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We show that under certain conditions a longitudinal mismatch between an electron and a hadron beam
in a coherent electron cooling (CeC) scheme creates a circular attractor in the longitudinal phase space of
the cooled hadrons. Formation of an attractor completely stops the cooling and results in anticooling
(“heating”) causing small synchrotron amplitudes to grow to the attractor’s radius, rather than being
damped. We present a theory of this effect, compare the analytical results with simulations and derive
tolerances to possible sources of the longitudinal mismatch. We further show that under certain conditions a
“weak” attractor, affecting hadrons with large synchrotron amplitudes, can appear in the hadrons’
longitudinal phase space and explain that formation of such an attractor does not require the presence of any
mismatches.
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I. INTRODUCTION

Presently, there are two operational methods of increas-
ing the phase space density of hadron bunches in the
collider: stochastic cooling [1] and electron cooling [2,3].
In electron cooling an electron beam is copropagating

with the ions with the same average velocity in a straight
section of the storage ring called the cooling section. The
electrons introduce dynamical friction [4], which reduces
both the transverse and the longitudinal momentum spread
of the ion bunch over many revolutions.
In stochastic cooling a sensor (called pickup) acquires

electrical signals from ions; these signals are amplified and
transferred to a “kicker” pushing the ions in directions
opposite to their velocities. Since such a system has a
limited bandwidth (W), both the pickup and the kicker can
act only on an ensemble of ions, which reduces the
effectiveness of the cooling. The resulting cooling rate
(λ) is directly proportional to the cooler’s bandwidth, and
inversely proportional to the number of particles in an ion
beam (Ni) [1]: λ ∝ W=Ni.
A novel method of coherent electron cooling was

proposed [5–7]. Potentially, it has a broader range of
applicability and a better performance than the existing
cooling methods. A proof of principle coherent electron
cooling (CeC) experiment [8] is currently under develop-
ment at the Relativistic Heavy Ion Collider (RHIC) at the

Brookhaven National Laboratory (BNL). CeC is also the
cooler of choice [9,10] for the Electron Ion Collider (EIC),
which will be constructed at BNL [11].
In the coherent electron cooling the cotraveling ion and

electron bunches interact in the cooling section consisting
of a modulator, an amplifier and a kicker. In the modulator
each individual ion leaves an “imprint” in the electron
bunch by exhibiting a Coulomb pull on the nearby
electrons, thus creating a microscopic “wake” in the
electron bunch. In the amplifier this wakefield is amplified
by a controlled instability of the “electron plasma.” Finally,
in the kicker section, each ion interacts with its own
amplified wake, thus the word “coherent” in the name
of this cooling technique. Since the displacement of the ion
with respect to its wake is proportional to the ion’s relative
momentum, the longitudinal momentum spread of the ion
bunch is getting reduced, thus providing the cooling.
Conceptually, the coherent electron cooling is a form of

the stochastic cooling, with electron bunch playing a role of
both a pickup and a kicker, as well as a role of a signal
carrier. The promise of CeC is that such coolers have an
extremely high bandwidth of about a hundred or even
several hundreds of THz. Therefore, the CeC cooling rate is
supposed to be much higher than the cooling rate in
conventional stochastic coolers.
There are several methods to amplify the ions’ imprint in

the electron bunch [5]. In amethod of radiative instability the
ion-induced modulation of the e-bunch is amplified in the
high-gain free electron laser [6]. In a microbunched coherent
electron cooling [7,9,10] the modulation is amplified via the
longitudinal space charge microbunching instability. In a
plasma cascade instability method the electron beam’s
plasma frequency is modulated via variation of its density
achieved by a periodic focusing of the e-beam [8].
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In the CeC kicker the “energy kick” acting on an ion can
be parametrized [12] as ΔEðz; z1Þ ¼ −V0Φðz; z1Þ, with the
dimensionless wake function:

Φðz; z1Þ ¼ sin

�
2π

z − z1
z0

�
exp

�
−
ðz − z1Þ2

σ20

�
; ð1Þ

where V0, z0 and σ0 are the adjustable parameters defined
by the CeC’s design, V0 is the amplitude of the kick, z0 is
its characteristic wavelength, σ0 is the characteristic width,
z is the ion’s longitudinal displacement in the kicker with
respect to the ion’s position in the modulator section of the
cooler, and we introduce an additional mismatch z1 in the
modulator-to-kicker path lengths of the electron and the ion
beams. It is assumed that z does not change through the
kicker and that z ¼ R56δ. Here, δ ¼ δp=p0 is a relative
momentum of an ion and R56 is the momentum compaction
element of the modulator-kicker transfer matrix.
The misalignment z1 can be caused by a mismatch in

relativistic γ factors of the two beams; it also can be the
result of errors in the settings of magnetic elements in the
cooling section.
Below we will show that if z1 is constant and is larger

than some critical value defined by the parameters of the
CeC wake, then the cooling process stops completely and
turns into anticooling [13]. This effect sets strict require-
ments to the matching of the electron’s and ion’s path
lengths through the cooling section, and to the design of
coherent electron coolers.

II. EQUATIONS OF MOTION AND CIRCULAR
ATTRACTOR

A. Equations of motion

In this paper we use a framework of a so-called “slice
model” of the coherent electron cooling [7,9,10,12]. This
model considers an ion bunch’s slice of a length σ0 which is
defined by the characteristic length of the wake given by
Eq. (1). Such a slice contains millions of ions; the exact
number Ns of the ions within the slice depends on the ion
bunch density. The model assumes that there is no nonlinear
mixing of the wakes from the different ions. The interaction
of any given ion with its own wake provides the cooling
effect, while the effect of all other ions in the slice on the
chosen ion is taken into account as a sumofNs randomkicks,
which results in the diffusive heating of the ion bunch. The
described model allows us to make important conclusions
about the ion beam dynamics from considering the equations
of motion of an individual ion. Furthermore, averaging a
single ion’s equations over the ion bunch distribution, we can
get expressions for both the cooling rate and the rate of
diffusive heating of the ion bunch.
We consider motion of an individual ion in the linear part

of the rf bucket using dimensionless variables δ and
τ ¼ ωs

η
s
βc ¼ σδ0

σis0
s, where ωs is a synchrotron frequency, η

is a phase slip factor of the ion storage ring, s is a proton’s
longitudinal position with respect to the center of the rf
bucket, β is a relativistic factor (we are setting β ¼ 1 in the
following calculations), c is the speed of light, σδ and σis
are respectively the root mean square (rms) momentum
spread and the rms length of the ion bunch with the
Gaussian distribution, and the index “0” signifies that we
chose to use the initial values of σδ and σis.
We introduce the invariant of the undisturbed motion

J ¼ δ2 þ τ2. For a bunch with the Gaussian distribution the
density distribution function for J is fJðJÞ ¼ ð1=J̃Þe−J=J̃,
where J̃ ¼ 2σ2δ is the average value of J.
Finally, we will assume that the electron bunch length is

much smaller than the length of the i-bunch, and that the e-
bunch is longitudinally placed at the center of the i-bunch,
which is a typical CeC setup. Therefore, the ions interact
with the electrons when their synchrotron phase ϕ ≈ π

2
or 3π

2
.

Under these assumptions, the equations of motion of an
individual ion are

τ0 ¼ δ

δ0 ¼ −τ þ αCðϕÞFðδ; z1Þ þ
ffiffiffi
α

p
CðϕÞD

Fðδ; z1Þ ¼ −
V0

E0

ΦðR56δ; z1Þ

D ¼ V0

E0

XNs

n

�
e
−ζ2n
σ2
0 sin

�
2πζn
z0

��
: ð2Þ

Here τ0 ≡ dτ=dϕ, δ0 ≡ dδ=dϕ, E0 is the ion beam energy,
and a Dirac comb function C is given by

CðϕÞ ¼
X∞
n¼0

δD

�
ϕ −

πð2nþ 1Þ
2

�
; ð3Þ

where δD is a Dirac delta function. The coefficient α ¼ffiffiffiffiffiffiffiffi
2 ln 2

p
σesσδ0

πQsσis0jδj is the number of times the ion lands on the e-

bunch (having the rms length σes) when τ ≈ 0, here Qs is
the synchrotron tune, and

ffiffiffi
α

p
in front of the diffusive term

D signifies the random walk law. The diffusive term D
represents the sum of all the random kicks experienced by
the particular ion from the wakes induced by Ns ions in the
longitudinal slice (of length σ0) of the ion bunch. Variables
ζn are the longitudinal positions of the ions in the slice with
respect to the ion under consideration.
From Eq. (2) we get the average difference equation for

δ2 over the synchrotron period Ts:

Δδ2

Δt
¼−

2α1
Ts

V0

E0

½ΦðR56δ;z1ÞþΦðR56δ;−z1Þ�þ
2α1
Tsjδj

hD2i;

ð4Þ

where α1 ¼
ffiffiffiffiffiffiffiffi
2 ln 2

p
σesσδ0

πQsσis0
.
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Squaring the expression for D and bearing in mind that
only the terms containing the square of sine will give a
nonzero input into the average value, we obtain the
following equation for hD2i:

hD2i≈
�
V0

E0

�
2Ns

σ0

Z∞

−∞

e
−2ζ2

σ2
0 sin2

�
2πζ

z0

�
dζ

¼
ffiffiffi
π

p

2
ffiffiffi
2

p
�
V0

E0

�
2

Ns

�
1− e

−
2πσ2

0

z2
0

�
≈

ffiffiffi
π

p

2
ffiffiffi
2

p
�
V0

E0

�
2

Ns: ð5Þ

For an ion bunch with the Gaussian density distribution
the number of ions in the central slice of length σ0 is
Ns ¼ σ0Niffiffiffiffi

2π
p

σis
, whereNi is the number of ions in the bunch. A

detailed discussion of Ns for the general case of a
distribution which is circularly symmetric in τ, δ coordi-
nates can be found in [13].
Since in our model the i-e interaction is happening only

at ϕ ≈ π
2
, 3π

2
, at the moment of the interaction J ≈ δ2.

Therefore, averaging Eq. (4) over the whole ensemble of
ions, we get

1

J̃

dJ̃
dt

¼ −λC þ λD

λC ¼ 2α1V0

TsE0

1

J̃

Z∞

0

fJ½ΦðR56

ffiffiffi
J

p
; z1Þ þΦðR56

ffiffiffi
J

p
;−z1Þ�dJ

λD ¼ 2α1
Ts

hD2i 1
J̃

Z∞

0

fJffiffiffi
J

p dJ; ð6Þ

where λC and λD are the instantaneous cooling and heating
rates respectively.
For the i-bunch with the Gaussian distribution, for the

case of z1 ¼ 0, Eq. (6) gives

λC ¼ ð2πÞ32α1
Tsσ

2
δ

V0

E0

σzσ
3
0

z0ð2σ2z þ σ20Þ3=2
e
− 2ðπσ0σzÞ2
z2
0
ð2σ2zþσ2

0
Þ

λD ¼
ffiffiffiffiffiffiffi
ln 2

p

4
ffiffiffi
π

p σesσ0
Trσ

2
isσ

2
δ

V2
0

E2
0

Ni; ð7Þ

where σz ¼ R56σδ and Tr is the revolution period in the ion
storage ring.
We found the equations defining the longitudinal beam

dynamics of the ion bunch with an arbitrary distribution (as
long as the distribution stays circularly symmetric in δ, τ
phase space). Equations (6) and (7) give the instantaneous
cooling and heating rates for the bunch and define the
parameters of the equilibrium distribution given by λC ¼
λD (it must be noted that the concept of the cooling rate is
applicable only while z1 does not exceed a particular
critical value, which is the topic of the following section).

Equation (2) describes longitudinal motion for each ion.
For practical simulations one must substitute D in Eq. (2)
with the random kicks having the rms amplitude

ffiffiffiffiffiffiffiffiffiffi
hD2i

p
given by Eq. (5).

B. Circular attractor and coherent excitations

The longitudinal force F in Eq. (2) acting on the ion is a
nonmonotonic function of δ. Hence, a circular attractor in
the ions’ longitudinal phase space will appear if the
systematic mismatch z1 is larger than a critical value zc,
where zc is the absolute value of z corresponding to either
the maximum or the minimum of the function ΔEðz; 0Þ.
The critical mismatch is given by the closest to z ¼ 0

solution of the equation dΔEðz;0Þ
dz ¼ 0:

zc
σ20

¼ π

z0
cot

�
2π

z0
zc

�
: ð8Þ

Figure 1 explains the physics underlying the attractor
formation. Consider the case of nonzero mismatch z1.
When an ion with such a relative momentum δ that R56δ ∈
½0; z1� interacts with the electron bunch, the force F acting
on the ion is codirected with its longitudinal velocity.
Hence, the ion receives an energy kick exciting the
amplitude of its synchrotron oscillations. The same ion
passing the cooling section with negative δ will experience
a damping kick. When z1 > zc, there is a range of δ ∈
½−δA; δA� such that the exciting kick is larger than the
damping kick. Hence, the average force acting on the ions
with relative momentums in this range is an exciting one.

FIG. 1. The force (blue solid line) experienced by an ion on a
single pass through the cooling section in the presence of a
systematic mismatch z1 ¼ 1.6zc. The green dashed line repre-
sents a reflection (around the vertical axis) of the force for
negative z. The green dot shows a “radius” (zA) of the attractor’s
projection on the z-space.
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For ions with δ outside of this range the average force
damps the synchrotron oscillations. Therefore, the force F
with a sufficient enough offset makes all the ions to
oscillate with the same nonzero amplitude. In other words,
for z1 > zc the interplay of the rf focusing and the periodic
force creates a circular attractor in the longitudinal
phase space.
The radius of the attractor (

ffiffiffiffiffi
JA

p ¼ δA ¼ zA=R56) is
defined by

ΦðR56δA; z1Þ þΦðR56δA;−z1Þ ¼ 0: ð9Þ
The presence of the circular attractor stops the cooling of

all the ions with J < JA. Instead, such ions experience
coherent excitations bringing amplitudes of their oscilla-
tions to the attractor’s radius.
The described effect is similar to the coherent excitations

effect in the regular electron coolers [14,15].
To simulate the ion beam dynamics we integrate Eq. (2)

numerically with an explicit, exactly symplectic, third order
method [16]. To make the simulations faster, and without a
loss of generality, we use forceFwith a very high peak value
of 10−5. Such a force allows to reach the steady state
distribution in just about a few hundred synchrotron turns.
We simulate diffusion as random energy kicks experienced
by each ion. We use the diffusive noise with the normal
distribution of the constant rms amplitude 2 × 10−5. Theffiffiffiffiffiffiffiffiffiffi
hD2i

p
¼ const choice will be justified below. Moreover,

since diffusion coefficient is constant, the exact value of the
ratiomaxðFÞ=

ffiffiffiffiffiffiffiffiffiffi
hD2i

p
does notmatter for the resulting steady

state distribution, since the F effect on the ions accumulates
linearly with time and the diffusion goes as a square root
of time.
Figures 2 and 3 show the initial (Gaussian) distribution

of a bunch with 104 ions and the same bunch distribution
after 200 synchrotron turns under the influence of the force
with z1 ¼ 1.5zc.
As expected, the main effect observed in simulations is

clustering of the ions around the attractor with the radiusffiffiffiffiffi
JA

p ¼ δA defined by Eq. (9). Projection of the resulting
phase space on the physical space gives a two-hump
longitudinal density distribution, as Fig. 3 demonstrates.
For this “hollow” longitudinal distribution the number of
particles in the central slice of the i-bunch converges to a
constant value:

Ns1 ¼
Niσ0σδ0
π

ffiffiffiffiffi
JA

p
σis0

ð10Þ

which gives a constant rms amplitude of the dispersive
kick:

hD2
1i ¼

V0

E0

Niσδ0σ0
2

ffiffiffiffiffiffi
2π

p
δAσis0

: ð11Þ

Thus, the presence of the attractor keeps the diffusive
coefficient constant over time. In terms of the initial
diffusion (hD2

0i) for the Gaussian bunch we get the
following for the steady-state diffusion coefficient:

hD2
1i ¼

ffiffiffi
2

π

r
σδ0
δA

hD2
0i: ð12Þ

In addition to the attractor caused by the systematic
mismatch, the simulations, clearly show the presence of
another attractor of the larger radius. The simulations show
[13] that this “weak” attractor has nothing to do with the
electron-ion path lengths mismatch and is present even
when z1 ¼ 0.
The weak attractor exists because the cooling force has

an actual “heating” portion for z ∈ ðz0=2; z0Þ and because
the ions interact with the e-bunch only when the longi-
tudinal ion velocity is close to its extremum (when ϕ ≈ π

2
or

3π
2
). Therefore, in the case of a short e-bunch placed at the

FIG. 2. Initial distribution of the ion bunch in the phase space
normalized by R56=z0.
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center of an ion bunch the weak attractor must appear at
z ¼ z0, even in the absence of any mismatch.

III. REQUIREMENTS TO CeC DESIGN

The systematic mismatch between the electrons’ and the
ions’ modulator-to-kicker path lengths must be kept less
than zc defined by Eq. (8). Otherwise the cooling will be
lost completely.
Bearing in mind the analogy between the CeC and the

stochastic cooling discussed in Sec. I, one can get a
simplified expression for zc through the CeC bandwidth
W. Since, zc ≈ c

2W, Eq. (8) can be substituted for quick
estimates by

z1 <
c
2W

: ð13Þ

The need to ensure against the longitudinal mismatch
exceeding the critical value zc also sets requirements to
tolerable error in the e-i γ-matching. The following con-
dition must be satisfied for the CeC to work:

Δγi
γ

R56 −
Δγe
γ

Re
56 < zc; ð14Þ

where γ is the design relativistic factor, Δγi and Δγe are the
γ-factor errors of the ion and the electron beams respec-
tively, and Re

56 is the modulator-to-kicker momentum
compaction for the electron beam.
Avoiding the weak attractor might be not as important as

avoiding the attractor caused by the systematic longitudinal
mismatch. The weak attractor does not stop cooling
completely. It affects only the ions with

ffiffiffi
J

p
>

ffiffiffiffiffi
Ja

p
, where

Ja ¼ ð z0
2R56

Þ2. The fraction of the ion bunch affected by the
weak attractor depends on the CeC parameters, and for the
bunch with the Gaussian distribution can be found asR∞
Ja
ð1=J̃Þe−J=J̃dJ. For instance, for the EIC parameters,

about 8% of the ions are lost to the cooling due to the weak
attractor’s effect.
To give an example of requirements set by discussed

effects we consider parameters of the Strong Hadron
Cooler [17] under design to cool protons at 275 GeV in
the EIC (Table I).
Substituting the wake parameters into Eq. (8) we get the

critical value of the longitudinal mismatch zc ¼ 1.3 μm. In
terms of time of flight of the electron and ion beams from
the modulator to the kicker the difference must be kept
below ≈4 fs.
Knowing zc one can obtain tolerances to errors in setting

the absolute energies of each beam from Eq. (14).
Assuming that for each beam the error must not exceed
zc=2, we obtain for proton beam Δγ=γ ≤ 3 × 10−4 and for
electrons Δγ=γ ≤ 4 × 10−4.
Other possible sources of the path length mismatch are

the errors in the magnets’ settings. Such errors can result
both in the incorrect trajectories of the beams through the
cooling section and in the errors in either R56 or Re

56. A
tolerance to an error in the current of each magnet in the
cooling section must be determined at the final stage of the
design of the cooler when its lattice is finalized.

FIG. 3. Phase space of the ion bunch (normalized by R56=z0)
after 200 synchrotron turns under the influence of the force with
z1 ¼ 1.5zc. Blue dots show the simulated i-bunch distribution.
The solid red line represents the theoretically predicted attractor
with radius

ffiffiffiffiffi
JA

p ¼ δA given by Eq. (9).

TABLE I. EIC cooler parameters.

Kick amplitude (V0) [eV] 28
Kick characteristic wavelength (z0) [μm] 6.7
Kick characteristic width (σ0) [μm] 3
Proton beamline R56 [mm] 2.2
Electron beamline Re

56 [mm] 1.6
Protons per bunch (Np) 6.9 × 1010

Protons relative momentum spread (σδ0) 6.8 × 10−4

Proton bunch length (σps0) [cm] 6
Electron bunch length (σes) [mm] 7
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IV. CONCLUSION

We showed that in the coherent electron cooling tech-
nique a circular attractor appears in the ions’ longitudinal
phase space if the systematic mismatch between the ion and
the electron path lengths through the cooling section is
larger than the critical value given by Eq. (8). This attractor
causes coherent excitations of the ions with the oscillation
amplitudes smaller than the attractor radius, thus turning
cooling into anticooling.
The theory of coherent excitations in the CeC was

presented and compared to the results of the simulations.
It was further shown that even in the absence of the

systematic mismatch another attractor still might be
present. This weak attractor results from the diffusive part
of the wake and from the fact that the e-bunch used for
cooling is much shorter than the i-bunch and is longitu-
dinally placed at the center of the i-bunch.
The requirements to the CeC design were discussed

including the requirements to the Strong Hadron Cooler at
the Electron Ion Collider.
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