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Because of the inherent value of high-energy particle beams for the study of quantum electrodynamics
effects, it is of great importance to accurately model the physics in numerical simulations. Numerical
effects may alter the dynamics of a simulation and may change the physics of energy losses on account of
the radiation reaction (RR) force. In this work, the numerical Cherenkov effect in combination with the RR
force are analyzed in the vacuum propagation of an ultrarelativistic electron bunch. It is revisited that the
use of the standard Yee solver in the present setup triggers the numerical Cherenkov instability. With
the instability at hand, the simulation results of the Yee solver are compared to data obtained by the
X-dispersionless Maxwell solver, also known as the rhombi-in-plane (RIP) solver. There, the numerical
instability is suppressed by several orders of magnitude. Afterward, the impact of radiation reaction on the
dynamics is studied for both cases. It is shown that the combination of the Yee solver and the RR force
enhances the error significantly and the electron bunch loses about 90% of its energy as a result. These huge
energy losses can be observed only if both the Lorentz force and the RR force are enabled in the code. In
contrast, the RIP Maxwell solver is not plagued by these issues and accurately calculates the dynamics of
the electron bunch.
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I. INTRODUCTION

High-energy charged particle beams are the key tools
to study the very fundamental principles of physics.
Experimentally, they can be used to test on the Standard
Model [1], investigate the structure of matter [2], or synthe-
size exotic atomic nuclei [3]. Further research opportunities
are expected due to the rapid progress in laser technology,
where the realization of laser intensities above 1023 Wcm−2

has been reported recently [4]. Therefore, large laser facilities
such as ELI [5] or CoReLS (see also Refs. [6–8] for other
facilities) will reach yet experimentally unexplored regimes
of the light-matter interaction when combined with high-
energy electrons. One of the major goals comprises deeper
insights into radiation reaction (RR), a problem of electro-
dynamics that so far is not understood in all its details [9].
In addition, high-energy electrons might also be vital for

studying the intensity frontier of quantum electrodynamics
(QED) [10–13], where the theory is conjectured to become
fully nonperturbative [14–16].
The key numerical platform to study interaction of (high-

energy) charged particles with electromagnetic fields is the
particle-in-cell (PIC) method. PIC simulations are consid-
ered to be the ab initio approach that covers a broad range
of topics, from relativistic laser-plasma interactions
[17–19] to plasma-based acceleration [20,21] and relativ-
istic astrophysics [22,23]. In the PIC approach, matter is
described as an ensemble of macroparticles, which are
pushed according to the relativistic equations of motion.
The resulting charge currents are used to update the
electromagnetic fields, so allowing for a self-consistent
description of the interaction [24]. The fields are commonly
updated through finite-difference time-domain (FDTD)
algorithms. Historically, Yee was one of the first who
proposed a very successful staggered grid to solve the
Maxwell equations in that way [25].
The Yee algorithm, however, is subject to numerical

errors, which results in slowdown of the wave propagation
velocity along all axes except (maybe) the grid diagonals.
This is known as numerical dispersion and may trigger
numerical instabilities, thus giving rise to nonphysical
behavior. One prominent example is the numerical
Cherenkov instability (NCI) in relativistic plasma simu-
lations [26–28]. The instability is linked to the well-known
Cherenkov radiation that is emitted when charges are faster
than the electromagnetic phase velocity in the current
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medium. The numerical counterpart arises accordingly; i.e.,
when charged particles are faster than the numerical phase
velocity, it comes to an unphysical coupling between
electromagnetic modes and the particles. Physically, there
should be no Cherenkov radiation in plasmas, because the
phase velocity of electromagnetic modes in a background
plasma is higher than the speed of light c. Unfortunately,
simulations using the FDTD method—such as the Yee
scheme—may show reduced phase velocities due to
numerical dispersion. Therefore, NCI becomes visible once
particle speed and phase velocity match.
NCI has been studied by several groups over the past

years [29–35], and solutions to suppress it have already
been proposed since its first observation. Different options
how to achieve this are suggested in the literature like, for
instance, the artificial increase of the speed of light in the
field equations [27,36], the definition of a magnetic and
electric field on the same spatial grid [27], the Galilean grid
shift for a plasma flowing with uniform velocity [37], and
other modification to the finite-difference time-domain
algorithm [35]. Some other Maxwell solvers also achieved
the suppression of nonphysical Cherenkov radiation from a
relativistic beam [32,34]. Implementations of the latter
methods are described in Refs. [30,38–42].
Apart from NCI, the Yee Maxwell solver can also lead to

a phenomenon called numerical self-interaction. In that
context, consider an ultrarelativistic high-current beam with
Lorentz factor γ0 ≫ 1 and normalized velocity βk ≈ 1 in
vacuum. From the physics point of view, the electromag-
netic self-field generated by such a beam is mainly trans-
verse in the laboratory frame, and its electric and magnetic
field are linked via the relation B⊥ ¼ βkE⊥ [43]. These
beam fields cause an intrinsic force on a beam electron with
charge −e itself:

F⊥ ¼ −eðE⊥ − βkB⊥Þ ¼ −eðE⊥ − β2kE⊥Þ ¼ −
eE⊥
γ20

; ð1Þ

which is negligible in the ultrarelativistic limit. It is also
noted that relativistic electrons are subjected to a similar
force when they are copropagating with a laser wave [44].
Unfortunately, the Yee scheme can overestimate the

intrinsic self-force by orders of magnitude, which is a
result from the staggered definition of electric and magnetic
fields on the Yee lattice. As will be shown later, this causes
dramatic energy losses of the high-current beam with time
when the RR effect is taken into account. Such artifacts of
induced radiation losses due to the numerically enhanced
self-interaction are highly undesirable for many reasons.
First, they hinder the analysis from numerical modeling of
RR, as it might be unclear what causes specific energy
losses. Second, they can strongly alter the dynamics of a
system. This is especially unwanted when radiation losses
have to be avoided (see, for instance, the discussion on the
fully nonperturbative regime of QED in Refs. [10–13]).

In other words, the Yee solver is not optimal for high-
energy particle beams and should not be the first choice for
an accurate modeling.
In this work, the aforementioned problems will be

tackled through the semi-implicit X-dispersionless FDTD
Maxwell solver initially developed for plasma-based accel-
eration [45]. The solver is dispersionless along the propa-
gation direction, and the fields build rhombi-in-plane (RIP)
patterns. Subsequently, the solver will be referred to as RIP
solver throughout the manuscript. We study the vacuum
propagation of a dense ultrarelativistic bunch, which carries
extreme self-fields, so that QED effects can become
relevant. The central problem here is to mitigate the
numerical instability, which may hinder simulations of
dense bunch vacuum propagation. The instability is due to
the bunch self-interactions with its own fields resulting in
huge radiation reaction forces as feedback. Mitigating this
instability is crucial in the study of QED effects.
The paper is organized as follows. In Sec. II, the

propagation of an ultrarelativistic electron bunch in vacuum
is modeled with PIC simulations. The simulation will be
performed with two independent Maxwell solvers, namely,
the Yee and the RIP solver. NCI will be observed in the
simulation performed with the Yee solver. Section II C
summarizes the NCI under the two considered FDTD-
based Maxwell solvers and explains the connection to the
dispersion relation of the considered Maxwell solvers.
Section III A describes the implementation of the RR force
in the PIC code VLPL. Section III B reconsiders the previous
simulations from Sec. II but now with enabled RR force. It
will be discussed that the combination of the Yee solver and
RR force is detrimental for the shown configuration and
will lead to massive energy losses of the particles. Finally,
Sec. IV draws a conclusion.

II. VACUUM BUNCH PROPAGATION WITH
DIFFERENT MAXWELL SOLVERS

The propagation of an ultrarelativistic electron bunch in
vacuum is considered via numerical simulations. The
simulations are performed with two different solvers,
namely, the Yee and the RIP solver. Please note that the
simulations are first conducted without considering RR.

A. Simulation setup

The vacuum bunch propagation is simulated in the
framework of full three-dimensional PIC simulations using
the code VLPL [46,47]. This code can either use the Yee or
the RIP [45] Maxwell solver to advance electromagnetic
fields. All simulations utilize the moving window approach
in a simulation box of dimension 20σ0 × 40σ0 × 40σ0 in
the X × Y × Z direction, where σ0 represents the normali-
zation of length. The transverse cell size is always set to
0.1σ0 × 0.1σ0. The longitudinal cell size, however, is
different for the two Maxwell solvers. Along X, it is
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0.1σ0 for Yee and 0.05σ0 for RIP. The difference in the
longitudinal step size results from the stability condition of
the different solvers. The time step is cτ ¼ 0.05σ0 in
all simulations. The implemented electron bunch is config-
ured as a spherical cloud with a Gaussian density profile
ne ¼ n0e−r

2=ð4σ2rÞ, where n0 and σr are the bunch’s peak
density and rms width, respectively. In these simulations, we
use eight particles per cell. Furthermore, the electrons are
propagating in the x direction with a momentum of
p0 ¼ ðpx0; 0; 0Þ. The boundaries of the simulation domain
are absorbing for particles. At the beginning of the simu-
lation, the fields on the grid generated by the electron bunch
are initialized with a Poisson solver using as initial condition
periodic boundaries. For the fields, the transverse boundaries
are periodic, and the longitudinal ones are absorbing.
In particular, the specific simulation parameters are as

follows: The peak density is n0 ¼ 5nc (here, nc ¼
mec2π=ðe2σ20Þ is the “normalized density”), the initial
momentum is px0=ðmecÞ ¼ 2.5 × 105 (me is the electron
mass), and the radius parameter isσr ¼ σ0 ¼ 10 nm (density
in this configuration is normalized in a similar way as in laser
plasma simulations, since VLPL is a relativistic PIC code for
such applications and ties densities to the normalization of all
lengths). Please note that the parameters aremotivated by the

electron bunch used in Ref. [11]. Such ultrarelativistic
particle beams may radiate massively due to numerical
self-action. For that reason, it is important to minimize
numerical errors and to ascertain the origin of the radiation.
This numerical instability can pose a limitation on the bunch
length when simulating beam-beam collisions. Increasing
the bunch length as an example in beam-beam collisions [11]
increases the total simulation time where numerical
errors can occur. In our simulations, the particles are not
pushed until time ≈9Tb, where Tb is the inverse of
the relativistically corrected beam plasma frequency,
Tb ¼ω−1

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0me=ð4πe2n0Þ

p
. This time frame ensures that

small nonphysical fields that might emerge due to the bunch
initialization are cleared away and do not spoil the particle
dynamics oncemomentumupdates are applied. In this sense,
the bunch propagates in self-consistent numerical grid fields,
so that vacuum propagation can be simulated with higher
accuracy for the case using the Yee solver. Subsequently,
time t ¼ 0 is measured relative to this time period.

B. Simulation results

Figure 1 presents data in the x − y plane for the electron
density and the transverse force obtained in simulations

(a) (b)

(c) (d)

FIG. 1. Ultrarelativistic electron bunch propagating in vacuum without RR. Data for electron density [see (a) and (b)] and transverse
force [see (c) and (d)] are shown at time t=Tb ¼ 10. (a) and (c) show the results for the Yee solver, while (b) and (d) show the results for
the RIP scheme. It is further noted that the data in (d) are scaled in order to apply the same color bar.
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with the Yee solver [see Figs. 1(a) and 1(c)] and the RIP
solver [see Figs. 1(b) and 1(d)]. After a simulation time of
t=Tb ¼ 10, the electron bunch is strongly deformed with
the Yee solver [see Fig. 1(a)]. The bunch has been com-
pressed, which increases the peak density to 18.3nc. In
addition, the initial Gaussian density profile cannot be
recognized anymore. The right-hand side of the bunch
focuses, and the left-hand side smears out. Similar obser-
vations can be seen in the transverse force. We note here
that we redefine the transverse force slightly with respect to
Eq. (1). From now on, the transverse force is calculated
from Fy ¼ Ey − Bz, which has the advantage to be
expressed solely by the fields and corresponds to ultra-
relativistic particles moving with nearly the speed of light,
β ¼ 1. Figure 1(c) shows similar deformations also in the
force. One can see waves at the rear that are too slow to
comove with the bunch and form the Cherenkov cone. In
addition, the force has built up significant amplitudes
during the simulation. For instance, peak values of approx-
imately 29mec2=σ0 can be retrieved from the data which
are definitely not negligible, so clearly indicating the onset
of an instability.
The RIP solver in comparison does not create any visible

numerical error during the simulation. The initial density
profile is still preserved, which is expected for an ultra-
relativistic electron bunch propagating in vacuum, as it
experiences almost no self-interaction. The transverse force
in this case is 10 orders of magnitude lower than in the
simulation with the Yee scheme after the same simulation
time. Moreover, the RIP simulation precisely reproduces
the prediction for the self-force. Analytically, the self-force
can be written along the y axis as FyðyÞ ¼ −eEyðyÞ=ð2γ20Þ
[see the additional factor 1=2 compared to Eq. (1) due to the
redefinition of F⊥]. Figure 2 shows the transverse force Fy

as a function of y at time t=Tb ¼ 10 for a fixed x value of
ðx − ctÞ=σ0 ¼ 10. The analytical solution is in good agree-
ment with the simulation data obtained by the RIP solver,
whereas the data obtained by the Yee solver are ruined by
numerical artifacts. Here, the faulty transverse force has
been amplified and is 10 orders of magnitude bigger than
the expected analytical solution. The transverse force
obtained by the RIP solver shows a small discrepancy at
large values of y (jyj > 7.5σ0Þ in comparison to the
analytical solution. This is due to the chosen periodic
boundary conditions, which means that there is another
electron bunch beyond the transverse boundaries. Their
fields are directed such that they cancel the field of the main
bunch at large coordinates, and, therefore, the transverse
force decreases faster in the simulations than the analytical
solution. This effect becomes less prominent if one
increases the transverse size of the simulation domain. It
can already be seen that the RIP solver yields a reduction of
numerical errors.

C. Numerical Cherenkov instability in Maxwell solvers

To identify the observed numerical error in the configu-
ration as NCI, a brief explanation is necessary to under-
stand how the numerical approach gives rise to instabilities
in the simulation. For that reason, it is important to take a
look at the dispersion relation of the algorithms which are
used to solve Maxwell equations.
The numerical instability appears if the dispersion

relation of a numerical Maxwell solver allows electromag-
netic modes which have a lower phase velocity vph than the
speed of light c. Particles that travel close to c are now able
to excite these modes and produce numerical Cherenkov
radiation [37]. Therefore, it is likely that an ultrarelativistic
electron bunch propagating in vacuum can excite such
modes.
To determine the modes that are excited, it is first

necessary to find the dispersion relations for the
Maxwell solvers. This is usually done by inserting plane
waves of the form

A ¼ A0 exp ð−iωtþ ikrÞ ð2Þ

into the numerical marching equations of the Maxwell
solver (a detailed calculation can be found in Ref. [48]).
The plane-wave analysis gives for the Yee solver

1

h2x
sin2

�
kxhx
2

�
þ 1

h2y
sin2

�
kyhy
2

�
þ 1

h2z
sin2

�
kzhz
2

�

¼ 1

c2τ2
sin2

�
ωτ

2

�
ð3Þ

and for the RIP solver in the special case of cτ ¼ hx

FIG. 2. Transverse force at t=Tb ¼ 10 for a fixed x value of
ðx − ctÞ=σ0 ¼ 10. Transverse force obtained by the Yee solver
uses the red y axis.
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1

h2x
sin2
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kxhx
2

�
þ
�
1 − sin2

�
kxhx
2

���
1

h2y
sin2

�
kyhy
2

�
þ 1

h2z
sin2

�
kzhz
2

��
¼ 1

h2x
sin2

�
ωhx
2c

�
: ð4Þ

The Yee dispersion relation suffers from vph different of c
for all wave numbers except electromagnetic waves run-
ning along the grid diagonals, of kx ¼ ky, kx ¼ kz, or ky¼kz
under the upper limit of the Courant-Friedrichs-Lewy
(CFL) condition. The RIP solver is dispersionless for
propagations along the x axis and exhibits similar proper-
ties in one-dimensional problems as the 1D advective
solver by Birdsall and Langdon [24,45]. Both solvers store
the transverse fields on the same integral positions and
require the longitudinal grid step to be equal to the time
step. These properties suppress nonphysical effects for
khx ∼�π [24]. Inserting ky ¼ kz ¼ 0 in the RIP dispersion
relation [Eq. (4)], the equation reduces to kx ¼ ω=c. For
purely transverse wave numbers with kx ¼ 0, the RIP
dispersion relation transforms to the 2D Yee dispersion
relation [45]. One needs to be aware that just by plugging
ky ¼ kz ¼ 0 into the Yee dispersion relation the Maxwell
solver does not become dispersion-free. Stability of a
Maxwell solver is, as above mentioned, also described
by the CFL condition. The condition describes whether the
used domain step sizes of the grid and the time step can

guarantee that the propagation of fields is not faster than the
phase velocity. The CFL condition of the Yee solver in a 3D

space reads cτ< 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=hxÞ2þð1=hyÞ2þð1=hzÞ2

q
[25,49].

The dispersionless property of the RIP solver should
become advantageous for the considered configuration in
this paper, since the electron bunch produces an electro-
magnetic field, which copropagates along the x axis.
Linking the observed instability to the numerical

Cherenkov instability can be confirmed the same way as
performed by Lehe et al. in their study of the numerical
Cherenkov effect [34]. Here, the solution of the Yee
dispersion relation for excitable modes by NCI are calcu-
lated and compared the 2D FFT of the Ey component.
Figure 3 displays the FFT of the component and high-
lighting the excitable mode with a dashed line similarly.
This figure greatly coincides with the result in the work of
Lehe et al. [34].

III. VACUUM BUNCH PROPAGATION
WITH RADIATION REACTION

A. Radiation reaction force and its implementation
in PIC codes

The simulations in the previous section discussed only
the impact of the pure Lorentz force on the electron motion.
However, if charged particles are subject to strong electro-
magnetic fields, they will emit high-frequency radiation.
This, in turn, leads to a continuous loss of energy, which in
classical electrodynamics is known under the term “radi-
ation reaction” (RR). Physically, radiation reaction is
mediated by an additional damping force acting on the
charge. The most general form of radiation reaction is given
the Lorentz-Abraham-Dirac (LAD) equation and has been
proposed a long time ago [50]. Unfortunately, the model is
plagued with physical inconsistencies such as preaccelera-
tion and runaway solutions, so that it is not the natural
choice for an accurate numerical modeling. A vast number
of approximated radiation reaction models can, therefore,
be found in the literature, and all of them aim at circum-
venting the shortcomings of the LAD model (for instance,
see [51] and the references therein). A similar approach is
used in the present work. In particular, the damping force is
calculated such that it dissipates the total emitted power as
predicted by the relativistic Larmor formula [52]

Prad ¼
2

3
α
m2c4

ℏ
χ2: ð5Þ

Here, α ¼ e2=ðℏcÞ ≃ 1=137 is the fine-structure constant, ℏ
is the reduced Planck constant, and

FIG. 3. Intensity of the spatial 2D FFT Ey component for
kz ¼ 0 at time t=Tb ¼ 10. The dashed line indicates the mode
satisfying the dispersion relation for vph ¼ c.
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χ ¼ eℏ
m2c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
γEþ p

mc
×B

�
2

−
�

p
mc

· E

�
2

s
ð6Þ

measures the electric field in the particle’s rest frame in
units of the Schwinger fieldm2c3=ðeℏÞ. For ultrarelativistic
particles with Lorentz factors much larger than unity,
γ ≫ 1, one obtains

FRR ¼ −
2

3
α
mc2

ℏ
χ2GðχÞp

γ
≡ −νRRp ð7Þ

as the radiation reaction force, where the characteristic
radiation loss frequency νRR is introduced. The factor GðχÞ
is known as the Gaunt factor and accounts for the fact that
charges will emit less if χ approaches unity (i.e., when QED
effects become important) [53,54]. In general, GðχÞ is
given by the complicated integral expression

GðχÞ ¼ −
Z

∞

0

3þ 1.25χs3=2 þ 3χ2s3

ð1þ χs3=2Þ4 Ai0ðsÞsds; ð8Þ

and its evaluation is computationally expensive. However,
there is a fast and accurate approximation [55], which has
been implemented into the PIC code VLPL:

GðχÞ ≈ ð1þ 18χ þ 69χ2 þ 73χ3 þ 5.806χ4Þ−1=3: ð9Þ

Finally, the push due to RR is implemented directly after
the Lorentz force push. Here, the damped momentum pRR
is calculated as

pRR ¼ pL

ð1þ νRRτÞ
; ð10Þ

where pL is the momentum after the Lorentz force push.

B. Results of simulations with RR

In this section, the impact of RR on the vacuum bunch
propagation of an ultrarelativistic electron bunch is studied
for two Maxwell solvers. The other simulation parameters
are unchanged with regard to the previous section. Figure 4
shows the results of the simulations with the additional
force, again showing the density of the electron bunch [see
Figs. 4(a) and 4(b)] and the transverse forceFy [see Figs. 4(c)
and 4(d)]. Again, one can observe a disruption of the electron
bunch when using the Yee solver [Fig. 4(a)]. This time the
peak electron density is about ≈11.96nc, which is lower in
comparison to the case of the Yee solver without RR. This
already indicates that RR further alters the bunch dynamics.

(a) (b)

(c) (d)

FIG. 4. Ultrarelativistic electron bunch propagating in vacuum with RR. The normalized electron density in ne=nc and the transverse
force in dimensionless unit ðFyσ0Þ=ðmec2Þ are shown after t=Tb ¼ 10. (a) and (c) show the data of the Yee solver and (b) and (d) the RIP
solver. RR force is enabled in both simulations. The peak density of the data produced with the Yee solver increases to ne ≈ 11.96nc.
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In contrast, the RIP solver once more does not show an
instability and preserves the distribution of the elec-
tron bunch.
The maximum value of the transverse force is reduced in

comparison to the simulation without RR [Fig. 4(c)], which
is a result of the stronger electron bunch defocusing. One
can see that the simulation performed with the RIP solver
does not show these shortcomings, and the behavior of the
electron bunch is similar to the previous simulation, so that
it is not further influenced by enabling RR.
In principle, an ultrarelativistic bunch propagating purely

along X should not be accompanied by a longitudinal
magnetic field component Bx [43]. Therefore, the field
energy associated with the longitudinal magnetic field
component,

WBx
¼ 1

8π

Z
B2
xdV; ð11Þ

can be used as a further tool to check for the validity of all
simulations. Figure 5 presents the longitudinal magnetic
field energy (11) as a log plot. The data show that both
simulations with the RIP solver generate a negligible field,
which is many orders of magnitudes below the level of the
Yee simulations. Moreover, the RR does not impact the RIP
simulations. On the contrary, one can immediately see that
significant longitudinal magnetic fields are generated in the
Yee simulations, which rise further within the simulation.
In the beginning, the evolution of WBx

shows a linear
course in the log plot and is also independent of the RR

force. After the distortion of the electron bunch, the linear
trend changes and a second jump becomes apparent. In the
following, one can observe that the evolution with and
without RR splits up, and the simulation with enabled RR
increases further to a certain value, after which it slowly
decays. The data obtained without RR rise slower from that
time, so that it looks like the instability is enhanced when
the RR force is included.
We have seen that the RR leads to additional numerical

artifacts in the vacuum propagation when using the Yee
Maxwell solver. However, there is even another quantity
that gets strongly affected and clearly shows nonphysical
behavior. As the correct self-force is minuscule
[ðF⊥σ0Þ=ðmec2Þ ∼ 10−10 according to Eq. (1)], the char-
acteristic radiation loss time ν−1RR is very long compared to
the timescale Tb. Physically, this means that electrons
should not suffer synchrotron radiation losses. Figure 6
depicts the simulation results for the energy ε of the
electron bunch as a function of time (Yee and RIP solver
with and without RR). In the simulation with RR and the
Yee solver (blue curve), the particles are losing a significant
amount of their initial energy ε0 over time. The onset of the
energy loss starts at time t=Tb ≈ 2, which is also roughly
the time at which the NCI begins. Afterward a major drop
of the particle energy can be observed. Till the end of the
simulation time, the energy of the electrons is reduced by
∼91.4%. Such a dramatic drop in energy cannot be
observed in any of the other simulations, so that it is not
the result of the NCI alone.
In the other simulations, the particles are losing ∼4.4%

of their initial energy, and the energy loss scales linearly

FIG. 5. Longitudinal magnetic field energy evolution for
different Maxwell solvers and with or without accounting for
RR. Additionally, the yellow line represents the simulation where
the fields are updated with the Yee solver and the particles are
solely pushed by the RR force; i.e., the momentum change by the
Lorentz force (LF) has been ignored.

FIG. 6. Relative particle energy over time for an ultrarelativistic
electron bunch propagating in vacuum. Additionally, the yellow
line represents the simulation where the fields are updated with
the Yee solver and the particles are solely pushed by the RR force;
i.e., the momentum change by the LF has been ignored.
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with time. This linear behavior comes from the nonvanish-
ing field Ex, which is doing work of −eExct on the bunch
electrons. Thereby, the RIP simulation is in excellent
agreement with the corresponding loss of energy when
using the numerical data for Ex. The Ex field emerges in the
PIC simulations because of the finite transverse size of the
simulation box L⊥ and scales as Ex ∼ L−2⊥ .
In a next step, it is of interest to confirm whether the

rapid growth of the instability is due to the feedback loop
between the emission of electromagnetic fields and their
influence on the particle. To clarify the instability, an
additional simulation has been performed with the same
parameters but removed the Lorentz force from the particle
pusher. Yet, we keep the radiation reaction force calculated
on the electromagnetic fields at the particle position. In this
regard, we suppress the feedback of emitted fields on the
particle via Lorentz force.
The simulation data show that indeed the radiation of the

electron bunch does not change significantly in this case. A
relative energy loss of 5.82% at t=Tb ¼ 10 has been
recorded and can be seen in Fig. 6 (yellow curve).
Therefore, the enabled RR force is not the primary factor
causing the massive energy loss that has been observed
earlier with all forces taken in consideration. Figure 7
shows the maximum quantum parameter in a cell with the
electrons density overlapped at t=Tb ¼ 10 with Fig. 7(a)
showing the slice through the maximum electron density
and Fig. 7(b) the slice through the maximum quantum
parameter. Here, the electron bunch has not been deterio-
rated by the RR force alone. The reason for that lies within
the quantum parameter, which is still low and higher values

(a)

(b)

FIG. 7. The 3D PIC simulation result of an electron bunch
propagating in a vacuum. Simulations have been performed with
the Yee solver, activated radiation reaction force, and disabled
Lorentz force at t=Tb ¼ 10. (a) shows the electron density in
critical densities andmaximumquantumparameterwithin a cell for
a fixed ðx − ctÞ=σ0 ¼ 20 and z=σ0 ¼ 0. (b) shows electron density
and χmax for a fixed y=σ0 ¼ 1.8 and z=σ0 ¼ 0, which slices the
domain through the highest recorded quantum parameter value.

(a) (b)

FIG. 8. The 3D PIC simulation result of an electron bunch propagating in a vacuum. Fields are calculated with the Yee solver and RR
force is enabled. Here, 18 different particles have been tracked and the transverse force in their cell documented. (a) shows the particle
displacement in the x and y direction. (b) shows the tracked particles in a x − r − Fy plot. The trajectories are colored according to the
simulation time. The points at certain times are color coded according to the transverse force within the cell, where the particle is
currently located. Only transverse force values bigger than 2 have been displayed. Forces are displayed for two particles, respectively, at
initial positions of ðx − ctÞ=σ0 ¼ 9.00, ðx − ctÞ=σ0 ¼ 9.75, and ðx − ctÞ=σ0 ¼ 10.50.
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can be found only at low electron density regions, as the
maximum quantum parameter is not located in the center of
the bunch. In contrast, the maximum quantum parameter
rises to a value of 153.16 at t=Tb ∼ 2.68 for the simulation
with both the Yee mesh and the RR module used. This
brings the electron bunch into a region where the QED
effect would become likely and the RR force applies a
strong dampening on the particles. Therefore, the Lorentz
force is necessary to grow the feedback between the fields
and the dynamics of the particles and characteristic for a
numerical Cherenkov instability.
Finally, to advance the discussion of particle dynamics

within the electron bunch, several particles have been
tracked through the vacuum propagation computed with
the Yee solver and taking the RR force in consideration.
Particles which have been tracked were chosen at various
positions within the electron density. The tracked particle
results are summarized in Fig. 8. Figure 8(a) shows the
trajectories of the tracked particle in the yz plane with the
time being color coded. Once the instability takes place,
particles are scattered to the edge. Figure 8(b) adds the
transverse force Fy while showing the radial and longi-
tudinal displacement. Particles start to deflect only radially
first, since they are impacted by the transverse force. The
first major transverse force influence occurs at t ∼ 2.5Tb.
Once the initial displacement takes place, all particles
decelerate and fall behind, reducing their initial x position
within the bunch. No strong transverse force can be seen at
that point. After getting decelerated, the particles start to
leave the moving simulation domain and are finally lost.
In summary, the data of energy loss show that the Yee

solver may lead to completely wrong predictions. This, in
turn, can have a major impact on the system dynamics.

IV. CONCLUSION

In this paper, the vacuum propagation of an ultrarela-
tivistic electron bunch was studied in the framework of PIC
simulations. Special focus was laid on the question of how
the bunch dynamics will change if different Maxwell
solvers are used. The standard Yee solver was shown to
be plagued with NCI. As a result, the density profile of the
ultrarelativistic electron bunch was significantly deformed
over time. The addition of the RR effect in the simulation
aggravates numerical problems of the Yee solver and leads
to nonphysical energy losses. The bunch electrons lost
about 90% of their initial energy.
In contrast, these numerical artifacts were absent when

using the RIP Maxwell solver. This solver has the advan-
tage to define electric and magnetic field at the same grid
points and to be dispersion-free. The density profile of the
electron bunch remained preserved over the entire simu-
lation time. The incorporation of the RR force did not cause
any numerical problems in this case. In particular, non-
physical radiation losses were not detected.

In conclusion, the RIP Maxwell solver showed very
good results in the considered configuration and is a
potential method to suppress the NCI as well as nonphysi-
cal radiation losses and, thus, is a very good choice for
high-energy physics simulations. It makes it possible to
study high-energy particle beams in quasi-1D problems for
several periods like long bunch propagation, beam-beam
collisions along one axis with high bunch lengths, and laser
wake field acceleration.
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APPENDIX: POISSON SOLVER WITH
QUASISTATIC EQUATIONS

The initialization of the electromagnetic fields by a
relativistic charge distribution ρ is determined by the
quasistatic approximation. It is assumed that changes in
our distribution are progressing slowly only over a distance
of its own length. Therefore, all derivatives in dependence
of the slow time τ are neglected, and fields are implemented
for a specific time τ. After the initialization, the simulation
proceeds with the time step entered for the simulation.
To derive the necessary quasistatic equations, we start

with the Maxwell equations

∂E
∂t ¼ c∇ ×B − 4πj; ðA1Þ

∂B
∂t ¼ −c∇ ×E; ðA2Þ

∇ · E ¼ 4πρ; ðA3Þ

∇ · B ¼ 0 ðA4Þ

with E and B being the electric and magnetic fields,
respectively, and j the current density generated by the
propagation of the charges in the domain.
Applying the quasistatic approximation requires the

introduction of new variables

τ ¼ t; ðA5Þ
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ζ ¼ x − ct: ðA6Þ

In the next step, the Maxwell equations (A1)–(A4) are
rewritten with the new variables (A5) and (A6):

c∇ ×B ¼ −c
∂E
∂ζ þ 4πj; ðA7Þ

c
∂B
∂ζ ¼ c∇ ×E; ðA8Þ

∇ · E ¼ 4πρ; ðA9Þ

∇ ·B ¼ 0: ðA10Þ

Here, all time derivatives are neglected, since

∂
∂τ ≪

∂
∂ζ : ðA11Þ

Combining the curl of the rewritten Ampére law (A7) with
the ζ derivative of the Faraday law (A8), the first quasistatic
equation for the magnetic field,

∇2⊥B ¼ −
4π

c
∇ × j; ðA12Þ

is obtained. Please note that the ∇⊥ operator applies only
on the directions transverse to propagation.
The second quasistatic equation regarding the electric

field can be derived with the gradient of the Poisson law
(A9) and the identity ∇ð∇ · EÞ ¼ ∇2Eþ∇ ×∇ ×E. The
quasistatic equation for the transverse electric fields reads
then

∇2⊥E⊥ ¼ 4π

�
∇⊥ρ −

1

c
∂ζj⊥

�
: ðA13Þ

These equations allow the initialization of relativistic
charge propagation in our code under the quasistatic
approximation.
Further information about the implementation of quasi-

static equations in VLPL can be found in Ref. [47].
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