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Emittance growth of kicked and mismatched beams
due to amplitude-dependent tune shift
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We derive evolution equations for the first and second moments of an initially mismatched, coupled, and
displaced arbitrary Gaussian phase-space distribution under the influence of decoherence due to amplitude-
dependent tune shift. Moreover, we find expressions for the asymptotic values of the beam matrix and the
emittance and use them to evaluate error tolerances for injection.
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I. INTRODUCTION

The emittance of a beam, injected into a ring, crucially
depends on the initial position and angle of the injected
beam as well as on the Twiss parameters of the injection
line being equal to those of the ring. Once the beam is
circulating in the ring, the particles perform betatron
oscillations around the equilibrium orbit in the ring. Any
spread of betatron frequencies, either due to chromaticity
and a finite momentum spread or due to amplitude-
dependent tune shift, causes the distribution of particles
to distort and evolve into one with a larger emittance. This
process is often referred to as decoherence. This
decoherence of kicked beams due to amplitude-dependent
tune shift was previously analyzed in Refs. [1-3], where,
however, only the decoherence of the centroid was evalu-
ated. Moreover, in Ref. [4], the evolution of the kicked
beam matrix is calculated, and the key results are summa-
rized in Ref. [5]. Here, we extend the analysis by consid-
ering the turn-by-turn evolution of the first and second
moments of a beam that initially is both displaced and
mismatched. We then follow the evolution of its first
moments, which are often referred to as centroids, as well
as its beam matrix and emittance, as the beam decoheres.

In order to prepare the stage for our calculations, we
assume that the optics in the ring is uncoupled. We,
therefore, introduce the phase shift per turn ¢, in the
horizontal plane due to normal betatron phase advance
u, = 2xzQ, and to amplitude-dependent tune shift, given by
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¢x:/‘x+Kxx(x%+x%)+ny(x%+x42t.):,ux—i_f—r’?xf’ (1)

where X' is the transpose of X and &k, =

diag(i,y. Kyy, Kyys Kyy ). Here, k., parametrizes the ampli-
tude dependence in the horizontal plane and «,, its
dependence on the amplitude in the vertical plane, also
called the cross anharmonicity [6]. Here, 2J, = x7 + x3 =
7ex? 4 2axx + fox? with v, = (1 4+ a2)/p, is twice the
Courant-Snyder invariant J, of the linear motion in the
horizontal plane and 2J, = x% + xﬁ = yyy2 + 2a,yy" +
ﬂyy’2 in the vertical plane. We use variables xi, ..., x4 in
normalized phase space, collectively denoted by
¥ = (x1,%,,x3,%4) . They are related to the position x
and angle x’ by

()= () v a0 ) @

where a, and f, are the Twiss parameters in the horizontal
plane of the ring at the point of injection. In most of this
report, we henceforth focus on the horizontal plane. The
corresponding equations for the coordinates in the other
plane x5 and x, the subscript x is exchanged with subscript
y. Note also that, after n revolutions in the ring, the phase
shift is n¢,. In passing, we point out that it is straightfor-
ward to generalize Eq. (1) to six dimensions by adding a
term k., (x2 4 x2), extending the definition of &, to a 6 X 6
matrix that includes «,, on the two lowest entries on the
diagonal, and interpreting X as the corresponding six-
dimensional phase-space vector. In this report, however,
we focus on two and four dimensions.

We always assume that the initial beam distribution is a
multivariate Gaussian. For convenience, we define it as the
d-dimensional distribution
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> 1
X, 0)=———F——
Valx )= (27)%%\/deto

X eXp [——Zo—jk x;=X;) (0 =Xp) | (3)

where d can be 2 or 4, depending on the phase space we
consider. Moreover, X; with j=1,...,d are the compo-

nents of the vector X with the initial centroid positions. The
d x d matrix o is the beam matrix describing the widths and
orientations of the Gaussian. Note that, in coordinates of
normalized phase space, the beam matrix ¢ of a matched
beam in all planes is proportional to the unit matrix. For a
matched beam, the proportionality constant in each 2 x 2
block on the diagonal is the emittance of the injected beam
gy in the respective plane. Throughout this report, we
normalize positions and beam sizes by ,/€;, such that all
numerical values are given in units of the corresponding
rms values of the beam size or the angular divergence. For
example, the physical position x is related to x; through
x; = x/+/p and normalized by /g, to x/+/€op.

In the following sections, we first follow the centroid of
this Gaussian as it decoheres, where we assume that ¢ is an
arbitrary beam matrix, not necessarily matched to the ring
into which we assume the beam is injected. In Sec. III, we
show that our general result reproduces the results from
Ref. [1] for a matched injected beam. In the following
sections, we calculate the turn-by-turn evolution of the
second moments, in general, before considering a matched
beam and an arbitrary beam matrix in one transverse plane.
In Sec. VII, we consider injection of a transversely coupled
beam matrix. In all cases, we derive expressions for the

fln.pl= (2x) d/zx/det 6/

ddxe

asymptotic beam matrix and then use them to determine
error tolerances. In separate sections, we discuss the
asymptotic emittance growth due to a mismatched
dispersion and indicate how to include decoherence due
to chromaticity into our framework before summarizing our
results in the conclusions.

II. CENTROID

We now calculate the betatron motion with phase
advance yu, of the centroid of a Gaussian and denote the
centroid position in the horizontal plane after n turns by X,
and X,, which leads us to

X, + Xy = e (em R (x) + ixy)), (4)

where the angle brackets denote averaging over the initial
Gaussian distribution from Eq. (3). We point out that
damping can be taken into account by adding a factor
e~"/Na (with damping time given in number of turns N ) to
the right-hand side of Eq. (4). But in this report we do not
pursue this further. Since we will encounter similar inte-
grals to those appearing in Eq. (4) along the way, we
introduce the notation

= (e7" R (X)), (5)

where p(X) is a multivariate polynomial in the phase-space
coordinates xi,...,x;. In Eq. (4), for example, we have
p(X) = x; + ix,. Moreover, Eq. (4) can also be expressed
as j\(l + lX2 = e_i””XI[n,x] + l.)Cz}.

In the next step, we evaluate /[n, p| by explicitly writing
it as a Gaussian integral:

I[n, p|

/k L5 (%) X)()Ck—xk)e—in,?ch,(,?7 (6)

where, for brevity, we suppress the limits of the integrals, which always extend from —oo to co. We simplify the integrand by

expressing x7 as

X = (0 = X1)? +2X1x0 = X7 = (0 = X))+ 2X, (0 - X)) + X7 (7)
and likewise for x3, ..., x2. Inserting in Eq. (6) and combining terms, we arrive at
1n, p] :%/ddm—omz,k 1[0 +2in (R )] (6=X)) (u=X) ,~2inX &, (7 p(x) (8)
We now introduce the abbreviations
d
Aj =03l +2in(k,); and B =2n) (k) Xy (9)

k=1
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The substitution ¥ = X — X then allows us to write Eq. (8) as

—inX & X
. e x _ 1/2)2 :4 . A'k}”yk_iE :{-1, By, /= -
In,pl=——+—— dde( =120k j=1 23V +X). 10
[, p] e ivas) p(y +X) (10)

In the final step, we find a substitution that helps us to remove the term that is linear in y; in the exponent. We, therefore,
introduce a further substitution z; = y; + h; and find &; that removes that term. We insert this substitution into the exponent
and obtain

1 d . d
—5 Z Ajk(zj — hj)(zk — hk) —1 ZBJ'(Z]' - hj>
Jok=1 j=1
1 d d 1 d d 1 d
J.k=1 j=1 J.k=1 j=1 k=1
which implies that
d
hy=1Y A{lB (12)
j=1

makes the square bracket zero and, thus, removes the linear term. After substituting /; into the right-hand side of Eq. (11),
the exponent assumes the form

lar = 1 E
——B'A7'B—= AiZ:Zk. 13
2 2/]{2221 ijjZk ( )

For I[n, p], we find

o—inX & X-(1/2)BTA'B

fn.pl= (27)¥2\/det &

e—in)?TEX)?—Zrlz)?Tl'cx(1+2inm‘<x)’l ok X

ddZE_( 1/2) Z;‘I.kzl AjizjZi p (})

—(1/2)> ¢ Apz; -
B (2n)/2/det 0 dize” 2 p ) (14)
with
X=Z+X—-iA'"B=Z74Y and Y= (1-2inA"'g,)X. (15)

Moreover, we use the definitions of A and B from Eq. (9) to obtain
A™'B = 2n(1 + 2inok,)"'ok,X and Y = (1 + 2inok,)"'X. (16)

The integrals are evaluated with the help of the identities [7]

/ ooVl Az _ 2D

VdetA'
/ ddZé‘_(l/z) Zik:l AiijZan‘l = 07
- dp (27)4/?
ddze (1/2) Zj.k:l A]kz]ZkZmZn = Ay_nlls 17
/ vdetA (17)
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which follow from the well-known identities for normal-
izing a Gaussian distribution and how the first and second
moments are given in terms of the covariance matrix. In
particular, the centroid positions after n turns X; + iX,,
identified by a caret, turn out to be

—inX "’ X—(1/2)BTA"'B (zﬂ)d/Z

(27)¥2\/dete  \/detA
e—in,lx—in)?ﬂzxi—znz)?r«x( 1+2inok,) " ok, X

= Y, +iY,),
det(1+ 2inok,) 1 2)

Xl+i},\(2:€_mﬂ"' (Yl +lY2)

(18)

where Y is defined in Eq. (16). We point out that the result
in Eq. (18) is valid for dimensions d =2 or 4 and for
arbitrary beam matrices o, including matched beams. In
order to compare with the results from Ref. [1], we consider
such a matched beam for d = 2 in the following section.

III. AMPLITUDE DEPENDENCE

In order to obtain some intuition, we compare our
calculation with Ref. [1] and set d = 2 and «,, = k before
calculating the evolution of the oscillation amplitude of the
centroid a,, with the number of turns n:

an = VIXP = /2 4+ 2= (&, + %) (K - i%)

(19)

for a matched beam with the 2 x 2 beam matrix
o= ¢gl. (20)

To do so, we take the squared modulus of Eq. (18) and
consider one term at a time. First, we consider Y and
calculate |I7 | from Eq. (16), which leads to

7= (10 e Lk
1 + 2inkey ) \1 — 2inke,

1 -
— 2
=17 prRCp | X|°. (21)

Second, we consider the root in the denominator of
Eq. (18), which simplifies to

Vdet(1 + 2inko) = \/det[(1 + 2inkey)1] = 1 + 2inke,,

(22)
which has squared modulus 1 + 4n’k?&3 that consequently
also appears in the denominator. Finally, the third term in
the exponent of Eq. (18) simplifies to

- - - € -

X"(1+2inko)'oX =X —2—X
1 + 2inke,
80|§|2

=—————(1 = 2inkey). (23)
1+ 41’121(‘28(2)

Since the imaginary part in the exponent has unit modulus,
only the real part appears in the modulus of the whole
expression. Inserting the three contributions into Eq. (18)
results in

gpo AP

B 4n2k2eo| X2
(14 4n’k%€)? exp

1 +4n’Kk2e}

} . (24)

Expressing this equation in terms of the amplitude a, with

the initial amplitude a = 1/|X|?, we find

a { aj  4n’c’e}
all

1+ 4n’k’e] P T 61+ 4n21<2£(2j - (25)
which agrees with the result for the amplitude decoherence
from Ref. [1] provided we identify 8 = 2nke, and ¢, = 1.

In Fig. 1, we use Eq. (25) to show the dependence of the
amplitude a, on the number of turns for starting amplitudes
ag = €y and ag = 2¢,. We observe that the initial reduction
of the amplitude follows a Gaussian behavior, whereas for
large n the exponential approaches e~%/2%0 and the turn
evolution is governed by the factor 1+ 4n’*c*e} in the
denominator. The transition between the two regimes,
already discussed in Ref. [1], appears around 0 ~ 1 when
n =~ 1/2keg. A larger starting amplitude a, = 2 (red dashed
curve) leads to a faster initial reduction of the amplitude to

2

n

-
(&)}
-

Centroid amplitude a

Scaled number of turns 0 = 2H€On

FIG. 1. Amplitude of the beam centroid (in units of ,/&y) versus
the turn number n, parametrized as 6 = 2xeyn with parameters
&y = 1 and k = 0.1 and for two values ag = 1 and ¢y = 2 of the
initial displacement.
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values below those for @y = 1 (black solid curve). Note that
the curves cross near the transition at 6 ~ 1.

In the next section, we turn to the evolution of the beam
matrix and the emittance.

IV. BEAM MATRIX AND EMITTANCE

In this section, we consider the general case
with d dimensions. The beam size after n turns is related
to the second moments of the distribution after n turns,

Bl =

(&) =

again identified by a caret. One of the moments (37) is
given by

() = (v, cosngp, + xpsinng ). (26)

The angle brackets denote averaging over the initial distri-
bution from Eq. (3) in d dimensions and ¢, is defined in
Eq. (1). All other moments, such as (%%, ) and (%3), are given
by similar equations. We now express the trigonometric
functions by their exponential representation and arrive at

(2 + e¥ndx 4 e72ind)x2 — 2j(ndx — e72indx)x  x, + (2 — Nfx — e72ind:)x2). (27)

At this point, we note that only expressions of the type e~"% with m = 0, 2n, and —2n appear. We, therefore, introduce

J[m’ p;ﬂkax

| = (e p ) =

(e T (3), (28)

where p(X) is one of x7, x;x,, or x3. For brevity, we omit the arguments after the semicolon if they are unambiguous and just
write J[m, p]. In the next step, we use Eq. (28) to rewrite (2?) in Eq. (27), which leads us to

(3% = %(2]{0,)(%] + J[-2n,x3] 4+ J[2n,x3] —

+2J10,x3] = J[-2n, x3]

= SU10.8] + Re(J[=2n, )} + Im(/[-2n xyx]) + 5 {710.3]

where we use

J[=m, p] + J[m, p] = 2Re(J[-m, p])

~ J2n.53))

and J[—m, p]

2iJ[=2n, x1x;) + 2iJ [2n, x1x,)

—Re(J[-2n.x3))}. (29)

— J[m, p] = 2ilm(J[—m, p]). (30)

The corresponding expressions for (%%,), (% 2) and (%;%3) can be found in the Appendix.
In order to evaluate J[m, p], we note that it is closely related to I[m, p| from Eq. (6), which allows us to express J[m, p] as

Jlm. p) = e RS p(R)) = eI {m, p). (31)

This leaves us the task to evaluate I[m, p| for p = x,x,, where r and s assume values between 1 and d. Expressing x,
through x, = z, 4+ Y, and inserting this in Eq. (14), we obtain

e"’ d (1/2) Z Ajzjzk
I[mﬂxrx‘\‘] (2”)d/2\/(m d Ze - (Z + Y )(Z + Y )
d, ~(1/2)> 0 Apziz 2
(2” d/2\/(m dze” g (zrzg + 2, Yy +2,Y, + Y, YY) (32)
with the abbreviation
w(m) = —imX & X = 2m*X "k, (1 + 2imoi,) " ok X. (33)

The four terms inside the integral are evaluated by using the expressions from Eq. (17), and this leads to
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ey/(m) (277;)‘1/2
(27)¥2+/det o v/det A

el//(m)
= (A;vl + YrYx)’ (34)

\/det(1+ 2imok,)

and for J[m, x,x;| we obtain with Eq. (31)

(A +7Y,Y)

I[m. x,x] =

e~ impty(m)
(A5 +Y,Y,) (35

Jim, x. x| =
[ } det(1 + 2imok,)

with A~ = (1 + 2imok,)"'6 and ¥ = (1 4 2imok,)"'X.
The matrix elements of the beam matrix after n turns 6,
are related to the second moments (%,%,) via

Ors = <(5Cr - Xr)(jcx - X;» = <5er\cs> - er(s’ (36)

which requires us also to subtract X, X, from the second
moments, for which we resort to Eq. (18) to calculate X
and X,. Both the second moments and the centroids must
be calculated for the same number of turns n. These
equations are valid for any mismatched and transversely
coupled beam that additionally is injected off axis

with X # 0.

V. EMITTANCE GROWTH FOR
A MATCHED BEAM

Just as we did for the amplitude decoherence, we now
consider d = 2, set k,, = k, and evaluate the turn-by-turn
evolution of the second moments and the emittance for a
matched beam with ¢ = ¢y1, analogous to the analysis
from Ref. [4]. We start our analysis by evaluating the terms
that enter J[m, x,x,]. The first is

1

(1 + 2imko)™" = Tt’mmfol’ (37)

which leads us to
?:u+amW@4§:——Je——* (38)

1 + 2imke,
and
&

Al = (1 + 2imko) o = Tl(')mKEoll (39)

The root in the denominator of Eq. (35) simplifies to

Vdet(1 4 2imko) = 1 4 2imkey, (40)

and w(m) from Eq. (33) becomes

— —imk(X? + X3) —2m2PXT — 0%
l//(m) lmK( 1 + 2) m-K 1 + 2imK€0
— _iml X2 — 2m22 & P
imic|X] K 1—|—2im1<£0| |
S {3 (41)
1 + 2imke,

Inserting these expressions into Eq. (35), we find

e—imm—[imk/(l+2iml<£0)] X2

Jmoxpx] = 1+ 2imke

X, X
x L L
1 +2imkeg (142imxkey)

- o impt=[imx/ (142imxeq)] X2 - X, X,
(1+2imkey)? £00rs 1 +2imkeg
(42)

that we use to calculate the second moments from Eqs. (29)
and (A2).

For the beam matrix, we also need the centroid motion
that we previously analyzed in Sec. II and for a matched
beam in Sec. III. Adapting Eq. (18) to o = g1, we arrive at

e—inm—[ink/(HZinK&‘O)] | X

Xl —|— lj(z — (X] + in), (43)

(1 + 2inke)?

whose modulus again leads to Eq. (24). We emphasize that
here n is the number of turns and not a general parameter
such as m in Eq. (42).

From the second moments from Eq. (A2), together with
Jm, x,x,| from Eq. (42) and the centroid from Eq. (43), we
prepared a MATLAB [8] script, available from Ref. [9], to

follow the centroids X, the beam matrix & from Eq. (36),
and the emittance & = v/det 6 for a number of turns.
Figure 2 shows X, (top), 61; and 61, (middle), and the
emittance & (bottom) as a function of n. The parameters in
this simulation, chosen to illustrate the dynamics, are
u./2r = 0.028, k = 0.001, and ¢y = 1. Initially, the beam
is offset by X| = 2, and the top plot shows oscillations that
initially follow a Gaussian behavior before later decaying at
a much slower rate, as discussed in Sec. III. At the same
time, the beam size 6,; oscillates at twice the frequency of
the centroid and increases toward a higher level.
Intermittently, the correlation 64, increases, which is due
to distortions of the initially matched beam while it
decoheres. Toward the end of the simulation, 6, decreases
to zero, because the beam decoheres and reaches its
equilibrium configuration. The bottom plot shows the
emittance &, which has tripled compared to the initially
injected beam.

The equilibrium value that is reached after the
decoherence has finished is easily calculated by realizing

054001-6
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2 T T T T T T T ~
&0
_2 | | | | | 1 I | |
0 100 200 300 400 500 600 700 800 900 1000
Number of turns n
I | P | - I
Beam size 611
N —— Correlation 712
©
&
| 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Number of turns n
3 [ T T T T T [ I I I
v 2+ -
1 | | | | | | | | =
0 100 200 300 400 500 600 700 800 900 1000

Number of turns n

FIG. 2. The centroid X; (top), the beam matrix elements o;; and o1, (middle), and the emittance (bottom) as a function of the turn
number n for a matched beam that is injected with initial offset X; = 2. The parameters used are u/2z = 0.028 and xey = 0.001. The

vertical axes are normalized to appropriate powers of &.

that the centroids X as well as the coefficients J[m, x,x]
vanish for large values of m = —2n. Therefore, only terms
with J[0, x,x,] that appear in Eq. (A2) survive in this limit.
This leads to

1
=gy + 5 (X7 +X3).

(0.4 +J0.53) = e + 5

—~
=
=
o
~
I
N = O N =

1
=e +=(XT+X3), (44)

() = .

(J0.x3] + J[0. x3])
where using Eq. (42) for m = 0 gives us J[0,x,,x,] =
(606,s + X,X,) and the asymptotic  emittance
&= /(33 (i3) — (#1%,)>. The asymptotic emittance
growth then becomes &— &, = (X7 + X3)/2, which is
the Courant-Snyder invariant, written in coordinates of
normalized phase space. Expressed through physical coor-
dinates, the centroid position X and angle X’, the emittance
growth becomes

g—gy = X2+ 2a, XX + B,.X7). 45
0 (yx X X

N[ =

This is not really a surprise, because the amplitude-
dependent tune shift does not change the oscillation
amplitudes of individual particles, such that the asymptotic
emittance growth agrees with the value caused by

decoherence (Sec. 8.2 in Ref. [10]) due to chromaticity
and momentum spread; only the transient behavior of the
two processes differs.

VI. MISMATCHED BEAM

In this section, we explore the decoherence in one plane
(d = 2) of a mismatched beam that is injected on axis
(X = 0) into the ring. In this case, ¥ = 0 and y(m) = 0
from Eq. (33), which causes J[m, x,x,] to simplify to

1
det(1 4 2imxko)

J[m, x,x;| = (1 + 2imko)~lo.  (46)

Moreover, we have X = 0. This makes calculating the
beam matrix 6 and the emittance & straightforward.
Figure 3 shows the result in position X, (top), sigma
matrix elements 6;; and 61, (middle), and the emittance &
(bottom) for an injected beam that has initial emittance
unity. We assume a = 0 but significantly increase the beta
function to twice the value of the matched beam. All other
parameters are equal to those already used in Fig. 2. We see
that the beam size &, and correlation 61, oscillate, but this
motion slowly decoheres and reaches a new equilibrium
value. At the same time, the emittance increases and also
settles toward a new, and larger, equilibrium value.
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1 T T T T

T
—— Position X,

_1 | | 1 1

400

Number of turns n

500 600

2F T T T T

11,012

1 1 | |

T T T T T 3
Beam size 11

——— Correlation 612

| | 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Number of turns n

1.3F T T T T T T T T T 3
1.2 .y
w 1.1F .
1 - —
09k 1 1 | | I I 1 1 A

0 100 200 300 400 500 600 700 800 900 1000

Number of turns n

FIG. 3. The parameters X,, 8,,, and 6/, and emittance as a function of the turn number n for a beam that is injected on axis but with a
beta function f that is twice the matched value f. All other parameters are equal to those used in Fig. 2. The vertical axes are normalized

to appropriate powers of &.

Figure 4 shows a simulation with parameters used in
Fig. 3, only the initial value of X, is set to X, = 1. We see
that X, (top panel) performs betatron oscillation with
slowly decreasing amplitude, which motivates the
increased range of turns shown. Qualitatively, 6;; and
61, (middle) show similar behavior to that in Fig. 3.
Likewise, the emittance (bottom) increases to a new
equilibrium value that is, however, larger than the one in
Fig. 3 due to the nonzero value of X,.

These new equilibrium values are easily calculated from
Egs. (29) and (A2). As before, realizing that all J[m, x,x,]
asymptotically vanish, this leaves us with

o 1 1
(&1) :E(J[va%] +J10,x3]) 25(011 +022)+§(X%+X§),

(%1%2) =0,

oy L 2 o1 1l on

<x2>:E(J[O’x1]+1[07xﬂ)25(011+022)+§(X1+X2)’
(47)

which is valid even for nonzero initial displacement X.
Here, (X? + X3)/2 is again the Courant-Snyder invariant of
the centroid. Moreover, o is the beam matrix of the
injected beam in normalized coordinates, which is related
to the beam matrix in physical coordinates & by

(011
012

where g is the emittance and of the injected beam, «, S,
and y, are its Twiss parameters, and A, is defined in
Eq. (2). Evaluating this expression and calculating
(611 + 022)/2, we arrive at

o —Q
‘2):AX5AI with 5:50(ﬂ° 0),
—®& Yo

022

(48)

1 .
5 (611 +02,) = €B)yqy With

1 ﬂO ﬁx oy Q 2

Biuag 5 K x+ﬂo> +ﬂxﬂ0< ) ﬁ0> } (49)
where we see that B,,,,, is the factor by which the emittance
of the injected beam is asymptotically increased by
decoherence after injecting a mismatched beam.
Summarily, we find that the asymptotic emittance due to
a displaced injected centroid and mismatched beam matrix
becomes

1
&= eoBay+ 5 (1. X* 4+ 20, XX + p.X?)  (50)
with B,,,, defined in Eq. (49) and the Twiss parameters of
the ring «,, f,, and y,. On-axis injection with the ratio of
Po/ P = 2 and a = ap = 0, which is used in the simulation
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FIG. 4. The same parameters that are shown in Fig. 3 but with an additional steering error at injection X, = 1. The slow decrease of X

motivates the extended range of turns.

shown in Fig. 3, leads to B,,,, = 1.25, which agrees with
the observed emittance growth visible in the bottom panel.
Likewise, additionally setting X, = 1 increases the emit-
tance to & = B, + X3/2 = 1.75¢,, which agrees with
the final value shown in the bottom panel in Fig. 4.

VII. TRANSVERSE COUPLING

For d =4, Eq. (36), with J[m,x,,x,] defined in
Eq. (35), describes the dynamics of a 4 x4 coupled
beam matrix & that is injected into a ring. In order to
analyze it in a systematic way, we base our description on
the parametrization of coupled transfer matrices from
Refs. [11,12] and write & as

G=T"A"g(A ) (T™")T with

1
~ —— 0

~ A, O ~ A

A= ( - ) and A, = {F i | (51)
0 A, e Pa

where ./Zlb is defined analogously. Moreover, & =

diag(e,, €4, €, €,) contains the emittances of two eigenm-
odes. T and its inverse T~! describe transverse coupling
and are given by

1 —C 1 c
T = (g > and T—lz( g ) (52)
ct gl -C*t g1

with the 2 x 2 identity matrix 1, the 2 x 2 coupling matrix
C, its symplectic conjugate C* = C~'det C, and the
scalar g, which satisfies g> = 1 —det C [12].

We now transform the injected beam matrix &, which is
given in physical coordinates to the coordinates of nor-
malized phase space in the ring, which we call o.
Analogously to what we did in Eq. (48), we transform it
with A, which has the same structure as A from Eq. (51)
but contains the Twiss parameters at the injection point of
the ring. We then obtain

6=A6AT = AT A Tg(AH)T(T-H)TAT
= AT A7 "g(ATT AT, (53)
Let us first calculate

. AA ACA
K=AT"'A"" = < ! -1 ~b1 >’ (54)
-ACTA; gAA,
which we use to calculate ¢ = KK " and find the top-left
2 x 2 submatrix of ¢ to be

(011
012

") = oA A AT

02

+ &, AL CA (A CANHT,  (55)
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from which we calculate the asymptotically achievable
emittance with (61, + 6,,)/2, just as we did in the previous
section. The lower-right submatrix contains a similar
expression that describes the vertical plane from which
we can calculate the asymptotically achievable vertical
emittance (633 + 044)/2.

We now consider the special case where C stems from a
coordinate rotation with angle #. This leads to g = cos#
and C = —1siny. Inserting g and C into Eq. (55), we obtain

The combination of matrices in the second term
evaluates to
P Py
Zo -
o - o - /jx /jx b
-’Ll)c-Ab1 (-’Ll)c-Abl)T = ) 2B 1402
ST Tyt 2o+ Ry

(57)

012

<011
012

022

+ &, AL A (AAY T sin?(n).

) = e, AAL (AALY) T cos?(n)

and to a similar expression for the first term after replacing
P, and a;, by p, and a,, respectively. From the sum of the
diagonal elements, we obtain for the asymptotically achiev-

(56) able emittances in the horizontal and the vertical plane

%(Gll + 622) =& COSZ(V])Bmag(ﬁx’ ﬁa) + &p Sinz(n)Bmag(ﬁx’ﬂb)’

1
E (633 + 644) = &p Cosz(”])Bmag(ﬁy, ﬂb) + & Sinz(n)Bmag(ﬂy,ﬂa)

1 2
Bmag(ﬂx’ﬂb) :E |:<ﬂz+£b> +ﬂxﬁb <ax_ab> :|v

X ﬁb

T T
—— Horizontal position X,
----- Vertical position X3

0 50 100 150 200 250 300
Number of turns n
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- 10 - o —
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FIG. 5. The horizontal and vertical beam positions b'¢ | and X3 (top), beam matrix elements (middle), and emittance (bottom) as a
function of the number of turns for a beam with initial emittance ratio ¢,/¢, = 10, initial beta mismatch, and displacement. The beam is
rotated by n = 30° The initial mismatch decoheres, and the emittance reaches its asymptotic value, given by Eq. (59).
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where we do not write out the dependence on a, and ¢, in
the definition of B,,,,, whose definition from Eq. (49) is
repeated here for convenience. In Eq. (58), it contains
different combinations of horizontal and vertical Twiss
parameters of the injected beam and those at the point of
injection into the ring. It describes the influence of the
Twiss parameters on the decoherence, which is smallest
(Bjuag = 1) if the Twiss parameters in the horizontal and
vertical plane of the injection line and the ring are equal.
Summarily, the asymptotic emittance growth, including the
effect of initial displacement, in the horizontal plane then
turns out to be

& = gaBmag(ﬂx’ ﬂa) COSZ(}?) + gmeag(ﬂx’ﬂb) Sinz(ﬂ)
1

+ - (X714 X3) (59)

N

and a corresponding equation for the vertical emittance.

Figure 5 shows the turn-by-turn evolution of a beam with
initial emittance ratio of €,/¢, = 10 that is coupled by a
coordinate rotation with 7 = 30°. The Twiss parameters of
the injected beam are f, = f, =3 m, and a, = a;, =0,
which makes B, (Bx.f4) = Bnag(Br.Pp) = 5/3. Moreover,
the beam is injected with an initial offset X; = 1. The tunes
are 0.028 in the horizontal and 0.04 1 in the vertical plane, and
the detuning parameters are k,,, = 10_3,K‘yy =2x 1073, and
Ky =35 X 10~*. We observe in the upper panel that the beam
initially performs horizontal betatron oscillations with
decreasing amplitude, but the coupled beam matrix also
causes the vertical centroid X5 to oscillate. Likewise, the
horizontal and vertical beam sizes, both shown in the middle
panel, initially oscillate but rapidly decohere, before settling
on their equilibrium value. The correlation &3, derived in the
Appendix, shows a more complicated pattern, because it
oscillates with the sum and difference frequency of the
horizontal and vertical tune before also reaching its equilib-
rium value zero. The bottom panel shows the horizontal and
vertical emittances increasing from their initial value, which
is given by the projected emittance of the coupled beam at
injection. Decoherence causes the emittances to asymptoti-
cally reach &, = 13.4 and &, = 5.41, consistent with the
values calculated from Eq. (59).

VIII. DISPERSION

In this section, we consider the asymptotic emittance
growth due to a mismatched and potentially coupled
dispersion with d = 4. Here, we treat dispersion errors
Dasa momentum-dependent offset of the centroid, such
that we just replace X by D§ in Eq. (44). Subsequently,
averaging over 0 gives us the emittance growth as

A2 =— (D3 + D})s3. (60)

SR

where o5 is the relative momentum spread in the ring. The
dispersion errors D in normalized phase space are given by

] B,
D = (Dy,D,,D5,D,)" = AT< . >
y
gAxl_jx _AXCBV
()

AyC+5x + g.AyBy

where A from Eq. (51) contains the Twiss parameters and T
from Eq. (52) describes transverse coupling. These two
matrices transform the physical dispersions l3x =
(D,,D,)T and D, = (D,,D),)T in the horizontal and
vertical plane of the transfer line into the normalized phase
space of the ring. Evaluating D? + D3 then leads to

D} + D3 = D] AT AD, — 29D, CT AT A, D,
+ D, CTAJACD, (62)

and a similar expression for D3 + D7 that describes the
emittance growth in the vertical plane. Equation (62) is
valid for any coupling matrix C, but if we specifically
evaluate it for a coordinate rotation with g = cos 5 and
C = —15in 5, we find

— —

D24 DY = cos? (n)H, (B, B,) + 2sin()cos(n)H, (B, B,
+sin? (n)Hx(ﬁy,ﬁy), (63)

)

Hx<Dyv x) = nyny + ax(DyDgc + D()Dx> +ﬂxD;rD;
(64)

is the generalization of the quantity 7, that appears in the
fifth radiation integral [13,14].

For n =0, Eq. (63) characterizes the emittance growth
due to a dispersion error 5,( in the horizontal plane. The
emittance growth then turns out to be

ol BB
Ag = EHx(Dxa Dx)o% = (nyyzc + 2axDxD;c +ﬁXD;C2)0§’

| =

(65)

which agrees with the expression derived in Ref. [15].

IX. CHROMATICITY

The decoherence of an unbunched beam with rms
momentum spread o5 and a finite chromaticity Q' can
be included in our framework by adding p'.6 = 2720’6 to
the phase advance per turn ¢, from Eq. (1). This gives us
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1
V2ros

by = py + XX+ 45 with w(8) = e=%/20;

(66)

Instead of just averaging over the transverse phase-space
coordinates in Eq. (5), we now also have to average over the
momentum § with distribution y(§). The integral factorizes
into one part that depends on x; and x, and a second,
momentum-dependent part D(n), given by

D(l’l) _ / e—inﬂ;56—62/20§d5 _ e—uf(y%nz/Z’ (67)

which multiplies all integrals I[n, p].

For bunched beams that perform synchrotron oscillations
with frequency vy, the betatron phase advance after n turns
is given by [1.,4]

ng, = nu, +nx'k,x +¢(n)  with
i

{(n) = =—sin(avsn) cos(zven + 1), (68)
v

where 7, is the initial phase of the synchrotron oscillations.
Averaging over 1, and 6 with the momentum distribution
from Eq. (66) results in the form factor [1,4]

o) o0 [-2(E2) o] o0

s

The form factor D(n), either from Eq. (67) for unbunched
beams or from Eq. (69) for bunched beams, becomes a
multiplicative factor for I[n, p| that carries through all the
way to Eq. (18), where it modulates the right-hand side. In
the same fashion, all J[—2n, x,x,] in Egs. (29), (A2), and
(A5) assume an additional factor D(n)?, because the step
from n to 2n doubles {(n), which is equivalent to doubling
W, that causes the exponent of D(n) to quadruple. Apart
from these additional factors, all other equations remain
unchanged. In particular, the asymptotic equilibrium values
of the beam matrix and the emittance, which are multiplied
by powers of D(0) = 1, from Egs. (50) and (58) remain
unaffected. Only the temporal evolution toward equilibrium
is modulated by the powers of D(n) which prepend
the J(£2n, x,x;).

X. TOLERANCES

Here, we analyze the requirements for the steering errors
and the Twiss parameters of an injected beam to cause an
emittance growth of less than 1% and 5%. To do so, we
expand Eq. (50) up to second order in the deviations from
their respective design values Af = fy — f, Aa = ay — a,
AX, and AX’ and find for the asymptotic emittance increase

TABLE 1. The tolerance levels for mismatch and steering errors
for the injection into the SPS. The nominal emittance is
g9 = 1.26 x 1077 mrad, and the Twiss parameters at the injection
point are = 44.5 m and a = —0.96.

Tolerance level AB/p Aa AX [mm] AX' [prad]
1% 0.14 0.14 0.24 7.5
5% 0.32 0.32 0.54 16.8

1 /AB\?2 1 4 p
E—gy=—|— —Aa? +ZAX? + = AX"? 70
2—g 2(,3) +5 A 42 +3 (70)

with y = (1 + a?)/p. As an example, we use the horizontal
injection from the TT10 transfer line into the Super Proton
Synchrotron (SPS) [16] when it serves beams to the LHC.
In this configuration, the horizontal Twiss parameters [17]
at the injection point are f=44.5m and a= —0.96.
Moreover, the emittance is &, = 1.26 x 1077 mrad. The
tolerance levels that increase the asymptotic emittance by
1% and 5% are shown in Table I. We find that the error
tolerances for the Twiss parameters are fairly relaxed; even
errors of Af/f or Aa in the 10% range increase the
emittance by less than 1%. On the other hand, owing to the
relatively large value of § at the injection point, steering
errors AX’ exceeding 20 prad lead to increased emittances
above the 5% level.

XI. CONCLUSION

We derived evolution equations for the first and second
moments of an coupled arbitrary Gaussian phase-space
distribution that initially is mismatched and displaced and
has mismatched dispersion under the influence of
decoherence due to amplitude-dependent tune shift. The
well-known results from Refs. [1,4] for the amplitude
dependence of the first and second moments after an initial
displacement of a matched beam are reproduced. Our
results go beyond Refs. [1,4], because the initial beam
can have an arbitrary Gaussian distribution, which includes
transverse coupling, and does not need to be matched. We
then calculate the temporal evolution of the second
moments, the beam sizes, and the emittance. Moreover,
we calculate the emittance in the asymptotic limit and find
it to agree with the emittance growth due to chromatic
effects. Finally, we analyzed tolerances for the injection and
used the SPS as an illustration.
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APPENDIX: SECOND MOMENTS

In Eq. (27), we show only one of the second-order moments. The other two that are needed for the horizontal plane are
calculated in a similar fashion from

(%1%,) = ((x; cosng, + x, sinng, ) (—x, sinng + x, cos ngh)),

(#3) = ((—x; sinngy + x; cosngp,)?), (A1)

where the angle brackets denote averaging over the Gaussian from Eq. (3) in d dimensions. Following steps similar to those
leading to Eq. (29) brings us to

(5%) = 1 (2U[0.58] + J[-2n. 8] + J2n. ) = 5 (J[-2n xp] = T2, x1x])
+3(2700.03] ~ J[-2n.8] - I, ).
(%15%) = —411. (J[=2n,2] — J]2n,53]) + % (J[=2m,x1x] + T2, 3130
44 U-2n.08) = I, )
(53) = § (20[0.58] = =20, 3] = J2n, ) + £ (T[-2n, 137] ~ J2n, xy)
+ % (2710, x3] 4+ J[-2n, x3] + J[2n,x3]). (A2)

where, for completeness, we also show the expression for (£2) from Eq. (29). We can simplify these expressions further by
noting that

J[=m. p] + J[m, p] = (e™%:p) + (e7™Pxp) = 2Re(e™ P p) = 2Re(J[-m. p]) (A3)
and likewise
J[=m, p] = J[m, p] = 2ilm(J[-m, p]), (A4)

which allows us to write

(3% = %{J[O, x3] + Re(J[-2n,x3])} + Im(J[-2n, x,x,]) + % {J][0,x3] — Re(J[-2n, x3])},

(X1%,) = —%Im(l[—Zn,xﬂ) + Re(J[-2n, x1x,]) + %Im(l[—Zn,x%]),
(23) = %{J[O, x}] = Re(J[-2n,x3])} — Im(J[-2n, x,x,]) + % {J[0,x3] + Re(J[-2n, x3]) }. (A5)

The second moments of the type (%;%3) arise if we consider coupled motion and need special attention, because X
oscillates with u, and %3 with . Likewise, the amplitude-dependent tune shift in the horizontal plane is given by x Tk, X and
by X'k, X with k, = diag(k,,.Kyy. Kyy.Ky,) in the vertical plane. Since we will encounter J[m, p; u,,&,] from Eq. (28) for
different arguments y, and k,, we specify all arguments henceforth when we calculate (%,%3) for which we find
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(%1%3) =

1
4
+

| = &~

<x2x3[ in(¢y +y ) —+ em((/’ —by ) —

+

-lkl'—‘.h

+ 4>| -
—

—_ R =
=

+ py {2iIm(J[=n, X235 e + py, Ky + &y]) + 200Im(J [—n, X,x3;

1 - -
- Z {ZRG(J[—V[, XXy fhy + Hys Ky + Ky])

The last equality is a sum of terms very much like those
from Eq. (29). Only here the phase advance y, is replaced
by u, £ u, and k, by k, + k,. We can, therefore, use the

same MATLAB function for J{m, p;pu., K,
(%1%3) and determine 6,3 = (X;13)

] to work out
— X, X; shown on the

middle panel in Fig. 5.
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