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The collective behavior of an ion cloud confined in a linear Paul trap is physically almost equivalent to
that of a relativistic beam traveling in a particle accelerator. This fact provides a new possibility for
experimental beam-dynamics studies that can be done without relying on large-scale machines. We have
constructed a compact ion trap to explore various accelerator-physics issues in a local tabletop
environment. The present trap system is designed particularly for the study of high-intensity short hadron
bunches typical in linear accelerators. Resonance-induced ion losses are measured and plotted as a function
of the betatron and synchrotron phase advances over a wide range, which offers a piece of indisputable
experimental evidence for the presence of various betatron and synchrobetatron resonance stop bands. We
confirm that these instability bands shift in the stability map depending on the ion density. The recently
proposed stop-band diagram, free from the conventional concept of incoherent tune spread, is employed to
explain the experimental observations.
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I. INTRODUCTION

Detailed information about space-charge effects in
intense hadron beams is vital to design next-generation
accelerators as well as to improve the performance of
existing high-intensity machines. The recent progress of
accelerator technology has made it feasible to confine a
huge number of charged particles in a tiny configura-
tion space. The motions of individual particles forming
a dense beam core are then no longer independent but
rather strongly correlated due to the long-range nature of
Coulomb interaction [1,2]. The systematic study of such
collective beam behavior is extremely difficult to conduct.
It is necessary to solve the complicated equations of motion
of interacting particles in a self-consistent manner,
which seems almost hopeless to achieve mathematically.
The use of numerical simulation techniques is an
alternative powerful approach, but high-precision three-
dimensional (3D) computation requires very long CPU
time even with modern workstations. Various practical
problems are also encountered in experiments as long as we
rely on large-scale accelerators. The flexibility and con-
trollability of fundamental parameters are quite limited in

accelerator-based experiments. For instance, it is difficult to
perform a full-range survey of the betatron and synchrotron
tune space. Note also that any operating machine consisting
of many components inevitably includes mechanical errors
and noise sources that complicate the beam motion.
These practical difficulties in conventional approaches

motivated us to develop an entirely new experimental
system called “S-POD” (Simulator of Particle Orbit
Dynamics) [3]. The S-POD is based on the physical
similarity between a relativistic charged-particle beam
focused by an alternating-gradient (AG) quadrupole lattice
and a non-neutral plasma stored in a linear Paul trap (LPT)
[4,5]. These two multiparticle dynamical systems are
governed by the same closed set of equations of motion.
This means that in the compact LPT, we can reproduce the
space-charge-induced phenomena equivalent to those
expected in a large-scale accelerator.
There are four independent S-POD systems currently

operational at the Beam Physics Laboratory of Hiroshima
University. Three of them were constructed to elucidate the
transverse beam stability. Long ion clouds of a sausage-like
configuration are produced there by a nearly square-well
potential along the LPT axis. The effect of synchrobetatron
coupling is then negligible, which allows us to concentrate
upon betatron stability issues. A lot of information about
the fundamentals of transverse space-charge effects have
been accumulated through a decade of experimental effort
[6–14]. We are now ready to move forward to extend our
research incorporating longitudinal effects. The stability of
the synchrotron motion together with the betatron motion
is explored experimentally in the present work using
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high-density short ion clouds. The fourth S-POD con-
structed recently is intended for this purpose.
The synchrotron tune is generally very low in circular

accelerators where the bunch length is far greater than the
transverse beam size. In contrast, the bunch shape is
ellipsoidal or even spherical in linear accelerators because
of comparable tunes in the three spatial directions
[15,16]. The interplay between the betatron and synchro-
tron motions could then give rise to additional undesired
effects on beam stability. Furthermore, the interparticle
Coulomb interaction is more severe in linear machines as
they are employed in a low beam-energy region. Under-
standing space-charge effects in a short bunch is thus
especially important to establish a reliable guideline for the
design of high-intensity hadron linacs. The new S-POD
system mentioned above can produce a high-density ion
cloud with the aspect ratio of around unity, enabling us to
explore space-charge issues in linacs.
In Sec. II, we start with an overview of the LPT structure

and typical experiment conditions. Some structural param-
eters of essential importance in evaluating accurate tunes
are determined in Sec. III from S-POD outputs at low ion
density. We then proceed to high-intensity measurement
results in Sec. IV. After examining the maximum number of
ions confineable in the present LPT and the lifetime of a
stored ion cloud, we show the stability tune diagrams
obtained with the S-POD at different bunch intensities and
ion confinement periods. Finally, a brief summary is given
in Sec. V.

II. S-POD FOR SHORT-BUNCH EXPERIMENT

A typical LPT is composed of four electrode rods sym-
metrically placed around the trap axis [17]. The radio-
frequency (rf) voltages �V⊥ are applied to these rods, as
illustrated in Fig. 1, to generate an electric quadrupole field
for transverse ion confinement. The dedicated LPT for
short-bunch experiment is axially divided into three electri-
cally isolated quadrupole sections. The aperture radius r0,
i.e., the minimum distance from the LPT axis to the rod
surfaces, is 5 mm. The radius ρ of each rod is chosen to be
5.75 mm at which the nonlinearity of the aperture field is
minimized. An axial potential well is created by adding an
identical bias voltage Uk to the two quadrupole sections on
both sides of the central section where ions are stored. The
number of ions surviving after a certain storage period is
measured with a microchannel plate (MCP) detector. The
length of the central electrodes is 8.9 mm, which has been
optimized to form an approximately parabolic potential
well by Uk [18]. Although Uk is generally time-dependent,
we have made it static for the sake of simplicity. The
synchrotron resonance is, therefore, not directly excited in
the present study.
Consider an LPT that confines ions of rest mass M and

charge state q at the rf frequency frf. The ion cloud stored in
the LPT obeys the following Hamiltonian, provided that

the axial potential generated by Uk is approximately
quadratic [18]:
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where ðpr; pθ; pzÞ are the canonical momenta conjugate to
the cylindrical coordinates ðr; θ; zÞ, the independent vari-
able is τ ¼ ctwith c and t being the speed of light and time,
ϕsc is the Coulomb self-field potential satisfying the
Poisson equation, and L≡ c=frf . This Hamiltonian has
the same form as the one often assumed in standard space-
charge theories to describe the hadron beam behavior in
linear accelerators [1,19–22]. The parameter σ0k in Eq. (1)
is defined by σ2

0k ¼ 2ðL=lzÞ2ðqUk=Mc2Þ that corresponds
to the synchrotron phase advance per unit AG cell whenUk
is constant. lz is the characteristic length of the plasma
confinement region depending on the mechanical design of
the LPT; it is generally a bit shorter than the central rod
length. A numerical analysis with a 3D Maxwell-equation
solver concludes that lz ≈ 8.23 mm for the LPT structure
in Fig. 1.
The ion species used for the S-POD experiment has

nothing to do with the essence of the physical process we
are interested in; the mass and charge state of the ions are
simply scaling parameters. We adopted 40Arþ ions that can
be produced easily from neutral Ar gas atoms through the

Ion bunchElectron gun

MCP

Cross section

FIG. 1. Schematic drawing of the LPT for short-bunch experi-
ment. The LPT consists of three quadrupole sections electrically
isolated from each other. The transverse rf quadrupole field of the
same strength is always excited in all three sections. The central
section, in which ions are stored, is 8.9 mm long; this length is
determined so as to make the axial potential well nearly parabolic
when an equal DC bias voltage is applied to the two end sections
of 30 mm long. An electron gun is placed above the central
section to ionize neutral Ar atoms. The radii of the aperture and
quadrupole rods are r0 ¼ 5 mm and ρ ¼ 5.75 mm. The DC bias
Uk on the MCP side is dropped to extract remaining ions and
count them with the detector.
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electron bombardment process. The nominal operating rf
frequency of the LPT is set at 1 MHz. Ideally, the rf
waveform of V⊥ is adjusted to reflect the discrete AG
focusing lattice of a particular linac, in other words, the
spatial arrangement of quadrupole magnets along the beam
line. The most popular AG structure is the so-called FODO
(focus-drift-defocus-drift) lattice [23].
Instead of a pulse waveform, we here take the simple

sinusoidal focusing potential to model the FODO lattice;
namely, V⊥ðτÞ ¼ Vrf cos ð2πτ=LÞwith Vrf being a constant
rf amplitude. It is known that the sinusoidal lattice has a
resonance feature very similar to the FODO lattice [12,22].
For 40Arþ ions, the rf voltage Vrf necessary to achieve a
large betatron phase advance of 144° (the bare tune of
0.4) per cell is only about 88.9 Vat the operating frequency
of 1 MHz if the transverse defocusing effect from the axial
focusing potential is negligible. In a short bunch, however,
this defocusing effect on the betatron motion is rather
strong. The rf amplitude must be increased from 88.9 V to
100.5 V in the above case when the synchrotron phase
advance is adjusted to 90° per cell, for example.

III. CALIBRATION OF STRUCTURAL
PARAMETERS

The conditions of space-charge-induced instabilities are
well characterized by a few physical quantities, namely, the
beam density in phase space and the three bare tunes per
unit focusing cell. The convenient measure of the phase-
space density is the root-mean-squared (rms) tune depres-
sion η that ranges from 0 to 1. η ≈ 1 at low density where
the effective tune is close to the design value with no space-
charge-induced shift. η is reduced as the density becomes
higher or, in other words, the beam temperature becomes
lower. At the absolute zero temperature where η ¼ 0, the
beam is Coulomb crystallized [24]. Multiplying the bare
tunes by 2π, we have the bare phase advances ðμ0x; μ0y; σ0kÞ
commonly used in the linac community. Since the hori-
zontal and vertical betatron phase advances in typical linacs
are close, we assume μ0x ¼ μ0yð≡μ0⊥Þ throughout the
present experimental study.
The synchrotron phase advance σ0k is determined solely

by the axial focusing potential provided by the bias Uk. On
the other hand, the betatron phase advance μ0⊥ depends not
only on the rf quadrupole amplitude Vrf for transverse
focusing but also on Uk as is evident from Eq. (1). As
remarked above, the bias voltage Uk added to the two end
sections for axial ion confinement inevitably yields a
transverse defocusing force. This corresponds directly to
the effect known as rf defocusing in accelerating gaps [23].
In the S-POD experiment, the bare phase advances can

be calculated from the waveform and amplitude of the
voltages applied to the electrodes if all the other parameters
in Eq. (1) are known. Vrf and Uk supplied by our power
sources are monitored in every measurement to derive the

actual phase advances as precisely as possible. The
effective magnitudes of r0 and lz in the Hamiltonian
may, however, be slightly different from the ideal design
values due to mechanical errors. It is thus required to figure
out their real values somehow for accurate determination of
the three phase advances. For the calibration of these
structural parameters, we paid attention to the tune depend-
ence of ion losses caused by some low-order resonances.
Similarly to any particle accelerators, the external ion-

focusing potential in the LPT is not perfectly linear as
assumed in Eq. (1). The electric field in the LPT aperture
includes weak nonlinear components induced by mechani-
cal errors. Those nonlinearities give rise to resonant ion
losses that can be enhanced easily by extending the ion
storage period. At low ion density where the effect of
interparticle Coulomb interaction is negligible, we expect
ion losses to occur under the single-particle resonance
condition

n⊥μ0⊥ þ nkσ0k ¼ 2πn; ð2Þ

where n⊥, nk, and n are integers [25,26]. For the deter-
mination of the effective r0 and lz, we used the loss
signals from the three relatively strong resonances with
ðn⊥; nk; nÞ ¼ ð3; 0; 1Þ, (4,0,1), and (2,2,1) identified in
preliminary measurements.
The space-charge-induced shift of the phase advances

must be minimized to improve the calibration accuracy.
We confirmed that the shift can be made negligible by
reducing the initial ion number Nin well below 104. Nin

was, therefore, chosen to be about 103 in the calibration
experiment. The number of surviving ions after 1 s,
corresponding to beam transport over a million AG cells,
was measured with the MCP to locate the positions of the
above-mentioned three nonlinear resonances with Uk fixed
at 3.14 V, 10.89 V, 18.00 V, and 22.09 V. These four bias
voltages give the synchrotron phase advances σk ¼ 27.1°,
50.6°, 64.8°, and 72.0°, respectively, if the effective r0
and lz agree with the ideal theoretical values, i.e., r0 ¼
5.00 mm and lz ¼ 8.23 mm. We varied μ0⊥ over a wide
range to search for the resonances while keeping Uk.
The measurement results in the two cases where Uk ¼

3.14 V and 10.89 V are exhibited in Fig. 2. Three vertical
lines in each panel are the theoretically expected positions
of the resonances with ðn⊥; nk; nÞ ¼ ð3; 0; 1Þ, (4,0,1), and
(2,2,1). Under the condition that r0 ¼ 5.00 mm and
lz ¼ 8.23 mm, these lines are slightly deviated from the
actual loss positions as seen in Fig. 2(a). A similar small
discrepancy between the theoretical expectation and exper-
imental observation is also found in the other two cases
where Uk ¼ 18.00 V and 22.09 V. We applied the least-
squares method to minimize the discrepancies in all four
cases simultaneously, using r0 and lz as free parameters.
After the calibration, the ion-loss positions move exactly on
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the vertical line as shown in Fig. 2(b) where r0 and lz are
corrected to 5.022 mm and 8.397 mm, respectively.
We repeated the same experimental procedure several
times to check the reproducibility and concluded that
r0 ¼ 5.024� 0.002 mm and lz ¼ 8.370� 0.040 mm.

IV. EXPERIMENTAL RESULTS

A. LPT performance test

Before constructing stability tune diagrams at various
bunch intensities, we tested the basic LPT performance.
One of the important pieces of information is the long-term
acceptance of the LPTwith fixed operating phase advances.
In typical S-POD experiments, we first generate an ion
cloud of a certain intensity at a proper operating point
where the ion stability is guaranteed. The operating point is
then quickly moved to any target point to see whether the
bunch is stable there for a specific storage period. This
procedure allows us to start each stability measurement
with nearly the same ion cloud, as if we inject an ion beam
of particular intensity and emittance into a linac independ-
ently of the operating phase advances.

We usually spend 100 μs (100 AG cells) to move the
operating point to a target position. This gradual change in
the external focusing force causes no serious mismatch in
the particle distribution and thus almost no additional
losses. It is of course possible to make the sweep speed
much slower if necessary, but that results in non-negligible
extra particle losses due to the resonance crossing men-
tioned later. A question now is what tunes we should
choose for the preparation of an initial ion bunch. Since the
ionization process lasts typically for a million AG periods,
a poor choice of the betatron and synchrotron phase
advances makes it impossible to provide a bunch of
sufficient intensity.
The number of surviving ions after the long ionization

process was measured at 6000 different operating points.
The result is color-coded in Fig. 3 revealing the existence of
several strong resonance bands. It turns out that the accep-
tance of the dynamical system governed by the approximate
Hamiltonian in Eq. (1) is significantly improved in a low
tune range where μ0⊥ ≲ 60° and σ0k ≲ 30°. The maximum
number of confineable ions was about 3.8 × 106 achieved
around ðμ0⊥; σ0kÞ ¼ ð50.0°; 26.4°Þ. This optimum operating

FIG. 2. Long-term ion-loss distribution in the low-density regime. The number of Arþ ions remaining in the LPT after 1 s (106

sinusoidal periods) is measured at many different values of μ0⊥ with the axial confinement bias fixed at Uk ¼ 3.14 V and
Uk ¼ 10.89 V. Each curve consists of 360 data points. Three vertical lines indicate the locations of the resonances expected from Eq. (2)
with ðn⊥; nk; nÞ ¼ ð3; 0; 1Þ (red), (4,0,1) (green), and (2,2,1) (blue). The ideal structural parameters, i.e., r0 ¼ 5.00 mm and
lz ¼ 8.23 mm, are assumed in the upper panels (a) to determine the bare phase advances. In the lower panels (b), these parameters
are modified to r0 ¼ 5.022 mm and lz ¼ 8.397 mm. In addition to the three resonances above, we notice several other resonances that
should be of the fourth and fifth orders according to Eq. (2). For instance, the cause of the two small dips between the green and red lines
in the left panels can be understood as the nonlinear resonances with ðn⊥; nk; nÞ ¼ ð3; 2; 1Þ and (3,1,1). These high-order resonances
have only little impact on bunch stability in a short timescale corresponding to the length of a typical hadron linac, unless they are driven
by strong error fields.
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point is always used in the following experiments for the
production of an ion bunch.
The next question is how fast an ion cloud naturally

decays due to collisions with residual gas atoms as well as
Coulomb scattering. Figure 4 shows the time evolution of
the surviving ion number when the operating point is fixed
at ðμ0⊥; σ0kÞ ¼ ð50.0°; 26.4°Þ. Three different bunch inten-
sities are considered in the picture. In each case, we
repeated the same measurement procedure five times and
took the average to determine the positions of markers. The
reproducibility is very good as is evident from the sizes of
error bars. We recognize that all three cases have two
characteristic decay constants, which is typical in regular
LPTs [13,27]. The ion numberNðtÞ remaining in the LPTat
time t can be fitted fairly well with the two-component
exponential function

NðtÞ ¼ NS exp

�
−

t
TS

�
þ NL exp

�
−

t
TL

�
; ð3Þ

where NS and NL are constant coefficients. TS and TL
represent the e-folding lifetimes corresponding, respec-
tively, to the relatively rapid decay in an early stage and to
the slow decay after the storage period of around 1 s.
The fitting results are summarized in Table I. TL is

around 3 s even at such high ion density. From a practical
point of view, TS is more important because most hadron
linacs consist of a limited number of AG focusing cells. For
instance, the Alvarez-type drift-tube linac (DTL) at the
Japan Proton Accelerator Research Complex includes only
less than a hundred FODO cells [16]. Storing ions in the
LPT for 0.1 ms is thus sufficient to simulate the proton-
beam behavior in this linac, while the e-folding lifetime in
the early stage is over 500 ms at the ionization point. The
beam stability diagrams shall be constructed in the next
subsection with the S-POD data obtained for ion-storage
periods of shorter than 10 ms at most. TS tends to be
shortened in a higher-tune region but still much longer than
10 ms unless the operating point is in a resonance band.
Natural ion losses due to interparticle collisions can,
therefore, be ignored in the present experimental study
of high-intensity linacs.
The axial potential barrier created by the DC bias Uk on

the MCP side is removed after a specific storage period to
measure the number of surviving ions. In this ion extraction
process, we must be careful about the effect from the
sudden removal of the axial confinement potential. When
ions are stored at an operating point with a large σ0k, the
disappearance of the transverse rf defocusing term enhan-
ces μ0⊥ considerably, leading to possible instability of the
betatron motion. Such transverse overfocusing actually
takes place as demonstrated in Fig. 5. In this experiment,
we first accumulated roughly 2 × 106 ions at ðμ0⊥; σ0kÞ ¼
ð50.0°; 26.4°Þ and then changed both phase advances
almost linearly within 100 μs to target values.
Each curve in Fig. 5 corresponds to the case where the

synchrotron phase advance σ0k right before the removal of
the axial potential barrier is set at σ0k ¼ 26.4° (solid) or
70.7° (dashed) or 88.3° (dotted). In all cases, the operating
point is maintained for 150 μs after arriving at the target
location in the μ0⊥-σ0k plane. A rapid drop of the output ion
signal at the MCP was observed, depending on σ0k before
the extraction. The stability threshold of ion transport was
lowered at a higher σ0k as expected.

FIG. 3. Number of confineable ions with the betatron and
synchrotron phase advances fixed through the whole experiment
process from the ion production to the extraction. The map
contains 6000 independent data points. The final ion number at
each operating point was measured after the routine ionization
procedure of 1 s long, followed by 51.2-ms storage.

FIG. 4. Long-term decay of stored ions at the operating point
ðμ0⊥; σ0kÞ ¼ ð50.0°; 26.4°Þ. The initial ion numberNin is adjusted
to about 1 × 106 (solid), 2 × 106 (dashed), and 3 × 106 (dotted).
The three curves are obtained from the fitting function in Eq. (3)
with the decay constants listed in Table I.

TABLE I. Decay constants measured at ðμ0⊥; σ0kÞ ¼
ð50.0°; 26.4°Þ.
Initial ion number Nð0Þ ∼1 × 106 ∼2 × 106 ∼3 × 106

TS [s] 0.60 0.53 0.53
TL [s] 3.16 2.99 2.93

STABILITY STUDY OF INTENSE HADRON … PHYS. REV. ACCEL. BEAMS 25, 054201 (2022)

054201-5



To avoid this strong instability irrelevant to the resonance
phenomenon, we simply returned the operating point back
to the original location, i.e., ðμ0⊥; σ0kÞ ¼ ð50.0°; 26.4°Þ,
spending another 100 μs. This procedure guarantees stable
ion transport to the MCP. Note, however, that the operating
point may cross one or more resonance bands when the
target operating point is far from the ionization point. The
effect of resonance crossing is probably not so serious at
such high crossing speed [7], but some small extra ion
losses will be unavoidable, depending on the strength of the
resonance crossed.

B. Stability maps

About 6000 independent measurements were carried out
at 6000 different combinations of ðμ0⊥; σ0kÞ distributed
uniformly in the tune space. The number of ions surviving
after a specific storage period is color-coded in Figs. 6 and
7 over the ranges 20° ≤ μ0⊥ ≤ 160° and 20° ≤ σ0k ≤ 100°.
The ion-storage period at each operating point is fixed in
Fig. 6 at 0.5 ms corresponding to beam transport over
500 AG cells. It is extended to 10 ms in Fig. 7 to enhance

ion losses for identification of weak nonlinear resonances.
Many instability bands have appeared, indicating the
presence of not only noncoupling betatron resonances
but also sum and difference resonances among the three
spatial degrees of freedom. All resonance bands have been
considerably shifted from the solid and dashed lines drawn
on the basis of the single-particle resonance condition in
Eq. (2). The band shifts are quite large and dependent on
the initial bunch intensity. Significant ion losses near the
upper left corner of the diagrams have nothing to do with
resonances. The primary cause is the enhancement of
nonlinear defocusing fields at high Uk, resulting in the
shrinkage of the LPT acceptance especially in the low μ0⊥
range where the transverse focusing is relatively weak.
We find that the stop bands are not in parallel with the

single-particle resonance lines. As explained in the last
subsection, an ion bunch of certain intensity is produced at
ðμ0⊥; σ0kÞ ¼ ð50.0°; 26.4°Þ before moving to a target oper-
ating point for stability measurement. The bunch is more
strongly compressed when the target phase advances are
higher than the values at the initial ionization point. As a
result, the shift of a stop band from the neighboring single-
particle resonance line tends to increase in a region of larger
phase advances. The same tendency can be seen in the
coherent stop-band diagram constructed theoretically in the
Appendix.
We also recognize slight tune-independent ion losses

everywhere in the region above the strong linear betatron
resonance band ðμ0⊥ > 90°Þ. The loss rate is clearly higher
for a bunch of higher initial intensity. These extra ion losses
detected even in resonance-free areas should be largely due
to the effect of resonance crossing. The coherent resonance
located just above μ0⊥ ¼ 90° is particularly strong at high
bunch intensity, which causes serious ion losses as con-
firmed repeatedly in past S-POD experiments [6–9,12].
This collective resonance is of the second order and often
referred to as the envelope instability [1,28–34]. Since the
operating point is eventually returned to ðμ0⊥; σ0kÞ ¼
ð50.0°; 26.4°Þ before ion extraction, it crosses the linear
resonance band twice. This is a possible cause
of the observed enhancement of ion losses in the high-
μ0⊥ range.

FIG. 5. Ion losses due to the transverse overfocusing effect
caused by the removal of an axial potential barrier. The transverse
phase advance μ0⊥ is varied over a wide range with the
synchrotron phase advance adjusted to σ0k ¼ 26.4°, 70.7°, and
88.3°. An ion bunch is generated initially at ðμ0⊥; σ0kÞ ¼
ð50.0°; 26.4°Þ in all three cases. After about 2 × 106 ions are
accumulated there, the operating point is quickly moved onto a
fixed-σ0k line and stay there for 150 μs before ion extraction.

FIG. 6. Stability tune diagram for the ion storage period of 0.5 ms (500 AG cells). The number of ions confined initially in the LPT is
adjusted to about (a) 1.0 × 106, (b) 2.0 × 106, and (c) 3.5 × 106.
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According to the single-particle resonance condition
in Eq. (2) or incoherent resonance picture, the three solid
lines in Figs. 6 and 7 are interpreted as fourth-order
resonances. The resonances along the dashed lines are
supposed to be of the sixth order, except for the one along
3μ0⊥ ¼ 360° that can be understood as the third order. The
incoherent instability mechanism is, however, effective
only in the tail (halo) part of the ion bunch as discussed
in Refs. [35–37]. The tune shifts of individual particles
forming the tail in six-dimensional phase space are rela-
tively small in many cases because of the weak Coulomb
coupling with the bunch core [38]. The observed shifts of
the ion-loss bands seem too large to be attributed solely to
the incoherent effect, implying that the coherent mecha-
nism should be contributing to these losses.
The core resonance condition conjectured in Ref. [22]

can be written as

n⊥μ0⊥½1 − Cmð1 − η⊥Þ� þ nkσ0k½1 − Cmð1 − ηkÞ� ¼ πn0;

ð4Þ
where η⊥ and ηk are the transverse and longitudinal rms
tune depressions, n0 is an integer, and Cm is the coherent
tune-shift factor depending on the resonance order number
m. Provided that the resonance driving term is proportional
to xjnxjyjnyjzjnkj with nx and ny being integers, we have
m ¼ jnxj þ jnyj þ jnkj. Cm is slightly below unity (except
for the dipole mode) [35,39,40]. As pointed out in the
Appendix, this condition can roughly reproduce the insta-
bility regions observed in Figs. 6 and 7. Accepting the
proposed coherent resonance theory, we only need the
linear and lowest-order nonlinear resonances to cover all
pronounced stop bands discovered in the experiment; the
ion losses along the solid lines are due to the instability of
the linear (m ¼ 2) collective mode while those along the
dashed lines to the instability of the third-order mode
(m ¼ 3). In addition to the envelope instability band with
ðn⊥; nk; n0Þ ¼ ð2; 0; 1Þ, another second-order resonance
band with ðn⊥; nk; n0Þ ¼ ð1; 1; 1Þ is clearly visible. The
role of this synchrobetatron sum resonance in a high-
intensity linac design has been discussed theoretically
in Ref. [41].

The pure synchrotron resonance with n⊥ ¼ 0 will not be
excited here because the axial confinement potential is
static. Even if the bias voltage Uk varies periodically, no
serious instability of the synchrotron motion is expected as
long as a single FODO period includes two rf accelerating
gaps [22]. In the typical case of Alvarez DTLs, a hadron
bunch well-matched to the lattice executes an almost
identical breathing oscillation twice longitudinally in every
FODO cell, which suggests that the synchrotron phase
advance per effective focusing period is a half of σ0k
defined here from the transverse lattice period. Synchrotron
noncoupling resonances that may appear in the range
σ0k ≲ 90° are then of the fourth order (m ¼ 4) or higher
and thus weak (unless driven by external error fields). We
are now preparing for further S-POD experiment to verify
what happens when Uk is periodic.

V. SUMMARY

A unique tabletop device called S-POD has been
developed, which offers a multiparticle dynamical system
physically equivalent to a hadron bunch in a quadrupole
focusing lattice. The novel system enables us to acquire
detailed experimental data useful for basic designs of next-
generation high-intensity accelerators and also for the per-
formance improvement of existing machines. Employing
the S-POD, we surveyed a wide range of parameter space to
identify the condition of resonant beam instability in which
the Coulomb self-field potential plays an important role.
The present study focuses on the stability of intense short
bunches typical in injector linacs.
We succeeded in constructing the stability tune diagram

that visualizes the distribution of resonance stop bands in
the plane spanned by the transverse betatron phase advance
μ0⊥ and the longitudinal synchrotron phase advance σ0k
per unit AG focusing cell. The excitation of betatron and
synchrobetatron resonances was confirmed experimentally,
depending on the bunch intensity.
A coherent resonance conjecture was introduced to

explain the experimental results from the S-POD.
According to the simple formula in Eq. (4), all observed
ion-loss bands can naturally be interpreted as the conse-
quences of the lowest (m ¼ 2) and second lowest (m ¼ 3)

FIG. 7. Stability tune diagram for the ion storage period of 10 ms (10000 AG cells). The number of ions confined initially in the LPT is
adjusted to about (a) 1.0 × 106, (b) 2.0 × 106, and (c) 3.5 × 106.
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order resonances [42]. The large distance of each instability
band from the corresponding single-particle resonance line
suggests that the ion losses are caused mainly in the core
region of the bunch, rather than in the tail region where
the incoherent resonance of twice the order of the core
resonance is expected to occur [35–37]. The stability map
(Fig. 8) based on the coherent resonance condition in
Eq. (4) together with the bandwidth formula in Eq. (A1) is
in good qualitative agreement with the experimental
observations.

APPENDIX: COHERENT STOP BANDS

Each coherent resonance of the beam core, predicted by
Eq. (4), has a finite width depending on the beam density in
phase space and even on the beam focusing lattice and
particle distribution function. The bandwidth formula of a
one-dimensional (1D) sheet beam has been derived

mathematically in Ref. [40] taking the waterbag model.
It is hopeless to obtain a similar analytic expression of
the coherent bandwidth in multidimensional cases, but a
concise formula applicable to coasting beams has been
proposed in Ref. [37]. We generalize it for bunched beams
to make a quick initial estimate of the approximate width
δwðn⊥; nkÞ of a coherent stop band for arbitrary n⊥ and nk.
The most straightforward generalization should be the
following:

δwðn⊥; nkÞ ¼ 2gðn⊥; nkÞð1 − CmÞ
1 − η̄

η̄
ν̄0; ðA1Þ

where η̄≡ ðη⊥ þ ηkÞ=2, ν̄0 ≡ ðμ0⊥ þ σ0kÞ=2, and

gðn⊥; nkÞ≡ jnkε⊥ þ n⊥εkj
jnkjε⊥ þ jn⊥jεk

ðA2Þ

with ε⊥ðkÞ being the rms emittance in the transverse
(longitudinal) direction. The factor gðn⊥; nkÞ reflects the
fact that a difference resonance ðn⊥nk < 0Þ of any order is
strongly suppressed when Λðn⊥; nkÞ≡ ε⊥=n⊥ þ εk=nk is
close to zero [22]. Sacherer’s Vlasov analysis for the 1D
uniform beam predicts that C2 ¼ 0.750, C3 ¼ 0.875, and
C4 ¼ 0.922 [39]. Similar numbers have been reached for
the waterbag beam [40]. We here assume slightly different
numbers concluded in a recent numerical study [35];
namely, C2 ≈ 0.7, C3 ≈ 0.8, and C4 ≈ 0.9.
Figure 8 shows the stability tune diagrams obtained from

the proposed coherent resonance formulas. All core reso-
nance bands associated with the linear (m ¼ 2) and first
nonlinear (m ¼ 3) modes are drawn based on the core
resonance condition in Eq. (4). The width of each insta-
bility band is estimated from Eq. (A1). Recalling the
experimental condition for the production of an ion bunch
in the LPT, we have fixed the bunch intensity everywhere in
the diagram at the value that makes the transverse tune
depression η⊥ equal to 0.8 or 0.9 at the operating point
ðμ0⊥; σ0kÞ ¼ ð50.0°; 26.4°Þ. The longitudinal tune depres-
sion ηk is determined such that the bunch is in the
equipartitioned state there [43]. The equipartitioning con-
dition is broken at other operating points. It is informative
to notice that the bandwidths are much narrower than the
so-called incoherent tune spread of a Gaussian core.
The distribution of the low-order stop bands exhibited in

Fig. 8 explains the experimental observations qualitatively.
Most of the theoretically predicted stop bands can be seen
in Figs. 6 and 7. Even the signatures of the third-order sum
resonances with ðn⊥; nk; n0Þ ¼ ð1; 2; 1Þ and (2, 1, 2) are
recognizable in a high-tune range μ0⊥ > 120° [see, e.g.,
Fig. 7(a)]. Note that the third-order stop band with
ðn⊥; nk; n0Þ ¼ ð1;−2; 0Þ is extremely narrow under the
condition assumed here. This difference resonance was
actually unobservable in the experiment.

FIG. 8. Stability tune diagram obtained from the coherent
resonance condition in Eq. (4) and the bandwidth formula in
Eq. (A1). The coherent core instabilities of the second-order or
third-order modes could be excited in gray shaded areas. The
number of particles in a bunch is fixed everywhere at the value
that corresponds to the two cases where (a) η⊥ ¼ 0.8 and
(b) η⊥ ¼ 0.9 at the operating point ðμ0⊥; σ0kÞ ¼ ð50.0°; 26.4°Þ.
The bunch is assumed to be equipartitioned at this initial
ionization point. Three numbers in the bracket written on each
instability band represent ðn⊥; nk; n0Þ in Eq. (4) used to draw the
band. The same solid and dashed lines as indicated in Figs. 6
and 7 are replotted for reference.
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The comparison of the theoretical prediction in Fig. 8
with the S-POD data in Figs. 6 and 7 indicates that the
tune depression at ðμ0⊥; σ0kÞ ¼ ð50.0°; 26.4°Þ may already
exceed 0.9 with 1.0 × 106 ions in the LPT. η⊥ is probably
reduced to 0.8 or lower at Nin ≈ 3.5 × 106 over a wide tune
range. This is reasonable according to our past experience
in long-bunch experiments where η⊥ reached 0.8 with
about 107 ions in another LPTwhose quadrupole electrodes
in the ion confinement section are roughly five times longer
than the present design [44].

[1] See, e.g., M. Reiser, Theory and Design of Charged
Particle Beams (John Wiley & Sons, New York, 2008)
and references therein.

[2] See, e.g., Proceeding of 54th ICFA Advanced Beam
Dynamics Workshop on High-Intensity and High-
Brightness Beams (HB2014), Michigan, USA (JACoW,
Geneva, 2015).

[3] R. Takai, H. Enokizono, K. Ito, Y. Mizuno, K. Okabe, and
H. Okamoto, Development of a compact plasma trap for
experimental beam physics, Jpn. J. Appl. Phys. 45, 5332
(2006).

[4] H. Okamoto and H. Tanaka, Proposed experiment for the
study of beam halo formation, Nucl. Instrum. Methods
Phys. Res., Sect. A 437, 178 (1999).

[5] H. Okamoto, Y. Wada, and R. Takai, Radio-frequency
quadrupole trap as a tool for experimental beam physics,
Nucl. Instrum. Methods Phys. Res., Sect. A 485, 244
(2002).

[6] S. Ohtsubo, M. Fujioka, H. Higaki, K. Ito, H. Okamoto, H.
Sugimoto, and S. M. Lund, Experimental study of coherent
betatron resonances with a Paul trap, Phys. Rev. STAccel.
Beams 13, 044201 (2010).

[7] H. Takeuchi, K. Fukushima, K. Ito, K. Moriya, H.
Okamoto, and H. Sugimoto, Experimental study of reso-
nance crossing with a Paul trap, Phys. Rev. ST Accel.
Beams 15, 074201 (2012).

[8] H. Okamoto, M. Endo, K. Fukushima, H. Higaki, K. Ito, K.
Moriya, S. Yamaguchi, and S. M. Lund, Experimental
simulation of beam propagation over long path lengths
using radio-frequency and magnetic traps, Nucl. Instrum.
Methods Phys. Res., Sect. A 733, 119 (2014).

[9] K. Fukushima, K. Ito, H. Okamoto, S. Yamaguchi, K.
Moriya, H. Higaki, T. Okano, and S. M. Lund, Exper-
imental verification of resonance instability bands in
quadrupole doublet focusing channels, Nucl. Instrum.
Methods Phys. Res., Sect. A 733, 18 (2014).

[10] K. Moriya, K. Fukushima, K. Ito, T. Okano, H. Okamoto,
S. L. Sheehy, D. J. Kelliher, S. Machida, and C. R. Prior,
Experimental study of integer resonance crossing in a
nonscaling fixed field alternating gradient accelerator with
a Paul ion trap, Phys. Rev. ST Accel. Beams 18, 034001
(2015).

[11] K. Moriya, M. Ota, K. Fukushima, M. Yamaguchi, K. Ito,
and H. Okamoto, Double stop-band structure near half-
integer tunes in high-intensity rings, Phys. Rev. Accel.
Beams 19, 114201 (2016).

[12] K. Ito, H. Okamoto, Y. Tokashiki, and K. Fukushima,
Coherent resonance stop bands in alternating gradient
beam transport, Phys. Rev. Accel. Beams 20, 064201
(2017).

[13] K. Ito, M. Matsuba, and H. Okamoto, Effect of quadrupole
focusing-field fluctuation on the transverse stability of
intense hadron beams in storage rings, Prog. Theor. Exp.
Phys. 2018, 023G01 (2018).

[14] T. Ikeda, K. Ito, and H. Okamoto, Novel tabletop experi-
ment demonstrating the nonlinear resonance excitation
observed at the CERN Proton Synchrotron, Jpn. J. Appl.
Phys. 60, 070901 (2021).

[15] L. Groening, W. Barth, W. Bayer, G. Clemente, L. Dahl, P.
Forck, P. Gerhard, I. Hofmann, M. S. Kaiser, M. Maier, S.
Mickat, T. Milosic, D. Jeon, and D. Uriot, Experimental
Evidence of the 90 Stop Band in the GSI UNILAC, Phys.
Rev. Lett. 102, 234801 (2009).

[16] Accelerator Technical Design Report for High-Intensity
Proton Accelerator Facility Project, J-PARC, edited by Y.
Yamazaki, Report No. JAERI-Tech 2003-44, KEK Report
No. 2002-13, 2003.

[17] P. K. Ghosh, Ion Traps (Oxford Science, Oxford, 1995).
[18] H. Okamoto, K. Kojima, and K. Ito, A compact Paul ion

trap for the study of space-charge effects in drift-tube linear
accelerators, Prog. Theor. Exp. Phys. 2019, 093G01.

[19] I. M. Kapchinskiy, Theory of Resonance Linear Acceler-
ators (Harwood Academic Pub., New York, 1985).

[20] R. D. Ryne, Finding matched rms envelopes in rf linacs: A
Hamiltonian approach, Los Alamos Report No. LA-UR-
95-391, 1995.

[21] J. Qiang, R. D. Ryne, S. Habib, and V. Decyk, An object-
oriented parallel particle-in-cell code for beam dynamics
simulation in linear accelerators, J. Comput. Phys. 163,
434 (2000).

[22] Y. Yamane, H. Okamoto, and K. Kojima, Excitation
and suppression of synchrobetatron resonances in high-
intensity hadron linacs, Phys. Rev. Accel. Beams 24,
084201 (2021).

[23] T. P. Wangler, RF Linear Accelerators (John Wiley &
Sons, New York, 1998).

[24] See the section written by J. Wei in Ref. [26] and references
therein.

[25] E. D. Courant and H. S. Snyder, Theory of the alternating-
gradient synchrotron, Ann. Phys. (N.Y.) 3, 1 (1958).

[26] Handbook of Accelerator Physics and Engineering, edited
by A.W. Chao and M. Tigner (World Scientific, Singapore,
1991).

[27] K. Kojima, M. Goto, H. Higaki, K. Ito, and H. Okamoto, A
linear Paul trap without the use of the transverse quadru-
pole field, Plasma Fusion Res. 17, 1406003 (2022).

[28] I. Hofmann, L. J. Laslett, L. Smith, and I. Haber, Stability
of the Kapchinskij-Vladimirskij (K-V) distribution in long
periodic transport systems, Part. Accel. 13, 145 (1983).

[29] J. Struckmeier and M. Reiser, Theoretical studies of
envelope oscillations and instabilities of mismatched in-
tense charged-particle beams in periodic focusing chan-
nels, Part. Accel. 14, 227 (1984).

[30] S. M. Lund and B. Bukh, Stability properties of the
transverse envelope equations describing intense ion beam
transport, Phys. Rev. ST Accel. Beams 7, 024801 (2004).

STABILITY STUDY OF INTENSE HADRON … PHYS. REV. ACCEL. BEAMS 25, 054201 (2022)

054201-9

https://doi.org/10.1143/JJAP.45.5332
https://doi.org/10.1143/JJAP.45.5332
https://doi.org/10.1016/S0168-9002(99)00787-1
https://doi.org/10.1016/S0168-9002(99)00787-1
https://doi.org/10.1016/S0168-9002(01)02139-8
https://doi.org/10.1016/S0168-9002(01)02139-8
https://doi.org/10.1103/PhysRevSTAB.13.044201
https://doi.org/10.1103/PhysRevSTAB.13.044201
https://doi.org/10.1103/PhysRevSTAB.15.074201
https://doi.org/10.1103/PhysRevSTAB.15.074201
https://doi.org/10.1016/j.nima.2013.05.085
https://doi.org/10.1016/j.nima.2013.05.085
https://doi.org/10.1016/j.nima.2013.05.101
https://doi.org/10.1016/j.nima.2013.05.101
https://doi.org/10.1103/PhysRevSTAB.18.034001
https://doi.org/10.1103/PhysRevSTAB.18.034001
https://doi.org/10.1103/PhysRevAccelBeams.19.114201
https://doi.org/10.1103/PhysRevAccelBeams.19.114201
https://doi.org/10.1103/PhysRevAccelBeams.20.064201
https://doi.org/10.1103/PhysRevAccelBeams.20.064201
https://doi.org/10.1093/ptep/pty004
https://doi.org/10.1093/ptep/pty004
https://doi.org/10.35848/1347-4065/ac06b7
https://doi.org/10.35848/1347-4065/ac06b7
https://doi.org/10.1103/PhysRevLett.102.234801
https://doi.org/10.1103/PhysRevLett.102.234801
https://doi.org/10.1093/ptep/ptz098
https://doi.org/10.1006/jcph.2000.6570
https://doi.org/10.1006/jcph.2000.6570
https://doi.org/10.1103/PhysRevAccelBeams.24.084201
https://doi.org/10.1103/PhysRevAccelBeams.24.084201
https://doi.org/10.1016/0003-4916(58)90012-5
https://doi.org/10.1585/pfr.17.1406003
https://doi.org/10.1103/PhysRevSTAB.7.024801


[31] I. Hofmann and O. Boine-Frankenheim, Parametric insta-
bilities in 3D periodically focused beams with space
charge, Phys. Rev. Accel. Beams 20, 014202 (2017).

[32] J. Qiang, Three-dimensional envelope instability in peri-
odic focusing channels, Phys. Rev. Accel. Beams 21,
034201 (2018).

[33] I. Hofmann, A. Oeftiger, and O. Boine-Frankenheim, Self-
consistent long-term dynamics of space charge driven
resonances in 2D and 3D, Phys. Rev. Accel. Beams 24,
024201 (2021).

[34] K. Kojima and H. Okamoto, Characterization of over-
lapping betatron resonances above the phase advance of
90° per cell, Phys. Rev. Accel. Beams 25, 024201 (2022).

[35] K. Kojima, H. Okamoto, and Y. Tokashiki, Empirical
condition of betatron resonances with space charge, Phys.
Rev. Accel. Beams 22, 074201 (2019).

[36] K. Kojima, H. Okamoto, and Y. Tokashiki, Reply to
“Comment on ‘Empirical condition of betatron resonances
with space charge’”, Phys. Rev. Accel. Beams 23, 028002
(2020).

[37] H. Okamoto, M. Aoki, C. Ichikawa, K. Kojima, T.
Kurauchi, and Y. Yamane, Coherent and incoherent

space-charge effects in high-intensity hadron rings,
J. Instrum. 15, P07017 (2020).

[38] Note that even a tail particle may have a large incoherent
tune shift in a particular direction, depending on its spatial
trajectory.

[39] F. J. Sacherer, Ph.D thesis, Lawrence Radiation Labora-
tory, 1968; Report No. UCRL-18454, 1968.

[40] H. Okamoto and K. Yokoya, Parametric resonances in
intense one-dimensional beams propagating through a
periodic focusing channel, Nucl. Instrum. Methods Phys.
Res., Sect. A 482, 51 (2002).

[41] I. Hofmann and O. Boine-Frankenheim, Revisiting the
Longitudinal 90° Limit in High Intensity Linear Accel-
erators, Phys. Rev. Lett. 118, 114803 (2017).

[42] The coherent dipole (m ¼ 1) resonance cannot be excited
under the lattice condition considered here.

[43] R. A. Jameson, Beam-intensity limitations in linear accel-
erators, IEEE Trans. Nucl. Sci. 28, 2408 (1981).

[44] K. Ito, T. Kurauchi, H. Higaki, and H. Okamoto, Exper-
imental observation of low-order collective oscillation
modes in a strong-focusing lattice, J. Phys. Conf. Ser.
1350, 012125 (2019).

GOTO, ICHIKAWA, ITO, KOJIMA, and OKAMOTO PHYS. REV. ACCEL. BEAMS 25, 054201 (2022)

054201-10

https://doi.org/10.1103/PhysRevAccelBeams.20.014202
https://doi.org/10.1103/PhysRevAccelBeams.21.034201
https://doi.org/10.1103/PhysRevAccelBeams.21.034201
https://doi.org/10.1103/PhysRevAccelBeams.24.024201
https://doi.org/10.1103/PhysRevAccelBeams.24.024201
https://doi.org/10.1103/PhysRevAccelBeams.25.024201
https://doi.org/10.1103/PhysRevAccelBeams.22.074201
https://doi.org/10.1103/PhysRevAccelBeams.22.074201
https://doi.org/10.1103/PhysRevAccelBeams.23.028002
https://doi.org/10.1103/PhysRevAccelBeams.23.028002
https://doi.org/10.1088/1748-0221/15/07/P07017
https://doi.org/10.1016/S0168-9002(01)01684-9
https://doi.org/10.1016/S0168-9002(01)01684-9
https://doi.org/10.1103/PhysRevLett.118.114803
https://doi.org/10.1109/TNS.1981.4331708
https://doi.org/10.1088/1742-6596/1350/1/012125
https://doi.org/10.1088/1742-6596/1350/1/012125

