Bessel function in the
interval ½j31; j32�. Extending this, the azimuthally modu-
lated cavity designed to support a TMf0;m1gη0 mode will
have a critical limit on g̃m1

=g̃0 beyond which the solution is
discontinuous if in the ½jm1ðx−1Þ; jm1x� interval in which the

rðηÞ0 ðθÞ solution lies, there is more than one root to the
zeroth order Bessel function.
To generalize this result, we define any TMfMgη0 mode

of given multipolar content fMg and radial order η as

conditional if any corresponding rðηÞ0 ðθÞ solution is dis-
continuous for any possible combination of magnitudes of
the multipolar coefficients. A TMfMgη0 mode is therefore
unconditional if it has a continuous cross section for all
possible ratios of the multipolar coefficients.

D. Modes with two different transverse
multipolar components

Having determined the properties of azimuthally modu-
lated rf cavities that support the TMf0;m1gη0 modes in the
previous subsection, we now examine the azimuthally
modulated rf cavities that support the TMfm1;m2gη0 modes
composed of two transverse multipoles.
Using Eq. (2.2), the TMfm1;m2gη0 modes composed of

two different, transverse multipoles with m2 > m1 > 0
have a longitudinal electric field of the form

Ezðr; θ; zÞ ¼ Jm1
ðkrÞg̃m1

cos ðm1θ − ϕm1
Þ

þ Jm2
ðkrÞ g̃m2

cos ðm2θ − ϕm2
Þ: ð2:11Þ

Without loss of generality, the corresponding set of
azimuthally modulated cavity shapes can be determined
from Eq. (2.3) with ϕm1

¼ 0:

Jm1
(krðηÞ0 ðθÞ)g̃m1

cos m1θ

þ Jm2
(krðηÞ0 ðθÞ)g̃m2

cos ðm2θ − ϕm2
Þ ¼ 0: ð2:12Þ

The cross sections that solve Eq. (2.12) and support
TMfm1;m2gη0 modes require further consideration compared
to those that support TMf0;m1gη0 modes for four interlinked
reasons.
Firstly, solutions do not necessarily have an m1-fold

symmetry but instead a rotational symmetry that varies
depending upon the values ofm1,m2 and ϕm2

. As a result, η
has a more specific definition for TMfm1;m2gη0 modes.
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Secondly, a practical rf cavity must have rðηÞ0 ðθÞ > 0,

however, rðηÞ0 ðθÞ ¼ 0 is a valid solution to Eq. (2.12) for all
m1 and m2. We therefore define a TMfm1;m2gη0 mode as

forbidden if rðηÞ0 ðθÞ ¼ 0 at any angle θ.
Thirdly, solutions are not necessarily bounded within the

interval r ¼ ½jm2ðx−1Þ, jm2x�=k due to both terms in
Eq. (2.12) having differing orders of cosine dependence.
Fourthly, a practical rf cavity must be closed with

rðηÞð0Þ ¼ rðηÞð2πÞ, however, solutions of particular m1,
m2 and ϕm2

do not satisfy this condition. We define such
TMfm1;m2gη0 modes as spiral.

The Appendix derives why certain modes are forbidden
or spiral. Section II D 1 presents an example of a for-
bidden mode and Sec. II D 2 an example of a spiral
mode.
TMfm1;m2gη0 modes can also be conditional whereby the

cross section is discontinuous and a hybrid solution needs
to be considered if the ratio of the transverse multipolar
coefficient of order m1 to the transverse multipolar co-
efficient of orderm2 (or vice versa) exceeds a critical value.
A TMfm1;m2gη0 mode will be conditional if, for any θ ¼ θ0,
there is more than one root to the m1th order Bessel
function within the ½jm2ðx−1Þ; jm2x�=k interval that the

rðηÞ0 ðθ0Þ solution exists in.

1. Example: Modes with a quadrupolar
and an octupolar component

To illustrate a forbidden mode, consider the η ¼ 1, 2, and
3 cross sections that support 3 GHz TMf2;4gη0 modes with
g̃4=g̃2 ¼ 5 and ϕm2

¼ 0. Numerically solving Eq. (2.12)
with these parameters returns the cross sections plotted in
Fig. 4(a). Figure 4(b) plots the two Bessel terms for
maximum and minimum amplitude and the η ¼ 1, 2, and
3 solutions. It shows that each solution crosses one interval
and so the η ¼ 1 solution is forbidden. Additionally,
because there is only a single root to the second order
Bessel function within each ½j4ðx−1Þ; j4x�=k interval, all
TMf2;4gη0 modes are unconditional and each solution
bounded between ½j4ðη−2Þ; j4η�=k.

2. Example: Modes with a dipolar
and sextupolar component

Figure 5 shows an example of a spiral mode by plotting

the rðηÞ0 ðθÞ solutions in the range r ≈ ½0; 15� cm that support

(a)

(b)

FIG. 4. 3 GHz TMf2;4gη0 modes with g̃4=g̃2 ¼ 5, ϕ4 ¼ 0.

(a) The cavity shapes, rðηÞ0 ðθÞ, that support the η ¼ 1, 2, and 3
TMf2;4gη0 modes as black, blue, and cyan lines respectively.
(b) �J2ðkrÞ and �5J4ðkrÞ plotted against r. The η ¼ 1, 2, and 3
solutions where the J2ðkrÞ cos 2θ and −5J4ðkrÞ cos 4θ func-
tions intersect for all θ are plotted as black, blue, and cyan
lines.

FIG. 5. The rðηÞðθÞ solutions that support the 3 GHz TMf1;3gη0
modes with g̃3=g̃1 ¼ 1 and ϕ3 ¼ 0.3 is plotted in black in the
range r ≈ ½0; 15� cm.
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3 GHz TMf1;3gη0 modes with g̃3=g̃1 ¼ 1 and ϕ3 ¼ 0.3. The
solutions form a single, continuous, spiralling line which
differs from the discrete, closed solutions formed by
unconditional solutions of distinct η in previous examples.

It is evident that rðηÞ0 ð0Þ ≠ rðηÞ0 ð2πÞ and therefore this is a
spiral mode.

E. Modes with three or more different
multipolar components

Equation (2.3) can also be numerically solved to determine
the azimuthally modulated cross sections that support
TMfMgη0 modes with three or more multipolar components.
General mathematical analysis of the properties of these
modes and the corresponding cross sections that support them
is challenging. The concepts of certain modes being condi-
tional, forbidden or spiral, however, generalizes to TMfMgη0
modes with any number multipolar content and provides
rationale for understanding the numerical solutions to
Eq. (2.3) as well as helping to inform the scope and limitation
of a general azimuthally modulated rf cavity design.

III. CST SIMULATIONS

Analysis of 3D electromagnetic simulations of azimu-
thally modulated rf cavities is presented here to confirm the
validity of the theoretical work. Electric field distributions,
Helmholtz decomposition results, and mode spectra are
shown for a pillbox cavity operating in a TM310 mode, for
azimuthally modulated cavities with continuous cross sec-
tions that support the TMf0;3g10, TMf0;3g20, and TMf0;3g30
modes with g̃3=g̃0 ¼ 0.95, and for an azimuthallymodulated
hybrid cavity that supports a hybrid TMf0;3g10 − TMf0;3g30
mode with g̃3=g̃0 ¼ 1.2. All modes are normal with ϕ3 ¼ 0
and each of the cavities were designed with length 0.5 mm
and such that the mode of interest resonates at 3 GHz.
To create the hybrid cavity, the cavity wall is extended

from the rð1Þ0 ðθÞ solution to the rð3Þ0 ðθÞ solution at the angles
where the η ¼ 1 solution is no longer real. Although this
creates a closed cavity, it introduces additional transverse
multipoles into the mode because the boundary condition

Ezðr; θ; zÞ ¼ 0 must also be satisfied where the cavity wall
extends from the η ¼ 1 to the η ¼ 3 solution. The field is
small in this region compared to the field at the center,
however, and so the additional multipoles are also small.
Thus the hybrid mode is dominantly, but not solely,
composed of monopolar and sextupolar components and
the cavity will resonate close to, but not exactly at, the
designed resonant frequency.
Figure 6 shows the Ez distribution of these different

modes. The difference between the TM310 mode and
TMf0;3gη0 modes is evident by comparing the figure parts:
there is no longitudinal accelerating field at the center of
the circular pillbox cavity operating in the TM310 mode
[Fig. 6(a)] whereas there is in the case of the TMf0;3gη0
modes [Figs. 6(b) and 6(c)]. The resonant frequency of
each of the modes was calculated by CST as 3.000 GHz,
except for the hybrid cavity which resonated at 3.004 GHz.
Figure 7 shows the multipolar content of each of the five

fields calculated using the Helmholtz decomposition
method. This method is detailed in Ref. [17] and involves
exporting the longitudinal electric field along the surface
of cylinders orientated along the cavity axis and then
performing an FFT on the data to determine g̃m. To
determine any dependence of these coefficients with radial
distance, Ez is exported along 20 discretely formed
cylinders of nonlinearly spaced radii in the range [0.02,
0.95] cm. By normalizing the results to g̃3 in Fig. 7(a), it is
clear that the TM310 mode in the circular pillbox only con-
tains a sextupole component that is constant with radius. By
normalizing the results to g̃0 in Figs. 7(b)–7(d) we find the
calculated multipolar content to be as designed: for
example, in Fig. 7(b), g̃0 ¼ 1 for all radii and g̃3 ¼ 0.95
for all radii beyond r ≈ 0.03 cm. The reason for the
sextupolar and octupolar components diverging randomly
at small r from the expected constant value is because the
data must be divided by rm to determine g̃m. Simulation
errors arising from the finite accuracy of the mesh and
numerical errors arising from the pseudo-cylinders being
composed only of 360 distinct points are therefore ampli-
fied for smaller radii and larger m. Accounting for this
error, the multipoles are constant with radial distance for

(a) (b) (c) (d) (e)

FIG. 6. Ez in cavities operating in 3 GHz TM310, TMf0;3gη0 and hybrid TMf0;3g10 − TMf0;3g30 modes. Red is a maximum in the field,
blue a minimum and green is zero. The cavities are to scale: the radius of the circular pillbox is 10.15 cm. (a) TM310. (b) TMf0;3g10,
g̃3=g̃0 ¼ 0.95. (c) TMf0;3g20, g̃3=g̃0 ¼ 0.95. (d) TMf0;3g30, g̃3=g̃0 ¼ 0.95. (e) Hybrid TM, g̃3=g̃0 ¼ 1.2.
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each cavity shape and thus simulation results agree with the
radial Bessel dependence given by Eq. (2.2).

The azimuthally modulated rf cavity shapes, rðηÞ0 ðθÞ,
support the infinite number of modes that satisfy their
boundary conditions. Figure 8 plots the frequency spectra
of the 40 lowest frequency TM modes of the five different
cavity shapes. The red crosses denote the 3 GHz mode of
interest and any orthogonal degenerate modes of the same
frequency. Figure 8(a) shows the TM310 mode is not the
fundamental but the seventh lowest mode and that it is
degenerate with the skew mode, as expected. This can be
contrasted with the TMf0;3g10 modes in Figs. 8(b) and 8(e):
not only are these modes fundamental and nondegenerate,
but they also have a larger frequency separation. Addi-
tionally, while the frequency spectra of the TMf0;3g20 and
TMf0;3g30 modes is similar in distribution to that of the
circular pillbox and the modes are not fundamental, they
are evidently nondegenerate with no same-order mode. The
frequency spectra of the cavities is important because other
modes may require consideration in a particle accelerator
if they are excited, directly by the rf power supply or
indirectly by a passing beam inducing wakefields, and
this significantly interferes with beam dynamics. Any
interfering modes may require damping by incorporating

lower- and higher-order mode couplers into the design or
could necessitate a complete redesign of the cavity.

IV. EXPERIMENTAL TEST OF AN rf CAVITY
THAT SIMULTANEOUSLY ACCELERATES

LONGITUDINALLY AND FOCUSES
TRANSVERSELY

Here in Sec. IV, we show that beam pipes and a dual-port
power coupler can be incorporated into an azimuthally
modulated rf cavity design whilst maintaining desired
multipolar ratios. We also test a prototype in order to
verify that the bead pull method can be used to measure the
field of an azimuthally modulated cavity and accurately
determine the ratio of multipolar terms with minimal error.

A. Designing the cavity

Figure 9 shows the E-field distribution of a critically
coupled, single-cell, azimuthally modulated rf cavity sys-
tem designed to support a 3 GHz TMf0;2g20 mode with a
quadrupole to monopole ratio of 5.041. Instead of using
a single-port coupling system which would introduce a
dipolar component into the field of the rf cavity, a dual-port
coupling system was used in conjunction with a T-junction
waveguide design to split the input power equally into

(a) (b) (c) (d) (e)

FIG. 8. Frequency spectra of the 40 lowest frequency TM modes for the five different cavity shapes that support the mode denoted in
the part caption. The red crosses represent the 3 GHz mode of interest. (a) TM310. (b) TMf0;3g10, g̃3=g̃0 ¼ 0.95. (c) TMf0;3g20,
g̃3=g̃0 ¼ 0.95. (d) TMf0;3g30, g̃3=g̃0 ¼ 0.95. (e) TMf0;3g10, g̃3=g̃0 ¼ 1.2.

(a) (b) (c) (d) (e)

FIG. 7. The calculated multipolar coefficient, g̃m, is plotted against the distance from the center, r, with color denoting the order,m, for
cavities operating in the TM310 and four different TMf0;3gη0 modes. (a) TM310. (b) TMf0;3g10, g̃3=g̃0 ¼ 0.95. (c) TMf0;3g20, g̃3=g̃0 ¼ 0.95.
(d) TMf0;3g30, g̃3=g̃0 ¼ 0.95. (e) TMf0;3g10, g̃3=g̃0 ¼ 1.2.
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the two waveguide arms. The dual-port coupler introduces
an additional quadrupolar component into the mode.
Helmholtz decompositions of simulations showed that
by solving Eq. (2.3) for the enclosed rf cavity shape that
supports a 3 GHz TMf0;2g20 mode with g̃2=g̃0 ¼ 4.032 and
ϕ2 ¼ 0, and using this shape to create the prototype in
Fig. 9 which includes the dual-port coupler and holes at the
positions of the poles, the resultant field had a quadrupole
to monopole ratio of g̃2=g̃0 ¼ 5.041 and negligible con-
tributions from higher order multipoles. The η ¼ 2 mode
was chosen over the η ¼ 1 mode in order to give more
measurement points to consider and compare.
The rf cavity was designed as two identical halves to be

sealed together and was milled out of aluminum. Seven
10 mm diameter holes were drilled into the rf cavity to
create holes with centers at the locations of the seven poles
in the TMf0;2g20 mode. One half the rf cavity system is
photographed in Fig. 10.

B. Characterization of the rf cavity system

Measurements of the prototype were taken using a vector
network analyzer (VNA) connected to a matched wave-
guide adaptor secured to the top of the cavity waveguide
port via coaxial cable. The apparatus was calibrated at the
end of the coax, which excluded the matched waveguide
adaptor from calibration. To ensure this does not impact
results, two cases are compared in Fig. 11: the frequency
response of shorting the calibrated coax, and of attaching
the waveguide adaptor to the calibrated coax and clamping
an aluminum plate to it. The maximum magnitude in the
difference of the impedance measurements between the two
cases is 0.2Ω. This is of the order of 100 times smaller than
the changes in impedance measured in the bead pull testing
and that used for calculating Q-factors. In addition to this,
measurements do not give any evidence for resonances in
the waveguide adaptor and the external Q-factor does not
change significantly between simulations without the
waveguide adaptor and measurements with the waveguide
adaptor. We thus conclude that the waveguide adaptor’s
effect on measurements can be neglected.
The resonant frequency of the rf cavity system, f0, and

its intrinsic, Q0, external, Qe and loaded, QL, Q-factors
can be calculated from measurement of the variation in the
S-parameter S11 with driving frequency and using

β ¼ Q0

Qe
¼ Q0 −QL

QL
¼ 1 − S11ðf ¼ f0Þ

1þ S11ðf ¼ f0Þ
; ð4:1Þ

where f is the driving frequency and β is the coupling
coefficient. It should be noted that at resonance S11 is
purely real.
Figure 12 is a Smith chart that shows the measured

variation in S11 for driving frequencies in the range
f0 � 1 MHz for five different simulation and experimen-
tal measurements. The Smith chart maps the impedance,

FIG. 11. Impedance measurements of the calibrated coaxial
cable shorted, and with the waveguide adaptor attached to the
calibrated coax and shorted by clamping an aluminum plate to it.

FIG. 10. Half of the rf cavity system designed to support the
TMf0;2g20 mode with quadrupolar component 5.041 times greater
than the monopolar component.

FIG. 9. Ez at the longitudinal center of the designed rf cavity
system, where blue is a minimum in the field, orange maximum,
and green zero.
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Z, onto the S11 plane and provides a method for visualiz-
ing β [26].
The blue line of Fig. 12 represents the simulation output

of S11 of the rf cavity system modeled as perfectly smooth
copper; the electric field from this simulation was shown in
Fig. 9. From this data, we calculate f0 ¼ 2.99914 GHz,
Q0 ¼ 20830, Qe ¼ 20050 and so the system is critically
coupled as β ≃ 1. The rf cavity coupling ports were
optimized for copper, while the prototype was milled out
of aluminum to reduce cost. The red line in Fig. 12 shows
the simulation output for perfectly smooth aluminum and
the impact of the choice of material on β: we calculate
f0 ¼ 2.99917 GHz, Q0 ¼ 16880 and β ¼ 0.831. The yel-
low line represents the measurement of the prototype, and
we calculate that f0 ¼ 2.99914 GHz, Q0 ¼ 9120 and
β ¼ 0.410. The prototype is thus significantly under-
coupled compared to the perfectly smooth simulation.
This discrepancy in β is likely due to two effects:

first, the surface roughness due to machining of the
aluminum which leads to increased resistive losses [27].
The rms surface roughness was measured with a white
light interferometer to be 0.33 μm. The purple line shows
the simulation output when this level of roughness is
included—f0¼2.99955GHz, Q0¼15150 and β¼0.750.
The second effect is rf leakage due to an imperfect
seal between the two halves of the prototype. This can be
modeled by uniformly separating the two cavity halves:
the green dashed line shows that a 0.33 μm surface rough-
ness and 3.5 μm uniform air gap between the two halves
replicates the coupling coefficient of experimental measure-
ments—f0 ¼ 2.99955 GHz, Q0 ¼ 8490 and β ¼ 0.410.
In reality the separation between the two halves of the

cavity will not be uniform, however, this would be difficult

to model. Simulations show the prototype is particularly
sensitive to gaps near the coupling between the waveguide
and the cavity and a separation on the order of microns
is feasible given the distribution of the bolts used for
tightening and the presence of deeper scratches on the
aluminum surfaces that are bolted together.

C. Experimental method

Despite the rf cavity system being significantly under-
coupled, the electric field of the rf cavity can be determined
using the bead pull technique [28–30]. This method uses
the result from cavity perturbation theory [31] that when a
dielectric bead, small enough such that the EM fields
are approximately constant over it, is introduced into an rf
cavity at a position ðr; θ; zÞ,

Δf ∝ jE0ðr; θ; zÞj2; ð4:2Þ

where Δf is the change in resonant frequency caused by
introducing the perturbing object and E0ðr; θ; zÞ is the
magnitude of the electric field at that position. In our
experiments, we used a spherical, plastic bead with a
2.2 mm diameter as the perturbing object.
The VNA cannot be used to measure directly the change

in resonant frequency of the rf cavity caused by the
perturbing object at a high enough sample rate. An indirect
measurement is therefore required. Two possible para-
meters to use for this indirect measurement are the change
in phase of S11 or jΔZj, where jΔZj ¼ jZ − Zunpert

res j and
Zunpert
res is the impedance of the unperturbed cavity at the

resonant frequency. Figure 13 shows experimental mea-
surements of the variation in tan ½argðS11Þ� (top) and jΔZj
(bottom) of the unperturbed cavity with f. The dashed lines
are linear fits between the respective parameter and f, fitted
to and extrapolated from small Δf. The 2.2 mm diameter
perturbing bead caused a maximum change in resonant
frequency of jΔfj ¼ 0.079 MHz and the insets of Fig. 13
enlarges this region. It shows jΔZj varies linearly with f to

FIG. 13. Measured variation in tan ½argðS11Þ� (top) and jΔZj
(bottom) with driving frequency. The insets enlarge the region
contained inside the black rectangles.

FIG. 12. Smith chart showing the variation in simulation output
and experimental measurements of S11 in the range f0 � 1 MHz.

CREATING EXACT MULTIPOLAR FIELDS WITH … PHYS. REV. ACCEL. BEAMS 25, 062001 (2022)

062001-11



within 0.3%, compared to tan ½argðS11Þ� which diverges by
up to 20%.
We can therefore determine the electric field at a position

ðr; θ; zÞ in the rf cavity by measuring, at a fixed driving
frequency, the change in impedance caused by the bead at
that position and using the relationship

jE0ðr; θ; zÞj ∝
ffiffiffiffiffiffiffiffiffiffi
jΔZj

p
: ð4:3Þ

To carry out a bead pull measurement, we threaded
Kevlar wire through one of the holes before centering it
using a digital motor system. The 2.2 mm diameter,
dielectric bead knotted onto the wire was then pulled
through the cavity at a speed of 3 mm=s using a longi-
tudinal motor. The VNA was set up to continuously
measure the impedance of the rf cavity at the driving
frequency of 2.99914 GHz and sample rate of over 50
points per second. The change in impedance of the rf cavity
was measured for the bead being pulled through all seven
holes in both longitudinal directions.

D. Experimental results

The data was exported and analyzed in MATLAB [32].
Data collected when the bead was outside the beam pipes,
that is jzj > 38.1 mm where z is the longitudinal position
relative to the center of the rf cavity, was removed from the
dataset. A line of best fit between the first and last 50 data
points was then used to remove the small linear drift in
impedance over time we observed.
Figure 14 compares the longitudinal electric field meas-

urement along each of the seven poles from a CST

simulation of the cavity system to the experimental bead
pull measurements, where we assume jE0j ¼ jEzj for the
measurements. Simulation data is plotted as full lines
and experimental data as dashed. The different colors

correspond to measurements along the different poles:
blue denotes the single central pole, red the two inner
horizontal (x) poles, green the two outer horizontal (x)
poles, and black the two vertical (y) poles. To normalize
the simulation data, all data points were divided by the
maximum electric field in the y pole. To normalize the
experimental data, all data points were divided by the ratio
of the mean value of the median experimental electric field
measurements between jzj < 1 mm along each pole to the
mean value of the maximum simulated electric field
measurements along each pole. The similarity between
experimental and simulation results indicates that the cavity
is symmetric in the horizontal, vertical, and longitudinal
directions, as expected.
Table I presents a quantitative comparison between the

experimental and simulation results with the mean of the
electric field measurement between jzj < 1 mm shown
alongside the standard deviation of the measurements in
that range. Ez is expected to be flat in this range with a
standard deviation below three decimal places and the
results show the experimental data is consistent with
simulation. It should be noted that errors arising from
inaccuracies aligning the wire to the center of the holes or
from divergences from the assumed linearity in Eq. (4.3)
have not been included in this analysis.
The data collected thus support that the electric field of

the rf cavity is as designed, within error. Therefore we have
used successfully the presented theory, in conjunction with
3D simulations to determine the quadrupolar term intro-
duced by the dual-port coupler, to design and measure the
field of an azimuthally modulated rf cavity that supports a
TMf0;2g20 mode with a quadrupolar to monopolar ratio
of 5.041.

V. CONCLUSION

This paper has derived the basis of the longitudinal
electric fields in azimuthally modulated rf cavities and
presented a systematic method for determining the cavity
shape that will support TMfMgη0 modes. Examples of the rf
cavity shapes that support TMf0;m1gη0 or TMfm1;m2gη0
modes have been explicitly examined with rules derived
for rf cavity shapes being conditional, forbidden or spiral
depending upon the values of m1 and η, and m1, m2 and η.
The theoretical work has been supported by analysis of 3D

FIG. 14. Comparison of bead pull measurements of the electric
field compared to simulation.

TABLE I. Comparison between simulation and experimental
measurements of Ez through the different beam pipe locations.

Bead pull along Simulation Experimental

y poles 1.000 1.004� 0.008
x poles inner 0.802 0.805� 0.001
x poles outer 0.501 0.506� 0.002
Central pole 0.364 0.368� 0.001
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simulations and experimental test of an rf cavity that
supports a TMf0;2g20 mode.
The results of this paper provide a basis for the develop-

ment of new designs of azimuthally modulated rf cavities
that contain any magnitude and order of multipole compo-
nents. These designs may have useful application in
particle accelerators, particularly as they do not have
degenerate same-order modes and as they can introduce
or cancel wanted or unwanted multipolar components to a
fine precision.
Future research can use the formalism and results

presented in this paper to guide the development of
approximate analytic models of cavity designs and under-
stand how the variation of certain design parameters affects
the cavity performance. This could reduce the need to run
computationally expensive simulations. Additionally, the
paper provides a basis for determining the exact effect of
the Bessel dependence of the transverse deflecting fields on
beam dynamics. Future studies could also investigate the
introduction of longitudinal asymmetries alongside the
azimuthal asymmetries in the rf cavity with the aim of
enhancing the multipolar content of a field and creating
additional parameters with which to optimize performance
in aspects such as shunt impedance.
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APPENDIX: FORBIDDEN AND SPIRAL MODES

Here we discuss why certain TMfm1;m2gη0 modes are
forbidden, that is rðηÞðθÞ ¼ 0 for some θ value, or spiral,
that is rðηÞð0Þ ≠ rðηÞð2πÞ.
As our first step, we prove that these rη0ðθÞ solutions

are not necessarily bounded within an interval r ¼
½jm2ðx−1Þ; jm2x�=k (x ∈ Z). These solutions must solve the
boundary condition in Eq. (2.12) that we replicate here:

Jm1
(krðηÞ0 ðθÞ)g̃m1

cosm1θ

þ Jm2
(krðηÞ0 ðθÞ)g̃m2

cos ðm2θ − ϕm2
Þ ¼ 0: ðA1Þ

First, consider Eq. (A1) for θ ¼ 0: it follows that rðηÞ0 ð0Þ ≠
jm2y=k (y ∈ Z). This means that all solutions rðηÞ0 ð0Þ lie
within an interval r ¼ ½jm2ðx−1Þ; jm2x�=k and not at the
limits, or edges, of the interval. Next we consider the
unique angles in the range ½0; 2π�, θq ¼ ð2qþ 1Þπ=2m1

(q ¼ 0; 1;…; b2m1 − 1=2c), which eliminate the cosine
term of order m1 such that Eq. (A1) becomes

Jm2
(krðηÞ0 ðθqÞ)g̃m2

cos

�
m2

m1

ð2qþ 1Þ π
2
− ϕm2

�
¼ 0: ðA2Þ

This has two possible solutions whereby either the
Bessel term of order m2 is zero or the cosine term is zero.
We will first consider the cosine term to be nonzero, which
forces

krðηÞ0 ðθqÞ ¼ jm2y ðA3Þ

to satisfy Eq. (A2). Equation (A3) thus states that if

cos ðm2θq − ϕm2
Þ ≠ 0, rðηÞ0 ðθqÞ must lie at the limit of an

interval r ¼ ½jm2ðx−1Þ; jm2x�=k. Therefore the solution will
cross the upper limit of the interval if the gradient is positive
at θq, whereas it will cross the lower limit if it is negative.
Differentiating Eq. (A1) we find

drðηÞ0 ðθÞ
dθ

¼ 1

k

Jm1
(krðηÞ0 ðθÞ))g̃m1

m1 sinm1θ þ Jm2
(krðηÞ0 ðθÞ)g̃m2

m2 sin ðm2θ − ϕm2
Þ

J0m1
(krðηÞ0 ðθÞ)g̃m1

cosm1θ þ J0m2
(krðηÞ0 ðθÞ)g̃m2

cos ðm2θ − ϕm2
Þ

; ðA4Þ

which if cos ðm2θq − ϕm2
Þ ≠ 0 it becomes

drðηÞ0 ðθÞ
dθ

����
θq

¼ m1g̃m1

kg̃m2

Jm1
ðjm2yÞð−1Þq

J0m2
ðjm2yÞ cosm2θq

≠ 0: ðA5Þ

Equation (A5) can be numerically evaluated to determine
the sign of the gradient at all angles θq at the limits of each
interval jm2y. We conclude that if the number of times the
gradient is positive does not equal the number of times the

gradient is negative (that is the number of times the upper
limit of an interval is crossed does not equal the total number
of times the lower limit of an interval is crossed) then rðηÞð0Þ
will lie in a different interval to rðηÞð2πÞ. This means
rðηÞð0Þ ≠ rðηÞð2πÞ and the solution and mode are spiral. If,
however, the number of times the upper limit is crossed
equals the number of times the lower limit is crossed, then the
solution will lie in the interval r ¼ ½jm2ðx−ζ1Þ; jm2ðxþζ2Þ�=k,
where the ζi are numerically calculated integers. If ζ1 ≥ x
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then the corresponding TMfm1;m2gη0 mode will be forbidden
as it will have rðηÞðθÞ ¼ 0 for some θ.
We now come back to Eq. (A2) and allow the cosine term

to be zero. This requires the phase to take one of the
following q-dependent values:

ϕm2
¼ ϕðqÞ

m2
¼ π

2

�
m2

m1

ð2qþ 1Þ − ð2xþ 1Þ
�
: ðA6Þ

The effect of setting the phase term equal to ϕðqÞ
m2

is that at

the corresponding θq angle, rðηÞ0 ðθqÞ does not lie on the
limit of an interval and thus the interval is not crossed.
The work discussed here is brought together in Table II

which, for given m1 and m2 values between 1 and 10,
displays the first nonforbidden and nonspiral mode for

ϕm2
≠ ϕðqÞ

m2
(left of comma) and ϕm2

¼ ϕðqÞ
m2

(right of
comma). These were numerically calculated using
Eq. (A5). The values of ϕðqÞ for given m1 and m2, as
calculated by Eq. (A6), are displayed in Table III.
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Correction: A proof inquiry was misinterpreted during the
production cycle, resulting in publication of text errors in the
second and fourth paragraphs of Sec. I. These errors have
been fixed.
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