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Emittance in nonlinear Thomson scattering
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Inverse Compton scattering sources are finding increasing use as intense sources of high-energy
photons. When operated at high field strength, ponderomotive detuning of the scattered emission can lead
to decreased source performance. Up to now, the calculations of spectra for such nonlinear Thomson
scattering have been done assuming a perfectly aligned electron interacts with the incident laser beam and
several authors have investigated whether pondermotive detuning may be mitigated or cured by suitable
incident laser chirping prescriptions. In order to determine if these chirping prescriptions are suitable in real
beams with nonzero emittance, it is necessary to include misaligned boundary conditions in the electron
motion and calculate the resulting spectra from the exact motion. In this paper we provide the exact solution
for the electron equations of motion in the case of a misaligned electron passing through a laser pulse of
high field strength. This solution is then used to calculate the scattered radiation distribution and we
determine the emittance limits for the simplest chirping prescription.

DOI: 10.1103/PhysRevAccelBeams.25.054401

I. INTRODUCTION

Synchrotron radiation (SR) facilities generate the highest
quality x-ray emissions with respect to brilliance. Through
materials science, medical imaging, and fundamental phys-
ics and humanities research, nearly every aspect of modern
academics benefits greatly from the research conducted
with high-brilliance photon emissions. These high-end
emissions, however, come at a great cost. The accelerator
facilities themselves demand a great deal of power, and
their construction, maintenance, and operation are quite
expensive. This great expense limits the number of SR
facilities in operation. Acquiring beam time is a competi-
tive ordeal.

Inverse Compton scattering (ICS) sources provide a
viable alternative to SR for much of the research being
conducted at these facilities. ICS emissions are tunable, like
SR. The intensity of the emissions generated via Compton
scattering may be significantly less than those of SR
facilities, but they are still, however, high enough for the
non-destructive imagining analysis techniques commonly
used by researchers. Advanced medical imaging and x-ray
spectroscopy are already being conducted with Compton
sources [1]. Many institutions, such as Old Dominion
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University [2,3] and Technical University of Eindhoven
[4], have proposed constructing their own compact ICS
sources. The mobility of a high-brilliance, compact x-ray
source would offer advantages that are simply not possible
via SR. While not necessarily mobile, some compact ICS
sources are available commercially, such as the Lyncean
Compact Light Source [5]. ICS sources are already creating
new research opportunities across many fields of study.

Clearly, for reliable calculations of experiment times at
an inverse Compton source in the Thomson regime, it is
necessary to have reliable calculations of the spectra
generated by the scattering events. One approach to
perform such calculations was initiated in the context of
calculating undulator spectra by Coisson [6]. In this
method, the undulator field is Fourier analyzed and the
scattered radiation spectrum can be obtained by properly
Doppler shifting the various frequency components. This
same method applies in linear Thomson scattering where
the incident laser electric field is Fourier analysed [2] and
the scattered frequency obtained by a suitable double-
Doppler shift.

Alternatively, as is done for example in the code CAIN
[7], one can treat both the electron beam and photon beam
as ensembles of particles and compute the scattered
distribution quantum mechanically by integrating over
the relevant distributions. An advantage of such an
approach is that nonlinear (in the field intensity) effects
on the scattered distribution can be captured in the
calculation. However, as discussed in Ref. [8], because
of the large number of dimensions in the integration, and
the statistical way they are performed in CAIN, it may be
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difficult to obtain accurate results in some parameter
regimes to quantify distribution tails without spending
very large amounts of computer time.

To allow the first calculation approach to cover nonlinear
Thomson scattering, the exact equations of motion of an
electron in an electromagnetic plane wave were solved in the
specific case of an electron antialigned with the incidence
direction of the plane wave [9]. Using this approach ponder-
omotive spectral broadening was discovered, and later it was
discovered how to correct or mitigate its deleterious effects
[10,11]. However, these prescriptions were found and largely
analyzed in the context of antialigned electrons (Ref. [12] isa
notable exception). A main purpose of this paper is to show
how more general electron orbits may be calculated exactly
in an approach analogous to the method used before. This
general calculation now allows the effects of beam emittance
on the scattered radiation distribution to be calculated
exactly. The results will be compared to an alternative
calculation of nonlinear Thomson scattering published ear-
lier in the code SENSE [8]. A main finding of our study is that
for most beam conditions of relevance in real Thomson
sources, the SENSE model gives very accurate results.

This paper is organized as follows. In the next section we
compare two computational models designed to calculate
the exact nonlinear scattered spectra: the old SENSE model
developed earlier in Ref. [8] and the new, related model
NLTX. Next, we compare spectra computed by SENSE and
NLTX for a wide variety of beam conditions in order to
document the regions of applicability of the former model.
In the linear regime, we also connect the two nonlinear
codes to the existing, well-documented and benchmarked
linear Compton code ICCS3D [13]. Then the main results
are summarized. In two Appendixes we present the exact
solution for the equations of motion of an electron with
arbitrary incidence angle moving into an electromagnetic
plane wave, show the scattered energy distribution trans-
forms properly under Lorentz transformation, and record
equations of motion and spectra for more general scattering
geometries.

II. NONLINEAR THOMSON MODELS WITH
TRANSVERSE ELECTRON MOMENTUM

Compton scattering events can be generally classified by
two parameters: electron beam energy and the intensity of
the incident laser pulse. Photon-electron collisions with a
relatively low laser intensity, i.e., with a relatively low field
strength parameter a,, defined as the magnitude of the
normalized vector potential eA(&)/m,c, are described as
linear while collisions with higher intensities are nonlinear.
Thomson and Compton scattering events are delineated by
the Compton (or recoil) parameter

o )

X =
(m,c

where E, is the mean electron and E; mean laser beam
energies, m, is the electron mass and c the speed of light.
Photon-electron collisions with relatively low electron
beam energy, i.e., with a relatively low X, are called
Thomson scattering events while collisions with high X
are called Compton scattering events. Quasiclassical spec-
tral calculations in the nonlinear Compton regime have
been developed using the Baier-Katkov (BK) approxima-
tion [14,15] or the Wentzel-Kramers-Brillouin (WKB)
model [16,17]. Quantum electrodynamic calculations have
also been made in the nonlinear Compton regime [18-28].
The models presented here, however, operate in the non-
linear Thomson regime.

The calculations presented in this paper are limited to
Thomson scattering events in which the expectation value
of the number of emitted photons per electron is of order
one or less. This condition is derived by applying collider
theory to Lienard’s relativistic generalization of Larmor’s
theorem [11,29]; the field strength parameter and length
of the incident laser pulse need to satisfy

2 -
ago < g (2)

where 6 = ¢T/A is the normalized length of the laser pulse
and 7 is time duration of the laser pulse. This condition is
well documented [30-32]. Naturally, due to the quantum
stochastic nature of the scattering process, more or less
photons may actually be emitted by a single electron under
the limitations of Eq. (2). In addition, such a choice of
parameters ensures that the electrons will not experience
radiation reaction; the exact solution of the Landau-Lifshitz
equation [33] in a plane wave shows h(&) — 1 < 1 [34] for
these parameters.

These computational models compute the scattered
spectra by numerically integrating an energy density
spectrum d’E’/dw'dQ, which is a function that defines
the total scattered photon energy E’ per scattered photon
frequency ' that is scattered into a given solid angle dQ.
This energy density spectrum is integrated over the solid
angle of a sensor aperture numerically since these energy
density function cannot be integrated analytically.

The energy density spectrum for both models are derived
first by solving the Hamilton-Jacobi equation in order to
find the equations of motion for the electron as it expe-
riences the incident laser pulse. As a charged particle is
accelerated it emits radiation, and this emitted radiation is
calculated from the equations of motion to compute the
energy density spectrum. Both models are computationally
implemented into computer codes, SENSE and NLTX, written
in Python and optimized to run in parallel. The highly
oscillatory Hamilton-Jacobi integrals that arise from the
equations of motion are solved numerically using deter-
ministic Newton-Cotes rules of integration, and the inte-
gration over the solid angle is computed using Monte Carlo
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integration. The two codes share a set of common features
crucial in simulating realistic experiments: (1) An arbitrary
electron beam distribution, including energy spread and
emittance. (2) 3D model for the laser pulse. This feature is
implemented by varying the effective field parameter for
each electron based on its distance from the laser’s center at
the moment of scattering [8]:

afl' = agexp [—x*/(207,) = yz/(zalz.y)]’ 3)

where o, and o, are the horizontal and vertical sizes of
the laser pulse. Naturally, in the limit 6;, — ©0,0;, — oo,
adt — ay, and the 1D plane wave model is recovered.
(3) An arbitrary nonlinear chirp of the laser pulse, for
compensation of the narrow bandwidth [11]. (4) Finite
aperture (either circular and rectangular). (5) An arbitrary
shape of the laser pulse. A normalized laser pulse sampled
at a discrete set of points is supplied as an input file. The
details of the implementation of the first 4 features for
SENSE were described in Ref. [8], while the feature 5, as
well as the rectangular aperture in feature 4 are new for both
codes. In what follows, we describe each model in turn,
making contact between them when appropriate. In the
Results section, we will show through numerical simula-
tions that the two models—the approximate SENSE and the
exact NLTX—are in near-perfect agreement.

Originally proposed by Ghebregziabher et al., chirping is
a method by which the frequency of the incident laser pulse
is changed or modulated over its duration in order to
increase brilliance in the scattered spectrum [10]. In the
plane-wave approximation this frequency modulation (FM)
is defined by the function f(£) which modifies the phase of
the normalized incident laser pulse vector potential

g = A ]

— a(®) [ @)

where e is the electron charge, £ = z + ct is the coordinate
along the laser pulse, a(&) is the envelope of the vector
potential, and 4 is the wavelength of the incident photons.
The optimal solution for any envelope shape in the plane-
wave approximation may be found through the integral [11]

1 a2 (&)de
_1+a3/2<1+ 2 ) ®)

forr(£)

where a; is the field strength of the vector potential.
Optimized solutions have also been developed for incident
laser fields outside of the plane-wave approximation [8,12].
The computational models presented in this paper can
simulate any general FM function f(&) for both the plane-
wave approximation and for a 3D laser field representation.

While the phase modulation of the optimal FM function
recovers the maximum spectral brilliance from deleterious
nonlinear effects, the integral in Eq. (5) may be difficult to
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FIG. 1. FM prescription as a function of £. This plot compares

three different FM functions: the optimal chirping solution [11], a
sawtooth chirping function with a slope calculated from full
width half max to peak, and the optimal sawtooth chirping
function found by investigating spectral peak increase with
varying slope values. The chirping prescription using slope
between FWHM and the peak provides the optimal spectral
peak increase.

reproduce experimentally. In this paper it will be shown
that much simpler sawtooth chirping function may also be
used to meaningfully improve the spectral brilliance of ICS
in the nonlinear regime:

fsr(§) =1 -m|é

: (6)

where m is some constant that is the slope of the function.
The most effective slope of the sawtooth function m may be
calculated from the optimal chirping. Figure 1 compares
the optimal FM function fopr (&) and the sawtooth function
fst(€). For a Gaussian laser pulse, the most effective
value for the sawtooth slope m may be found by calculating
the slope of the line that passes through the peak of the
of the optimal chirping function and its full-width-half-
max (FWHM).

A. SENSE model: Hamilton-Jacobi equation of motion
for an on-axis electron and a coordinate transform

SENSE (simulation of emitted nonlinear scattering events)
[8] is a nonlinear Thomson (non-negligible a, and electron
recoil is neglected) code that calculates scattered radiation
by integrating the spectrum of a single electron colliding
with an arbitrary 3D laser pulse over a distribution of
electrons. It computes total scattered spectra at arbitrary
angles ¢ and 6 from the collision point [8]:

*E @E,  $CE 7
do'dQ  do'dQ  do'dQ’
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FIG. 2. Coordinate transform for SENSE code. Panel (a): Layout with the electron beam, the laser pulse (blue ellipse) and the aperture
(checkered oval) all along the z-axis (green line). An electron with angles p,/p and p,/p follows the trajectory denoted by the red line.
Scattered radiation computed by SENSE and collected at the aperture (here shown as circular aperture with the maximum opening of 6,,,
but can otherwise take on different shapes) is shown as a blue cone. Large grey circle denotes the plane which contains the aperture. The
angle at which an electron passes through the laser pulse is given by the intersection of red and black lines. Panel (b): SENSE transforms
the problem into a coordinate system in which each electron is aligned with the z-axis. The angle by which the aperture is offset at (x,
Yo) is given by the intersection of red and green lines. Panel (c): Head-on view of the plane of the aperture (checkered circle).

where
dZE‘/l 620)/2
— D 20in2
Wi~ Toriee D1 sin°e:
d’E| 2092 0— 2
I e‘w cosf — f3, .
- D, sind| .
d/dQ ~ 16776, 1(1— 5. 0059> cos¢ + D sin

Dia=cia /m‘z‘l’z(f)df exp [iw’ (W

w0 c(1+4,)
3 sinfcos¢p (€ - .

with ¢, =1/[y(1+p,)] and c;=1/[*(1+p,)(1+
p.cos0)]. The total spectrum is computed by integrating
spectra over a finite physical aperture d€Q2 over which the
radiation is collected

dE d’E
L T 40
do’ / do'dQ ©)

These calculations are based on Ref. [9], which provides an
analytic result of a ICS spectrum produced by a head-on
collision of a single on-axis electron with a 1D laser plane
wave. SENSE then uses a coordinate transform shown in
Fig. 2 to model the emittance effects. To reiterate: modeling
emittance effects is precisely the crux of the difference
between the two models (and the respective codes)—SENSE
uses Hamilton-Jacobi solutions for an on-axis electron
paired with an appropriate coordinate transform, while

NLTX uses general Hamilton-Jacobi solutions for an elec-
tron with arbitrary angles. The former is an approximation,
while the latter is exact.

B. NLTX model: General Hamilton-Jacobi
equation of motion

The nonlinear Thomson model with generalized trans-
verse electron momentum (NLTX) has been developed in
order to assess the limits of the approximation adopted by
the SENSE calculation. NLTX implements a novel solution to
the equations of motion for the ICS electron, so it does not
rely on the parameterization of the on-axis electron spectral
calculations. The fully generalized energy density spectrum
is derived here.

To obtain the scattered radiation spectrum, start with the
classical expressions for the far field radiation pattern [32].
The energy radiated by a moving charged particle is

Q2E 2w
da/dQ 1673¢,c

0 . 2
/ n x (n x f)e’@ /g (10)

[Se]

where F' is the scattered energy, ' is the scattered angular
frequency, dQ is the solid angle into which the scattering
occurs, and the particle orbit is expressed as a function of
time through r(7). We have denoted the scattered frequency
and energy with primes to be consistent with usual field
theory notation. In Appendix A, the exact solution of the
equation of motion of a particle in a plane wave is given.
The independent variable in the solution is & = z + ct, the
position of the particle within the incident field of the laser.
By the change of variable formula, this integral is just as
well integrated as
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d2 E 6‘2 w/2
d'dQ "~ 1677¢yc>

0 dr . 2
ar\ i/ (e -nr(©)/0) g
/_oonx<nxd§>e &l

(11)

To get the energy into a specific polarization, the integral is
performed with the vector part of Eq. (10) dotted into the
polarization vector. Following the usual procedure, the
polarization of the scattered radiation is resolved into
components perpendicular and parallel to the plane of
scattering. When the scattered radiation propagates in the

|

d2 E/L 62 60/2

D, sin ¢ — f,

[B.(1+cos®)/(1+p.)—sin O cos¢| Dy + (1 + cos 0) D, i

direction (sin € cos ¢, sin @ sin ¢, cos 6), the perpendicular
direction is &, = (—sin ¢, cos ¢,0) and the parallel direc-
tionis & = (cos @ cos ¢, cos O sin ¢, —sin #). Because the
arrival time of the scattered photon at the detector is not
measured, the constant offsets in the radiation integral, which
appear only in the overall phase of the scattered radiation, are
unimportant.

The component of the energy density spectrum
radiating with polarization perpendicular to the plane of
collision is

do'dQ  167°¢yc?

n ¢

1 — B, cos ¢ sin O — 3, sin ¢ sin 6 — , cos 0

+ By

[B:(1+cos )/(1+p,) —sin 6 cos ¢p|D; + (1 + cos Q)ch 2
1 —f, cos ¢ sin @ — f3, sin ¢ sin 6 — 3 cos €

os| , (12)

and the component of the energy density spectrum radiating with polarization parallel to the plane of collision is

+ D, sin 6

cos¢ cos 0

sin¢ cos 0

[B.(1 4 cosB)/(1+ p,) —sin 6 cos ¢|D; + (1 + cos 6)D, 2

sin 4] , (13)

d2E 2.2
I e . B
= D 0+ D 0
400~ Toreycd| D) €08 ¢ cos 04 Dy sin 6577
5 [B:(1+cos®)/(1+p.)—sin O cos ¢|D; + (1 + cos 6)D,
* 1 —f, cos ¢ sin @ — B, sin ¢ sin 6 — 3, cos 6
_p [B:(1+cos@)/(1+p,)—sin O cosgp|D; + (1 4 cos 6)D,
u 1 -, cos ¢ sinf — 3, sin ¢ sin 0 — , cos
P 1 =, cos ¢ sin @ — g, sin ¢ sin @ — f3, cos 6
where
1 eA (&) .
Dy(0:0,¢9) = =~ e'®dg,
1(@30.9) (1 —|—ﬁz)/ m,c erds
1 e?A2(8) .
D /;9’ — X ztbd ,
ati0.0) = [ G

_ @' [ (1—p,sinfcos p—p,sinfsing—p cos ) [B(l+cos) sinbcosgl [¢eA()
@(¢) = - (5 ) yA+8)*  y(0+5) } /—oo myc d¢
(14cos ) [¢ 2A2(E) .,
e /_m S dé). (14)

During these derivations, it is important to convert nonconvergent integrals of the form f e'® d¢ to convergent ones using
integration by parts neglecting the boundary terms, a procedure that can be rigorously justified. For example

054401-5



JOHNSON, BREEN, KRAFFT, and TERZIC PHYS. REV. ACCEL. BEAMS 25, 054401 (2022)

/eitbdé_i 1+ﬂz
i (1-p, sin @ cos ¢ — f, sin 6 sin ¢ — f3, cos 6)

8 /ei&’d<exp{iw?, (f(l — f,sin O cos ¢ —1ﬂisﬂi? 0 sin ¢ — f3. cos 9)) })

¢ 1+ 5. /,dé) o
Loc | - iS5 ez
io' (1 = p, sin O cos @ — p, sin @ sin ¢ — B, cos 0) dé

1+ p;

(1 =pB,sin 0 cos @ — p, sin O sin ¢ — B cos 0)
8 /{ [ (1 +cos §) sin 6 cos (p} eA, (&) N (1 + cos 0) ezAi(.f)}eicI,d(f
v+ y(I+B) | mee  P(1+4)? 2mic?
[B.(1 4 cos 0) — (1 4 p.)sin 6 cos @D + (1 + f.)(1 + cos 8)D,

B (1 =p,sin 0 cos @ — p, sin @ sin @ — 5, cos 6) (13)
where
.o ([B(1+cos @) sinbcosp| [€eA(d) ., (1+cosh) [ eAZ(E) ,)
o= (Brm ) [ e [ e ) 1)

The above form for the spectrum is probably easiest computationally. To facilitate later comparisons, note that the spectra
can manipulated into the form

dE', e’a” D [sin ¢(1 — B, cos 6) — f, sin 6]
da/dQ ~ 1677 €oc®| 1 =, sin O cos g — f,sin 0 sin ¢ — f, cos 6
[Be(14cos 0)/(1 + p.)]Dy + (1 + cos 6)D,
(1 =p, sin @ cos ¢ — p, sin @ sin ¢ — 5, cos 6

(1 +c0s 0)/(1 +B)ID, + (1 +cos O)D, 1

_ﬁx )Sin(p

. 17
+ﬁy(1—ﬁxsin6’cosgo—ﬂysin9sin(p—ﬂzcos9) o5 ¢ (17)
and
dE| e D (cos 6 — f3,) cos ¢
do'dQ  167°¢yc’| 1 — B, sin 6 cosp — B, sin O sin ¢ — 3, cos O
g P14 cos 0)/(1 4 p)IDy + (1 +cos 0D,
Xl—ﬂxsintQCOS(p—ﬂysianingo—,BZcosﬁ ¢
_p B:(1+cos 0)/(1+p,)|D; + (1 +cos 6)D, N
"1 =, sin 0 cos ¢ — 3, sin O sin ¢ — ff, cos O ¢
1 D
" , (L+5)Dy sin
I —f, sin 6 cos ¢ — f, sin @ sin ¢ — . cos 0
ﬂxDl . 2
0 18
+1—ﬂxSiHGCOS(p—ﬂySiHGSin[p—ﬂZCOS@SIH (18)
|
by placing all the terms over a common denominator. need be adjusted to accommodate as in the derivation
Finally, it is important to note that the expressions for the ~ results in the Appendixes.
spectrum implicitly include that the electron charge has
q = —e, where e is the (positive) proton charge. For 1. RESULTS
positive particles the sign of D; reverses but that of D, This new computational model has been used to explore

does not. The signs of the individual terms in the spectrum  the limits in which the on-axis electron approximation
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adopted by SENSE remains valid. A study has been con-
ducted to determine the efficacy of FM corrections to
nonlinear effects in the case of electron beams with
extremely high emittance values. NLTX simulations have
also been used to gauge the merits of the sawtooth chirping
function. Note that while NLTX has the capability to
implement 3D modeling for the incident laser pulse, the
simulation presented in this paper have been conducted
within the plane-wave approximation of the incident
laser pulse.

The effects of the extreme emittance are clearly evident
in each set of plots. Note that for each set of plots, the
normalized emittance parallel to the polarization vector,
i.e., in the horizontal X direction, increases by an order of
magnitude every row. The emittance begins at
107 m rad in the top row, and increases to 10~ and
10~* m rad in the middle and bottom rows respectively.
Similarly, the normalized emittance perpendicular to the
polarization vector, i.e., in the vertical y direction,
increases by an order of magnitude every column. The
emittance begins at 107 m rad in the left column, and
increases to 107 and 10~ m rad in the middle and right
columns respectively. In order to observe how extreme
emittance impacted the onset of nonlinear effects in
scattered spectra, each set of simulations was conducted
with a different value for the field strength parameter ay,.
The three sets of simulations presented begin in the linear
regime with ay = 0.1, and then the field strength is
increased into the nonlinear limit with a5 = 1.0
and aq = 3.25.

The simulations in Fig. 3 illustrate how emittance
generates spectral broadening in the linear regime:
increased emittance causes the development of a spectral
tail in the lower energy scattered photons. Additionally,
the horizontal emittance ¢, has a more severe impact on
the ICS spectrum as it represents the electron motion
parallel to the vector potential of the laser pulse. The
onset of nonlinear effects can be seen in Fig. 4 in which
ap = 1.0. Harmonics are beginning to emerge, and
subsidiary peaks are starting to dominate the spectrum.
In the top left panel of Figure 4, the burgeoning second
harmonic is the small bump in the spectrum at
w/wy = 1.38. This second harmonic scales with the
normalized emittance e. This effect has been observed
empirically by Kramer er al. [35], and SENSE has been
used to replicate and analyze the scattered spectra [8].
These effects are more pronounced in Fig. 5 in which
ayp = 3.25. It is well known from undulator theory that
for a linearly polarized incident laser pulse the harmonics
will be red-shifted in the frequency by a factor of
1 + a3/2. This nonlinear redshift is evident across the
three sets of simulations. For the simulations in Fig. 5,
this nonlinear redshift has caused the majority of the
scattered radiation to be emitted near the first harmonic.
In both nonlinear sets the thermal effects smooth out

the subsidiary peaks in the scattered spectra. Observe
the transformation in Fig. 5. In the top left panel the
subsidiary peaks subsume the entire spectrum. As the
emittance increases, the fringe interference patterns are
diminished. In the bottom right panel, the subsidiary
peaks are smoothed out almost entirely.

The energy density spectrum calculated using the
Hamilton-Jacobi solution for electrons with generalized
3D momenta is quite different than the parametrized, on-
axis approximation used by SENSE, i.e., Eq. (8) is quite
different from Eqgs. (12) and (13). Simulations show,
however, that both expressions produce nearly identical
spectra for inverse Compton scattering. Comparing the
two models over a broad and extreme range of emittance
values is critical to this comparison values because the
primary difference between the calculations arises from
the initial transverse relativistic velocity of the electron
By» Py. In the limit that they go to zero, the on-axis
solution is recovered from the more general expression.
The field strength parameter was changed to observe
what role, if any, the nonlinear effects would play in the
difference between these calculations. It is plainly clear
from the results that even for extremely high emittance
values—emittance values far beyond most operating
accelerators—both models, SENSE and NLTX, produce
nearly identical spectra. One may conclude that the
on-axis approximation used in SENSE is valid for the
backscattering collision orientation in which the crossing
angle of the electron beam and the incident laser pulse is
negligible.

A series of simulations were conducted to test the
performance of the optimal chirping function, Eq. (5),
in the case of extremely high normalized emittance.
The emittance values of the simulations ranged from
1077 to 107* mrad. The field strength parameter was
fixed at unity which is firmly in the nonlinear regime.
Figures 6-8 show that the exact chirping function
recovers much of the spectral brilliance in the scattered
spectra. In the plane-wave approximation, the optimal
FM is as effective in case of extremely high emittance as
it is in the on-axis electron case,i.e., when there is no
emittance in the electron beam.

During this simulation study of Compton scattering
with high-emittance beams, the sawtooth chirping func-
tion, Eq. (6), was also tested. Again, Figs. 6—8 show that
this chirping function also recovers much of the spectral
brilliance lost to nonlinear effects. In fact, this much
simpler frequency modulation function preformed nearly
as well as Eq. (5), the optimal chirping function in the
plane-wave approximation. A comparison of the maxi-
mum spectral peaks across all emittance values of the
study is shown in Fig. 9. Both chirping functions produce
similarly substantial gains in the peak of the scattered
spectra. The successful application of the sawtooth
function arose from a judicious selection of the slope
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FIG. 3. Peak normalized simulated spectra from SENSE, ICCS3D, and NLTX for field strength a, = 0.1 and a range of normalized
horizontal emittance e, and normalized vertical emittance €, values. The following parameters were used in the simulations:
E, =23 MeV; AE,/E, =0.175%; o, =41 uym; o, = 81 ym; A =800 nm; o, = 13.59 ym; o,; = 13.59 ym; o =5.57. The
scattered frequency is scaled by the normalizing frequency wy, = 27zc/A.
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FIG. 4. Simulated spectra from SENSE and NLTX for field strength a, = 1.0 and a range of normalized horizontal emittance €, and
normalized vertical emittance €, values. The following parameters were used in the simulations: £, = 23 MeV; AE,/E, = 0.175%,
o, =41 ym; 6, =81 ym; A =800 nm; o,; = 13.59 um; o,; = 13.59 um; ¢ = 5.57. The scattered frequency is scaled by the
normalizing frequency w, = 2zc/A
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Simulated spectra from SENSE and NLTX for field strength a, = 3.25 and a range of normalized horizontal emittance ¢, and

normalized vertical emittance €, values. The following parameters were used in the simulations: E, = 23 MeV; AE,/E, = 0.175%;
o, =41 ym; o, =81 ym; A =800 nm; o,; = 13.59 um; o,; = 13.59 um; ¢ = 5.57. The scattered frequency is scaled by the
normalizing frequency w, = 2zc/A
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FIG. 6. Comparison of simulated spectra with three different FM functions: uncorrected simulation (FM = 1), the optimal chirping
solution [11], and a sawtooth chirping function. The simulations were conducted for a range of normalized horizontal emittance ¢,
values. In the case of the most extreme emittance (bottom right panel), the spectra have been rescaled by an order of magnitude on the
right vertical axis. The following parameters were used in the simulations: E, =23 MeV; AE,/E, = 0.175%; o, =41 um;
oy, =81 ym; ay = 1.5; 2 = 800 nm; o,; = 6,; = 13.59 um; ¢ = 5.57. Note that the scale of the y-axis is fixed for the top two
plots and the lower left plot, but the scaling on the bottom right plot has been adjusted since the peaks are a full order of magnitude
smaller than the other plots.
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Comparison of simulated spectra with three different FM functions: uncorrected simulation (FM = 1), the optimal chirping

solution [11], and a sawtooth chirping function. The simulations were conducted for a range of normalized vertical emittance ¢, values.
In the case of the most extreme emittance (bottom right panel), the spectra have been rescaled by an order of magnitude on the right
vertical axis. The following parameters were used in the simulations: E, = 23 MeV; AE,/E, = 0.175%; 6, = 41 um; 6, = 81 um;
ap = 1.5;4 =800 nm; 0, ; = 0,,; = 13.59 um; ¢ = 5.57. Note that the scale of the y-axis is fixed for the top two plots and the lower left
plot, but the scaling on the bottom right plot has been adjusted since the peaks are a full order of magnitude smaller than the other plots.
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Comparison of simulated spectra with three different FM functions: uncorrected simulation (FM = 1), the optimal chirping
solution [11], and a sawtooth chirping function. The simulations were conducted for a range of normalized circular emittance ¢, = €

y

values. In the case of the most extreme emittance (bottom right panel), the spectra have been rescaled by two orders of magnitude on the
right vertical axis. The following parameters were used in the simulations: E, =23 MeV; AE,/E, = 0.175%; o, = 41 um;
oy =81 ym; ay = 1.5; 2 =800 nm; 6,; = ¢,; = 13.59 um; ¢ = 5.57. Note that the scale of the y-axis is fixed for the top two
plots and the lower left plot, but the scaling on the bottom right plot has been adjusted since the peaks are two orders of magnitude
smaller than the other plots.
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FIG. 9. Spectral peak as a function of normalized horizontal emittance (left), normalized vertical emittance (middle), and normalized
circular emittance (right). These plots compare three different FM functions: uncorrected simulation (FM = 1), the optimal chirping
solution [11], and a sawtooth chirping function. The following parameters were used in the simulations: E, =23 MeV;
AE,/E, = 0.175%; 6, = 41 ym; o, = 81 um; ay = 1.5; A =800 nm; 6,; = 0,; = 13.59 um; 6 = 5.57.

m. This constant was found by optimizing the spectral
peak for the given parameters.

IV. CONCLUSION

A novel, broadly generalized quasiclassical calculation
of inverse Compton-scattered spectra has been presented.
This new spectral distribution calculation arises from
solving the equations of motion for an accelerated electron
with generalized 3D momenta as it experiences an incident
laser pulse. The polarization vector of the incident laser also
remains general in this calculation.

The new calculation has been used to develop a
computational model, NLTX, to simulate ICS events.
NLTX simulates an accelerated electron beam in which
each individual electron is assigned its own unique gen-
eralized coordinates. Within this model a linearly polarized
laser pulse with any user defined envelope shape is incident
upon the electron beam in the backscattering orientation,
that is the case in which the offset angle between the two is
negligible. NLTX allows for the incident laser pulse to be
frequency modulated, or chirped, to correct problematic
nonlinear effects within the scattered spectrum.

NLTX has been used to conduct a study of the effects
upon ICS spectra that arise from extreme emittance. The
novelty of the new analysis stems from the more rigorous
treatment of the electrons transverse momenta. Hence, the
new computational model is an ideal one to study emit-
tance. The studies presented here had two principle
objectives: (1) to observe the impact of extreme emittance
in the linear and nonlinear regimes and (2) to test the
efficacy of FM corrections in case of electron beams with
extreme emittance.

Across these simulations NLTX has been compared to two
previous models, SENSE and Improved Codes for Compton
Scattering (ICCS) [36]. All codes are in strong agreement
in the linear regime. NLTX and SENSE are in strong

agreement in the nonlinear regime. Any approximations
made in the parameterization of SENSE for the 3D envelope
model did not undermine the accuracy of the generated
spectrum: it is nearly exactly the same as the full transverse
calculation. As SENSE has been thoroughly benchmarked,
this is not a surprise for the lower emittance calculations.
The agreement of the two models at absurdly high
emittance values, however, is a new benchmark for the
original code.

NLTX has also been used to study how extreme
emittance effects spectral correction through FM, or
chirping, within the plane-wave approximation. Across
this study, even for cases with extreme emittance, the
optimal chirping solution still restored the maximum
brilliance in the corrected spectra. This maximum peak
spectral density that may be recovered scales with the
square of the field strength parameter a3. These spectral
gains are also independent of the direction of the
emittance, that is, the optimal chirp function recovers
spectral brilliance for vertical emittance e,, horizontal
emittance e, and circular emittance €, = €,.

The sawtooth chirping function has also been introduced
during this study. Figure 6 compares the uncorrected ICS
spectrum (FM = 1) to spectra corrected with the sawtooth
and the optimal chirping functions for a range of horizontal
emittance values ¢,. In this set of simulations, both the
optimal and the sawtooth corrections restore the spectral
brilliance across the first three harmonics. In Figs. 7 and 8
simulations were run again with vertical emittance e, and
circular emittance e, = ¢, respectively. In all sets of
simulations, the chirping functions were highly effective
across all harmonics. This sawtooth function provides two
substantial benefits. First, it recovers nearly as much of
the spectral peak as the optimal chirping solution: about
91%-97% of the spectral peak. Second, the simple nature
of the sawtooth function, as shown in Fig. 1, may make it
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easier to produce experimentally than the integral in the
optimal solution.

Another distinction between new, generalized calculation
is that it is done in the lab frame. This new Hamilton-Jacobi
solution will be necessary to simulate scattering events
outside of the backscattering geometry. The time resolution
required to capture the photon-electron interaction will be
significantly easier to compute in the lab frame.
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APPENDIX A: SOLUTION TO THE EQUATIONS
OF MOTION FOR A RELATIVISTIC ELECTRON
WITH TRANSVERSE MOMENTUM

In the textbook by Landau and Lifshitz [37], it is pointed
out that the Hamilton-Jacobi method yields an exact
solution of the motion of a charged particle in an electro-
magnetic plane wave. This solution applies even when the
electromagnetic field strength is large enough that signifi-
cant nonlinear scattering is possible. In [9], the solution is
used to compute nonlinear scattered radiation spectra in the
specific case that the electron is antiparallel to the incident

|

PxqAL (&)

photon beam. In order to capture effects of emittance on the
spectra, it is necessary to allow the electrons to have a spread
in angles around the anti-aligned direction. In this Appendix,
we solve the exact Hamilton-Jacobi motion of a relativistic
particle in a plane electromagnetic wave and generalize the
results of [9] to include off-axis particle motion. We also
develop and utilize notations more convenient for this
problem than appears in the textbook solution.

First write down the Hamilton-Jacobi solution for this
problem with the more general boundary conditions.
Suppose the momentum 4-vector for a relativistic electron

before the arrival of the photon pulse is p* = y(1, E)mec,
where y and ,E are the usual relativistic factors in the lab
frame, m, is the rest mass, and c is the speed of light in

vacuum. The full relativistic Hamilton-Jacobi equation for
the motion is

oS 2 oS =\?
- = (== —gA) +mic, (Al

where ¢ is the scalar potential and A is the vector potential
for the plane wave, and ¢ is the particle charge. Assuming
an x-linearly polarized incident plane wave propagating in
the negative z direction, the gauge can be chosen so that
$=0and A = A,(ct+ z)X. The Hamilton-Jacobi equa-
tion should be solved with the more general boundary
conditions  — (S, f,.p.) as t - —co. An action solving
the Hamilton-Jacobi equation incorporating these boundary
conditions is S=—+/m2c?+p-pct+ p-X+F(£) where
E=ct+zand

TAYE)/2

¢
F(f):/[ N - N
- ly/mgc"+p-p+p, mget+p-p+p,

de', (A2)

Following the method, constants of the motion are generated by taking partial derivatives of the action function with
respect to the momenta. Expressing the constants in a convenient manner, the results are
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Manipulating these expressions, one obtains a solution of the equations of motion generalizing those in [9]

1
cr(§) = =P~
p0+pz
Px20 1
x(¢&) = -
( ) p0+pz
Py20 Py
y(&) =yo— + :
( ) 0 p0+pz p0+pz
z 1
Z(f) _ Po<o +
p0+pz (p0+pz

where for convenience of expression the notation p, =

V/m2c* +p - p = ym,c has been introduced. Before the
arrival of the laser pulse, the integrals are negligible and

ct = po(& —20)/(po + p-). Thus

Aw»am+§w=m+mm
0

p
y(&(1)) = yo + p—(y)ct = yo + Byct,

2(6(1) = 20 + 22 et = 2o + poct,

e (AS)

consistent with the definition of the initial 4-momentum.
Consequently, one can interpret the constant vector
(x0, Y0, 20) as the offset the electron would have at the
time the £ =0 point in the laser pulse crosses the
interaction point (at the origin of the coordinate system)
if there were no electromagnetic force acting on the
electron. If a particle is located at z =z, when ¢t =0, it
takes a time Atz = —zq/(1 + f,)c to propagate to the
condition ¢ =0. The offsets proportional to —zy/(1 +
B.) in the equations for each of the coordinates clearly
compensate for this time offset when expressing the orbits
in terms of £. In the case that the electron’s transverse
location does not change much when the laser pulse is
traversed, the transverse integration constants x, and y, can
be used to capture any transverse dependence of the laser
|

¢ q*Az p:£
)2 /_oo |:pqux_ D) :|d€/+ -

¢ qu%} Poé
PxqA — dé' + .
(p0+pz)2/—oo|: * * 2 p0+pz

£ Pig
gAdE + ———"—,
p0+pz/—oo ! po+ p.

, A4
Po +pz ( )

vector potential. For our solutions in this paper, these
effects are included using a simple model.

APPENDIX B: CONSISTENCY CHECK
AND SOLUTION FOR GENERAL
SCATTERING GEOMETRY

To verify our result for the lab frame scattered spectral
energy density is correct in detail, we carry out a second
calculation in a primed “rest” frame of the electron before
the arrival of the laser pulse with the large longitudinal
velocity subtracted out. Then the transverse velocity is very
small, and the transformation formulas for the angles can
proceed as before. In the primed frame

(o] e

¢ eAl,
X&) =x +/
e

(e8] L’

yl(gl) =Yo +:Bly€/7
& A/ 2 A/2
Z'(é’)zzo—/_ [ ¢ B x+2€2 2 /2}‘15” (B1)

o [M,C

¢l e Ay e? A?
Ct’(f’):—zo*’/_ { I +2 2.2 /2}(15”‘1-5/

A+

For the electrodynamic part, by inspection the previous
expressions can be used by simply setting , = 0. So

dE'y ea” in g — [f(1 +cos @) —sin & cos ¢'|D'; + (1 + cos ')D’ sing/
do"dQ'  167°¢,c? Dhy (1=p, sin & cos ¢' — f', sin & sin ¢')
o W1 08 0) =i 0 con /1, + (1 cos )0 )

and

(1 =p', sin & cos ¢' — f', sin @' sin ¢')
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de') S |, cos & cos ¢ .
do”dQ ~ 167%¢yc?| "1 =, sin & cos ¢/ — 'y sin @' sin ¢/ S 1—p sin@ cos ¢/ —f, sin & sin ¢/
, (1 +cos@) —sin & cos ¢'|D'y + (1 + cos &')D',

—hx 1= sin @ cos ¢/ — 'y sin &' sin ¢/

[# (1 +cos @) —sin @ cos ¢'|D'; + (1 + cos &)D’,

(B, sin @ cos ¢’ + ', sin @ sin ¢) cos €' cos ¢/

cos & cos ¢’

=/ cos @ sin ¢
Py 1—p, sin@ cos ¢/ — ', sin & sin ¢’ ¢
1
+ D', sin ¢ . i :
1 —p sin@ cos ¢ — ', sin & sin ¢’
' sin @ cos ¢’ + f, sin & sin ¢’ 2
~Dysing LTS TP SO SND) Ly gy in g (B3)
1 —p sin @ cos ¢' —f', sin &' cos ¢’
where
1 Al (&)
D'y (a";0,9) =—,/—e (<) iy e,
y m,c
1 [e2A2(&) .,
D5 (50, ¢) = 72/Weup ae,
e

a)//

¢ () = — <§’(1 —f' sin @ cos ¢' — ', sin &' sin ¢')

5/ A/ Z 5/ 2A/2 72
+ [ (1 4 cos @) —sin & cos ¢'] /_we}/#(fc)dé” + (1 +cos®) /_w%lqgcz)d(g”) (B4)

and where " is the scattered frequency in the primed frame, reserving @’ to denote the scattered frequency in the lab frame.
Note thaty’ = 1/,/1 = p?? - ,vaz is the relativistic gamma computed with the small transverse velocities and is close to 1. As

above, put all terms over a common denominator. One obtains

dE', o D'\[sing’ — f, sin @] g W0+ cos D/, + (14 cos ),
da"dQ  167°€gc?| 1 — B/, sin @ cos ¢/ — B/, sin @ sin g/ "1 —p sin 0 cos ¢' — f, sin & sin ¢/

[f (14 cos@)|D'; + (1 +cos &)D', . 2

/

ng

/' (O8] / BS
+ﬂ”1—[)”x sin @ cos ¢/ — ', sin ' sin ¢’ ¢ (B5)
and
By _ et D'y cos & cos ¢f , Pu(l+cos )D'y + (1 +cos @)D, -
do"dQ'  167°€yc?| 1=/, sin @ cos ¢/ —pfysin@ sing’ "1 —f,sin@ cos ¢ —fy sin & sin ¢f v

p(14+cos@)D'; + (1 +cos@)D’,
Y1 - sin @ cos ¢/ = sin @ sin ¢/
ﬁ/xD/l . 2
sin@'| . B6
* 1 —p,sin @ cos ¢ — 'y sin &' cos ¢/ (B6)

D',
1—p' sin @ cos ¢ = sin & sin ¢

-p sin ¢’ + _sin @'ko

We now perform a consistency check. If we Lorentz transform with the electron longitudinal velocity back to the laboratory
frame, we should recover the lab frame result. Defining y; = 1/4/1— /2, the 4-velocity transforms as

v =vp.(r = B.(B.y))

y/ﬂ/x = yp«
y/ﬁ/y = yﬁy
v'B.= 7p. (ﬁzy - ﬁzy> =0, (B7)
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which implies y’ vp. = v- Now the scattering angles transform as

sing —— 0
7p.(1 =, cos 0)
1 —p.cos 0
o =0

and so

Y'(B'y sin @ cos ¢ + f', sin @' cos ¢')
/

14
| Py sin @ cos @' + yf, sin @' sin ¢’
- /

14
- YPy sin € cos @ + yp, sin 6 sin ¢

Y'7p.(1 =B cos 0)

1—p sin@ cos ¢ —f, sin @ sin ¢/ =1 -

1=, cos 6 —p, sin 0 cos ¢ — f3, sin 6 cos ¢

1—p, cos 0
Some other needed transformation rules are @” =y, (1 — . cos 0)a’,
| fcos @ — 1+ cosf — f. :(l—ﬂz)(l—i-cosé): lj—cose ’
1—p, cos @ 1—p, cos @ (L+p.)rs. (1= P, cos 0)
ﬂ;:yﬁ/x, and S| :ﬁly.
4 /4

To get the transformation of the integrating phase note by the Lorentz transformation

ct+z '3

él =ct'+7 = YﬂZ(Ct _/}ZZ) =+ yﬂz(_ﬁzw‘ =+ Z) =7p. (Ct + Z)(l _ﬁz) = =

Yﬂz(l +ﬁz) a }/ﬂz(l +ﬁz> '

Also the vector potential, as it is purely transverse to the transformation, satisfies
A'() = A(6) = Ay (1 +52)).

So the integrals satisty

[ aenae = [7 aera+poe

1 /f’m(lw A

T (046 )
1 £
— A /! d ///’
y,;z<1+ﬁz>/_m (£)ds

and similarly

¢ 1 ¢
A/Z 2 2d /- A2 1" 2d //‘
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So indeed
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(&) @/rp.(1 = B c0s 6) §  1=p,sin6cos ¢—p,sinfsing—pf cos @
@) > —F
¢ rp.(1+5.) 1 —f. cos 0
e (I4cosf) .
v 75 (1=p.cos O)(144.) ;l/é eA(¢ )d.f”
St /
Wcosq) 75.(L+ )7 Joe mec
(+cosd) 1 [ EBE)
75 (1= B.cosO)(1+ ) 1 rp.(1 + ) ) 2m2c?
= (). (B15)

and for the distribution functions

/ / /
D/ cos & cos ¢' — D,

D) sin ' — yﬂz(l +p.)D,

g [F (14 cos@)—sin & cos ¢'|D'y + (1+cos &)D’

1—-p.cosf

-p

£cos ¢,

sin @
vp.(1 =P cos 0)’

[B:(14cosB)/(1+ p,) —sin € cos ]D; + (1 +cos 0)D

(1 =/, sin @ cos ¢ —,B’y sin @' cos ¢')

p.D}sin@ —

The transformed distribution is identical to the one calcu-
lated in the lab frame to begin with.

1. General geometry

From Ref. [2], we have the general Lorentz transforma-
tion rule for electromagnetic radiation from the lab frame to
a frame moving with relativistic velocity (... f,). The
unit wave vector in the moving frame is

y — s Ao
= </3-k>ﬂ] (B17)

- +h+
y(l—ﬂ‘k)[ 7o

p - €lqA()]

1 —f,sin 6 cos ¢ — f3, sin 6 cos ¢ — . cos 0
sin@
(1=p.cosO)’

sinf
ﬂz(l —p,cos0)

= /D, (B16)

Likewise, the expressions in the paper can be used to find
the polarization vector in the beam frame as

(B18)

With vector potential A(£)€ and now & = (¢t — k - ¥) with

£k =0, the general action solving the Hamilton-Jacobi
equation contains

2A2(f’)/ 2

P& = /_i [\/Tp 5k

d’ B19

After a calculation entirely analogous to that shown in Appendix A, the solution to the equations of motion is found to be

(k- %o)\/mic® + p - p

-

£-p

ct(§) = = —=
mic+p-p—p-k

£
S gAd#
(vm362+p-p—19-k)2/—°°

Vmic? +p-p

1

§q2A2
n - / de +
(Vmi+p-p—p-k)’

=&,
VmicE+p-p—p-k
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The electrodynamic calculation proceeds as before with result
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For the given scattering variables the spectra are
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It should be noted that in the formulas for the spectra, the perpendicular polarization is defined to be in the direction

%2 x k" and the parallel polarization in the direction (z x k/) x k'. Thus it is assumed that the electron beam average velocity
is in the Z direction, even if the individual electron orbits are not exactly in this direction.

During these derivations it is important to apply the more general integral conversion prescription

Y 2255 5-p D -AD, - R AV T
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