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We propose a method to simultaneously determine the magnetic centers of multiple quadrupoles in a
transport line or a storage ring. The method finds the magnet centers by correcting the induced orbit shift
due to a change of the quadrupole gradient strengths, with the goal of eliminating or minimizing such orbit
shifts. The correction of the induced orbit shift is done by steering the orbit toward the quadrupole centers
with correctors, using the response matrix of the induced orbit shift with respect to the correctors. The
quadrupoles are selected with orbit corrector magnets and beam position monitors in between to ensure that
orbit correction at the quadrupole locations can be achieved. The response matrix can be measured or
calculated. Simulations with a section of the Linac Coherent Light Source II and the Stanford Positron
Electron Asymmetric Ring (SPEAR3) storage ring are done to demonstrate the feasibility and performance
of the method. It is also experimentally tested on SPEAR3. The method can be extended for beam-based
alignment measurement of nonlinear magnets.
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I. INTRODUCTION

Despite the ever-improving survey and positioning
technology, misalignment of magnets in accelerators is
inevitable. Misalignment causes beam orbit offsets from the
centers of the quadrupole and nonlinear (i.e., sextupole and
octupole) magnets. In storage rings, the “feed-down”
effects of the multipole magnets introduce linear optics
errors, coupling errors, chromatic errors, and degradation to
nonlinear beam dynamics performances. In linacs, the orbit
offsets in quadrupoles cause dispersive errors, which leads
to emittance dilution. In addition, such orbit offsets
complicate the tuning of the quadrupoles, as any change
of gradient will lead to downstream trajectory shifts.
Finding the magnetic centers with beam-based methods
and steering the beam through the magnetic centers of the
magnets have many benefits. Beam-based alignment
(BBA) for quadrupole magnets has become a standard
practice at modern accelerator facilities.
BBA can be done with a model-dependent approach or a

model-independent approach. In the model-dependent
approach, the orbit shift due to a change of the quadrupole
gradient is measured, and, by the use of a lattice model, the
corresponding kick angle at the quadrupole location is

calculated, from which the orbit offset is obtained [1–3].
The variation of the quadrupole gradient can be done
through a low-frequency harmonic modulation, which
leads to an orbit modulation of the same frequency [4].
The harmonic modulation reduces noise effects and
improves the measurement accuracy.
In the model-independent approach, the goal is to find an

orbit through the quadrupole on which a change of the
quadrupole strength does not cause a deflection of the beam
orbit. This can be achieved by experimentally steering the
orbit with a corrector magnet while observing the orbit shift
by the quadrupole variation at each step. This could be done
manually [5]. A commonly used method is implemented in
the MATLAB middle layer [6], for which the quadrupole
center offset is found by interpolating the orbit shifts due to
the quadrupole gradient variation with respect to the beam
orbit to find the zero crossing [7]. The linear curves of the
orbit shift at many locations vs the beam orbit at a beam
position monitor (BPM) adjacent to the quadrupole makes
a “bow-tie” plot, on which the quadrupole center can be
easily recognized. The model-independent method does not
require an accurate lattice model and can find the BPM
reading corresponding to the quadrupole center on the
adjacent BPM. BPM calibration errors and electrical offsets
have no negative impact on the results.
Recent progress on the topic is the use of ac excitation of

corrector magnets for beam-based alignment [8]. The orbit
shifts at two selected BPMs are linearly related, and the
slope of dependence will change when the quadrupole
strength is varied. The intersection of the two linear curves,
with or without quadrupole strength variation, gives the
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position of the quadrupole center. This method is fast,
because beam orbit measurement with ac excitation is fast.
In addition, horizontal and vertical orbit excitation can be
done simultaneously with different driving frequencies. For
BBA of quadrupoles in storage rings, typically only one
magnet is changed at a time.
Reference [9] discusses a few techniques for beam-based

alignment for linacs [10–13]. These methods are similar to
the methods employed in rings in measuring the trajectory
shifts due to a variation of the quadrupole gradients,
although, in this case, the variation can be introduced by
turning off the selected quadrupoles or measuring the
trajectory differences of the electron and positron beams
(for linear colliders). Most of these methods are model
dependent, as they solve the quadrupole offsets and BPM
offsets from the measured trajectory shifts with the use of
transfer matrices computed with a model [10–12].
However, in one method, the goal is to correct the beam
trajectory and simultaneously the trajectory shifts due to the
scaling of the strengths of all quadrupoles [13]. This
method, referred to as dispersion-free (DS) correction,
does not aim at finding the offsets of the individual
quadrupole magnets but the minimization of the combined
effect of the quadrupole misalignment to beams with
energy errors.
Reference [14] proposes a BBA method for quadrupole

families on serial power supply. The key idea is to restore
the orbit after the modulation of quadrupole strengths with
correctors on or next to the quadrupoles and to deduce the
initial orbit offsets from the change of corrector strengths.
This method was later tested in experiments [15]. A BBA
method to address the challenging situation in the inter-
action region of colliders is discussed in Ref. [16].
In this paper, we propose a beam-based method to find

the quadrupole magnetic centers for multiple magnets
simultaneously. This is achieved by correcting the orbit
shifts due to variations of the quadrupole gradients, while
the group of quadrupoles is selected to make the correction
possible and easy to do. The method is applicable to both
linacs and storage rings. The proposed method is similar to
the DS method in correcting the orbit shift induced by
quadrupole gradient variations. However, in our case, the
goal is to determine and register the quadrupole center
offsets with BPMs. Therefore, the resulting orbit offsets
after the correction are not an issue. This is a model-
independent BBA method, as the quadrupole offsets found
by the method do not require or depend on a lattice model,
even though such a model could be used to calculate the
response matrix (which could also be measured), and are
not affected by BPM calibration errors or electrical offsets.
The pattern of gradient changes can be properly chosen to
facilitate the measurements, for example, by alternating the
signs of gradient variations to keep a stable beam in ring
applications. This method could be extended for nonlinear
magnets in storage rings.

This method is also similar to the method discussed in
Ref. [14] in that both methods use correctors to determine
the centers of multiple quadrupoles simultaneously.
However, there are several key differences between the
two. First, the proposed method uses correctors to alter the
orbit at the quadrupole locations such that the induced orbit
drift is set to zero (or minimized, in practice), while in
Ref. [14] the method aims at restoring the orbit to before the
quadrupole modulation is applied. Second, our method
registers the quadrupole centers directly with nearby
BPMs, while the method in Ref. [14] uses the changes
of strengths of the nearby correctors to deduce the orbit
offsets at the quadrupole. Correctors at or near the quadru-
poles are required for the latter, which cannot always be
satisfied, while the proposed method requires only enough
correctors to independently change the orbit at the quadru-
poles in the group.
The main benefit of the proposed method is to sub-

stantially expedite BBA by parallelizing the process. We
may refer to the method as parallel BBA (PBBA). The
method could have a crucial impact to the commissioning
of new accelerators. It will also enable more frequent
routine BBA measurements on operating machines.
The paper is organized as follows: Section II discusses

the method for applications to linacs, including detailed
descriptions of the theory and simulations for a section of
the Linac Coherent Light Source (LCLS) II [17]; Sec. III
discusses the method for storage rings and demonstrates it
with the application to the Stanford Positron Electron
Asymmetric Ring (SPEAR3) storage ring [18] in both
simulation and experiments; Sec. IV briefly discusses the
special considerations for applying the method to nonlinear
magnets; and Sec. V gives the conclusions.

II. PBBA FOR A TRANSPORT LINE

A. The method

In the following, we consider BBA for quadrupoles in a
transport line. Figure 1 is a schematic of the lattice section,
which consists of quadrupole magnets, orbit correctors, and
BPMs. The magnetic centers of the quadrupoles are at Δi,
and the beam trajectory passes through the quadrupoles
with position coordinate x̄i, for i ¼ 1; 2;…; N. The quadru-
pole centers relative to the beam orbit are X̄i ¼ Δi − x̄i. The
quadrupoles can be modeled as thin-lens elements. For
quadrupole i, the nominal integrated gradient is labeled

FIG. 1. Schematic of an accelerator section for parallel BBA.
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Ki0, while the change is labeled ki, and the strengths after
changes is Ki ¼ Ki0 þ ki.
The beam receives an angular kick by the quadrupole

when the trajectory is off-centered. When the quadrupole
strength is changed, the kick angle will also change. The
kick angle change by quadrupole i will be

Δϕi ¼ ki½Δi − x̄i − Δx̄iðΔϕ1;Δϕ2;…;Δϕi−1Þ�; ð1Þ

where Δx̄ið·Þ is the trajectory shift at quadrupole i due to
the kick angle changes by the upstream quadrupoles. The
kiΔx̄ið·Þ term in the kick angle change is nonlinear with
respect to quadrupole strength changes, as the effects of
upstream quadrupoles cascade upon each other. However,
we can choose the size of ki to make the nonlinear terms
small. And, as we steer the beam through the centers of the
quadrupoles, the kick angle changes will diminish, and, in
turn, so do these nonlinear terms. In the following, we drop
the Δx̄ið·Þ terms, and, hence,

Δϕi ¼ kiðΔi − x̄iÞ: ð2Þ

The kick angle changes due to gradient variations will
cause the beam trajectory to change. We refer to such
changes as the induced trajectory (or orbit) shifts. The
induced trajectory shift at BPM Pi is the position compo-
nent of

ξðiÞ ¼
XQ<Pi

j¼1

MðPijQjÞ
�

0

Δϕj

�
; ð3Þ

whereMðPijQjÞ is the transfer matrix from quadrupole Qj

to BPM Pi and the conditionQ < Pi indicates quadrupoles
upstream of Pi. If we label the (1,2) element of MðPijQjÞ
as AðijÞ

12 , the trajectory shift at BPMs can be written as

ξi ¼
XQ<Pi

j¼1

AðijÞ
12 kjðΔj − x̄jÞ; ð4Þ

which can be written in a matrix form as

ξ ¼ AkðΔ − x̄Þ; ð5Þ

where k is a diagonal matrix whose ðj; jÞ element is kj, A
is a matrix of dimension M × N with its ði; jÞ element

being AðijÞ
12 and zero if quadrupole Qj is downstream of

BPM Pi, and Δ and x̄ are vectors formed with Δj and x̄j,
j ¼ 1; 2;…; N, respectively.
Orbit correctors can change the trajectory at the quadru-

pole locations. The changes can be calculated using transfer
matrices from the correctors to the quadrupoles. At quadru-
pole Qj, the trajectory will be the position component of

x̄ðjÞ ¼ x̄ðjÞ
0 þ

XC<Qj

l¼1

MðQjjClÞ
�

0

θl

�
; ð6Þ

where x̄ðjÞ
0 is the coordinates at quadrupole Qj when the

correctors are at the initial values (i.e., θl ¼ 0 for
l ¼ 1; 2;…; m), MðQjjClÞ is the transfer matrix from
corrector Cl to quadrupole Qj, and the condition C < Qj

represents correctors before the quadrupole. The trajectory at
all quadrupoles can be written in the matrix form as

x̄ðθÞ ¼ x̄0 þ Cθ; ð7Þ
where x̄ is aN-dimensional vector with its component being
the position coordinates at the quadrupoles, x̄0 ¼ x̄ð0Þ, C a
N ×m matrix whose ðj; lÞ element is the (1,2) element of
MðQjjClÞ ifCl is upstream ofQj or zero otherwise, and θ is
anm-dimensional vector with all the corrector kick angles as
its elements.
Combining Eqs. (5) and (7), we obtain a relationship

between the induced trajectory shift by the quadrupole
gradient changes and the kick angles of the correctors:

ξ ¼ AkðΔ − x̄0 − CθÞ ð8Þ

¼ ξ0 þRθ; ð9Þ

where ξ0 ¼ AkðΔ − x̄0Þ is the induced trajectory shift
when θ ¼ 0 and

R≡ ∂ξ
∂θ ¼ −AkC ð10Þ

is the response matrix of the induced trajectory shift with
respect to the corrector kick angles. The R matrix can be
calculated with Eq. (10), using model-calculated A and C
matrices, “measured” in simulation mode with a lattice
model, or measured directly on the machine. When
measuring on the machine, the differential changes of
the induced orbit shift are measured for each corrector,
using the actual quadrupole modulation pattern. In practice,
theRmatrix obtained with the lattice model should usually
be adequate.
The goal of the PBBA method is to find corrector kick

angles θ to set the induced trajectory shift to zero. Knowing
the response matrix R and the measured induced trajectory
shift ξ0, the changes to the corrector kick angles required to
eliminate the induced trajectory shift are given by

θ ¼ −ðRTRÞ−1RTξ0: ð11Þ

Because the induced trajectory shift is measured at multiple
BPMs and all measurements have errors, in reality, the goal
will not be achieved exactly. Instead, we aim at minimizing
the induced trajectory shift through a least-square problem;
i.e., we minimize
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χ2 ¼ ξTξ: ð12Þ

This can be achieved iteratively. At each iteration, Eq. (11)
can be used to calculate the required changes to the kick
angles toward the next step.
For the scheme to work, the matrix inversion in Eq. (11)

needs to have a unique solution. In other words, the
quadrupoles, correctors, and BPMs should be chosen to
avoid degeneracy in matrices A and C (the diagonal matrix
km will be nondegenerate, as the quadrupole gradients are
changed). The A matrix will be nondegenerate if no two
kick patterns by the selected quadrupoles cause the same
trajectory shift on the BPMs. This requires that, for any two
consecutive quadrupoles, there is either at least one BPM in
between or two BPMs in the space before the next
quadrupole. It is preferable to have at least two BPMs
downstream of the last quadrupole. The C matrix will be
nondegenerate if the correctors can steer the beam to the
desired trajectory at all quadrupoles. This requires at least
one corrector upstream of the first quadrupole, and, for any
two consecutive quadrupoles, there are a pair of correctors
in the space upstream or at least one corrector in between.
It is preferable to use all correctors and BPMs available,

as it helps increase the level of correction precision.
Therefore, we need only to select the group of quadrupoles
for simultaneous BBA measurements. Usually, we can
divide all quadrupoles in a beam line into several groups,
each group consisting of quadrupoles with a large distance
in between, possibly with some quadrupoles skipped. For
example, the first, fourth, seventh, … quadrupoles can be
put in one group; the second, fifth, eighth, … in another
group, etc. For a long beam line with many quadrupoles, it
may be necessary to first divide it into several sections and
group the quadrupoles in each section as described above.
This is because of the cascading effects of the induced
trajectory shift due to upstream quadrupoles at downstream
quadrupoles [see the Δx̄ term in Eq. (1)]. We would like the
higher-order effects to be much smaller than the direct
effect.
The pattern of gradient changes, k, can be a simple

scaling change to the initial values, if no quadrupole
involved is particularly weak. For example, all quadrupole
power supplies can be reduced by 5%. A pattern with equal
changes of integrated gradients but with alternating signs
can also be used. It is worth noting that, if multiple
quadrupoles are on a serial power supply, their magnetic
centers can still be resolved with the proposed method, as
long as there are correctors and BPMs between these
quadrupoles to detect and correct their individual contri-
butions to the induced trajectory shift.

B. Error estimate

Because we can select the target quadrupoles according
to the available corrector magnets and BPMs, we can
correct the trajectory at the quadrupole locations to the

accuracy of measurements for the induced trajectory shifts
by the BPMs. The BPM measurement errors and the
quadrupole center errors are related through Eq. (8). If
we define

RQ ≡ ∂ξ
∂Δ ¼ Ak ð13Þ

as the response matrix of the induced trajectory shift with
respect to the quadrupole center offsets, the covariance
matrix of the errors in the measured quadrupole offsets,
ΣΔΔ, is related to the BPM measurement errors through

Σxx ≡ hðξ − ξ̄Þðξ − ξ̄ÞTi ¼ RQΣΔΔRT
Q; ð14Þ

where h·i represents an ensemble average over many
measurements and Σxx ¼ diagðσ21; σ22;…; σ2MÞ, with σi,
i ¼ 1; 2;…;M, being the error sigma of the BPMs.
Therefore,

ΣΔΔ ¼ ðRT
QRQÞ−1RT

QΣxxRQðRT
QRQÞ−1: ð15Þ

If all BPMs have the same measurement error sigma, σBPM,
we have

ΣΔΔ ¼ σ2BPMðRT
QRQÞ−1: ð16Þ

The diagonal elements in the ΣΔΔ matrix give the variance
of the quadrupole center offset measurements.

C. Simulation

Simulation has been done to test the proposed PBBA
method. The accelerator modeling code Accelerator Toolbox

[19] is used for the simulation. The soft x-ray linac-to-
undulator (LTU) section of the LCLS-II copper linac [17] is
used in the study. The number of relevant elements in the
line section are listed in Table I, including two correctors
upstream of the section for each plane and five BPMs
downstream of the section.
Random misalignment errors are first added to the

quadrupoles in the section, with rms offsets of 100 μm
for both transverse planes. The quadrupole misalignment
causes a distorted beam trajectory (with zero initial

TABLE I. Elements of the LCLS-II copper soft x-ray LTU
section used in simulation. Two correctors in each plane upstream
of the section and five BPMs downstream of the section are added
to the system.

Parameter Value

Length (m) 372.5
Number of quadrupoles 33
Number of H correctors 16þ 2
Number of V correctors 17þ 2
Number of BPMs 41þ 5
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launching angle and position). Corrector magnets are used
to restore the trajectory toward the target (x ¼ y ¼ 0 at all
BPMs). The rms trajectory errors are corrected to below
20 μm. The maximum kick angle by the correctors for the
two planes is 33 μrad (H) and 61 μrad (V), respectively.
We divide the 33 quadrupoles in the LTU section into

three groups according to their locations. Group 1 consists
of quadrupoles 1; 4; 7;…; 31; group 2 consists of quadru-
poles 2; 5; 8;…; 32; and group 3 consists of quadrupoles
3; 6; 9;…; 33. Figure 2 shows the induced trajectory shift
when the strengths of all quadrupoles in group 1 are scaled
up by 5%. The trajectory shift is up to 80 μm. Also shown
in the figure is the induced trajectory shift by the linear
model (obtained by scaling up the induced trajectory shift
of a tiny gradient change). It can be seen that the higher-
order terms cause only a small deviation from the linear
model at the downstream BPMs.
The response matrix of the induced trajectory shift with

respect to the correctors is calculated with the lattice model.
Figure 3 shows the singular values of the response matrices
of the induced trajectory shifts with respect to the correctors
for both transverse planes for the group 1 quadrupoles.
While the dimensions of the response matrices are 46 × 18
and 46 × 19, respectively, for the horizontal and vertical
planes, there are only 11 modes with substantial singular
values. This is because there are only 11 quadrupoles. The
other singular-value modes would be exactly zero if not for
the higher-order effects.
The correction of the induced trajectory shift is donewith

Eq. (11), using only the 11 leading singular values in the
matrix inversion calculation. With one iteration, the rms
values of the induced trajectory shift on the 46 BPMs are
reduced to 0.35 and 0.02 μm for the horizontal and vertical
planes, respectively, when no measurement errors are
included to the BPMs. A second iteration reduce them
further to 5 and 0.1 nm, respectively. The required kick
angle changes for the correction are mostly below 10 μrad.

Figure 4 shows the beam trajectory after the correction of
the induced trajectory shift and the required changes to the
corrector kick angles.
In simulation, the quadrupole center offsets can be found

with the corrected lattice by tracking a particle with initial
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coordinates of x ¼ 0 and x0 ¼ 0 to the quadrupole loca-
tions. The differences with the target values are on the few-
nanometer level. Essentially, the quadrupole centers can be
exactly found if there are no BPM measurement errors.
With the BPM error sigmas set to σBPM ¼ 5 μm, the

correction method is repeated 10 times, from which the
error bars to the quadrupole offsets can be found. Figure 5
shows the comparison of the measured quadrupole center
offsets to the target values. The mean error sigmas for
quadrupole offsets are 22 and 27 μm for the horizontal and
vertical places, respectively. The errors can be reduced by
averaging in the measurement of induced trajectory shifts
or increasing the gradient changes of quadrupoles.
On the real machine, we cannot determine the quadru-

pole centers by tracking particles to the quadrupole
locations. Instead, we will use the readings of the BPMs
near the quadrupoles in the group to represent the center
positions of these quadrupoles. For the LTU section, every
quadrupole is next to a BPM, and, hence, the quadrupole
center offsets can be accurately recorded. Simulation with
quadrupoles in groups 2 and 3 yields similar results.
Combining the results from all three groups, the center

offsets of all quadrupoles in the LTU section are found.
Figure 6 shows the comparison of the BPM offset values
found by the PBBA method and the target offset values at
the quadrupoles.
Performing PBBA for all 33 quadrupoles in the LTU

section requires only 3 times of correction of the induced
trajectory shifts. Each time, the quadrupole gradients are
varied 2–3 times. The total time would be substantially less
than the current method of making the bow-tie plot for each
individual quadrupole.

III. PBBA FOR A STORAGE RING

A. Method

The method of performing simultaneous BBA for
multiple quadrupoles by correcting the induced orbit shift
(IOS) can be applied to storage rings. Similarly, we select a
group of quadrupoles that are sufficiently separated, with
BPMs and correctors in between, and measure the IOS by
varying the gradients of these quadrupoles. Corrector
magnets are used to correct the IOS observed by the
BPMs. Essentially, we are correcting the orbit at the
locations of the selected quadrupoles toward the magnetic
centers.
The description of the method presented in Sec. II A still

largely applies, except now the BPMs measure the closed
orbit instead of the one-pass trajectory. In Eqs. (5) and (7),
the elements in the A matrix are now the closed orbit
responses at the BPMs by the kicks at the quadrupole
locations, while the elements in the C matrix are the closed
orbit responses at the quadrupole locations by the corrector
magnets. Since in a storage ring an angular kick at any
location affects the closed orbit everywhere, the A and C
matrices are now full matrices.
Simultaneous changes of the gradients of many quadru-

poles can substantially change the linear optics of the ring,
which could cause significant degradation of beam lifetime
or move the beam across resonance conditions and, in turn,
cause beam losses. Therefore, we should choose the
quadrupoles carefully and apply a gradient change pattern
k, properly, to ensure the beam will be stable during and
after the gradient changes. For example, the signs of the
gradient changes can be alternated in a sequence of
quadrupoles to keep the betatron tunes nearly fixed. The
number of the quadrupoles in a group can be limited to
allow a relatively large gradient change while keeping the
beam stable.

B. Simulation

Simulations with the SPEAR3 storage ring are done to
demonstrate the application of the PBBAmethod to storage
rings. SPEAR3 is a 3-GeV third-generation synchrotron
light source with a circumference of 234 m [18]. The lattice
consists of 18 double bend achromat cells in a racetrack
configuration, with 14 standard cells forming two arcs and
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four matching cells that flank the two long straight sections.
There are a total of 97 quadrupole magnets in the lattice.
There are 58 horizontal correctors and 56 vertical correc-
tors. Currently, 56 BPMs are used for beam orbit control.
In the simulation, we first introduce random misalign-

ment errors to all quadrupoles with an rms offset of 200 μm
for both planes. The orbit is then corrected to below 2 μm at
the BPMs with the correctors. We select a group of 14
quadrupoles for simultaneous BBA as an example. These
are the second focusing quadrupole (QF) magnets in each
of the 14 standard cells. The QF magnets are 0.35 m long,
and the nominal gradients are about 1.9 m−2. We choose to
alternate the gradient changes with a þ2% change for the
odd number quadrupoles and a −2% change for the other
quadrupoles. The betatron tunes become νx ¼ 14.096 and
νy ¼ 6.160, down from the original values of νx ¼ 14.106
and νy ¼ 6.177, respectively.
The initial IOS by the gradient changes of the 14 QF

magnets is shown in Fig. 7. Also shown in the plots is the
expected orbit shift for a linear model (with respect to
the quadrupole gradients), which is obtained by scaling up
the response of a tiny gradient change by the same pattern.
The differences between the actual orbit shift and the linear
model reflect the changes to the linear optics of the ring
when the quadrupoles are changed.
The response matrices of the IOS with respect to the

correctors are calculated with the design lattice model.
Figure 8 shows the singular values of the horizontal and
vertical response matrices. There are only 14 modes with
significant singular values, as there are 14 quadrupoles that
affect the IOS. The calculated response matrices are used
for the correction of the IOS with Eq. (11). After two
iterations of correction, the residual IOS after correction are
reduced to submicron level. The differences between the
quadrupole offsets found by BBA and the target values are
also on the submicron level, as shown in Table II. The beam
orbit is changed to go through the centers of the 14 QF

quadrupoles that are varied (see Fig. 9). The required
corrector kick angles are below 30 μrad.
The BBA results are affected by BPM measurement

errors. We repeated the PBBA process 10 times, with
random errors added to the orbit measurements and a BPM
error sigma of 1 μm. The quadrupole center offsets are
compared to the target values in Fig. 10. The average error
sigmas of the offsets are 7.3 (X) and 11.3 μm (Y) for the
two transverse planes, respectively.

C. Experiments

The PBBAmethod has been experimentally tested on the
SPEAR3 storage ring. In the experiment, the same 14 QF
magnets as used in simulation are targeted. The quadrupole
gradients are changed by �2% in an alternating pattern.
The model-calculated IOS response matrix was used for the
experiment.
Figure 11 shows the IOS measured during three iter-

ations of correction. The initial IOS are up to 0.1 and
0.05 mm, respectively, in the horizontal and vertical planes.
The conditions for “after iteration 1” and “before iteration
2” are the same, as are “after iteration 2” and “before
iteration 3.” The measured IOS for these conditions over-
lap, which indicates the orbit shifts are reproducible. The
rms IOS is reduced from 65.0 to 0.6 μm for the horizontal
plane and from 27.2 to 3.0 μm in the vertical plane. It is
noted that in each iteration it is an undercorrection in the
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TABLE II. Standard deviations of residual IOS at BPMs and
the differences between the BBA results and the actual quadru-
pole centers (BBA error) after each iteration for the SPEAR3
example.

Iteration
IOS-X
(μm)

IOS-Y
(μm)

BBA error (X)
(μm)

BBA error (Y)
(μm)

1 8.1 4.1 5.1 6.6
2 0.9 0.4 0.3 0.5
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horizontal plane and an overcorrection in the vertical plane,
which could come from errors in the corrector strength
calibrations. The overcorrection on the vertical plane is
36%. The convergence would be much faster if we adjust

the current to kick angle conversion coefficients for the
correctors.
After the IOS correction, the quadrupole centers are

marked by the BPMs next to the quadrupoles. The
measurements are repeated 4 times with the same initial
orbit, from which the error bars can be estimated. Figure 12
shows a comparison of the quadrupole center offsets from
the initial orbit measured by PBBA and the conventional
bow-tie method [quadrupole modulation system (QMS)]
[7]. The initial orbit is different from the QMS offset orbit,
as steering is needed for injection or user beam lines. For
example, the large horizontal offset at BPM 2 in the figure
is to create a closed orbit bump at the injection septum. The
PBBA results are generally close to the QMS results. There
are also some noticeable differences on the vertical plane,
which would decrease if the vertical IOS correction is
improved.
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One iteration of IOS correction with two quadrupole
gradient modulation (one before and one after) took 32 s. A
full correction with three iterations should take about 70 s if
the two extra intermediate IOS measurements are skipped
(14 s each). This is for the group of 14 quadrupoles. It
would take less than 5 min to find the offsets for all 56
BPMs for SPEAR3. In comparison, it takes the current
method (QMS) 2.5 h to complete BBA for the same
quadrupoles.

IV. PBBA FOR NONLINEAR MAGNETS IN
STORAGE RINGS

The BBA approach by correcting the IOS can be applied
to sextupole and other nonlinear magnets in storage rings.
The centers of several magnets can be found simultane-
ously, provided that varying their strengths does not cause
beam loss and there are enough correctors and BPMs to
correct the IOS.
Large relative changes of strengths to the nonlinear

magnets may be needed to induce large orbit shifts (in
comparison to BPM errors). The number of nonlinear
magnets that can be changed on such a scale while still
keeping a stable beam may be limited. Groups of nonlinear
magnets and special patterns of changes for them that are
applicable for PBBA could be found experimentally.
The dependence of IOS from variations of nonlinear

magnets on the corrector magnets is not linear. Since the
actual orbit offsets in the nonlinear magnets are not known,
we cannot calculate the response matrix of the IOS with
respect to the correctors with the lattice model. However,
the response matrix can be measured on the machine for
each iteration of the correction. To reduce the measurement
time, it may be necessary to reduce the number of
correctors used for the correction of induced orbit. For
example, if we are trying to determine the center offsets of
20 sextupoles in a large ring with 300 correctors, there is no
need to use all 300 correctors. Instead, it would be
sufficient to choose 20–30 properly chosen corrector
magnets. It may be possible to form combined orbit
correction knobs with all correctors to target the orbits
at the selected nonlinear magnets, using singular-value
decomposition on the model-calculated orbit response
matrix.
Beam-based optimization methods can also be used to

find the orbit that minimizes the IOS. The Nelder-Mead
simplex method [20] and the robust conjugate direction
search method [21] would be well suited for this applica-
tion. Machine-learning-based optimization algorithms,
such as the multigeneration Gaussian process optimizer
[22], can also be used.

V. CONCLUSION

We proposed a method, PBBA, to perform beam-based
alignment measurements for multiple quadrupoles

simultaneously. In the method, quadrupoles in the lattice
are properly selected and grouped according to their
locations relative to the corrector magnets and BPMs.
The orbit shifts induced by a pattern of strength changes
of the selected quadrupoles are measured with BPMs and
corrected with the corrector magnets using the response
matrix method with the aid of singular-value decomposi-
tion. After the correction of the IOS, the beam orbit goes
through the centers of the selected quadrupoles, subject
only to BPM precision limitations. The method is appli-
cable to one-pass systems such as linacs and transport lines,
as well as storage rings.
Simulations were done for a section of the LCLS-II and

the SPEAR3 storage ring to demonstrate the method. In the
LCLS-II example, quadrupole gradients are varied by 5%.
In the SPEAR3 example, the gradients of the selected
quadrupoles are varied by þ4% or −4% in an alternating
pattern to keep the betatron tunes nearly fixed. For both
cases, the quadrupole centers are found by the method, and
the error sigmas for the quadrupole offsets are about 5 times
the BPM error sigma.
The method was also experimentally tested on SPEAR3.

We successfully demonstrated that the IOS are reproducible
and can be corrected directly with orbit correctors, using
model-calculated response matrices. The offsets found by
the PBBA method generally agree with the conventional
method. It is estimated that the PBBA method is 30 times
faster than the conventional method.
Extension of the method to nonlinear magnets in storage

rings is also discussed.
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