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The SIS100 synchrotron as a part of the new Facility for Antiproton and Ion Research (FAIR) accelerator
facility at GSI should be operated at the “space charge limit” for light- and heavy-ion beams. Beam losses due
to space-charge-induced resonance crossing should not exceed a few percent during a full cycle. The recent
advances in the performance of particle tracking tools with self-consistent solvers for the 3D space charge
forces now allow us to reliably identify low-loss areas in tune space, considering the full SIS100 accumulation
plateau of one second (160 000 turns) duration. A realistic magnet error model, extracted from precise bench
measurements of the SIS100main dipole and quadrupole magnets, is included in the simulations. Previously,
such beamdynamics simulations required non-self-consistent space chargemodels. By comparing to the self-
consistent simulations results, we are now able to demonstrate that the predictions from such faster space
charge models can be used to identify low-loss regions with sufficient accuracy. The findings are applied by
identifying a low-loss working point region in SIS100 for the design FAIR beam parameters. The bunch
intensity at the space charge limit is determined. Several countermeasures to space charge are proposed to
enlarge the low-loss area and to further increase the space charge limit.
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I. INTRODUCTION

The SIS100 heavy-ion synchrotron [1] is designed for
the production of high-intensity heavy-ion and proton
beams at medium energies. The SIS100 with a circum-
ference of 1080 m and 100 Tm rigidity will be the main
synchrotron of the new Facility for Antiproton and Ion
Research (FAIR). Key components of the synchrotron are
the fast-ramping superconducting magnets (with up to
4 T=s), enabling short cycles, as well as dedicated rf
cavities for bunch compression, enabling the extraction
of a single short (50 ns) ion bunch at the end of the cycle.
The magnet systems are currently in production, with

all the dipole magnets already tested successfully,
showing the required high precision in field quality. The
availability of a full SIS100 magnet error model with
nonlinear field distortions measured up to tenth order
enables realistic predictions of the SIS100 performance
with space charge. First results based on a transversely
linear space charge model have been reported in Sec. 6 of
Ref. [2]. Series production of the quadrupole magnets
is currently ongoing [3] with more than 15% having

been tested already, which warrants a realistic prediction
for the full series.
The main beam-loss mechanism expected for intense

heavy-ion beams in SIS100 at injection energy—besides
charge stripping of such intermediate-charge-state ions—is
space-charge-induced resonance crossing. For proton and
light-ion beams, space charge is expected to be the main
intensity limitation at injection energy and for bunch com-
pression [4] at top energy. In the case of (intermediate-
charge-state) heavy ions, the tolerance for space-charge-
induced beam loss is determined by the effectiveness of the
vacuum system to stabilize the residual gas pressure against
desorption due to the lost particles. In addition, and for all
ions, beam loss has to remain below certain threshold values
to avoid activation and subsequent component damage. A
beam-loss budget of 5% for the injection plateau and
intermediate-charge-state heavy ions is considered as toler-
able [1]. Dedicated collimation systems for absorbing “halo”
losses caused by stripping and space charge are foreseen
in SIS100 [5].
The six arcs in SIS100 are optimized for the collimation

of stripping losses in heavy-ion beams. The straight
sections in between are used for the rf cavities, injection
and extraction, as well as laser cooling of selected ion
beams [6]. For the generation and subsequent storage of
secondary beams downstream, the SIS100 should accel-
erate primary ion beams from protons up to uranium. In our
studies, we focus on the heavy-ion design intensities and
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cycles, with the goal to determine the space charge limit
and identify knobs to increase it.
The bunches are injected from the existing SIS18

synchrotron [7,8] at a maximum repetition rate of
2.7 Hz [9]. In the SIS100, space charge effects will play
an important role especially during the long (approximately
1 sec) accumulation plateau at the lowest (injection) energy,
which is 200 MeV=u for U28þ ions, chosen as a reference
case in this study. After acceleration (up to 2.7 GeV=u for
U28þ), the beam is either extracted slowly over one or
more seconds or rebunched and compressed before fast
extraction.
At injection energy, heavy-ion beams fill up to approxi-

mately half of the transverse size of the SIS100 vacuum tube
aperture. Besides direct space charge forces, also image
forces from the elliptical beam pipe can modify the incoher-
ent tune shifts and will be included in future simulation
models. In the present contribution, we focus on the effect of
direct space charge and neglect the wall impedance.
The beam dynamics simulations have to resolve the

nonlinear 3D space charge forces as well as the local magnet
errors, which are represented by a multipole expansion. The
coefficients of the multipole are extracted from magnetic
field measurements of individual magnets. Until recently,
predictions of space-charge-induced beam loss due to the
crossing of resonances have relied on particle tracking using
3D frozen space charge models (see, e.g., Refs. [10,11]).
Such non-self-consistent space charge models are also
employed for the 2D tune scans for SIS100 because of
the demanding timescales of 1 sec or 160 000 turns, leading
to the identification of suitable low-loss working point
areas..With non-self-consistent frozen space chargemodels,
the simulations can be run with a relatively low number of
simulation particles. Frozen space charge models, also in
their adaptive forms [12], suppress all modifications of the
space charge force resulting from non-Gaussian profiles. In
the nonadaptive (or “fixed” frozen) form, also coherent
beam oscillations of any sort are entirely suppressed. It is,
therefore, of vital interest to carefully validate the low-loss
areas obtainedwith the faster frozen space chargemodels by
comparison with self-consistent particle-in-cell (PIC) com-
putation. Over the long accumulation timescales in syn-
chrotrons, self-consistent PIC solvers require large numbers
of macroparticles in order to limit the effect of artificial
noise [13,14]. Recent implementations of the self-consistent
PIC scheme feature a much-improved performance with
hardware acceleration [15]. We are, hence, now in the
position to use a sufficiently large number of macroparticles
for effective noise suppression and validate the identified
low-loss areas, within acceptable computing times. This, for
the first time, enables systematic studies of different opti-
mization measures in a realistic simulation scenario toward
an increase of the space charge limits.
The first goal of our studies is to identify suitable working

point areas for low-loss operation inview of the high nominal

bunch charge and given the SIS100 magnet error model,
based on the magnet bench measurements. The second goal
is to identify suitable optimizationmeasures, to furtherwiden
the low-loss areas for the design beam intensity, in order to
allow for more options in tune space during high-intensity
operation. Third, we define and explore the space charge
limit based on our realistic computer model.
This contribution is organized as follows: First, we

discuss the SIS100 design beam parameters and our 3D
simulation model. We proceed to analyze the ideal, error-
free SIS100 lattice with only space charge included. Next,
the quadrupole resonance driven by a gradient error serves
as a study case to compare and establish predictions by the
space charge models. In the central part, we include the full
nonlinear magnet error model and focus on beam-loss
prediction and optimization. We conclude with a summary
and outlook.

II. THE SIS100 BEAM-LOSS SIMULATIONMODEL

The particle transport through the accelerator lattice is
computed employing the 6D symplectic single-particle
tracking engine library SixTrackLib [16]. SixTrackLib is
optimized for running on highly parallel hardware architec-
tures; as such, it supports running simulations on multicore
CPUs as well as graphical processing units (GPUs).
Our simulation model includes a detailed SIS100 lattice

consisting of 84 basic focusing cells, which are arranged in
six symmetric arcs and straight sections. The symplectic
tracking algorithm of SixTrackLib necessitates a thin-lens
representation of the extended magnets.1 The second-order
fringe field effect of the dipole magnets is taken into
account in hard-edge approximation.2

For machine protection in real operation, SIS100 fea-
tures a collimation system as well as a cryocatcher system
with low-desorption surfaces to avoid dynamic vacuum
effects [18]. By construction, they essentially provide the
most stringent aperture limitation in order to absorb halo
particles and ions of nondesign charge state. To simplify the
simulation setup for this study, the collimators and cry-
ocatchers are retracted in the machine model and, thus, not
taken into account. The loss model, hence, covers the
apertures of the magnets as well as the extraction septa of
the machine.
We focus on the SIS100 reference U28þ heavy-ion beam

at injection energy, for which Table I lists the machine and
beam parameters. Also, lighter ions and protons with
similar space charge tune shifts will be accelerated.
However, U28þ beams feature the lowest injection energy.
The correspondingly large beam sizes compared to the

1The dipole and quadrupole units are represented by nine thin
kicks which are located by using the TEAPOT slicing algorithm
[17] for improved accuracy.

2The additional focusing contribution by the dipole magnet
fringe fields makes for a 0.1 tune shift in the SIS100 lattice.
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physical aperture render beam-loss mechanisms induced
by space charge particularly important: Any significant
emittance growth translates to finite beam loss. In addition,
the loss budget implied by vacuum considerations is the
tightest for U28þ beams. Therefore, this case serves as the
reference throughout the rest of the paper.
Coming from the upstream SIS18 synchrotron, the

transferred bunches are foreseen to be scraped in the
transfer line.
The simulations for SIS100 injection take the scraping

effect into account by generating 6D Gaussian bunch distri-
butions which are cut at 2σ (with resulting rms figures
according to Table I). The incoherent footprint of such a
bunch distribution subject to space charge and natural
chromaticity is plotted in Fig. 1. The (defocusing) space
charge effect with a maximum detuning ofΔQSC

y ¼ −0.3 in
the bunch center dominates over the (linear) chromatic tune
spread ofQ0

x;yσΔp=p0
¼ 0.01. Both effects are included in the

simulations.
For reference, the maximum transverse detuning by

space charge in a Gaussian distributed bunch can be
determined analytically by

ΔQSC
y ¼ −

Ze
4πϵ0m0c2

λmax

β2γ3
1

2π

I
ds

βyðsÞ
σyðsÞ½σxðsÞ þ σyðsÞ�

;

ð1Þ

see e.g. Eq. (2.87) in Ref. [20]. Here, Z is the ion charge
number, e the elementary charge, ϵ0 the vacuum permit-
tivity,m0 the rest mass of the ions, c the speed of light, β the
speed in units of c, γ the Lorentz factor, βyðsÞ the vertical
betatron function along the path length s around the

accelerator, and σx;y the horizontal or vertical rms beam
size. The maximum line charge density λ for a Gaussian-
shaped bunch of rms bunch length σz and intensity N reads

λmax ¼
NZeffiffiffiffiffiffi
2π

p
σz

: ð2Þ

It is interesting to note that, due to the particular SIS100
lattice layout which is optimized for the catching efficiency
of stripped ions, the contribution of dispersion to the beam
size σx is negligibly small when computing the tune shift
in Eq. (1).

A. Space charge models and solvers

In our study, we use two different approaches to account
for the 3D space charge force. The models are implemented
as lumped kicks in the PyHEADTAIL tracking code [15,21]
which is integrated with SixTrackLib for the SIS100
simulation model. In all approaches, we account for only
the direct space charge force and neglect indirect wall
effects.
In the fast and approximative approach, the transverse

space charge force is obtained from a frozen Gaussian
distribution using the expression derived in Ref. [22]. In the
longitudinal plane, a Gaussian line charge density shape is
assumed. Considering a static force field map without
updates throughout the simulation, this approach will be
henceforth referred to as fixed frozen space charge (FFSC).
The adaptive frozen space charge (AFSC) model then takes
into account the change of rms beam size of the evolving
simulated macroparticle distribution while still assuming a
Gaussian space charge force. If the field map update takes

TABLE I. Considered parameters for 238U28þ accumulation at
SIS100 injection energy.

Parameter Value

Horizontal normalized rms emittancea ϵx 5.9 mmmrad
Vertical normalized rms emittancea ϵy 2.5 mmmrad
rms bunch length σz 13.2 m
rms momentum deviation σΔp=p0

0.44 × 10−3
Bunch intensity N of U28þ

238 ions 0.625 × 1011

Max space charge tune shift ΔQSC
y −0.30

Chromaticity Q0
x;y ð−21;−24Þ

rf voltage (single-harmonic) Vrf 58.2 kV
Harmonic h 10
Transition energy γt 15.5
Synchrotron tune Qs 4.5 × 10−3
Circumference C 1083.6 m
Kinetic energy Ekin ¼ 200 MeV=u
Relativistic β factor 0.568
Revolution frequency frev 157 kHz

aThe normalized rms emittance corresponds to a “Kapchinskij-
Vladimirskij (KV)” emittance (as quoted, e.g., in Ref. [19]) of 35
and 15 mmmrad, which is 4 times the geometric rms emittance.

FIG. 1. Incoherent tune footprint of a SIS100 U28þ bunch at
injection with space charge (using the 2.5D PIC space charge
model) and natural chromaticity as tune spread sources.
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place only every few turns, also in the AFSC model
coherent first- and second-order beam oscillations are
suppressed.
The 2.5D PIC employed throughout this study solves the

transverse Poisson equation for many longitudinal slices
along the bunch.3 Over the long accumulation timescales in
synchrotrons, PIC requires large macroparticle numbers4 in
order to limit the effect of artificial noise [13,14]. In the
following sections, we will compare results obtained with
FFSC (and AFSC where appropriate) to PIC over extended
parameter ranges.

III. RESONANCES FROM SPACE CHARGE

In this section, we apply our simulation model to the
ideal SIS100 lattice, with space charge as the only source
for nonlinear resonance driving terms. The SIS100 lattice
consists of superconducting superferric dipole and quadru-
pole magnet units [23], with the exception of two radiation-
hardened and, thus, normal-conducting quadrupole magnets
in the extraction section. In Sec. IV, we will analyze the
perturbation given by these two “warm” quadrupole mag-
nets. Otherwise, we will consider the perturbation caused
by the two warm quadrupole magnets to be compensated,
yielding a ring superperiodicity of S ¼ 6 in the ideal SIS100
layout. We focus on the tune quadrant 18.5 < Qx;y < 19,
which has been identified as a possible candidate for
operation with heavy ions and fast extraction [19].
From the optics design point of view, one should avoid

tune quadrants with structure resonances in order to push
the space charge limit in synchrotrons, especially if long-
term storage during an accumulation plateau is required.
Structure resonances driven by space charge can be
categorized into mainly two types, viz. coherent instabil-
ities and incoherent resonances due to periodic modulation
of the space charge potential. The former, instabilities of
coherent modes, have been shown in Ref. [24] to be Landau
damped in Gaussian beams for nonlinear orders—only the
envelope (second-order) instability remains. After the
duration of a few synchrotron periods, the envelope
instability stop band is entirely surrounded by the incoher-
ent fourth-order resonance stop band. Therefore, coherent
phenomena are expected to be either absent or at least

covered within the stop bands reproduced by incoherent
frozen space charge models.
Following this argumentation, in this paper, the FFSC

model will serve to predict the extent of both internally
(space charge) and externally (lattice or error) driven stop
bands. The predicted results will be confirmed and vali-
dated with extensive self-consistent PIC simulations for the
duration of ∼100 synchrotron periods.
In the absence of magnet field errors, beam loss mainly

originates from space-charge-induced incoherent resonan-
ces. As illustrated in Ref. [25], the design tune quadrant for
heavy-ion beam production is clear of structure-resonance-
induced beam loss up to the order of n ¼ 6. Structure
resonances of lower than sixth order outside the design
working point area are observed to induce beam loss in
SIS100. On the other hand, the CERN PS has been shown
to suffer from an eighth-order (basic focusing period)
structure resonance during the injection plateau [26]. All
in all, the usual incoherent resonance diagrams with
structure resonances plotted up to at least n ¼ 8 should,
thus, provide a good picture of which tune areas are to be
avoided, where resonances may affect Gaussian bunches
stored during long injection plateaus in synchrotrons.
The existing SIS100 correction magnets are not used in

the present study; therefore, the bare machine provides no
further driving terms for externally driven resonances. In
the absence of magnet errors, there is only the space-
charge-driven Montague difference resonance [27] present
in the tune quadrant, located around the Qx ¼ Qy coupl-
ing line. In order to compare the different space charge
modeling approaches and their limitations, we will first
focus on this simple but relevant example case.

A. Montague difference resonance

Transversely Gaussian distributed beams are subject to
the well-studied Montague fourth-order difference reso-
nance mechanism [27,28]: The skew octupole component
in the space charge potential drives a transverse emittance
exchange around the coupling line according to the
resonance condition

2Qx − 2Qy ¼ 0: ð3Þ

The SIS100 beams feature a transverse emittance ratio of
more than 2. Therefore, choosing a working point within
the Montague stop band leads to an effective action transfer
from the horizontal to the vertical plane. The vertical
emittance grows, and particles gaining a large amplitude
can get lost in the smaller SIS100 machine aperture in the
vertical plane.
We simulate the emittance exchange around the coupling

resonance with PIC and the frozen models. Fixing the
horizontal tune at Qx ¼ 18.75, the vertical tune is scanned
across the resonance condition Eq. (3) which is met at
Qy ¼ Qx ¼ 18.75. The simulations are based on the

3The full 3D PIC solver does not yield significantly different
results compared to the slice-by-slice 2.5D PIC solver for the
elongated bunches in SIS100, which justifies the use of the faster
2.5D algorithm. The grid spans 128 cells per transverse plane and
64 slices along the longitudinal plane, where the bunch is
resolved with transversely at least five cells per rms beam width
and longitudinally more than 14 slices per rms bunch length.

4Given the above grid dimensions and a macroparticle number
of 10 million, there are, thus, on average several thousand
macroparticles per cell at peak current, which appears to
sufficiently resolve the bunch dynamics in the present long-term
study.
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symmetric lattice; i.e., the gradient error from the two warm
quadrupole magnets is absent.
The simulation results after saturation5 are presented

in Fig. 2 for all three space charge variants. The final
horizontal emittances predicted by each variant are marked
by the three solid lines and the vertical emittances by the
three dashed lines. Both emittances are given in units of
initial horizontal emittance; therefore, the solid line starts at
1.0 (no horizontal emittance decrease) and the dashed line
at 0.45 (corresponding to the initial ratio between vertical
and horizontal emittance). The dash-dotted line above 0.7
marks the final averaged transverse emittance: Since it is
constant across all scanned tunes, there is indeed only
emittance exchange between both planes and no additional
emittance growth due to quadrupole or other resonance
stop bands. The Montague stop band as predicted by the
self-consistent PIC model extends from about Qy ≈ 18.7
(ΔQy ¼ −0.05 below the resonance condition) to about
Qy ≈ 18.85 (ΔQy ¼ 0.15 above). This asymmetry finds its
origin in the aspect ratio of the transverse space charge tune
spread: jΔQSC

x j ¼ 0.2 < 0.3 ¼ jΔQSC
y j.

The PIC results (in black) demonstrate that the emittance
exchange leads to a balance of the final transverse emit-
tances around the resonance condition 2Qx − 2Qy ¼ 0. At
Qy ¼ 18.76, slightly above the resonance condition, one
even observes a small overshoot with final ϵy > ϵx. The
FFSC results (in red) apparently fail to resolve this full
exchange, the natural reason behind being the static nature
of the space charge fields. Nevertheless, the PIC-computed
extent of the Montague stop band is predicted quite
accurately by the FFSC model.

The AFSC model (in gray), with updates of the rms
envelopes every turn, recovers the PIC results quite
accurately with respect to the full emittance exchange
around Qx ≈Qy. At the same time, the overall stop band
width appears wider for AFSC.
Our study aims to identify low-loss working points with

fast and approximative space charge models. Therefore,
predicting the correct stop-band extent is more important
than better resolving the full emittance exchange. We
conclude that FFSC (as opposed to its adaptive variant)
covers the extent of the Montague stop band with satisfying
precision, such that resonance-free working points near the
coupling line can be well reproduced compared to the
PIC model.

IV. ERROR RESONANCES IN THE
BROKEN-SYMMETRY LATTICE

Let us now turn our attention to the actual machine
layout, where two superconducting, “cold” quadrupole
magnets in the extraction region are replaced by normal-
conducting, “warm” counterparts. These are required to
sustain inevitable beam loss expected during slow extrac-
tion of the beam. As normal-conducting magnets, they are
operated at room temperature, which prevents quenching
issues if they heat up due to particle loss. In comparison to
the cold magnets, the warm magnets reach a lower local
field gradient. To supply the same integral focusing
strength, the warm magnets are designed with an increased
length of 1.76 m, which is more than 0.5 m longer
compared to their shorter cold counterparts. This lattice
configuration with warm quadrupole magnets, therefore,
becomes subject to β-beating, and the sixfold symmetry of
the all-cold quadrupole magnet ring layout is broken.
The two warm quadrupole magnets are located next to

each other in one of the six straight sections. The β-beat can
be reduced by choosing an optimal ratio between their
individual currents and the general (cold) quadrupole
families. By additionally powering two adjacent corrector
quadrupole magnets enclosing the warm quadrupole mag-
nets, the β-beat can be further reduced [29]. The standard
deviation of the warm-quadrupole-induced β-beat around
an otherwise ideal machine can, thus, be considerably
brought down, reaching a residual level of less than 2%.
The influence of space charge on this correction setup
deserves a thorough analysis and will be the subject of a
separate publication.
Here, it may suffice to demonstrate that mainly the

quadrupole stop bands remain in the corrected warm
quadrupole scenario (besides the Montague resonance).
Beam-loss results of FFSC simulations for the β-beat-
minimized setup are depicted in the tune diagram in Fig. 3.
For each simulated working point, the color represents
the predicted amount of particles lost across the injection
plateau of 1 sec or 160 000 turns length, ranging from low-
loss figures in yellow to intolerably high figures in dark

FIG. 2. Simulated emittance exchange across the Montague
resonance for different space charge models. Solid lines (top part)
indicate the horizontal plane, dashed lines (bottom part) the
vertical plane, and constant dash-dotted lines (center) slightly
above 0.7 the transverse average.

5200 turns are sufficient to capture the full dynamics of the
Montague resonance; the emittance curves reach a saturated state
of equilibrium.
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violet. The black contour encloses the good tune region
with less than 5% beam loss.
In the following, we consider the uncompensated

broken-symmetry scenario, before the remainder of the
paper largely assumes the warm quadrupole perturbation to
be perfectly compensated by using the symmetric SIS100
lattice. For now, the induced quadrupolar resonance serves
us to investigate the impact of the space charge model on
the affiliated stop-band prediction.

A. Gradient errors with space charge

In the absence of space charge, the quadrupole resonance
condition 2Qx;y ¼ 37 corresponds to the lower corners
Qx;y ¼ 18.5 of the tune quadrant under consideration. In
the example case studied in the following, the local gradient
error results from the two radiation-hard quadrupole
magnets in the extraction region, without compensation.
Consider the two warm quadrupole magnets to be operated
at the same integral strength as the corresponding cold
quadrupole family:

ðK1LÞcold ¼ ðK1LÞwarm; ð4Þ

i.e., their inverse focal length is identical when approxi-
mated by a single thin lens.
In comparison to the symmetric lattice, the beam

experiences a finite focusing gradient in the protruding
end regions of the warm quadrupole units,6 whereas the
gradient is weaker in the center region equivalent to the
cold quadrupole length.
The warm quadrupole units, thus, act as a local source of

β-beat around the SIS100 ring.

Without space charge, the vertical harmonic stop-band
integral (see Eq. (2.118) in Ref. [30])

ðFyÞn ¼
1

2π

Z
C

0

ds βyðsÞΔkðsÞ exp
�
−in

ϕyðsÞ
Qy

�
ð5Þ

yields the tune shift via the nonoscillatory F0 as

ΔQwarm ¼ F0

2
¼ 0.012: ð6Þ

Here, ϕy denotes the unperturbed betatron phase advance,
βy the unperturbed betatron function, and Δk the gradient
error at path length s around the machine of circum-
ference C.
In the absence of space charge, the stop-band width7 of

the quadrupolar resonance 2Qy ¼ 37 is expected to be
mainly determined by the corresponding harmonic F37:

δQstop band ¼ jF37j ¼ 0.023: ð7Þ

Let us compare this computed stop-band width to
tracking simulations without space charge. Figure 4 dis-
plays the results for fixed horizontal tuneQx ¼ 18.75while
varying the vertical tune around the 2Qy ¼ 37 resonance.
While the horizontal rms beam size (blue) remains

constant, the vertical rms beam size (orange) increases
rapidly. The orange curve exceeds a threshold of

ffiffiffi
2

p
σy0 in

the stop-band interval 18.46 < Qy < 18.54 (after simulat-
ing two synchrotron periods).
When including apertures in a separate set of simula-

tions, the particles growing in amplitude are marked lost
where they reach the aperture. The result is plotted as the
dotted dark red line in Fig. 4, indicating finite beam losses
between 18.45 < Qy < 18.55. The simulated stop-band
width of about δQstop band ≈ 0.1 is larger than the computed
value in Eq. (7) due to the impact of chromaticity. For a
separate set of simulations with negligibly small momen-
tum spread, the simulated stop band indeed matches the
analytically estimated width.
Both analytically and numerically obtained stop-band

widths are smaller than the maximum space charge tune
shift ΔQSC

y ¼ −0.3. With space charge, particles can cross
the resonance condition periodically during their synchro-
tron oscillations. The stop-band width is, hence, expected
to be dominated by the space charge tune spread. The
particles at the bunch tails are only weakly affected by
space charge and momentarily experience the quadrupole
stop band with nearly no space charge. In the bunch center,
the space charge tune shift is strongest. Here, one expects a

FIG. 3. Corrected warm quadrupole magnets. Beam-loss tune
diagram with FFSC simulation results.

6Possible fringe field effects in the warm quadrupole units are
neglected in our treatment.

7The tune distance δQstop band relates to the upper and lower
edges of the stop band, where the maximum local β-beating
around the ring reaches the order of magnitude of the local β-
function: max ½ΔβðsÞ=βðsÞ� ≈ 1.
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coherent resonant response to the gradient error due to
coherent advantage [31].
With the relevant harmonic being 37, the coherent

quadrupole resonance condition [32] reads

2ðQy − C2jΔQKV
y jÞ ¼ 37; ð8Þ

where C2 ¼ 2=3 for the vertical plane (using 2σy ¼ σx
in smooth approximation and split tunes, i.e., weakly
coupled quadrupole modes). The rms-equivalent KV tune
shift amounts to half the maximum Gaussian tune shift:
2ΔQKV

y ¼ ΔQSC
y .

For the SIS100 reference bunch parameters, Fig. 5
exhibits the simulation results for the computed transverse
emittance growth ratio after 1000 turns around the quadru-
pole resonance at fixed Qx ¼ 18.75. Apertures and beam
losses are not taken into account in these simulations, as we
focus on a comparison of the envelope mismatch (relative
beam size) generated by the resonance during a fixed
simulation time. We plot the average transverse emittance
to visualize only the gradient-error-induced total emittance
growth. The averaged transverse emittance is not affected
by the present Montague resonance as discussed in the
previous section. The black curve marks the more realistic
self-consistent PIC prediction, while the red curve indicates
the FFSC results.8

Following the Sacherer treatment (see Part I.2 in
Ref. [33]), the upper edge of the quadrupole stop band
can be found via the zero-intensity stop band shifted by

the envelope tune. For the bunch center, the coherent
quadrupole resonance condition Eq. (8) yields Qcoh

y ¼
18.6, which is plotted as a dashed gray line in Fig. 5.
The filled gray area around it depicts the extent of the zero-
intensity stop band.
As pointed out in the introduction, the constant space

charge fields in the FFSC simulation model cannot repro-
duce coherent phenomena, in contrast to the PIC model.
The modeled interaction of the bunch with the resonance is
of purely incoherent nature, as the simulated particles
experience the resonance without knowing of each other.
We note the following observations: The lower end of the

stop band is shifted upward for both PIC and FFSC
compared to the zero-intensity results from Fig. 4. The
upper end of the quadrupolar stop band in terms of finite
emittance growth extends until approximately Qy ¼ 18.7
for the space charge cases.
Above Qy > 18.5, we further observe FFSC to under-

estimate the emittance growth in comparison to PIC,
within the interval where the emittance growth exceeds
Δϵ=ϵ0 > 15%. A possible explanation is that PIC takes into
account fast coherent resonance mechanisms. These are
expected below the upper edge of the gray area marking
Qedge;coh:res

y ¼ 18.64. Above this point, both PIC and FFSC
curves unite and predict equivalent (but small) emittance
growth.
This observation suggests the natural conclusion that the

approximative FFSC model can accurately represent the
more realistic PIC model in tune areas weakly affected by
resonance. In the absence of significant coherent motion,
the beam self-fields far away from the core are well
represented by the FFSC model. Thus, the same conclusion
applies not only to weak emittance growth (< 15%) but

FIG. 5. Comparison between PIC and FFSC space charge
models. Transverse emittance growth ratio vs vertical tunes
around the quadrupole resonance at fixed Qx ¼ 18.75. The
resonance condition for the bunch center Eq. (8) is indicated
by the dashed gray line; the gray area around it indicates the zero-
intensity stop-band width.

FIG. 4. Tracking results without space charge for final rms
beam sizes vs vertical tunes around the quadrupole resonance
Qy ¼ 18.5 at fixed Qx ¼ 18.75. Dotted line: beam-loss curve for
separate simulations including apertures.

8PIC simulations are run with 1 × 106 macroparticles
(convergence confirmed with 4 × 106 macroparticles), and
FFSC simulations are identical to the zero-intensity case
with 1000 macroparticles (convergence confirmed with 10 000
macroparticles).
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also to weak beam loss. Most important of all, working
points free of emittance growth and beam loss will
be equally well identified by both FFSC and PIC
computations.
These features validate the FFSC model for the search of

loss-free working points in extensive tune diagram scans—
a crucial point for the remainder of the present paper.
Analogous to the externally driven resonance here, the
same conclusion has been drawn for space charge (inter-
nally) driven resonances when comparing FFSC and PIC
(see Fig. 9 in Ref. [24]): The FFSC model proves to be a
viable fast prediction tool for ideal working points for
machine operation. Needless to say that this comparison
holds only as long as the resonance-induced emittance
growth is larger than the inherent noise-related emittance
growth in PIC—an effect which is entirely absent in the
FFSC case.
The approximative FFSC model becomes particularly

powerful due to the fast computation: (GPU-accelerated)
PIC simulations require computation times exceeding those
of (multicore CPU-accelerated) FFSC simulations by 2 or
even 3 orders of magnitude.9

At this point, we emphasize our finding that the
adaptive frozen space charge model leads to an overly
conservative estimate of resonance-free working points
compared to the FFSC model while also requiring (at
least a factor of 10) more macroparticles to suppress
artificial noise from the field updates. In particular, the
upper edge of the stop band appears to extend further
than in both PIC and FFSC cases; cf. Appendix A. For
the remainder of the paper, we will, therefore, consider
the fixed frozen space charge model.

V. BEAM LOSS DUE TO MAGNET
FIELD ERRORS

In this section, we will add the nonlinear field errors and
provide beam-loss predictions with space charge. The
previous sections dealt with betatron resonances implied
by the lattice structure as well as space charge. Here, we
will discuss nonstructure resonances which are driven by
random field imperfections of the dipole and quadrupole
magnets. The stochastic field error model considered in
the simulations is based on cold bench measurements and
has been described in detail in Ref. [2]. A summarizing
overview is found in Appendix B.

A. Bare machine with field errors

First, we will discuss beam-loss scans without space
charge. Figure 6 shows the resonances in the tune

quadrant around 18.5–19, driven by the magnet field
imperfections.10

Several thin lines of significant beam loss can be
identified where nonlinear resonances are excited. The
width of the stop bands is increased by the tune spread due
to the natural chromaticity amounting to an rms figure of
0.01. The coupling line does not imply strong beam loss,
which is in line with the absent space charge driving terms
for the Montague resonance.
It is important to point out that, without space charge

and taking into account only the realistic magnet error
model, the tune quadrant exhibits large areas for low-loss
operation.

B. Including space charge

At first, we employ again the FFSC model. The
simulation results for the beam losses during the 1 sec
injection plateau are shown in Fig. 7(a).
The central outcome of the FFSC simulation scans at the

nominal space charge strength of ΔQSC
y ¼ −0.3 is the

identification of a low-loss working point area around
Qx ¼ 18.95, Qy ¼ 18.87. This triangular area is limited by
two solid constraints, namely, the Montague resonance on
top and the horizontal integer resonance Qx ¼ 19 to the
right. While not much can be done to overcome these two
restrictions, the limitation at the lower end of the low-loss

FIG. 6. Beam-loss tune diagram for vanishing space charge and
all magnet field errors included at natural chromaticity.

9Simulation times for the full injection plateau of 160 000 turns
take 48 days with PIC on the NVIDIAV100 GPU with 20 million
macroparticles (cf. Fig. 11), while FFSC on 16 cores of a recent
HPC AMD CPU requires 47 minutes for 1000 macroparticles
[cf. Fig. 7(a)].

10Several seeds for the random distributions have been run
across the tune diagram. This is indicated by the text “error seeds:
[1–9]” in Fig. 6 as well as in all following figures with simulation
results including the field error model. While the prediction of
finite beam loss varies between different seeds, results agree quite
well for working points with vanishing beam loss. The error seed
indicated by “1” has been found to provide a conservative
estimate of low-loss areas among the seeds tested. It is used
as a representative in simulation scenarios where only one error
sequence has been considered.
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area is given by higher-order resonances reaching out due
to space charge detuning, which can, in principle, be
tackled.
Figure 7(b) shows the vicinity of the identified (black)

low-loss working point area and plots the average of
horizontal and vertical emittance growth: Red indicates a
net increase and blue a net decrease in transverse emittance.
While the strong beam losses within stop bands often result
in a net shrinking of transverse emittance, the situation
looks favorable inside the low-loss area contour: The FFSC
simulations predict an average transverse emittance growth
of maximum 10%. To be precise, the growths amount to
some horizontal Δϵx=ϵx < 5% and vertical Δϵy=ϵy < 15%.
It is worth mentioning that operating SIS100 in this

identified working point area below integer tunes requires

further considerations. First, the growth time of the trans-
verse resistive-wall instability becomes short compared to
the accumulation time and should be mitigated. Foreseen
are passive measures, like dedicated octupole magnets for
Landau damping, and an active transverse feedback system.
Appendix C shows why the adjacent tune quadrants above
integer tunes are less favorable for high-intensity operation.
Second, the divergence of the closed orbit distortion (which
is independent of space charge and originates from magnet
misalignments and dipole errors) requires precise control
by making use of the steering corrector magnets. Here, it
shall suffice to note that corresponding equipment is going
to be installed in SIS100. A detailed discussion of affiliated
effects goes beyond the purpose of the present paper, and
we focus on the space charge aspects.
In order to identify the relevant error multipole orders

which limit the low-loss area from below, we performed
simulations with reduced error models: The an, bn multi-
pole components in both dipole and quadrupole magnets
are cumulatively added with increasing order n. Figure 8
shows the results for tunes below the coupling line, where
the colored areas cover the tune regions of acceptable low-
loss working points. As these shorter simulation runs cover
only 20 000 turns (1=8 of the injection plateau), a threshold
of 1% beam loss is chosen. For reference, the dashed black
line represents the low-loss working point area when
including all considered field error orders up to seventh
order: This contour matches the corresponding 5% beam-
loss contour after 160 000 turns from Fig. 7(a).
The results in Fig. 8 illustrate the dominating impact of

the low-order field errors. The blue region is limited by
resonances excited by the field imperfections of quadrupole
and sextupole order. The turquoise area includes also the
octupole order: Note the near congruence with the dashed

FIG. 8. Loss-free tune areas for various included field error
orders n in both dipole and quadrupole magnets (FFSC simu-
lations for 20 000 turns).

(a)

(b)

FIG. 7. FFSC results for full field error model as a function of
the transverse tunes. (a) Beam losses. (b) Transverse emittance
growth.
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reference contour which includes all errors. Skipping the
decapole order, the orange area further includes the dodeca-
pole order in comparison to the turquoise area, which
finally matches the reference dashed black line. Clearly, the
dodecapole order effect is finite but marginal.
Out of the individual n ¼ 5, 6, 7 multipole error orders,

the dodecapole sixth order is expected to contribute most
as concluded from its significant stochastic amplitude
[cf. Appendix B, Fig. 21]. Separate simulations have been
carried out considering a limited set of field errors of the
order of n ¼ 2 plus one out of n ¼ 5, 6, 7 (for both dipole
and quadrupole magnets). One indeed finds minor beam
loss inflicted through nonlinear resonances only for the
n ¼ 6 case—the orders of n ¼ 5, 7 have no significant
impact at all. The resonances driven by n ¼ 6 have
negligible influence on the rms beam sizes as opposed
to the n ¼ 3 and n ¼ 4 cases.
Therefore—given the field error model for SIS100—the

quadrupole, sextupole, and octupole order and the affiliated
resonances together with space charge essentially define
the low-loss area.

C. Validation with PIC simulations

The key results in Fig. 7(a) need to be confirmed with
PIC simulations of SIS100, now including the full field
error model. The simulations cover a duration of 20 000
turns, which is 8 times shorter than the entire 1 sec injection
plateau. For this simulation length, a convergence scan
using the lattice with self-consistent space charge, but
without imperfections, indicates that 107 macroparticles are
necessary to sufficiently suppress the PIC-inherent diffu-
sion due to noise and reproduce the expected zero beam
loss for a reference working point below the coupling line.
The results of the 2.5D PIC simulations with the full

magnet error model are presented in Fig. 9(a). As opposed
to the regular 2D grid of scanned working points in the
FFSC simulations before, the more demanding PIC simu-
lations are run only for selected working points indicated
by star markers.11

The PIC 0.1% beam-loss contour is plotted in black: A
margin of 0.1% accounts for an upper bound below which
PIC-noise-induced losses are difficult to distinguish from
resonance losses for the given numerical resolution. The
black contour is, thus, considered as a “finite beam-loss”
criterion. The 2.5D approximation of the employed PIC
algorithm has been validated by simulating selected work-
ing points with a full 3D Poisson solver. The comparison

is shown in Appendix D, where the 2.5D results are
confirmed.
For direct comparison with the predictions of the FFSC

model, Fig. 9(b) shows the contours for areas practically
free of loss (black), 0.3% beam loss (orange), and 1% beam
loss (dark red) after 20 000 turns. The solid lines represent
PIC results, and the dashed lines reproduce the FFSC
results. The dashed black FFSC finite beam-loss contour is
computed at 0.05% (limit for the numerical FFSC reso-
lution). Indeed, we find FFSC to predict the same loss-free
area as compared to PIC—in line with the expectations
anticipated in Sec. IVA.
The working point marked with a blue circle at

Qx ¼ 18.97, Qy ¼ 18.85 exhibits the lowest beam loss
overall in the PIC simulations. We repeat another simu-
lation run for this working point with a further increased
resolution (2 × 107 macroparticles) in order to cover the

FIG. 9. Self-consistent PIC results for beam loss after 20 000
turns using the full field error model.

FIG. 10. Comparison of predicted loss contours for PIC and
FFSC simulations.

11Above the coupling line, no low-loss working points were
encountered in either FFSC or PIC simulations (the lowest beam
loss obtained in PIC simulations amounts to 0.8%), which is why
Fig. 9(a) focuses on the area below the coupling line. The reason
behind lies in the asymmetry of the space charge tune spread,
which is larger in the vertical plane, as discussed in Sec. III A.
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full 1 sec injection plateau. Figure 11 shows the beam-loss
curve in black and emittance growth curves in red.
During the entire storage time of 160 000 turns, the beam

is subject to only 2.5% beam loss and a vertical rms
emittance growth of 13%; the horizontal emittance remains
approximately constant. We conclude that the low-loss
working point region identified with the aid of the FFSC
model is confirmed by realistic PIC simulations.
In summary, high-current operation with the envisaged

beam parameters in Table I is indeed feasible at strong
space charge, achieving > 95% transmission at injection if
(a) the magnet imperfections are equal to or better than the
considered field error model in Fig. 21 and (b) SIS100 is
operated on a working point in the vicinity of Qx ¼ 18.95,
Qy ¼ 18.87 for heavy-ion beam production.

D. Space charge limit

At injection energy, beam loss and emittance growth in
synchrotrons are often dominated by the space-charge-
induced crossing of linear and nonlinear error resonances.
Assuming that structure resonances can be avoided and
only the Montague resonances remain, like in SIS100, a
transverse space charge limit can be defined as the
maximum bunch intensity corresponding to a given toler-
able beam loss or emittance growth. Usually, the limit is
given in terms of the (incoherent) space charge tune shift,
corresponding to this maximum intensity. Depending on
the circumference and the specific conditions, the space
charge limit will differ for different synchrotrons. In the
literature, one can find more simplistic space charge limits
for synchrotrons, such as a frequently quoted maximum
incoherent space charge tune shift of −ΔQSC ≲ 0.25 (see
discussion in Ref. [34] and references therein). Experience
from existing synchrotrons shows that the maximum space
charge tune shift is not a hard number and is, to date, not
possible to accurately predict based on only theory or
simulations. One reason for this shortcoming can be the
incomplete information on the underlying magnet error
model, especially the nonlinear error resonances. Also, the

degree of coherent response with space charge can play
a role.
For the SIS100, we attempt to predict a space charge

limit, based on the now existing, detailed magnet error
model and for the reference beam parameters. Only the
number of ions per bunch is considered as a free
parameter. We will employ the FFSC model to estimate
the maximum tolerable intensity (all other beam para-
meters like bunch length, transverse emittances, etc., are
kept constant), for which working points with low beam
loss can still be found in the tune diagram. For the
prediction of the space charge limit, we use a slightly
stricter beam-loss threshold of 2% for the 1-sec-long
injection plateau. This beam-loss threshold is motivated
by the fact that the corresponding area in tune space (see,
e.g., the solid and dashed black lines in Fig. 12) is only
slightly smaller, but the emittance growth remains sub-
stantially lower. The FFSC simulations use the SIS100
lattice with the full magnet error model.
The same tune scan as for nominal intensity in Fig. 7(a)

has been repeated in simulations with higher intensities,
thus gradually increasing the strength of space charge.
For each intensity setting, contours have been extracted
which enclose all simulated working points with a pre-
dicted beam loss of ΔN=N < 2%. Figure 12 displays these
2% contours as solid lines for three different intensities.
Additionally, the 5% contour for the nominal intensity N0

has been plotted in a dashed line for reference, matching the
contour plotted in Fig. 7(a).

FIG. 11. High-resolution PIC results for the full field error
model at working point Qx ¼ 18.97, Qy ¼ 18.85.

FIG. 12. Space charge limit for nominal operation. The solid
contour lines enclose the tune area with less than 2% beam loss
after the injection plateau for various beam intensities, obtained
from FFSC simulations with the full field error model. The dotted
contour line shows the reference 5% beam-loss threshold as
in Fig. 7(a).
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The available tune space area practically vanishes at
120% of the nominal bunch intensity N0 (orange contours),
which corresponds to a maximum space charge tune shift
of ΔQSC

y ¼ −0.3 × 1.2 ¼ −0.36. This intensity marks the
space charge limit of SIS100 under nominal operation
conditions, above which no low-loss working point is
encountered across the considered tune quadrant. In other
words, the maximum achievable space charge tune shift for
a conservative beam loss of 2% would be ΔQSC

y ¼ −0.36.
We conclude this section with the remark that, according

to our present simulation model, the space charge limit
would be slightly above the present reference intensities.

VI. MITIGATION MEASURES

Here, we give three examples of measures to potentially
further enlarge the low-loss tune area for the reference
beam parameters and to increase the space charge limit.

A. Correction of β-beat

Outside the quadrupolar stop bands, the β-beat amounts
to ≈ 0.5% due to the considered five units of stochastically
distributed gradient errors. This includes feed-down from
higher orders in the field error model. Without the local two
corrector magnets, the warm quadrupole magnets would be
the dominant source of β-beating (2%).
Figure 13 compares the 5% loss contours for the three

relevant cases: the symmetric lattice with only cold quadru-
pole magnets used in the beam-loss studies (in black), the
broken-symmetry lattice with the two warm quadrupole
magnets (in blue), and the planned operational scenario (in
orange), i.e., the broken-symmetry lattice including the

warm quadrupole magnets and two local correctors. The
orange working point region nearly recovers the fully
symmetric case in black.
The impact of the warm quadrupole magnets on the size

of the low-loss area is considerable. Therefore, the local
correction scheme with the two corrector magnets sup-
pressing the corresponding β-beat is essential.
On the other hand, the randomly distributed gradient

errors in all magnets, the b2, are comparatively weak.
Reduction of the β-beat induced by b2 from the dipole and
quadrupole magnets is not observed to further improve the
< 5% low-loss area: Simulations for the cold lattice yield
no significant increase of the loss contours for perfect
β-beat compensation by removing all b2 components.
The impact of increased b2 is best illustrated via a series

of tune quadrant simulation scans for various b2 between
0 and 100 units. Each 2D working point scan for a given b2
setting has been evaluated on a grid of 0.01 tune distance.
For each b2 setting, the 5% contour of the low-loss area has
been plotted in Fig. 14. Here, the color of the contour
indicates the gradient error amplitude b2, where the size of
the contour shrinks along with the color gradually moving
from dark violet toward yellow. Eventually, the 5% contour
vanishes just below b2 ¼ 80 units. The corresponding
asymptotic working point Qx ¼ 18.97, Qy ¼ 18.91 is
marked by a dark red star.
By integrating the contours, one obtains the size of

the low-loss area. Figure 15 shows the sizes vs b2 for
various levels of the beam-loss threshold. The unit of the
vertical axis is, hence, a measure for “how many working
points correspond to a beam loss less than the respective
threshold”.
The red line marks the case of b2 ¼ 5 units, which

corresponds to the realistic expectation for the quadrupole
magnets and which is used in the full field error model

FIG. 13. Low-loss area contours for the cold symmetric lattice,
the broken-symmetry lattice with the two warm quadrupole
magnets, and the latter plus two corrector magnets. The full
injection plateau is simulated with the magnet field error model
and the FFSC model.

FIG. 14. Tune area contours for a 5% beam-loss threshold
during the injection plateau, plotted for various values of the
gradient error b2. The dark red star marks the asymptotic working
point around Qx ¼ 18.97, Qy ¼ 18.91.
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throughout this paper. The plot demonstrates the almost
vanishing impact of the expected b2 ¼ 5 units in compari-
son to perfect compensation b2 ¼ 0.
All in all, the correction of β-beat which is above an

rms figure of about 1% is, therefore, a viable knob for
mitigation of resonance impact. The level of β-beat
estimated from the present magnet error model is already
below this level, provided that the perturbation by the
symmetry-breaking warm quadrupole magnets is fully
compensated.

B. Double-harmonic rf flattened bunches

Bunch flattening via double-harmonic rf operation is a
well-known approach for lowering the peak current
and, thus, mitigating transverse space charge. The CERN
Proton Synchrotron Booster, for instance, successfully has
operated with such double-harmonic rf systems since 1982
[35]. In the following, we demonstrate the usefulness of
this concept for the SIS100. The ferrite-loaded rf cavities
in SIS100 offer a voltage of up to 280 kV within a
frequency window of 1.1–3.2 MHz [36]. While single-
harmonic operation corresponds to an rf frequency of
frf ¼ 10frev ¼ 1.57MHz, double-harmonic operation dur-
ing the injection plateau would also fit into the available
frequency window at frf ¼ 3.14MHz.
For a better comparison to nominal single-harmonic

h ¼ 10 operation, we choose to keep the rms bunch length
σz and the longitudinal emittance ϵz constant for double-
harmonic rf operation. For bunch-lengthening mode, the rf
wave of the higher harmonic h ¼ 20 is phase shifted by π in
comparison to the h ¼ 10 rf wave. The corresponding rf
voltage amounts to half the base rf voltage: Vh¼20 ¼
Vh¼10=2. A value of Vh¼10 ¼ 103 kV then matches the
given longitudinal emittance. This rf configuration creates a

maximally flattened bunch with monotonically decreasing
line charge density λðzÞ from the center as depicted in
Fig. 16. For the chosen bunch-flattening mode, the trans-
verse space charge force at the bunch center can, thus, be
reduced by a fifth compared to the rms-equivalent Gaussian
bunch profile case.
The tune diagram in Fig. 17 shows the computed beam

losses with the FFSC space charge model for the magnet
field error model. The low-loss area extends further in
comparison to the equivalent single-harmonic case in
Fig. 7(a). The overall magnitude of inflicted beam loss
weakens for the entire tune quadrant. In particular, the upper
edge of the black vertical quadrupole stop band moves
downward towardQy ¼ 18.5 by roughly a fifth, in line with
the 20% weaker maximum space charge tune shift.
With double-harmonic rf as a mitigation measure, the

SIS100 can accept higher intensities before direct space
charge limits the transmission. Figure 18 shows the results
comparing nominal intensity N0 to the single-harmonic rf
space charge limit Nmax

h10
¼ 1.2N0 and the further increased

value of 1.5N0. Only in the latter case does the available

FIG. 15. Size of low-loss area as a function of stochastically
distributed b2 in the quadrupole magnets (dipole magnets are set
to b2 ¼ 0). The three curves show the < 1%, < 2%, and < 5%
beam-loss areas, respectively.

FIG. 16. rms-equivalent bunch profiles for single-harmonic
h ¼ 10 vs double-harmonic h1 ¼ 10, h2 ¼ 20 rf operation.

FIG. 17. Double-harmonic rf operation. Beam-loss tune dia-
gram after the injection plateau obtained from the FFSC simu-
lations with the full field error model.
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tune space area shrink to almost zero for the flattened
bunches. Thus, 150% of the nominal intensity injected into
the SIS100 marks the space charge limit Nmax

h10þ20
for double-

harmonic operation. We note that the ratio of 150% to
120% in maximally achieved intensity directly relates to the
inverse ratio of peak currents.
All in all, we conclude that the traditional space charge

mitigation technique of double-harmonic rf bunch length-
ening is a useful option for SIS100 heavy-ion operation:
More options in tune space are opened up for the reference
intensities, and the space charge limit can be increased
significantly.

C. Pulsed electron lenses

Pulsed electron lenses are currently studied as an
optional additional countermeasure for SIS100 to partially
compensate the large extent of the space charge tune
spread. The transversely uniform electron beam would
be longitudinally shaped to match the passing ion bunch
profile. The opposite charge of the electron lens leads to a
partial compensation of the space charge tune spread
dependency on the longitudinal position. The mechanism
behind space-charge-induced incoherent scattering and
trapping in resonances can, thus, be inhibited. The width
of resonance stop bands shrinks and allows for a larger low-
loss working point area. The approach is to install a number
of such electron lenses with a transverse homogeneous
charge distribution (i.e., linear self-fields) in the synchro-
tron, where the electron pulse moves into the direction of
the beam propagation.

A recently published study in Ref. [37] demonstrates the
effect of three of such pulsed electron lenses, which are
placed symmetrically around the circumference, in FFSC
simulations for SIS100. The intensity of the electron pulse
is adjusted such that the linear part of the space charge force
is compensated by half, thus strongly reducing the space
charge tune spread.
For the present study, a set of FFSC simulations has been

run for the duration of the entire injection plateau using the
parameters in Table I (with single-harmonic rf). The beam-
loss results with the magnet field errors and the three pulsed
electron lenses are presented in Fig. 19.
In comparison to Fig. 7(a), showing the corresponding

tune scan without electron lenses, several additional low-
loss areas can be identified. Particularly, the width of the
quadrupole stop bands shrinks considerably despite the
increased β-beat implied by the linear optics distortion
through the pulsed lenses. The Montague stop band appears
now symmetrically located around the coupling line
Qx ¼ Qy, shifting down the upper edge of the previously
identified low-loss area. Nonetheless, the low-loss area gains
significantly in size as its lower boundary moves downward
to directly above the octupole resonance 4Qy ¼ 75 as the
higher-order resonances shrink significantly.
More detailed studies, including tune scans with PIC

simulations, are still required. However, the potential of
pulsed electron lenses to substantially increase the space
charge limit in SIS100 has now been demonstrated.

VII. CONCLUSION

This work presents a fast approach to identify suitable
working point areas for accumulation of bunched beam in a
synchrotron under realistic conditions, where beam loss
due to the interaction of magnet-error-induced resonances

FIG. 18. Space charge limit for double-harmonic rf operation.
The solid contour lines enclose the tune area with less than 2%
beam loss after the injection plateau for various beam intensities,
obtained from the FFSC simulation model with the magnet field
errors included. The dotted contour line shows the reference 5%
beam-loss threshold as in Fig. 17.

FIG. 19. Three pulsed electron lenses mitigate space charge.
Beam-loss tune diagram after injection plateau, obtained from the
FFSC simulation model with the magnet field errors included.

ADRIAN OEFTIGER et al. PHYS. REV. ACCEL. BEAMS 25, 054402 (2022)

054402-14



as well as space charge limits the available area in the tune
diagram. Particular emphasis is given to the systematic
comparison of the approximative fixed frozen space charge
model (and adaptive variants) with the self-consistent
particle-in-cell space charge model, using the FAIR syn-
chrotron SIS100 as an example.
The framework established in this study turns out to be

useful for following up the magnet production quality
during series production of the SIS100 quadrupole mag-
nets. In this way, specified tolerances can now be under-
stood and justified from an applied beam dynamics
perspective.
To illustrate possible applications, an optimal working

point area for SIS100 heavy-ion operation has been
identified around Qx ¼ 18.95 and Qy ¼ 18.87. Here,
bunches featuring space charge tune shifts of up toΔQSC

y ¼
−0.36 can be stored during the injection accumulation
plateau with > 95% transmission. With the established
models at hand, the definition and prediction of the SIS100
space charge limit is carried out. The results show that
the SIS100 design beam parameters feature a margin of a
factor of 1.2. An analysis of the β-beating induced by
stochastic gradient errors illustrates the impact on the space
charge limit.
Finally, space charge mitigation techniques are evaluated

in application to SIS100 and the identified low-loss tune
area, determining how they increase the space charge limit:
The traditional approach of bunch flattening through
double-harmonic rf results in an ≈25% increase, while
the novel concept of pulsed electron lenses promises a
much larger increase.
Further studies into this direction are ongoing, including

studies of other tune quadrants foreseen for the different
SIS100 operation modes and as possible alternatives for an
increased space charge limit.
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APPENDIX A: COMMENT ON THE ADAPTIVE
FROZEN SPACE CHARGE MODEL

The following Appendix outlines the issues encountered
with the AFSC model when investigating the edges of stop
bands in order to identify resonance-free working points.

As commented in Sec. IVA, the AFSC model provides
larger and, thus, overly conservative rms emittance
growth figures toward the resonance-free region in
comparison to the PIC and FFSC models. The difference
becomes obvious from the final beam profiles, which
are recorded when the resonance effect ceases. Figure 20
depicts three panels with beam profiles for three
working points from the center to the upper edge of
the stop band.
The left panel shows beam profiles for Qy ¼ 18.6 in the

center of the stop band: They demonstrate how FFSC (red)
underestimates the rms emittance growth, while PIC
(black) and AFSC (gray) predict similar beam profiles.
Toward the upper edge of the stop band, both the center
panel (Qy ¼ 18.65) and the right panel (Qy ¼ 18.7) show
very similar profiles for FFSC and PIC—AFSC, however,
always exhibits an increased halo population at the profile
tails, corresponding to the excess rms emittance growth
prediction.
The AFSC model employed here updates the rms beam

sizes and centroid offset based on the tracked macroparticle
distribution at each space charge node and each turn. It is
worth noting that the emittance growth overshoot is even
worse when the centroid is not subtracted.
Contrary to the static field maps in FFSC, the adaptive

model picks up and amplifies the macroparticle noise
through the field updates. While it is possible to suppress
the macroparticle noise impact in the AFSC by choosing
larger numbers of macroparticles, relative convergence has
been observed only with high numerical resolutions of up
to 50 times more macroparticles than FFSC [2]. Despite the
suppressed noise effect, the AFSC results still exhibit a
systematic overshoot in the predicted rms emittance growth
compared to PIC and FFSC around the upper edge of the
stop band. A systematic future study could follow up on the
plausible hypothesis of whether this observation is attrib-
utable to the frozen Gaussian nature of the space charge
force in conjunction with the increasing rms beam sizes,
given the observation that the PIC-simulated distribution
shape diverts from a Gaussian.

FIG. 20. Vertical beam profiles for three working points above
the 2Qy ¼ 37 resonance, comparing the PIC results (blue curves)
to FFSC results (orange curves) after 20 000 turns.
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All in all, the adaptive frozen space charge model
provides an overly conservative estimate of resonance-free
tune regions compared to the fixed frozen space charge
model while at the same time requiring more computational
resources.

APPENDIX B: FIELD IMPERFECTION
MODEL FOR SIS100

In the following, the nonlinear field error model for the
SIS100 superferric superconducting dipole and quadrupole
magnets is documented as it has been employed in the
simulations from Sec. V onward. The development of the
error model has been described in detail in Ref. [2] and is
based on cold bench measurements of the real magnets.
Figure 21 exhibit the corresponding multipole components
of the field error models for the dipole and quadrupole
magnets, respectively.
The bars refer to the rms stochastic amplitudes. Magnets

around the synchrotron ring in the simulation model are
assigned with random values for their respective field
imperfection multipoles. The random number generator
follows a Gaussian distribution which is cut at 2 rms figures
of the indicated multipole amplitude. The diamonds indi-
cate the systematic components, assigned to all magnets as
constant offsets in the respective multipole order.
The quadrupole magnets are expected to exhibit

a stochastically distributed gradient error of about
b2 ¼ 5 units. This value is considered in addition to the
nonlinear field errors based on the measurements of the
quadrupole magnets. Section VI A discusses the impact of
varying b2, showing that figures beyond b2 > 10 units
significantly impact the low-loss area.
Misalignment errors in the dipole and quadrupole

magnets lead to finite closed orbit distortion (COD) and,
thus, feed-down effects for the magnet imperfections. For a

magnetic field misaligned by Δx;Δy, the contribution
of higher-order multipole errors bk, ak on lower bn, an
is given by

anþ ibn ¼
X
k>n

ðakþ ibkÞ
�
k− 1

k−n

��
Δxþ iΔy

Rref

�
k−n

; ðB1Þ

where Rref denotes the reference radius of the multipole
component measurements. The dipole magnets have been
measured at Rref ¼ 0.03 m and the quadrupole magnets at
Rref ¼ 0.04 m. The field error model takes into account an
expected rms COD of xco;rms ¼ 2 mm and yco;rms ¼ 1 mm
as a global stochastically distributed misalignment in the
magnets. The corresponding feed-down contributions
according to Eq. (B1) are included in the an, bn amplitudes
in the simulations.
At present, the series production of the 108 dipole

magnets has been successfully completed, while series
production of the 166 superconducting quadrupole magnets
is still ongoing. The currently available measurement
data for the first 18 quadrupole magnets show further
reduced imperfections in comparison to the model as
shown in Fig. 21; cf. Ref. [38]. Therefore, the simulations
presented in this paper represent a conservative pre-
diction for the low-loss tune areas with respect to
the expected quadrupole magnet quality in the series
production.

APPENDIX C: TUNE QUADRANTS
ABOVE INTEGERS

In Ref. [19], the tune quadrant 18.5 < Qx;y < 19 has
been identified as a good candidate for operation with fast
extraction of heavy-ion beams. Tunes below the integer
resonance require the resistive-wall instability to be sup-
pressed, which in the case of SIS100 is achieved via the

FIG. 21. Field error model based on cold bench measurements.
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available dedicated octupole magnets for Landau damping
and an active transverse feedback system. Tunes above the
integer resonance are favorable in terms of the resistive-
wall instability, which is why most high-intensity synchro-
trons are operated in this regime. In the case of SIS100,
however, the nearby-located tune quadrants above the
integer tunes 18 and 19 suffer from increased resonance-
induced losses compared to the nominal tune quadrant. The
corresponding loss tune diagrams are displayed in Fig. 22.
The black 5% loss contours enclose much smaller low-loss
tune areas than in Fig. 7(a). No working points are found
with losses below 1% across the simulated 1 sec injection
plateau. The presence of space-charge-induced and low-
order structure resonances explains the increased difficulty
to find low-loss tune areas in these two tune quadrants
above the integer resonances. We, therefore, conclude that,
given that coherent stability is ensured, the nominal tune
quadrant looks favorable for high-intensity operation in
SIS100.

APPENDIX D: VALIDATION WITH 3D PIC

To confirm the validity of the 2.5D PIC computed
results in Sec. V C, we have run two cases with a full
3D PIC algorithm [15] starting from identical initial
conditions as in the 2.5D simulations. While the 2.5D
PIC algorithm solves the open-boundary 2D Poisson
equation on a fixed transverse mesh for a set of (indepen-
dent) slices along the longitudinal plane—i.e., for a given
slice at z, the number of macroparticles deposited on the
mesh scales with the local line charge density λðzÞ—the 3D
PIC algorithm directly includes the longitudinal plane
in the (open-boundary) 3D Poisson equation. This com-
putationally more demanding approach is again based
on the Hockney-Eastwood algorithm (as in 2D) using an
FFT-computed convolution also for the third dimension

FIG. 22. FFSC results for beam loss using the full field error model as a function of the transverse tunes above the integer resonances.

FIG. 23. Simulations with 2.5D and 3D self-consistent PIC
models for the full field error model. (a) Optimal working point
Qx ¼ 18.97, Qy ¼ 18.85. (b) Resonance-affected working point
Qx ¼ 18.84, Qy ¼ 18.73.
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(whereas in 2D all slices are solved concurrently on the
GPU). The 3D solver makes use of the same 3D mesh as in
the 2.5D case.
The 2.5D approximation is expected to hold, since

(a) the synchrotron period is 3 orders of magnitude longer
than the betatron period (i.e., longitudinal motion can be
considered as adiabatic compared to essential transverse
dynamics) and (b) the elongated bunches in the SIS100
synchrotron are significantly longer (with an rms length of
γσz ¼ 1.21 × 13.2m in the beam reference frame) than
the transverse extents (on average below 1 cm).
Figure 23 displays the resulting beam loss and transverse

emittance growth curves, where the solid lines refer to the
original 2.5D PIC simulation results (as included in Fig. 9)
and the dotted lines to the validation results from the 3D
PIC simulations. For a meaningful comparison, we show
the optimal working point Qx ¼ 18.97, Qy ¼ 18.85 in
Fig. 23(a) and as a resonance-affected case the working
point Qx ¼ 18.84, Qy ¼ 18.73 in Fig. 23(b). The 3D PIC
simulations confirm the findings of the 2.5D PIC simu-
lations, reinforcing the conclusions on the resonance-free
working point area in Fig. 9.
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