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We derive evolution equations for the first and second moments of an initially mismatched, coupled, and
displaced arbitrary Gaussian phase-space distribution under the influence of decoherence due to amplitude-
dependent tune shift. Moreover, we find expressions for the asymptotic values of the beam matrix and the
emittance and use them to evaluate error tolerances for injection.
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I. INTRODUCTION

The emittance of a beam, injected into a ring, crucially
depends on the initial position and angle of the injected
beam as well as on the Twiss parameters of the injection
line being equal to those of the ring. Once the beam is
circulating in the ring, the particles perform betatron
oscillations around the equilibrium orbit in the ring. Any
spread of betatron frequencies, either due to chromaticity
and a finite momentum spread or due to amplitude-
dependent tune shift, causes the distribution of particles
to distort and evolve into one with a larger emittance. This
process is often referred to as decoherence. This
decoherence of kicked beams due to amplitude-dependent
tune shift was previously analyzed in Refs. [1–3], where,
however, only the decoherence of the centroid was evalu-
ated. Moreover, in Ref. [4], the evolution of the kicked
beam matrix is calculated, and the key results are summa-
rized in Ref. [5]. Here, we extend the analysis by consid-
ering the turn-by-turn evolution of the first and second
moments of a beam that initially is both displaced and
mismatched. We then follow the evolution of its first
moments, which are often referred to as centroids, as well
as its beam matrix and emittance, as the beam decoheres.
In order to prepare the stage for our calculations, we

assume that the optics in the ring is uncoupled. We,
therefore, introduce the phase shift per turn ϕx in the
horizontal plane due to normal betatron phase advance
μx ¼ 2πQx and to amplitude-dependent tune shift, given by

ϕx¼μxþκxxðx21þx22Þþκxyðx23þx24Þ¼μxþ x⃗⊤κ̄xx⃗; ð1Þ

where x⃗⊤ is the transpose of x⃗ and κ̄x ¼
diagðκxx; κxx; κxy; κxyÞ. Here, κxx parametrizes the ampli-
tude dependence in the horizontal plane and κxy its
dependence on the amplitude in the vertical plane, also
called the cross anharmonicity [6]. Here, 2Jx ¼ x21 þ x22 ¼
γxx2 þ 2αxxx0 þ βxx02 with γx ¼ ð1þ α2xÞ=βx is twice the
Courant-Snyder invariant Jx of the linear motion in the
horizontal plane and 2Jy ¼ x23 þ x24 ¼ γyy2 þ 2αyyy0 þ
βyy02 in the vertical plane. We use variables x1;…; x4 in
normalized phase space, collectively denoted by
x⃗ ¼ ðx1; x2; x3; x4Þ⊤. They are related to the position x
and angle x0 by

�
x1
x2

�
¼Ax

�
x

x0

�
with Ax ¼

�
1=

ffiffiffiffiffi
βx

p
0

αx=
ffiffiffiffiffi
βx

p ffiffiffiffiffi
βx

p
�
; ð2Þ

where αx and βx are the Twiss parameters in the horizontal
plane of the ring at the point of injection. In most of this
report, we henceforth focus on the horizontal plane. The
corresponding equations for the coordinates in the other
plane x3 and x4 the subscript x is exchanged with subscript
y. Note also that, after n revolutions in the ring, the phase
shift is nϕx. In passing, we point out that it is straightfor-
ward to generalize Eq. (1) to six dimensions by adding a
term κxsðx25 þ x26Þ, extending the definition of κ̄x to a 6 × 6

matrix that includes κxs on the two lowest entries on the
diagonal, and interpreting x⃗ as the corresponding six-
dimensional phase-space vector. In this report, however,
we focus on two and four dimensions.
We always assume that the initial beam distribution is a

multivariate Gaussian. For convenience, we define it as the
d-dimensional distribution
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ψdðx⃗;X⃗;σÞ¼
1

ð2πÞd=2 ffiffiffiffiffiffiffiffiffi
detσ

p

×exp

�
−
1

2

Xd
j;k¼1

σ−1jk ðxj−XjÞðxk−XkÞ
�
; ð3Þ

where d can be 2 or 4, depending on the phase space we
consider. Moreover, Xj with j ¼ 1;…; d are the compo-

nents of the vector X⃗ with the initial centroid positions. The
d × dmatrix σ is the beammatrix describing the widths and
orientations of the Gaussian. Note that, in coordinates of
normalized phase space, the beam matrix σ of a matched
beam in all planes is proportional to the unit matrix. For a
matched beam, the proportionality constant in each 2 × 2
block on the diagonal is the emittance of the injected beam
ε0 in the respective plane. Throughout this report, we
normalize positions and beam sizes by

ffiffiffiffiffi
ε0

p
, such that all

numerical values are given in units of the corresponding
rms values of the beam size or the angular divergence. For
example, the physical position x is related to x1 through
x1 ¼ x=

ffiffiffi
β

p
and normalized by

ffiffiffiffiffi
ε0

p
to x=

ffiffiffiffiffiffiffi
ε0β

p
.

In the following sections, we first follow the centroid of
this Gaussian as it decoheres, where we assume that σ is an
arbitrary beam matrix, not necessarily matched to the ring
into which we assume the beam is injected. In Sec. III, we
show that our general result reproduces the results from
Ref. [1] for a matched injected beam. In the following
sections, we calculate the turn-by-turn evolution of the
second moments, in general, before considering a matched
beam and an arbitrary beam matrix in one transverse plane.
In Sec. VII, we consider injection of a transversely coupled
beam matrix. In all cases, we derive expressions for the

asymptotic beam matrix and then use them to determine
error tolerances. In separate sections, we discuss the
asymptotic emittance growth due to a mismatched
dispersion and indicate how to include decoherence due
to chromaticity into our framework before summarizing our
results in the conclusions.

II. CENTROID

We now calculate the betatron motion with phase
advance μx of the centroid of a Gaussian and denote the
centroid position in the horizontal plane after n turns by X̂1

and X̂2, which leads us to

X̂1 þ iX̂2 ¼ e−inμxhe−inx⃗⊤ κ̄xx⃗ðx1 þ ix2Þi; ð4Þ

where the angle brackets denote averaging over the initial
Gaussian distribution from Eq. (3). We point out that
damping can be taken into account by adding a factor
e−n=Nd (with damping time given in number of turns Nd) to
the right-hand side of Eq. (4). But in this report we do not
pursue this further. Since we will encounter similar inte-
grals to those appearing in Eq. (4) along the way, we
introduce the notation

I½n; p� ¼ he−inx⃗⊤ κ̄xx⃗pðx⃗Þi; ð5Þ

where pðx⃗Þ is a multivariate polynomial in the phase-space
coordinates x1;…; xd. In Eq. (4), for example, we have
pðx⃗Þ ¼ x1 þ ix2. Moreover, Eq. (4) can also be expressed
as X̂1 þ iX2 ¼ e−inμx I½n; x1 þ ix2�.
In the next step, we evaluate I½n; p� by explicitly writing

it as a Gaussian integral:

I½n; p� ¼ 1

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffi
det σ

p
Z

ddxe−ð1=2Þ
P

d
j;k¼1

σ−1jk ðxj−XjÞðxk−XkÞe−inx⃗⊤ κ̄xx⃗; ð6Þ

where, for brevity, we suppress the limits of the integrals, which always extend from−∞ to∞. We simplify the integrand by
expressing x21 as

x21 ¼ ðx1 − X1Þ2 þ 2X1x1 − X2
1 ¼ ðx1 − X1Þ2 þ 2X1ðx1 − X1Þ þ X2

1 ð7Þ

and likewise for x22;…; x2d. Inserting in Eq. (6) and combining terms, we arrive at

I½n; p� ¼ e−inX⃗
⊤ κ̄xX⃗

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffi
det σ

p
Z

ddxe−ð1=2Þ
P

d
j;k¼1

½σ−1jk þ2inðκ̄xÞkj�ðxj−XjÞðxk−XkÞe−2inX⃗
⊤ κ̄xðx⃗−X⃗Þpðx⃗Þ: ð8Þ

We now introduce the abbreviations

Ajk ¼ σ−1jk þ 2inðκ̄xÞjk and Bj ¼ 2n
Xd
k¼1

ðκ̄xÞjkXk: ð9Þ

E. WAAGAARD and V. ZIEMANN PHYS. REV. ACCEL. BEAMS 25, 054001 (2022)

054001-2



The substitution y⃗ ¼ x⃗ − X⃗ then allows us to write Eq. (8) as

I½n; p� ¼ e−inX⃗
⊤ κ̄xX⃗

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffi
det σ

p
Z

ddye−ð1=2Þ
P

d
j;k¼1

Ajkyjyk−i
P

d
j¼1

Bjyjpðy⃗þ X⃗Þ: ð10Þ

In the final step, we find a substitution that helps us to remove the term that is linear in yj in the exponent. We, therefore,
introduce a further substitution zj ¼ yj þ hj and find hj that removes that term. We insert this substitution into the exponent
and obtain

−
1

2

Xd
j;k¼1

Ajkðzj − hjÞðzk − hkÞ − i
Xd
j¼1

Bjðzj − hjÞ

¼ −
1

2

Xd
j;k¼1

Ajkzjzk þ i
Xd
j¼1

Bjhj −
1

2

Xd
j;k¼1

Ajkhjhk þ
Xd
j¼1

�
1

2

Xd
k¼1

2Ajkhk − iBj

�
zj ð11Þ

which implies that

hk ¼ i
Xd
j¼1

A−1
kj Bj ð12Þ

makes the square bracket zero and, thus, removes the linear term. After substituting hk into the right-hand side of Eq. (11),
the exponent assumes the form

−
1

2
B⃗⊤A−1B⃗ −

1

2

Xd
j;k¼1

Ajkzjzk: ð13Þ

For I½n; p�, we find

I½n; p� ¼ e−inX⃗
⊤ κ̄xX⃗−ð1=2Þ⃗B⊤A−1B⃗

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffi
det σ

p
Z

ddze−ð1=2Þ
P

d
j;k¼1

Ajkzjzkpðx⃗Þ

¼ e−inX⃗
⊤ κ̄xX⃗−2n2X⃗⊤ κ̄xð1þ2inσκ̄xÞ−1σκ̄xX⃗

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffi
det σ

p
Z

ddze−ð1=2Þ
P

d
j;k¼1

Ajkzjzkpðx⃗Þ ð14Þ

with

x⃗ ¼ z⃗þ X⃗ − iA−1B⃗ ¼ z⃗þ Y⃗ and Y⃗ ¼ ð1 − 2inA−1κ̄xÞX⃗: ð15Þ

Moreover, we use the definitions of A and B⃗ from Eq. (9) to obtain

A−1B⃗ ¼ 2nð1þ 2inσκ̄xÞ−1σκ̄xX⃗ and Y⃗ ¼ ð1þ 2inσκ̄xÞ−1X⃗: ð16Þ

The integrals are evaluated with the help of the identities [7]

Z
ddze−ð1=2Þ

P
d
j;k¼1

Ajkzjzk ¼ ð2πÞd=2ffiffiffiffiffiffiffiffiffiffi
detA

p ;

Z
ddze−ð1=2Þ

P
d
j;k¼1

Ajkzjzkzm ¼ 0;

Z
ddze−ð1=2Þ

P
d
j;k¼1

Ajkzjzkzmzn ¼
ð2πÞd=2ffiffiffiffiffiffiffiffiffiffi
detA

p A−1
mn; ð17Þ
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which follow from the well-known identities for normal-
izing a Gaussian distribution and how the first and second
moments are given in terms of the covariance matrix. In
particular, the centroid positions after n turns X̂1 þ iX̂2,
identified by a caret, turn out to be

X̂1 þ iX̂2 ¼ e−inμx
e−inX⃗

⊤ κ̄xX⃗−ð1=2ÞB⃗⊤A−1B⃗

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffi
det σ

p ð2πÞd=2ffiffiffiffiffiffiffiffiffiffiffi
det A

p ðY1 þ iY2Þ

¼ e−inμx−inX⃗
⊤ κ̄xX⃗−2n2X⃗⊤ κ̄xð1þ2inσκ̄xÞ−1σκ̄xX⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þ 2inσκ̄xÞ

p ðY1 þ iY2Þ;

ð18Þ

where Y⃗ is defined in Eq. (16). We point out that the result
in Eq. (18) is valid for dimensions d ¼ 2 or 4 and for
arbitrary beam matrices σ, including matched beams. In
order to compare with the results from Ref. [1], we consider
such a matched beam for d ¼ 2 in the following section.

III. AMPLITUDE DEPENDENCE

In order to obtain some intuition, we compare our
calculation with Ref. [1] and set d ¼ 2 and κxx ¼ κ before
calculating the evolution of the oscillation amplitude of the
centroid an with the number of turns n:

an ¼
ffiffiffiffiffiffiffiffi
j ⃗X̂j2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X̂2
1 þ X̂2

2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX̂1 þ iX̂2ÞðX̂1 − iX̂2Þ

q

ð19Þ

for a matched beam with the 2 × 2 beam matrix

σ ¼ ε01: ð20Þ

To do so, we take the squared modulus of Eq. (18) and
consider one term at a time. First, we consider Y⃗ and
calculate jY⃗j2 from Eq. (16), which leads to

jY⃗j2 ¼
�

1

1þ 2inκε0

��
1

1 − 2inκε0

�
jX⃗j2

¼ 1

1þ 4n2κ2ε20
jX⃗j2: ð21Þ

Second, we consider the root in the denominator of
Eq. (18), which simplifies to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þ 2inκσÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½ð1þ 2inκε0Þ1�

p
¼ 1þ 2inκε0;

ð22Þ

which has squared modulus 1þ 4n2κ2ε20 that consequently
also appears in the denominator. Finally, the third term in
the exponent of Eq. (18) simplifies to

X⃗⊤ð1þ 2inκσÞ−1σX⃗ ¼ X⃗⊤ ε0
1þ 2inκε0

X⃗

¼ ε0jX⃗j2
1þ 4n2κ2ε20

ð1 − 2inκε0Þ: ð23Þ

Since the imaginary part in the exponent has unit modulus,
only the real part appears in the modulus of the whole
expression. Inserting the three contributions into Eq. (18)
results in

j ⃗X̂j2 ¼ jX⃗j2
ð1þ 4n2κ2ε20Þ2

exp

�
−
4n2κ2ε0jX⃗j2
1þ 4n2κ2ε20

�
: ð24Þ

Expressing this equation in terms of the amplitude an with

the initial amplitude a0 ¼
ffiffiffiffiffiffiffiffi
jX⃗j2

q
, we find

an ¼
a0

1þ 4n2κ2ε20
exp

�
−

a20
2ε0

4n2κ2ε20
1þ 4n2κ2ε20

�
; ð25Þ

which agrees with the result for the amplitude decoherence
from Ref. [1] provided we identify θ ¼ 2nκε0 and ε0 ¼ 1.
In Fig. 1, we use Eq. (25) to show the dependence of the

amplitude an on the number of turns for starting amplitudes
a0 ¼ ε0 and a0 ¼ 2ε0. We observe that the initial reduction
of the amplitude follows a Gaussian behavior, whereas for
large n the exponential approaches e−a

2
0
=2ε0 and the turn

evolution is governed by the factor 1þ 4n2κ2ε20 in the
denominator. The transition between the two regimes,
already discussed in Ref. [1], appears around θ ≈ 1 when
n ≈ 1=2κε0. A larger starting amplitude a0 ¼ 2 (red dashed
curve) leads to a faster initial reduction of the amplitude to

FIG. 1. Amplitude of the beam centroid (in units of
ffiffiffiffiffi
ε0

p
) versus

the turn number n, parametrized as θ ¼ 2κε0n with parameters
ε0 ¼ 1 and κ ¼ 0.1 and for two values a0 ¼ 1 and a0 ¼ 2 of the
initial displacement.
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values below those for a0 ¼ 1 (black solid curve). Note that
the curves cross near the transition at θ ≈ 1.
In the next section, we turn to the evolution of the beam

matrix and the emittance.

IV. BEAM MATRIX AND EMITTANCE

In this section, we consider the general case
with d dimensions. The beam size after n turns is related
to the second moments of the distribution after n turns,

again identified by a caret. One of the moments hx̂21i is
given by

hx̂21i ¼ hðx1 cos nϕx þ x2 sin nϕxÞ2i: ð26Þ

The angle brackets denote averaging over the initial distri-
bution from Eq. (3) in d dimensions and ϕx is defined in
Eq. (1). All othermoments, such as hx̂1x̂2i and hx̂22i, are given
by similar equations. We now express the trigonometric
functions by their exponential representation and arrive at

hx̂21i ¼
1

4
hð2þ e2inϕx þ e−2inϕxÞx21 − 2iðe2inϕx − e−2inϕxÞx1x2 þ ð2 − e2inϕx − e−2inϕxÞx22i: ð27Þ

At this point, we note that only expressions of the type e−imϕ with m ¼ 0, 2n, and −2n appear. We, therefore, introduce

J½m;p; μx; κ̄x� ¼ he−imϕxpðx⃗Þi ¼ he−imμx−imx⃗⊤ κ̄xx⃗pðx⃗Þi; ð28Þ

where pðx⃗Þ is one of x21, x1x2, or x22. For brevity, we omit the arguments after the semicolon if they are unambiguous and just
write J½m;p�. In the next step, we use Eq. (28) to rewrite hx̂21i in Eq. (27), which leads us to

hx̂21i ¼
1

4
ð2J½0; x21� þ J½−2n; x21� þ J½2n; x21� − 2iJ½−2n; x1x2� þ 2iJ½2n; x1x2�

þ 2J½0; x22� − J½−2n; x22� − J½2n; x22�Þ

¼ 1

2
fJ½0; x21� þ ReðJ½−2n; x21�Þg þ ImðJ½−2n; x1x2�Þ þ

1

2
fJ½0; x22� − ReðJ½−2n; x22�Þg; ð29Þ

where we use

J½−m;p� þ J½m;p� ¼ 2ReðJ½−m;p�Þ and J½−m;p� − J½m;p� ¼ 2iImðJ½−m;p�Þ: ð30Þ

The corresponding expressions for hx̂1x̂2i, hx̂22i, and hx̂1x̂3i can be found in the Appendix.
In order to evaluate J½m;p�, we note that it is closely related to I½m;p� from Eq. (6), which allows us to express J½m;p� as

J½m;p� ¼ e−imμxhe−imx⃗⊤ κ̄xx⃗pðx⃗Þi ¼ e−imμx I½m;p�: ð31Þ

This leaves us the task to evaluate I½m;p� for p ¼ xrxs, where r and s assume values between 1 and d. Expressing xr
through xr ¼ zr þ Yr and inserting this in Eq. (14), we obtain

I½m; xrxs� ¼
eψðmÞ

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffi
det σ

p
Z

ddze−ð1=2Þ
P

d
j;k¼1

Ajkzjzkðzr þ YrÞðzs þ YsÞ

¼ eψðmÞ

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffi
det σ

p
Z

ddze−ð1=2Þ
P

d
j;k¼1

Ajkzjzkðzrzs þ zrYs þ zsYr þ YrYsÞ ð32Þ

with the abbreviation

ψðmÞ ¼ −imX⃗⊤κ̄xX⃗ − 2m2X⃗⊤κ̄xð1þ 2imσκ̄xÞ−1σκ̄xX⃗: ð33Þ

The four terms inside the integral are evaluated by using the expressions from Eq. (17), and this leads to
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I½m; xrxs� ¼
eψðmÞ

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffi
det σ

p ð2πÞd=2ffiffiffiffiffiffiffiffiffiffiffi
det A

p ðA−1
rs þ YrYsÞ

¼ eψðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þ 2imσκ̄xÞ

p ðA−1
rs þ YrYsÞ; ð34Þ

and for J½m; xrxs� we obtain with Eq. (31)

J½m; xrxs� ¼
e−imμxþψðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð1þ 2imσκ̄xÞ
p ðA−1

rs þ YrYsÞ ð35Þ

with A−1 ¼ ð1þ 2imσκ̄xÞ−1σ and Y⃗ ¼ ð1þ 2imσκ̄xÞ−1X⃗.
The matrix elements of the beam matrix after n turns σ̂rs

are related to the second moments hx̂rx̂si via

σ̂rs ¼ hðx̂r − X̂rÞðx̂s − X̂sÞi ¼ hx̂rx̂si − X̂rX̂s; ð36Þ

which requires us also to subtract X̂rX̂s from the second
moments, for which we resort to Eq. (18) to calculate X̂1

and X̂2. Both the second moments and the centroids must
be calculated for the same number of turns n. These
equations are valid for any mismatched and transversely
coupled beam that additionally is injected off axis
with X⃗ ≠ 0.

V. EMITTANCE GROWTH FOR
A MATCHED BEAM

Just as we did for the amplitude decoherence, we now
consider d ¼ 2, set κxx ¼ κ, and evaluate the turn-by-turn
evolution of the second moments and the emittance for a
matched beam with σ ¼ ε01, analogous to the analysis
from Ref. [4]. We start our analysis by evaluating the terms
that enter J½m; xrxs�. The first is

ð1þ 2imκσÞ−1 ¼ 1

1þ 2imκε0
1; ð37Þ

which leads us to

Y⃗ ¼ ð1þ 2imκσÞ−1X⃗ ¼ 1

1þ 2imκε0
X⃗ ð38Þ

and

A−1 ¼ ð1þ 2imκσÞ−1σ ¼ ε0
1þ 2imκε0

1: ð39Þ

The root in the denominator of Eq. (35) simplifies to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þ 2imκσÞ

p
¼ 1þ 2imκε0; ð40Þ

and ψðmÞ from Eq. (33) becomes

ψðmÞ ¼ −imκðX2
1 þ X2

2Þ − 2m2κ2X⃗⊤ ε0
1þ 2imκε0

X⃗

¼ −imκjX⃗j2 − 2m2κ2
ε0

1þ 2imκε0
jX⃗j2

¼ −
imκ

1þ 2imκε0
jX⃗j2: ð41Þ

Inserting these expressions into Eq. (35), we find

J½m;xrxs�¼
e−imμx−½imκ=ð1þ2imκε0Þ�jX⃗j2

1þ2imκε0

×

�
ε0

1þ2imκε0
δrsþ

XrXs

ð1þ2imκε0Þ2
�

¼e−imμx−½imκ=ð1þ2imκε0Þ�jX⃗j2

ð1þ2imκε0Þ2
�
ε0δrsþ

XrXs

1þ2imκε0

�

ð42Þ

that we use to calculate the second moments from Eqs. (29)
and (A2).
For the beam matrix, we also need the centroid motion

that we previously analyzed in Sec. II and for a matched
beam in Sec. III. Adapting Eq. (18) to σ ¼ ε01, we arrive at

X̂1 þ iX̂2 ¼
e−inμx−½inκ=ð1þ2inκε0Þ�jX⃗j2

ð1þ 2inκε0Þ2
ðX1 þ iX2Þ; ð43Þ

whose modulus again leads to Eq. (24). We emphasize that
here n is the number of turns and not a general parameter
such as m in Eq. (42).
From the second moments from Eq. (A2), together with

J½m; xrxs� from Eq. (42) and the centroid from Eq. (43), we
prepared a MATLAB [8] script, available from Ref. [9], to

follow the centroids ⃗X̂, the beam matrix σ̂ from Eq. (36),
and the emittance ε̂ ¼ ffiffiffiffiffiffiffiffiffiffi

det σ̂
p

for a number of turns.
Figure 2 shows X̂1 (top), σ̂11 and σ̂12 (middle), and the
emittance ε̂ (bottom) as a function of n. The parameters in
this simulation, chosen to illustrate the dynamics, are
μx=2π ¼ 0.028, κ ¼ 0.001, and ε0 ¼ 1. Initially, the beam
is offset by X1 ¼ 2, and the top plot shows oscillations that
initially follow a Gaussian behavior before later decaying at
a much slower rate, as discussed in Sec. III. At the same
time, the beam size σ̂11 oscillates at twice the frequency of
the centroid and increases toward a higher level.
Intermittently, the correlation σ̂12 increases, which is due
to distortions of the initially matched beam while it
decoheres. Toward the end of the simulation, σ̂12 decreases
to zero, because the beam decoheres and reaches its
equilibrium configuration. The bottom plot shows the
emittance ε̂, which has tripled compared to the initially
injected beam.
The equilibrium value that is reached after the

decoherence has finished is easily calculated by realizing
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that the centroids ⃗X̂ as well as the coefficients J½m; xrxs�
vanish for large values of m ¼ −2n. Therefore, only terms
with J½0; xrxs� that appear in Eq. (A2) survive in this limit.
This leads to

hx̂21i ¼
1

2
ðJ½0; x21� þ J½0; x22�Þ ¼ ε0 þ

1

2
ðX2

1 þ X2
2Þ;

hx̂1x̂2i ¼ 0;

hx̂22i ¼
1

2
ðJ½0; x21� þ J½0; x22�Þ ¼ ε0 þ

1

2
ðX2

1 þ X2
2Þ; ð44Þ

where using Eq. (42) for m ¼ 0 gives us J½0; xr; x2� ¼
ðε0δrs þ XrXsÞ and the asymptotic emittance
ε̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx̂21ihx̂22i − hx̂1x̂2i2

p
. The asymptotic emittance

growth then becomes ε̂ − ε0 ¼ ðX2
1 þ X2

2Þ=2, which is
the Courant-Snyder invariant, written in coordinates of
normalized phase space. Expressed through physical coor-
dinates, the centroid position X and angle X0, the emittance
growth becomes

ε̂ − ε0 ¼
1

2
ðγxX2 þ 2αxXX0 þ βxX02Þ: ð45Þ

This is not really a surprise, because the amplitude-
dependent tune shift does not change the oscillation
amplitudes of individual particles, such that the asymptotic
emittance growth agrees with the value caused by

decoherence (Sec. 8.2 in Ref. [10]) due to chromaticity
and momentum spread; only the transient behavior of the
two processes differs.

VI. MISMATCHED BEAM

In this section, we explore the decoherence in one plane
(d ¼ 2) of a mismatched beam that is injected on axis
(X⃗ ¼ 0) into the ring. In this case, Y⃗ ¼ 0 and ψðmÞ ¼ 0
from Eq. (33), which causes J½m; xrxs� to simplify to

J½m; xrxs� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð1þ 2imκσÞp ð1þ 2imκσÞ−1σ: ð46Þ

Moreover, we have ⃗X̂ ¼ 0. This makes calculating the
beam matrix σ̂ and the emittance ε̂ straightforward.
Figure 3 shows the result in position X̂1 (top), sigma
matrix elements σ̂11 and σ̂12 (middle), and the emittance ε̂
(bottom) for an injected beam that has initial emittance
unity. We assume α ¼ 0 but significantly increase the beta
function to twice the value of the matched beam. All other
parameters are equal to those already used in Fig. 2. We see
that the beam size σ̂11 and correlation σ̂12 oscillate, but this
motion slowly decoheres and reaches a new equilibrium
value. At the same time, the emittance increases and also
settles toward a new, and larger, equilibrium value.

FIG. 2. The centroid X1 (top), the beam matrix elements σ11 and σ12 (middle), and the emittance (bottom) as a function of the turn
number n for a matched beam that is injected with initial offset X1 ¼ 2. The parameters used are μ=2π ¼ 0.028 and κε0 ¼ 0.001. The
vertical axes are normalized to appropriate powers of ε0.
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Figure 4 shows a simulation with parameters used in
Fig. 3, only the initial value of X2 is set to X2 ¼ 1. We see
that X̂1 (top panel) performs betatron oscillation with
slowly decreasing amplitude, which motivates the
increased range of turns shown. Qualitatively, σ̂11 and
σ̂12 (middle) show similar behavior to that in Fig. 3.
Likewise, the emittance (bottom) increases to a new
equilibrium value that is, however, larger than the one in
Fig. 3 due to the nonzero value of X2.
These new equilibrium values are easily calculated from

Eqs. (29) and (A2). As before, realizing that all J½m; xrxs�
asymptotically vanish, this leaves us with

hx̂21i¼
1

2
ðJ½0;x21�þJ½0;x22�Þ¼

1

2
ðσ11þσ22Þþ

1

2
ðX2

1þX2
2Þ;

hx̂1x̂2i¼0;

hx̂22i¼
1

2
ðJ½0;x21�þJ½0;x22�Þ¼

1

2
ðσ11þσ22Þþ

1

2
ðX2

1þX2
2Þ;

ð47Þ

which is valid even for nonzero initial displacement X⃗.
Here, ðX2

1 þ X2
2Þ=2 is again the Courant-Snyder invariant of

the centroid. Moreover, σjk is the beam matrix of the
injected beam in normalized coordinates, which is related
to the beam matrix in physical coordinates σ̃ by

�
σ11 σ12

σ12 σ22

�
¼ Axσ̃A⊤

x with σ̃ ¼ ε0

�
β0 −α0
−α0 γ0

�
;

ð48Þ

where ε0 is the emittance and of the injected beam, α0, β0,
and γ0 are its Twiss parameters, and Ax is defined in
Eq. (2). Evaluating this expression and calculating
ðσ11 þ σ22Þ=2, we arrive at

1

2
ðσ11þσ22Þ¼ ε0Bmag with

Bmag ¼
1

2

��
β0
βx

þβx
β0

�
þβxβ0

�
αx
βx

−
α0
β0

�
2
�
; ð49Þ

where we see that Bmag is the factor by which the emittance
of the injected beam is asymptotically increased by
decoherence after injecting a mismatched beam.
Summarily, we find that the asymptotic emittance due to
a displaced injected centroid and mismatched beam matrix
becomes

ε̂ ¼ ε0Bmag þ
1

2
ðγxX2 þ 2αxXX0 þ βxX02Þ ð50Þ

with Bmag defined in Eq. (49) and the Twiss parameters of
the ring αx, βx, and γx. On-axis injection with the ratio of
β0=βx ¼ 2 and α ¼ α0 ¼ 0, which is used in the simulation

FIG. 3. The parameters X̂1, σ̂11, and σ̂12 and emittance as a function of the turn number n for a beam that is injected on axis but with a
beta function β0 that is twice the matched value β. All other parameters are equal to those used in Fig. 2. The vertical axes are normalized
to appropriate powers of ε0.

E. WAAGAARD and V. ZIEMANN PHYS. REV. ACCEL. BEAMS 25, 054001 (2022)

054001-8



shown in Fig. 3, leads to Bmag ¼ 1.25, which agrees with
the observed emittance growth visible in the bottom panel.
Likewise, additionally setting X2 ¼ 1 increases the emit-
tance to ε̂ ¼ Bmagε0 þ X2

2=2 ¼ 1.75ε0, which agrees with
the final value shown in the bottom panel in Fig. 4.

VII. TRANSVERSE COUPLING

For d ¼ 4, Eq. (36), with J½m; xr; xs� defined in
Eq. (35), describes the dynamics of a 4 × 4 coupled
beam matrix σ̃ that is injected into a ring. In order to
analyze it in a systematic way, we base our description on
the parametrization of coupled transfer matrices from
Refs. [11,12] and write σ̃ as

σ̃ ¼ T−1Ã−1ε̄ðÃ−1Þ⊤ðT−1Þ⊤ with

Ã ¼
�
Ãa 0

0 Ãb

�
and Ãa ¼

0
B@

1ffiffiffiffi
βa

p 0

αaffiffiffiffi
βa

p ffiffiffiffiffi
βa

p

1
CA; ð51Þ

where Ãb is defined analogously. Moreover, ε̄ ¼
diagðεa; εa; εb; εbÞ contains the emittances of two eigenm-
odes. T and its inverse T−1 describe transverse coupling
and are given by

T ¼
�

g1 −C
Cþ g1

�
and T−1 ¼

�
g1 C

−Cþ g1

�
; ð52Þ

with the 2 × 2 identity matrix 1, the 2 × 2 coupling matrix
C, its symplectic conjugate Cþ ¼ C−1 det C, and the
scalar g, which satisfies g2 ¼ 1 − det C [12].
We now transform the injected beam matrix σ̃, which is

given in physical coordinates to the coordinates of nor-
malized phase space in the ring, which we call σ.
Analogously to what we did in Eq. (48), we transform it
with A, which has the same structure as Ã from Eq. (51)
but contains the Twiss parameters at the injection point of
the ring. We then obtain

σ ¼ Aσ̃A⊤ ¼ AT−1Ã−1ε̄ðÃ−1Þ⊤ðT−1Þ⊤A⊤

¼ AT−1Ã−1ε̄ðAT−1Ã−1Þ⊤: ð53Þ

Let us first calculate

K ¼ AT−1Ã−1 ¼
�

gAxÃ
−1
a AxCÃ

−1
b

−AyCþÃ−1
a gAyÃ

−1
b

�
; ð54Þ

which we use to calculate σ ¼ Kε̄K⊤ and find the top-left
2 × 2 submatrix of σ to be

�
σ11 σ12

σ12 σ22

�
¼ g2εaAxÃ

−1
a ðAxÃ

−1
a Þ⊤

þ εbAxCÃ
−1
b ðAxCÃ

−1
b Þ⊤; ð55Þ

FIG. 4. The same parameters that are shown in Fig. 3 but with an additional steering error at injection X2 ¼ 1. The slow decrease of X̂1

motivates the extended range of turns.
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from which we calculate the asymptotically achievable
emittance with ðσ11 þ σ22Þ=2, just as we did in the previous
section. The lower-right submatrix contains a similar
expression that describes the vertical plane from which
we can calculate the asymptotically achievable vertical
emittance ðσ33 þ σ44Þ=2.
We now consider the special case where C stems from a

coordinate rotation with angle η. This leads to g ¼ cos η
andC ¼ −1 sin η. Inserting g andC into Eq. (55), we obtain

�
σ11 σ12

σ12 σ22

�
¼ εaAxÃ

−1
a ðAxÃ

−1
a Þ⊤ cos2ðηÞ

þ εbAxÃ
−1
b ðAxÃ

−1
b Þ⊤ sin2ðηÞ: ð56Þ

The combination of matrices in the second term
evaluates to

AxÃ
−1
b ðAxÃ

−1
b Þ⊤ ¼

0
B@

βb
βx

αxβb
βx

− αb

αxβb
βx

− αb
α2xβb
βx

− 2αxαb þ 1þα2b
βb

βx

1
CA

ð57Þ

and to a similar expression for the first term after replacing
βb and αb by βa and αa, respectively. From the sum of the
diagonal elements, we obtain for the asymptotically achiev-
able emittances in the horizontal and the vertical plane

1

2
ðσ11 þ σ22Þ ¼ εa cos2ðηÞBmagðβx; βaÞ þ εb sin2ðηÞBmagðβx; βbÞ;

1

2
ðσ33 þ σ44Þ ¼ εb cos2ðηÞBmagðβy; βbÞ þ εa sin2ðηÞBmagðβy; βaÞ

with Bmagðβx; βbÞ ¼
1

2

��
βx
βb

þ βb
βx

�
þ βxβb

�
αx
βx

−
αb
βb

�
2
�
; ð58Þ

FIG. 5. The horizontal and vertical beam positions X̂1 and X̂3 (top), beam matrix elements (middle), and emittance (bottom) as a
function of the number of turns for a beam with initial emittance ratio εa=εb ¼ 10, initial beta mismatch, and displacement. The beam is
rotated by η ¼ 30°. The initial mismatch decoheres, and the emittance reaches its asymptotic value, given by Eq. (59).
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where we do not write out the dependence on αx and αb in
the definition of Bmag, whose definition from Eq. (49) is
repeated here for convenience. In Eq. (58), it contains
different combinations of horizontal and vertical Twiss
parameters of the injected beam and those at the point of
injection into the ring. It describes the influence of the
Twiss parameters on the decoherence, which is smallest
(Bmag ¼ 1) if the Twiss parameters in the horizontal and
vertical plane of the injection line and the ring are equal.
Summarily, the asymptotic emittance growth, including the
effect of initial displacement, in the horizontal plane then
turns out to be

ε̂x ¼ εaBmagðβx; βaÞ cos2ðηÞ þ εbBmagðβx; βbÞ sin2ðηÞ

þ 1

2
ðX2

1 þ X2
2Þ ð59Þ

and a corresponding equation for the vertical emittance.
Figure 5 shows the turn-by-turn evolution of a beam with

initial emittance ratio of εa=εb ¼ 10 that is coupled by a
coordinate rotation with η ¼ 30°. The Twiss parameters of
the injected beam are βa ¼ βb ¼ 3 m, and αa ¼ αb ¼ 0,
whichmakesBmagðβx;βaÞ¼Bmagðβx;βbÞ¼ 5=3. Moreover,
the beam is injected with an initial offset X1 ¼ 1. The tunes
are 0.028 in the horizontal and 0.041 in thevertical plane, and
the detuningparameters are κxx ¼ 10−3, κyy ¼ 2 × 10−3, and
κxy ¼ 5 × 10−4. We observe in the upper panel that the beam
initially performs horizontal betatron oscillations with
decreasing amplitude, but the coupled beam matrix also
causes the vertical centroid X̂3 to oscillate. Likewise, the
horizontal and vertical beam sizes, both shown in the middle
panel, initially oscillate but rapidly decohere, before settling
on their equilibriumvalue. The correlation σ̂13, derived in the
Appendix, shows a more complicated pattern, because it
oscillates with the sum and difference frequency of the
horizontal and vertical tune before also reaching its equilib-
rium value zero. The bottom panel shows the horizontal and
vertical emittances increasing from their initial value, which
is given by the projected emittance of the coupled beam at
injection. Decoherence causes the emittances to asymptoti-
cally reach ε̂x ¼ 13.4 and ε̂y ¼ 5.41, consistent with the
values calculated from Eq. (59).

VIII. DISPERSION

In this section, we consider the asymptotic emittance
growth due to a mismatched and potentially coupled
dispersion with d ¼ 4. Here, we treat dispersion errors
D⃗ as a momentum-dependent offset of the centroid, such
that we just replace X̂ by D⃗δ in Eq. (44). Subsequently,
averaging over δ gives us the emittance growth as

Δε̂ ¼ 1

2
ðD2

1 þD2
2Þσ2δ; ð60Þ

where σδ is the relative momentum spread in the ring. The
dispersion errors D⃗ in normalized phase space are given by

D⃗ ¼ ðD1; D2; D3; D4Þ⊤ ¼ AT

�
D⃗x

D⃗y

�

¼
�

gAxD⃗x −AxCD⃗y

AyCþD⃗x þ gAyD⃗y

�
; ð61Þ

whereA from Eq. (51) contains the Twiss parameters and T
from Eq. (52) describes transverse coupling. These two
matrices transform the physical dispersions D⃗x ¼
ðDx;D0

xÞ⊤ and D⃗y ¼ ðDy;D0
yÞ⊤ in the horizontal and

vertical plane of the transfer line into the normalized phase
space of the ring. Evaluating D2

1 þD2
2 then leads to

D2
1 þD2

2 ¼ g2D⃗⊤
x A⊤

x AxD⃗x − 2gD⃗⊤
y C⊤A⊤

x AxD⃗x

þ D⃗⊤
y C⊤A⊤

x AxCD⃗y ð62Þ

and a similar expression for D2
3 þD2

4 that describes the
emittance growth in the vertical plane. Equation (62) is
valid for any coupling matrix C, but if we specifically
evaluate it for a coordinate rotation with g ¼ cos η and
C ¼ −1 sin η, we find

D2
1þD2

2¼ cos2ðηÞHxðD⃗x;D⃗xÞþ2sinðηÞcosðηÞHxðD⃗y;D⃗xÞ
þsin2ðηÞHxðD⃗y;D⃗yÞ; ð63Þ

where

HxðD⃗y; D⃗xÞ ¼ γxDxDy þ αxðDyD0
x þD0

yDxÞ þ βxD0
xD0

y

ð64Þ

is the generalization of the quantity Hx that appears in the
fifth radiation integral [13,14].
For η ¼ 0, Eq. (63) characterizes the emittance growth

due to a dispersion error D⃗x in the horizontal plane. The
emittance growth then turns out to be

Δε̂ ¼ 1

2
HxðD⃗x; D⃗xÞσ2δ ¼

1

2
ðγxD2

x þ 2αxDxD0
x þ βxD02

x Þσ2δ;
ð65Þ

which agrees with the expression derived in Ref. [15].

IX. CHROMATICITY

The decoherence of an unbunched beam with rms
momentum spread σδ and a finite chromaticity Q0 can
be included in our framework by adding μ0xδ ¼ 2πQ0

xδ to
the phase advance per turn ϕx from Eq. (1). This gives us
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ϕx ¼ μx þ x⃗⊤κ̄xx⃗þ μ0xδ with ψðδÞ ¼ 1ffiffiffiffiffiffi
2π

p
σδ

e−δ
2=2σ2δ :

ð66Þ

Instead of just averaging over the transverse phase-space
coordinates in Eq. (5), we now also have to average over the
momentum δ with distribution ψðδÞ. The integral factorizes
into one part that depends on x1 and x2 and a second,
momentum-dependent part DðnÞ, given by

DðnÞ ¼
Z

e−inμ
0
xδe−δ

2=2σ2δdδ ¼ e−μ
02
x σ

2
δn

2=2; ð67Þ

which multiplies all integrals I½n; p⃗�.
For bunched beams that perform synchrotron oscillations

with frequency νs, the betatron phase advance after n turns
is given by [1,4]

nϕx ¼ nμx þ nx⃗⊤κ̄xx⃗þ ζðnÞ with

ζðnÞ ¼ μ0xδ
πνs

sinðπνsnÞ cosðπνsnþ η0Þ; ð68Þ

where η0 is the initial phase of the synchrotron oscillations.
Averaging over η0 and δ with the momentum distribution
from Eq. (66) results in the form factor [1,4]

DðnÞ ¼ exp
�
−2

�
μ0xσδ
2πνs

�
2

sin2ðπνsnÞ
�

ð69Þ

The form factor DðnÞ, either from Eq. (67) for unbunched
beams or from Eq. (69) for bunched beams, becomes a
multiplicative factor for I½n; p⃗� that carries through all the
way to Eq. (18), where it modulates the right-hand side. In
the same fashion, all J½−2n; xrx2� in Eqs. (29), (A2), and
(A5) assume an additional factor DðnÞ4, because the step
from n to 2n doubles ζðnÞ, which is equivalent to doubling
μ0x that causes the exponent of DðnÞ to quadruple. Apart
from these additional factors, all other equations remain
unchanged. In particular, the asymptotic equilibrium values
of the beam matrix and the emittance, which are multiplied
by powers of Dð0Þ ¼ 1, from Eqs. (50) and (58) remain
unaffected. Only the temporal evolution toward equilibrium
is modulated by the powers of DðnÞ which prepend
the Jð�2n; xrxsÞ.

X. TOLERANCES

Here, we analyze the requirements for the steering errors
and the Twiss parameters of an injected beam to cause an
emittance growth of less than 1% and 5%. To do so, we
expand Eq. (50) up to second order in the deviations from
their respective design values Δβ ¼ β0 − β, Δα ¼ α0 − α,
ΔX, andΔX0 and find for the asymptotic emittance increase

ε̂ − ε0 ¼
1

2

�
Δβ
β

�
2

þ 1

2
Δα2 þ γ

2
ΔX2 þ β

2
ΔX02 ð70Þ

with γ ¼ ð1þ α2Þ=β. As an example, we use the horizontal
injection from the TT10 transfer line into the Super Proton
Synchrotron (SPS) [16] when it serves beams to the LHC.
In this configuration, the horizontal Twiss parameters [17]
at the injection point are β ¼ 44.5 m and α ¼ −0.96.
Moreover, the emittance is ε0 ¼ 1.26 × 10−7 m rad. The
tolerance levels that increase the asymptotic emittance by
1% and 5% are shown in Table I. We find that the error
tolerances for the Twiss parameters are fairly relaxed; even
errors of Δβ=β or Δα in the 10% range increase the
emittance by less than 1%. On the other hand, owing to the
relatively large value of β at the injection point, steering
errors ΔX0 exceeding 20 μrad lead to increased emittances
above the 5% level.

XI. CONCLUSION

We derived evolution equations for the first and second
moments of an coupled arbitrary Gaussian phase-space
distribution that initially is mismatched and displaced and
has mismatched dispersion under the influence of
decoherence due to amplitude-dependent tune shift. The
well-known results from Refs. [1,4] for the amplitude
dependence of the first and second moments after an initial
displacement of a matched beam are reproduced. Our
results go beyond Refs. [1,4], because the initial beam
can have an arbitrary Gaussian distribution, which includes
transverse coupling, and does not need to be matched. We
then calculate the temporal evolution of the second
moments, the beam sizes, and the emittance. Moreover,
we calculate the emittance in the asymptotic limit and find
it to agree with the emittance growth due to chromatic
effects. Finally, we analyzed tolerances for the injection and
used the SPS as an illustration.
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TABLE I. The tolerance levels for mismatch and steering errors
for the injection into the SPS. The nominal emittance is
ε0 ¼ 1.26 × 10−7 m rad, and the Twiss parameters at the injection
point are β ¼ 44.5 m and α ¼ −0.96.

Tolerance level Δβ=β Δα ΔX [mm] ΔX0 [μrad]

1% 0.14 0.14 0.24 7.5
5% 0.32 0.32 0.54 16.8
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APPENDIX: SECOND MOMENTS

In Eq. (27), we show only one of the second-order moments. The other two that are needed for the horizontal plane are
calculated in a similar fashion from

hx̂1x̂2i ¼ hðx1 cos nϕx þ x2 sin nϕxÞð−x1 sin nϕþ x2 cos nϕÞi;
hx̂22i ¼ hð−x1 sin nϕx þ x2 cos nϕxÞ2i; ðA1Þ

where the angle brackets denote averaging over the Gaussian from Eq. (3) in d dimensions. Following steps similar to those
leading to Eq. (29) brings us to

hx̂21i ¼
1

4
ð2J½0; x21� þ J½−2n; x21� þ J½2n; x21�Þ −

i
2
ðJ½−2n; x1x2� − J½2n; x1x2�Þ

þ 1

4
ð2J½0; x22� − J½−2n; x22� − J½2n; x22�Þ;

hx̂1x̂2i ¼ −
1

4i
ðJ½−2n; x21� − J½2n; x21�Þ þ

1

2
ðJ½−2n; x1x2� þ J½2n; x1x2�Þ

þ 1

4i
ðJ½−2n; x22� − J½2n; x22�Þ;

hx̂22i ¼
1

4
ð2J½0; x21� − J½−2n; x21� − J½2n; x21�Þ þ

i
2
ðJ½−2n; x1x2� − J½2n; x1x2�Þ

þ 1

4
ð2J½0; x22� þ J½−2n; x22� þ J½2n; x22�Þ; ðA2Þ

where, for completeness, we also show the expression for hx̂21i from Eq. (29). We can simplify these expressions further by
noting that

J½−m;p� þ J½m;p� ¼ heimϕxpi þ he−imϕxpi ¼ 2Reheimϕxpi ¼ 2ReðJ½−m;p�Þ ðA3Þ

and likewise

J½−m;p� − J½m;p� ¼ 2iImðJ½−m;p�Þ; ðA4Þ

which allows us to write

hx̂21i ¼
1

2
fJ½0; x21� þ ReðJ½−2n; x21�Þg þ ImðJ½−2n; x1x2�Þ þ

1

2
fJ½0; x22� − ReðJ½−2n; x22�Þg;

hx̂1x̂2i ¼ −
1

2
ImðJ½−2n; x21�Þ þ ReðJ½−2n; x1x2�Þ þ

1

2
ImðJ½−2n; x22�Þ;

hx̂22i ¼
1

2
fJ½0; x21� − ReðJ½−2n; x21�Þg − ImðJ½−2n; x1x2�Þ þ

1

2
fJ½0; x22� þ ReðJ½−2n; x22�Þg: ðA5Þ

The second moments of the type hx̂1x̂3i arise if we consider coupled motion and need special attention, because x̂1
oscillates with μx and x̂3 with μy. Likewise, the amplitude-dependent tune shift in the horizontal plane is given by x⃗⊤κ̄xx⃗ and
by x⃗⊤κ̄yx⃗ with κ̄y ¼ diagðκxy; κxy; κyy; κyyÞ in the vertical plane. Since we will encounter J½m;p; μx; κ̄x� from Eq. (28) for
different arguments μx and κ̄x, we specify all arguments henceforth when we calculate hx̂1x̂3i for which we find
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hx̂1x̂3i ¼ h½x1 cosðnϕxÞ þ x2 sinðnϕxÞ�½x3 cosðnϕyÞ þ x4 sinðnϕyÞ�i

¼ 1

4
hx1x3½einðϕxþϕyÞ þ einðϕx−ϕyÞ þ e−inðϕx−ϕyÞ þ e−inðϕxþϕyÞ�i

þ 1

4i
hx1x4½einðϕxþϕyÞ − einðϕx−ϕyÞ þ e−inðϕx−ϕyÞ − e−inðϕxþϕyÞ�i

þ 1

4i
hx2x3½einðϕxþϕyÞ þ einðϕx−ϕyÞ − e−inðϕx−ϕyÞ − e−inðϕxþϕyÞ�i

−
1

4
hx2x4½einðϕxþϕyÞ − einðϕx−ϕyÞ − e−inðϕx−ϕyÞ þ e−inðϕxþϕyÞ�i

¼ 1

4
f2ReðJ½−n; x1x3; μx þ μy; κ̄x þ κ̄y�Þ þ 2ReðJ½−n; x1x3; μx − μy; κ̄x − κ̄y�Þg

þ 1

4i
f2iImðJ½−n; x1x4; μx þ μy; κ̄x þ κ̄y�Þ − 2iImðJ½−n; x1x4; μx − μy; κ̄x − κ̄y�Þg

þ 1

4i
f2iImðJ½−n; x2x3; μx þ μy; κ̄x þ κ̄y�Þ þ 2iImðJ½−n; x2x3; μx − μy; κ̄x − κ̄y�Þg

−
1

4
f2ReðJ½−n; x2x4; μx þ μy; κ̄x þ κ̄y�Þ − 2ReðJ½−n; x2x4; μx − μy; κ̄x − κ̄y�Þg: ðA6Þ

The last equality is a sum of terms very much like those
from Eq. (29). Only here the phase advance μx is replaced
by μx � μy and κ̄x by κ̄x � κ̄y. We can, therefore, use the
same MATLAB function for J½m;p; μx; κ̄x� to work out
hx̂1x̂3i and determine σ̂13 ¼ hx̂1x̂3i − X̂1X̂3 shown on the
middle panel in Fig. 5.
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