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Beam response to rf-generator noise in the presence
of higher-harmonic passive cavities
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We examine the effect of higher-harmonic passive cavities (HHCs) on the beam response to rf noise.
Upon invoking certain assumptions to make the problem tractable, we employ Vlasov methods to show that
when the dipole approximation applies the HHCs have a generally limited impact. Beam loading in the
main cavity is included in the analysis. We illustrate our results and the limitations of our model in
application to the Lawrence Berkeley National Laboratory ALS (Advanced Light Source) and the future
ALS Upgrade (ALS-U) offering validation against macroparticle simulations.
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I. INTRODUCTION

Higher harmonic rf cavities (HHCs) are often employed
in storage rings for bunch lengthening or other purposes
[1-9]. Although the impact on collective instabilities has
been extensively studied [10-21], not as much attention has
been devoted to their effect on the beam response to
external perturbations and in particular rf noise [22-24].
Because in typical applications, HHCs work by reducing
the restoring force responsible for the longitudinal oscil-
lations, hence reducing the incoherent synchrotron tune,
one would intuitively expect that the HHC should enhance
the beam response to low-frequency noise. In fact, this is
not generally the case.

The conventional approach to the problem [25,26] is not
applicable when the single-particle motion is highly non-
linear, the regime in which HHCs are preferably operated,
and one has to resort to Vlasov methods [10—13]. These are
not very well suited to treat the problem in its full generality
but they provide valuable insight when applied to specific
cases and under certain approximations. Here we focus on
high-energy electron storage rings with a double-frequency
rf system consisting of a main and a passive higher-
harmonic cavity, with the latter tuned for nearly perfect
flattening of the total rf voltage. In the presence of a
uniformly filled beam and in the regime where the total rf
potential is dominated by the quartic term, the single-
particle motion admits an approximate description, which
is simple enough to permit a derivation of the solution of
the linearized Vlasov equation in analytical form. We use
this solution to study the coupled-bunch mode-zero beam
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response in the dipole approximation to a time-dependent
perturbation of the generator phase. A full account of beam
loading in the main cavity is a defining aspect of this study.

The main result is the analytical expression for the beam
response function found in Sec. I'V. The preceding Secs. II
and III, and related Appendixes, review the essential
features of beam loading and present a derivation of the
beam response function in the single-particle linear regime
(i.e., without HHC); these results are well known but they
are reported in some detail for completeness and to ease the
introduction of the Vlasov equation. Finally, in Sec. V, we
illustrate the significance of our findings with numerical
examples inspired by Advanced Light Source (ALS) and its
future upgrade.

I1. EXPRESSIONS FOR THE
CAVITIES’ VOLTAGE

A. Main cavity

Following the standard approach, we model the main
cavity as an equivalent RLC-circuit consisting of two ac
current generators (external rf generator and circulating
beam current) connected in parallel to a load [27-29]. The
load has the cavity fundamental mode impedance, charac-
terized by the loaded shunt impedance R;; and quality
factor Q;,. Written as a function of the time-of-flight
coordinate 7 relative to the synchronous particle, the
combined voltage is a sinusoidal wave with peak amplitude
V and synchronous phase

Vmain (T) =V Cos(a)rfT + Ws)
=V, cos(wyt +yy ) = Vi cos(wyt — by — @),

(1)

where V, and V,, are the external-generator and beam-
loading peak voltages
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Vg = IgRLl COS ¢rl’ (2)
Vb = 2IangLlFl COs ¢r1- (3)

The detuning angle ¢,; measures the difference between
the generator frequency w, and the cavity resonance
frequency. The model presupposes a uniformly filled beam
of identical bunches circulating in a ring with all rf buckets
occupied, and hence with average current /,,, = eNaw,/2x
(N is the bunch population); 7, is the generator current. The
beam-induced voltage depends on amplitude F; and phase
@, of the complex-number form factor defined as the FT
of the bunch profile p(z) normalized to unity, p(w) =
Jdrp(z)e™*, evaluated at the fundamental harmonic:
Fie'® = p(wy). Finally, w, , = w, — ¢,1 — 0y, is the gen-
erator-voltage synchronous phase. It depends on the load-
ing angle 6, = (0y —0,), the difference between the total
voltage 0y and generator current ¢, phases relative to the
lab time ¢, see Appendix A. For later use, note that taking
the derivative and setting 7 = 0 in (1) yields

V,siny, , = Vsiny, =V, sin(¢,; + ). (4)

It is an exercise in trigonometry (see e.g., [27,29]) to show
that ¢, depends on the beam loading Y = 2/,,,R;F,/V
and other parameters as

tan@, — YSin(l//s + (D1> —tan ¢r1
L 14 Ycos(y, + @)

(5)

This formula has significance for machine operation as the
required generator power is minimized when 6; =0
[27,28], giving the following prescription for the detuning

angle ¢,:

2IangLl Fl

S st b @), (6)

tan ¢, =
At equilibrium with @; ~0 and siny, > 0 (beam-phase
stability) the rhs of the above equation is positive and
therefore ¢,; > 0.

B. Passive higher-harmonic rf cavity

Lacking an external generator, the voltage in a passive
HHC is entirely due to beam loading. The expression for
the voltage is similar to the second term on the rhs of (1):

- (I)n)’
(7

with the difference that now R, and ¢,, represent the
HHC shunt impedance and detuning angle, and the beam
form factor is evaluated at the n harmonic of wy:
F,e'® = p(nwy). If there is no coupler, in a passive

VHHC (T) = _ZIangnFn CosS ¢rn cos(nwrfr - ¢rn

HHC, the only control parameter is the detuning ¢,,.
For bunch lengthening, ¢,, is adjusted to flatten the total
(main cavity + HHC) voltage. The condition where the
slope (first-order derivative) of the HHC voltage cancels
off that of the main cavity is approximately (see e.g., [19])

Vsiny,

sin2¢,, ~ ———5
in2¢m TougnR, F,

(8)
implying that ¢,, < 0; the approximation stems from
ignoring the precise form of the equilibrium and assuming
o, ~0.

For a given average beam current, there exists a special
value of the shunt impedance R,, such that the second-order
derivative of the total voltage also vanishes (assuming a
uniform beam fill). With these settings (which following
common language we will refer to as “optimal”), the single-
particle (i.e., incoherent) synchrotron tune is linear with the
oscillation amplitude and the equilibrium bunch form is a
very good approximation of a flattop, see Eq. (39), in which
case @, = 0. The HHC-modified synchronous phase is
cosy, = [n?/(n* = 1)] cosy,, where cosy is the phase
without HHC. (In the following, the notation w, will
indicate the appropriate synchronous phase for the system
under consideration whether or not it includes the HHC.)

III. SIMPLE DERIVATION OF THE BEAM
RESPONSE (NO HHC)

We start from the single-particle equations of longi-
tudinal motion

dr

Z—as

= ©
@ _ evmain(f) B UO (10)
dt EyT, ’

where a, > 0 (ultrarelativistic approximation) is the
momentum compaction, 7 is the revolution time, E; is
the design beam energy, ¢ is the relative deviation from the
design energy, and e > 0 is the elementary charge.

We regard the amplitude of the generator phase error Ag,
as a first-order perturbation and make use of results from
Appendix A to do a combined first-order expansion in 7
and A6, of both the generator and beam-loading compo-
nents of V.in(7), see Egs. (A13) and (Al14). With the
energy lost by the synchronous particle given by
Uy=eVcosy, =V, cosy,,—V,cos¢,, we can then
combine (9) and (10) to obtain

Pt eacwy

drr~ EyT,

{TV!} siny, , + (= (7))V, sing,

Al .
——"’Vgsmt//w], (11)
Wit

where (-) is the average over the bunch longitudinal density.
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Absent noise (A8, = 0) and with the beam at equilib-
rium, the bunch profile is a zero-average Gaussian.
Therefore (r) = 0 and the single-particle motion obeys

d*t ea .y . .
A EoCTo [V, siny, , + V,sing, |z
Vsi
- ——E“C“’gOTZm Vs 1 — s, (12)

where we have made use of (4) with ®; = (r) =0 and
recognized the expression for the (incoherent) synchrotron
tune

,  ea.wgVsiny
o} = A0 (13)

If the beam is not at equilibrium and instead undergoes
rigid dipole oscillations driven by a generator-phase per-
turbation, the beam-centroid equation of motion is obtained
by taking the average (-) of both sides of (11) over the
bunch distribution. By doing so, the second term in the
brackets (the beam-loading term) vanishes and therefore

d2<;> o ea.wV,siny, 2 - Af, ' (14)
dt E()TU W

We conclude that in contrast to the incoherent tune, the
coherent tune

,  eacwyV siny,

a)c‘l - EO TO

(15)

depends on the generator voltage-amplitude and synchro-
nous phase rather than the fotal voltage-amplitude and
synchronous phase. An alternate expression for o, follows
from (2) and (4): with ®; =0,

ea,.w: . :
a)Z _ Yt [V siny, — IangLlFl S 2¢r1]

cl — EOTO
sin 2¢,.
Vsiny, )’

:a)?<1 _IangLlFl (16)

showing that w,.; < @, as in normal operations ¢,; > 0. If
the condition (6) is satisfied, the coherent tune can be

1-Y? cos?
w0y = a7 (1 = Y?cos’ 1) = of ()

From Eq. (16), in the requirement that w?, be positive,
we recognize the dc Robinson stability condition

written as

sin2¢,

LR F Vsiny
N

< 1. (17)

Inserting y, = 7;' > 0 to capture radiation damping, the
equation of motion (14) becomes

d*(7)(1)
dr*

+2, 800 2 o) - 22

2
@y

Afy(1),  (18)

and taking the Fourier transform yields the transfer func-
. - 2 A, . . -
tion (7)(w) = _%% Finally, with A@,(w) =
. (7)(w), the generator-phase to beam-phase transfer

function is

2
< (19)

A@b o @
@ 2y — w?

AD

9

The simple derivation carried out here is incomplete in that
it misses the Robinson damping (or possibly antidamping)
term associated with beam loading. This term can be
recovered by extending the framework of this section
(see e.g., [13,25,30,31]); we omit the derivation since that
term will appear in Sec. IVA from solving the Vlasov
equation.

In linear approximation, the equations of motion (9)
and (10) can be regarded as the canonical equations

associated with Hamiltonian H = H,, + H,, where H, =

2
a2 | o 2
56 —1—2%1 and

H, =~ A0,(1)/ (0xa,). (20)

IV. BEAM RESPONSE DERIVED FROM THE
VLASOV EQUATION

The linearized Vlasov equation is solved upon writing
the bunch distribution function in the longitudinal phase
space as the sum of the equilibrium f(z,5) and a small
perturbation f(z,8; @) = fo(7,8) + e f1(7,5;w). We
will denote with py(7) and p, (7) the associated longitudinal
densities. At equilibrium the total voltage is the sum of (1)
and (7):

Vo(tipo) =V cos(wyt + )
—21,,R, F, cos ¢,, cos(nwyt — ¢, — D,,).
(21)

The notation emphasizes the voltage dependence on the
form of the equilibrium p, through the form factor
amplitude F, and phase ®,. We assume that the main-
cavity parameters are dynamically adjusted to maintain the
main-cavity voltage V on target. Upon defining the rf
potential

T /; —_ U
to(rio) == [ —EVO(’E:’;Z g, ()

the equilibrium is found by solving the Haissinski equation
pO(T) — e_uO(TZPO)/acgﬁ/f e_Z'{O(T/§PO)/apU(Z;dT/7 Where Os is the
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equilibrium rms energy spread [19,32]. The first-order
perturbation to the Hamiltonian for particle motion at
equilibrium Hy = a,.6%/2 + Uy(z;pp) is

- /.
H, (z) :—/ %dr’, (23)

with Vi (3p1) = =Lavg D5 oo P1 (P01t Z(p@rs +w) e~ 0T,
where Z = Z() + Z(") is the sum of the main cavity and
HHC fundamental-modes’ impedance (Appendix B). Upon
introducing the action-angle variables (J, ¢) and the oscil-
lation frequency w,(J) = OHy/0J, we are led to the linear-
ized Vlasov equation in f:

. Ofy 0fo0H, 0fy0H,
wfi+ o) 5= 57 09 ~ 07 99

(24)
The equation is solved by mode analysis (see Appendix C
for the details) under the assumption that the canonical
transformation to action-angle variables has the form
7 = r(J) cos ¢, with the single-particle oscillation amplitude
|

~ 2
A(pb ~ Wy

r(J) being a function of the action only. This form captures
the two cases of interest in this paper: (i) linear motion (no
HHC) and (ii) optimal HHC tuning. Itis exact in the first case;
approximate but reasonably accurate in the second [11].
Radiation damping is accounted for heuristically by insertion
of a mode-dependent term, see Eq. (C1). The rhs term of
Eq. (24) involves the external-generator noise term: H, is the
same as (20) with AB,(f) = e Ad,(w). In action-angle
variables,

oH, B a)flAéy(a))
dp  wga,

r(J) sin g, (25)

with @, asin (16). Once the solution to Eq. (24) is known, the
beam-centroid response is calculated as

Ay (@) = w5 () (0) = oy / of (2.8 w)ded5.  (26)

with the final result

Gia

Aég B e 1+ ii[Gl,lgl + Gn.nCn} +22[G1,1Gn,n -

for the beam response function, where

(28)

(units of Hz?/Q) is the scaled beam current parameter;

i) = Z pZY (pors + o), (29)
p==*1

Lo(@) = > pZ" (pars + o) (30)
p==tn

are the effective impedances associated with the funda-
mental modes of the main and harmonic cavity; and the
functions G, ,(w) are defined in (C13).

A. No HHC (short-bunch approximation)

In the absence of HHC (¢, = 0), the beam response
function (27) reduces to

A(ﬁb o 602

1
cl
AD,  ao g+ ilE (o)

(31)

Because the longitudinal motion in the rf bucket is linear
and the synchrotron tune w; is independent of the oscil-
lation amplitude, the evaluation of G'! (») defined in (C13)

G @7)

is trivial; after expanding the Bessel functions to first order
(short-bunch approximation, w0, < 1), we have

4 X7
G12———F—— ?ta)s 5 ﬂr_d]
w* + 2y —ws Jo OJ 4
a
. S 32
@ + 2iy 0 — ©? (32)
since 27 [°dJfo(J) =1 and for linear motion

r=+/2Ja./w,. Expanding the main-cavity -effective
impedance through first order is generally a good approxi-
mation, so that (@) ~¢;(0)+ ¢} (0)w with £;(0) and
¢1(0) given in (B5) and (B7), Eq. (31) becomes

2
cl

A@h o [0

MG, @ 2iolyy - a L (0)] - [0 + ia g, (0)]
(33)
Inspection of the denominator leads to the following

identification of the coherent mode frequency @, and
Robinson damping rate yp:

02 = 0} +ia 1l (0) = 0 + (0} — 0?) = 2, (34)

I .

ea, l
v = —=adC)(0) = 2—"2ER; 0y sin2¢,; cos? .
2 EyT)

(35)
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In (34), we made use of (16) with F'; ~ 1 and the definitions
(28) and (BS5) for the current parameter 7 and ¢, (0) to write

A A ea.wyl
i 1¢,(0) = a IRy sin 2 = — =" Ry, sin 24,
olo
_ ea, oV siny Ry sin2¢, W a?
EyT, Vsiny, o el
(36)

The third equality above follows from multiplying the
numerator and denominator by V siny,. In conclusion, we
have recovered the expression (19) for the beam response
function but adjusted to have y,,; = y, + 7 in place of y,,
thus now accounting for Robinson damping.

B. HHC with optimum tuning

With optimum HHC settings, the rf total potential is
dominated by the quartic term o« 7z* and the canonical
transformation from action angle to the longitudinal coor-
dinate is approximately zx~r(J)cosp, where r(J) =
[\/762J /(\/265)]'/ [11]. The quantities relevant in the
calculation include the single-particle oscillation frequency
w,(r), a function linear in r, the average oscillation
frequency (w,) = [do [dJfo(J)ws(J) within a bunch
at equilibrium, and the equilibrium f:

23/4 73/2

r r
== —~0.712 —
ws(r) F2(1/4) <a)S> 61— 0 7 X <COS> 6-[ ’ (37)
2 23/4
() = o T2 0803 x 2P0 (38)
I*(1/4) o, o,
27 e 39
fo(r) = Wé’ ) (39)

where I'(1/4)~3.62 is the Euler function. All these
quantities are expressed in terms of the optimum equilib-
rium rms bunch length o,

Ar\/3/T%(1/4 ET
(n®>—1) eV siny,

With the above formulas in hand, the functions G, ,(®)
introduced in (C13) can be written as

dn_ [ 0fow,(r)]i(pogr)] (qogr)dr

G, =-—
e wypqlo Or w* 4 2iy 0 — 03 (r)
- 16 x2!/4
pal(1/4)w(w;)050,

oo 47 J
% / dxe—x4 XU (pcfg)rfafi) Al (qcia)rfgrx) ’ (41)
0 O+ 27,00 — x

where @ = cjw/(wy) and 7, = c¢174/{(w,) are the scaled
(and dimensionless) frequency and radiation damping

rate with numerical coefficients ¢; = %20.816 and

_ ra/4)
2 — 21/4 \/]—T
(74 > 0) and the &’s of interest are real numbers, the x
integral is properly defined along the entire positive
real axis.

The response function (27), with G, , as in (41), is not
particularly revealing without resorting to a numerical cal-
culation, see Sec. V. It is instructive to consider the |@| > 1
limit in the approximation where the Bessel functions in
(41) are expanded to first order, although typically this
approximation applied to G, ,, tends not to be very accurate.

c

~ 1.72. Because radiation damping is included

Nevertheless, taking this limit [§° dxe ™ x*J, (pCrw0,.x) %
Ji(gerw0,x) = (3/64)T(1/4) X pgw*o?, and we find

g1
G 12G,,~2———, 42
L1 ’ w* + 2iy 0 (42)
with numerical coefficient g;; = % ~ 1.08. Equation (27)
becomes
Apy 9197

Aég T 4 2iygw — ia.gy 1 (@)

- g“szl (43)
? + 2iwly, — a.911 58(0)] — ila.g, 118(0)]

where we expanded the total effective impedance ¢(w) =
{i(w) + ¢, (w) through the first order in w. Inspecting the
denominator, we can read off the coherent-mode oscillation
frequency @, and Robinson damping y:

o 1
w; = iag1¢(0) = gy |:w%1 + <F - l)w%} . (44)

n

1 A
YR = —Eacglllé’(O)

ea.l .
=291 = (R1Qy sin 2¢r10052¢r1
EgTy
+ Rn QVl Sin 2¢rncosz¢rn) ’ (45)

having used

A A ea.wyl
ia,1¢,(0) = ia IRy, sin2¢,, = ——2LR  sin2¢,,
EyTy
=0 — 02, (46)
A A ea. .ol .
ia 1¢,(0) =a.dnR, sin2¢p,, = &nﬁ’n sin2¢,,,
EyTy
_ Ao Vsiny LaggnR, $in 26, = _co_% (47)
E()TO Vsin "/ Fn ’
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Equation (46) is similar to (36). The last equality in (47)
follows from (8). Here w, and w,; represent the incoherent
and coherent tunes that would be observed in a similar
storage ring without HHC if synchronous phase v, and
detuning ¢,; were the same as when the HHC is present.
With reference to Eq. (44), for light sources, a typical value
for the form-factor amplitude is about F',, ~ 0.9 implying that
1/F, — 1 is a small number. In the particular case where
w. ~ wg and recalling ¢g;; ~ 1.08, Eq. (44) is consistent
with @, being within about 10% of w.;. Numerical studies
based on the more accurate formula indicate that, for typical
machine parameters, the difference tends to be smaller.

V. NUMERICAL EXAMPLES
A. The ALS

We discuss two examples. The first, based on ALS, is
meant to provide a confirmation of our model; the second,
based on the ALS-U [33], to highlight its limitations. The
relevant parameters of the two machines are reported in
Table I.

The ALS has currently three normal-conducting, third-
harmonic single-cell cavities for a total R; =5.1 MQ
impedance not far from R, = 5.9 MQ, the optimum shunt
impedance for the nominal 500 mA current. The optimum
(rms) bunch length is just below ¢, = 17 mm. Because the
ALS operates with a single but relatively long (10%) gap in
the beam fill, transient beam-loading effects are strong
enough to prevent the attainment of the theoretical bunch
lengthening [34]. For the purpose of this exercise, the ideal
uniform-fill operational scenario is assumed.

ALS (w/ 3HC)

|A@,/AEg|

|A@,/A8,|

f (kHz)

FIG. 1.

The theory predicts that the beam response with and
without HHCs is very close, a result confirmed by macro-
particle simulations with ELEGANT [35], see Fig. 1 (left
images). The simulations were carried out using ELEGANT’S
“pseudo-mode” functionality, which effectively allows one
to model a uniformly populated multibunch beam by
tracking only particles in a single bunch. This is adequate
for studying the mode-zero multibunch collective motion.
Tracking was done with 10k particles/bunch over about
100k turns with a user-defined sinusoidal perturbation
applied to the main-cavity generator phase.

The response function was calculated based on the
beam-centroid output recorded at every turn by carrying
out a simple discrete Fourier transform (DFT). We found
that even with the allowance of enough time for the initial
transients to die off, the DFT result showed sensitivity to
the choice of the exact range number of turns. Therefore we
repeated the DFT using varying length data records
between 20k and 100k turns. The data points (error bars)
in the figures represent the average response (rms spread).
In the simulations, the HHC tuning was set so as to yield
the “optimum” bunch length.

B. The ALS-U

The longitudinal dynamics of the ALS-U will be notably
different from that of the ALS. The lower main rf cavity
voltage (0.6 vs 1.2 MV) and momentum compaction
2 x107™* vs 9 x 10™*) will result in a markedly lower
incoherent synchrotron tune. The present project goal is to
maintain the existing two main rf cavities. The f~3
coupling coefficient of these cavities is low compared to

ALS-U (w/ 3HC)

|A@,/AEg|

00 05 10 15 20

f (kHz)

10} ‘ N
B ALS-U (no 3HC)!
> 5
g
S 1

0.5

00 05 10 15 20
f (kHz)

Amplitude of the beam-centroid response to a sinusoidal perturbation of the rf generator phase with frequency f = w/2x, in

the presence (top) and absence (bottom) of higher-harmonic passive cavities as calculated by macroparticle simulations (dots) and theory
(curves). The curves with/without 3HCs are from Eq. (27) [with the functions G, , defined in (41)] and (33), respectively. The peak
frequency response is higher and the peak amplitude is lower in the ALS (left) compared to the ALS-U (right). Note the difference in

scale in both the horizontal and vertical axes.
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TABLE I. Relevant ALS-U and ALS parameters.

ALS-U ALS
Beam energy, E, 2.0 GeV 1.9 GeV
Circumference, C, 196.5 m 196.8 m
Average beam current, [, 500 mA 500 mA
Momentum compaction, a, 2.03 x 1074 0.9 x 1073

Energy loss/turn, U,

Synchronous phase without/with HHC,
Energy relative spread, o;

Longitudinal radiation damping time, 7,

Natural bunch length (no HHC), 6,y/0,
Stretched bunch length (with HHC), ¢, /0,
Harmonic number &

Generator rf frequency, @

Main-cavity voltage, V

Main-cavity loaded coupling factor,
Main-cavity loaded R;,/Q; 1,

Main-cavity detuning (no HHC), ¢,/ f 1
Main-cavity detuning (with HHC), ¢,,/f 1
Beam-loading parameter, Y

HHC higher-harmonic number, n

HHC R, /0,

HHC detuning angle/frequency ¢,,,/f .

Synchronous frequency (no HHC), w,/2x
Synchrotron tune (no HHC), v, = w,/wg

Average synchronous frequency (with HHC), (w,)/2x
Robinson damping time (no HHC), 7

Robinson nominal damping time (with HHC), 74

(w/IDs) 0.314 MeV
58.37/53.84 deg
1x1073
7.8 ms

3.93 mm/13.1 ps
15.0 mm/50.0 ps
328
500.394 MHz
0.6 MV
10.64
0.8422 MQ/3,094
50 deg /96 kHz
49 deg /91 kHz
1.40

3
1.4 MQ/34, 000

(no IDs) 0.228 MeV
79.04/77.66 deg
9.6 x 10~*

5.0 ms

5.01 mm/16.7 ps
16.7 mm/55.9 ps
328
499.654 MHz
1.2 MV
2.75
2.616 MQ/9,611
64.9 deg /55.6 kHz
64.5 deg /54.5 kHz
2.18

3
5.1 MQ/21,000

—82.4 deg/—165 kHz —85.1 deg/—416 kHz

2.5 kHz 8.22 kHz
0.0016 0.0054
0.54 kHz 2.98 kHz
6.2 ms 0.40 ms
7.1 ms 0.41 ms

the ALS-U optimum (f ~ 10) and a coupler modification
will be made to increase . Here we assume optimum f.

The ALS-U is being designed with two single-cell third-
harmonic cavities for a total R, = 1.4 MQ, somewhat
larger than the R, = 0.76 MQ optimum [36]. Extensive
simulations of the ALS-U indicate that with the 3HCs tuned
to yield the optimum bunch length (¢, ~ 15 mm), the beam
exhibits an ac Robinson-like instability with the signature
of dipole-quadrupole coupling. Simulations also show that
the instability, which saturates to persistent bunch-centroid
and length oscillations, can be suppressed with a conven-
tional bunch-by-bunch longitudinal feedback (LFB) system
but the LFB is not included in the results reported here. The
simulated beam response to a main-cavity generator-phase
sinusoidal perturbation is shown in the Fig. 1 top-right
image and, as expected, differs somewhat from the theory
in the dipole approximation. The simulations indicate a
resonant peak at about 1.3 kHz, while the theory places the
dipole coherent motion frequency just above 1 kHz. (In
the picture we do not report the simulated response close
to the peak because the occurring instability interferes with
the response beyond linear theory.)

In the absence of harmonic cavities, the simulated
response follows the expected behavior (bottom-right
image): No instability is observed in this case, implying
that the coupled dipole/quadrupole instability is indeed

caused by the 3HC. The comparison with the ALS response
suggests that ALS-U is potentially more sensitive to rf
noise: because of the lower resonant frequency (the rf noise
scales with some inverse power of frequency) and because
of the higher peak response. Either reason, though, is
essentially neutral to the presence of HHC, depending on
the lattice and main-cavity parameters (specifically, the
lower peak value in the ALS response is due to the larger
Robinson damping contributed by the main cavity).

VI. CONCLUSIONS

The main conclusion to be drawn from this study is the
realization of the limited role that passive higher-harmonic
cavities play in determining the beam response when the
dipole approximation applies.

In general, the beam-response function has the character-
istics of a resonance, with peak frequency and peak
amplitude related to the real and imaginary parts of the
complex eigenfrequency of the system coherent mode(s).
Mathematically, the singularities of the response function
in the complex-w plane are the roots of the dispersion
equation that identify the coherent modes’ eigenfrequen-
cies. As it turns out, the real part of the dipole-motion
eigen-frequency is largely determined by the main-cavity
parameters, and specifically the external generator syn-
chronous phase and voltage.
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At first it may seem surprising that the presence of
passive HHCs, which affect significantly the single-particle
motion, should not have a more visible impact on the
coherent motion of a bunch as a whole, an observation
already made, e.g., in [24]. But this is not unlike dipole
motion in other contexts. For example, coherent transverse
betatron oscillations in the presence of (direct) space
charge are entirely dependent on the external focusing,
not interparticle forces. Where HHCs can potentially have a
more noticeable role is in the modification of Robinson
damping, with a consequence on the response peak
amplitude rather than its frequency. The effect is dependent
on the system specific parameters. In both the examples
discussed here, the Robinson antidamping contributed by
the HHC happens to be modest compared to the Robinson
damping from the main cavity and radiation damping.

We qualify these conclusions by emphasizing their
validity in the dipole approximation. HHCs can, however,
induce significant dipole/quadrupole coupling (see [16,24]
and the ALS-U example in Sec. V) with the effect of a more
noticeable modification of the beam-response resonant
frequency. There is no conceptual difficulty in writing
an extended beam-response theory to include dipole/quad-
rupole coupling (this with an account of a longitudinal
feedback system will be reported elsewhere; elements
of this theory are already in Refs. [11,13,16,24]). Less
obvious is how the formalism can be generalized to include
the “overstretching” regime, where the HHC tuning is set to
the point where the total tf potential develops a double well
and conventional perturbation theory does not apply. This
generalization would be of interest since it would apply to a
regime where simulations indicate that the dipole/quadru-
pole coupling becomes more prevalent.
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APPENDIX A: MAIN-CAVITY TOTAL VOLTAGE

A uniformly filled electron beam consisting of identical
bunches with population N and profile p(z) concentrated at
7~ 0 and observed at the cavity has instantaneous current

Z(t) = —eN i p(t—mTy —tg).

m=—oo

(A1)

Interacting with the cavity fundamental mode associated
with the wake function W (see Appendix B), the beam
induces the voltage V, (1) = [Z(r —1)dt. In the
frequency domain, upon changing the 1ntegration variable
from 7 to 7 =1 —mT s — 1y,

eN
y4

V(1) = doZ(w )/df//’(t/ —mTy — to)e~ @)

E /da)Z(a) —iwt l(l)mTrfel(l)l()

m*—oo

% / dr’p(r’)ei“’f.

Introducing the Fourier transform pj(w

and the Poisson sum formula
27y % 8(@Ty — 2zp), we find

(A2)

dep t(m'
Zm:—oo ezmenc —

t)=—eN Z /dcoé Ty —27zp)Z(w)p(w)e —iw(1—1y)

p=—00

eN B
= —T— Z(ogp)p(wp)e
f p="c0

_iwrfp(t_lﬂ) .

(A3)

Assume that the impedance of the main-cavity fundamental
mode is sufficiently narrow band and only the p = +£1
terms contribute to the sum, we conclude (1,,, = eN/Tyy):

Vh(t) = _Iavgz(wrf)ﬁ(wrf)e_iwrf(l_[()) +c.c.

= —2I,g R F| cos ¢,y cos(wyst — g — @ — asty),

(A4)

where we have made use of (B1) and (B4) to write
Z(wy) = Ry cos ¢, e and introduced the amplitude F,
and phase ®; of the bunch complex-number form-factor

Fleiq>] = [)(a)rf) (AS)
For a short bunch p(wy)= [dr(l + iwgt — wit*/

2)p(z) = 1 — w%(z?)/2 + iw(7), and therefore Fi~1-
w%0?/2 and

D, ~ wy (7). (A6)

Equation (A4) can be cast in the phasor notation as

Vy(t) = Re{e @'V, 1, (A7)
with beam-voltage phasor V, = Z(w,)I, and beam-cur-
rent phasor I, = —2I,,,F1¢® ¢/". Similarly, phasors can
be used to represent the generator and total voltages

V,(t) =Re{e™ ™'V } =1,R; | cosg, cos(wyt — d, +0,),

(A8)
V(1) = Re{e 'V} = Vcos(wyt + 6y),  (A9)

where we wrote V = Ve~ for the total voltage phasor
and, based on the RLC circuit model, \75 = Z(wy)l e,
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A test particle with time-of-flight coordinate z travels
through the cavity at times ¢t = ¢, + nT + 7. The require-
ment that in Eq. (A9) the synchronous particle (z = 0) sees
the synchronous phase y, defines t) = (w, — Oy)/wy.
Inserting t = t, + nTy + 7 in (A4),

Vi(7) = =214 RyF cos p, cos(wt — ) —@y),  (AlO)

and similarly inserting in (AS),

Vg(T) = IgRLl COs ¢r1 COS((UrfT +ys— 0V - ¢r1 + 99)’
(A1)

which leads to the definition y/; , = y; — 0y — ¢, + 0, for
the generator voltage synchronous phase. In conclusion,
with the generator and beam peak voltages defined in (2)
and (3) we can write the total main-cavity voltage as

Vcos(wyt + ) =V, cos(wyt + g )

= Vycos(wyt — 1 — D). (A12)

The generator voltage is susceptible to amplitude
(I, =14+ Aly) or phase (0, =0, + Af,) noise. The
amplitude perturbation is generally less significant and
in this paper is neglected. Since we are not interested in
absolute timing, it does no harm to set 6,4 = 0.

We are interested in the first-order expansions of 1V, in
the combined 7 and A@, (i.e., we regard and neglect 7A0, as
second order) and of V,, in (7 — @ /w,;) = (7 — (r)) where
we made use of Eq. (A6) to represent ®;:

V,(t) =V, cosy, , — 1V wsiny, , — AO,V siny,
(A13)

Vi(z) 2 =Vycosd, — (t = (1)) Vi sing,,.  (Al4)

APPENDIX B: rf CAVITY FUNDAMENTAL-
MODE IMPEDANCE

At time ¢ > 0, the induced-voltage response of an rf
cavity fundamental mode to the passage of a pointlike
charge at +=0 is described by the wake function
W(t) =2aRe " [cos(@t) —2sin(@t)], where a =w,/(20),
@ =} —a=w,\/1-1/(20)% and w, is the reso-
nant frequency; W(¢) = 0 for ¢t < 0 (causality). The asso-
ciated impedance Z(w) = [ dte™ W() is

R

A o2

= Rcos[p(w)]e ), (B1)

with the angle ¢(w) defined as

w— o,

tan () = Q(— - —f) ~20 (82)

0, o

Note that in the convention adopted here ¢(w) is positive
for @ — w, > 0. It is understood that the main cavity R and
QO should be interpreted as the loaded shunt impedance
Rii =Ry;/(1+p) and quality factor Q;; = Qyi/
(1 +p), where B is the coupling factor and Ry, and
Qy are the unloaded quantities. For passive HHCs without
couplers, there is no ambiguity; if a coupler is present, the
loaded R and Q should be used.

We are interested in the Taylor expansion of the effective
impedance {,(®) in @ about the frequency +qwy; (¢ = 1
for the main cavity and ¢ = n for the HHC):

$ylw) = Z PZ(pwyg + @) ~ igR sin2¢,

p==q
- [QR sin(2¢r)cosz¢,} ®

Wyt

2
- [iZQLozsgb, [cos 2,
qwi¢
+2Q(sin2¢, + sin 4¢,)]] ? (B3)
where ¢, = ¢p(w = qwy), with
tan ¢, ~ 20 10~ P (B4)

r

is the detuning angle. In the cases studied in this paper, the
second-order term is small in the range of interest and can
be neglected. Through first order, we write the effective
total impedance for the combined main cavity and HHC as
E(w) = £(0) +'(0) with £(0) = ¢,(0) +£,(0), £(0) =
£1(0) +£,(0), and

¢1(0) = iRy, sin2¢,y, (BS)

£,(0) = inR, sin 26, (B6)

$1(0) = (4R 1 Q1 / wy) sin 2h, cos? g, (B7)
é’;l (0) = _(4Rn Qn/a)rf) sin 2'qsrn COSZ d)rn' (BS)

APPENDIX C: DERIVATION OF THE RESPONSE
FUNCTION FROM THE SOLUTION OF THE
LINEAR VLASOV EQUATION

The prevalent method to solve the linearized Vlasov
equation involves the azimuthal/radial mode decomposi-
tion f1(p,J; @) = >.°__ R, (J;w)e™?. Written in terms
of the scaled current parameter 1= ewlyye/EgT and
derivative of the bunch equilibrium f{, = 0f,/0J, Eq. (24)
becomes [19,27]
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(w + l|m|yd - mws)Rm

. S Z
+ 2mimlfy Y Zpoq + o) “’rfj @) H, ()
p=— pwrf
x z/ dJ'R,/(J)H,y ,(J') = ths, (C1)

m=—0oco0

where the term i|mly,, with y,=17;' >0, is meant to
capture the effect of radiation damping [37] and
Hm.p(']) (2” fZI[ lqu»zpmrfrcowpd(p —imJ (pa)rfr)

J,, being the Bessel function. The rhs of (C1) has the form

/)

27 . OH -
hs = iffy | dpe™™ ——2 = A, (w)f
rhs szA pe 90 iAG (o) [} o

2n . .
X dpe™? sin ¢
0

5 r(J)

= 61|m|51gn(m)A®t/(a))f6 A (CZ)

where AG,(w) = 0% Ad,(»)/(wya,) is the normalized
generator phase error. We proceed by assuming the dipole
approximation and retaining only the terms m = +1 in the
azimuthal-mode expansion, which is sensible as the driving
term (C2) is dipolar in nature. However, as discussed in
Sec. V, the quadrupole mode could be driven indirectly by
this excitation if a strong dipole/quadrupole coupling were
present; in that case, the effect would not be captured in the
dipole approximation.

Having introduced the short hand Z, = Z(pw,; + o) =
ZW (pawy + @) + Z" (pwy; + ) for the total impedance,

J fm‘) Jim|(pwyer) for the relevant Bessel function and
used J_,,(x) = —J,,(x), the left side of Eq. (C1) can be cast

in the form (m = £1)

(0 + iyy — mwy)R,,

(p) (p)

. Ji [/‘” Ji
+ 27"l =Y pZ,— dJ'R, —
a)ffzp: "p Lo "p

0 J(P)
+ / dJ’R_ll—] = rhs.
0 14

With the further definition rf, = [* dJR,,J\”/p, and
exploiting the assumption that the main and harmonic
cavity fundamental-mode impedances are narrow band
about the fundamental w; and higher nw,; harmonic,
respectively, we split the impedance sum into two separate
sums:

(C3)

ZpZ r1 +r?, ZpZ,, r1 + 7]
p==l1
—l—ZpZ rl—i—r -
p==%n

(C4)

Observing that J;(—
Jgp)/p :J(llp‘)/|p| and r,” = rl, the two terms on the
ths of (C4) read (Z\"—Z")r1J\" and n(Zl" -
z") )r”JE") /n, respectively, having introduced r' = r} +
r', and " =7+ r",. With this result and the further

px) =—J;(px) and therefore

definition £, = q(Z,(]q) - Z(_q,;), where ¢ = 1 or n, we can
write (C3) as

3 (n)
. o 1 J
((U—|— Ya— ma)s)Rm + 27”mw_2f6 |:Z:1J<11>r1 +Cn fll r
f

— mA®, f = Cs
9. 02

Next, multiply the above equation by J / g, divide by
(0 + iy, — mwy), integrate over the actlon J

1
0 i [gl r f{)JFl 11\9dr
oy | g J o+iy,—mo,
LG [ ol Tar ] mA8, / (r/2)fg "]
nq o+ iy, — mw; q o+ iy, — mo;
(Co)
and introduce the functions
2 /J(P J( )
Gh(w) = —= /d] Jol i) (C7)
w;pq -+ 1y, — mw
27 (r/2)f}J\"
Diy(w) = = /dJ Mol (cs)
wiq w + 1y, — mwy
to write (C6) as
rh [ G+ C G = mAB, ff D". (C9)

More explicitly, for m = %1, the above equation translates
into

2
H o+l G+ Gl = 80,55 D]. (C10)

2

%Dq
97 7V

— [ r' G 4 ¢, G = —AB (C11)

Upon taking the sum of the two equations above, first with
g = 1 and then ¢ = n, we obtain the system
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{1+iiglc;1,1 i1¢,G, :||:rl:|:A®a)_3f|:D1:|
il¢,G,,  1+il¢,G,, 1L "2z | D,

(C12)

having introduced the following additional functions:

G,4(@) =GP~ G}
“afa P
(C13)
and
Dy(w) =
e, o

In Egs. (C13) and (C14), we neglected y% compared to ?.
The approximate solution of (C12)

2 -5
Wi\~ Dl_llgn(DnGln_DlGnn) wrf Dl
=L A0 . 1~ AG
2r Y det 27 Ydet’
(C15)
o w_ffA(:) D, +il{(D,Gy; — DGy, W D,
2 9 det T 2n qdet
(C16)
where
det=1+il(G 18, + G,.8,) + IP[G11G,, — (G10)2)C01C,
(C17)
is inserted in (C5) to find
il
(0 +iyg—wg)Ryy = A®Jf0 5 . (C18)

The approximation in (C18) comes from neglecting
terms proportional to A(:)gi and A(:)giz. Equation (C18)
leads to

ro AG (@)
R, +R_ s A C19
1R = fo @ + 2y 0 — w?  det (C19)
and finally
A, (w)S
(z) :;z/dJ(R1 +R_1)r:W, (C20)

with

rw,

(e

Sitw) = [ aify

@ + 2iy 0 — @2

For short bunches, the following approximations typi-
cally hold: 1 ~ G ; ~ w,D;. On the assumption that this

is true, (1) = A@y/wy =~ A@_q(w)Gl,l/ det, and finally the
response function reads

~ 2
Ay, s G,

AG, o, det

(C22)
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