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In previous publications, the effect of inhomogeneous beam loading of Landau cavities due to a
nonuniform fill pattern in a storage ring has been studied with the aim of predicting the resulting
longitudinal profiles of the bunches and their time offsets relative to the main rf [T. Olsson et al., Phys. Rev.
Accel. Beams 21, 120701 (2018)]. This work was extended to treat dipolar coupled-bunch modes driven by
beam-excited higher-order modes in the rf cavities [F. J. Cullinan et al., Phys. Rev. Accel. Beams 23,
074402 (2020)]. These coupled-bunch modes are of interest because they can become unstable, leading to
an increase in the energy spread. The theory has now been extended once again to cover the case of
coupled-bunch quadrupole modes where it is the lengths of the bunches that are oscillating, not their
centroids. The theory is outlined and its predictions are thoroughly benchmarked against predictions from
macroparticle tracking. Observations of the effects of nonuniform fill patterns on coupled-bunch
quadrupole instabilities are made and interpreted. Results of measurements at the MAX IV 3 GeV ring,
interpreted using theoretical calculations, are then presented to continue the investigation.
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I. INTRODUCTION

In a previous publication [1], the stability of coupled-
bunch modes driven by higher order modes (HOMs) in the
rf cavities was investigated for the case of a bunched beam
in a storage ring and specifically, for cases where the fill
pattern of the ring is nonuniform. This work was an
extension of a previous investigation [2] into how the
inhomogeneous1 beam loading of the cavities that arises
due to such fill patterns leads to slippage in the phase of the
different bunches relative to the rf wave. This paper extends
the work once again to also account for coupled-bunch
quadrupole instabilities: oscillations of the bunch length.
As before, the theory developed takes into account the
variation in the time intervals between consecutive bunches
and the Landau damping due to the tune spread between
bunches (interbunch) but it does not account for the tune
spread within each bunch (intrabunch).
As is the case with their dipolar counterparts, coupled-

bunch quadrupole instabilities typically result in a

significant increase in the energy spread which, in the
case of synchrotron light sources, degrades the brilliance of
the light delivered to the beamlines. As an additional
motivation, quadrupole instabilities cannot be effectively
damped using the most common type of longitudinal
bunch-by-bunch feedback, which applies an energy kick
that is uniform over the bunch length based on previous
measurements of the phase or energy offset of the bunch
centroid. Some damping has been demonstrated by exploit-
ing bunch-length sensitivity in the centroid measurements
and using a sinusoidal energy kick off crest but it is by no
means optimized and comes at the cost of worse damping
of dipole modes [4]. As a result, quadrupole instabilities
can limit the maximum current that can be stored in rings
that rely on a feedback for longitudinal stability [4,5].
In order to validate this latest extension of the theory, its

predictions are benchmarked extensively against the results
of macroparticle tracking carried out using MBTRACK [6].
Some important limitations and considerations are in this
way identified. The effects of the nonuniform fill on a
quadrupole instability are investigated for the case of the
MAX IV 3 GeV ring. The use of Landau cavities,
specifically in fourth generation storage-ring light sources,
was a key motivation for the previous investigations as
they have a large effect on the beam phase slippage when
there is a nonuniform fill pattern. This is found to also
be of importance here. As part of the investigation,
measurements of a coupled-bunch quadrupole instability
were made at the MAX IV 3 GeV ring for different fill
patterns. The results are compared to predictions made
using the theory.

*francis.cullinan@maxiv.lu.se
1The word “transient” has been used in place of the word

“inhomogeneous” in previous publications but the latter is adopted
here as a more accurate alternative as pointed out by Warnock and
Venturini [3]. Similarly, the previously used phrase “beam phase
transient” has been replaced with “beam phase slippage.”
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The outline of the rest of the paper is as follows.
Section II outlines the theory. In Sec. III, the predictions
of the theory are compared to predictions made using the
macroparticle tracking code MBTRACK [6] and some gen-
eral observations of the behavior of coupled-bunch quadru-
pole modes in the presence of a nonuniform fill are made.
Section IV presents a continuation of the investigation with
the results of measurements made at the MAX IV 3 GeV
ring, which the theory is used to interpret. Finally, the main
conclusions are summarized in Sec. V.

II. THEORY

The approach followed here is the one taken by Lindberg
[7]. An expression for the wake potential is derived and this
is then used to construct a Hamiltonian for the motion of
particles within a bunch. The Hamiltonian is, in turn,
substituted into the Vlasov equation. The coordinate system
used here in longitudinal phase space is a normalized
energy offset δ ¼ ΔE=E0 and a time offset τ from the
equilibrium time offset ζ at which a particle receives no net
energy gain per turn [2]. The purpose of defining an
equilibrium time offset is to allow it to vary between
bunches. This time offset is relative to a chosen arbitrary
phase of the main rf wave and a positive value for τ or ζ is
earlier in time in contrast to the arrival time twhere a larger
value is later. Using this notation, the wake potential Vwake
at bunch n due to the wakefield from bunch j summed over
infinite previous turns is given by

Vwake;jðτ; tÞ ¼−
eIj
E0

Z
dτ̂dδ̂

X∞
l¼0

Ψjðτ̂; δ̂; t− lT0Þ

×
Z

τ
dτ0Wk½τ̂þΔtðζn;ζjÞþ lT0 − τ0� ð1Þ

where Ψ is the normalized distribution of particles in
longitudinal phase space, Wk is the longitudinal wake
function, Ij is the current of bunch j, E0 is the beam energy,
e is the elementary charge, T0 is the revolution period of the
machine, c is the speed of light in vacuum and Δt is the
difference in arrival time between the two bunches as
defined in [1] as

Δtðζn;ζjÞ¼
�
ζj−ζnþðn− jþhÞ=frf for n≤ j

ζj−ζnþðn− jÞ=frf for n> j
ð2Þ

where frf is the frequency of the main rf and h is the
harmonic number of the ring. The bunch distribution is
expanded into a fixed distribution Ψ0;j plus a perturbation
ψ j that varies in time and contains no net charge:

Ψjðτ; δ; tÞ ¼ Ψ0;jðτ; δÞ þ ψ jðτ; δ; tÞ ð3ÞZ
ψ jðτ̂; δ̂; t − lT0Þdτ̂dδ̂ ¼ 0: ð4Þ

The next step is to perform a Taylor expansion of the
integrated wake function, keeping in mind that, because we
want to evaluate the quadrupole instability, we are inter-
ested in the second-order moment of the bunch and so will
only be keeping terms of second order in τ̂. For reasons that
will come apparent later, we must continue the Taylor
expansion up to third order.

Z
τ
dτ0Wk½τ̂ þ Δtðζn; ζjÞ þ lT0 − τ0�

≈
Z

τ
dτ0

�
WkðξÞ þ ðτ̂ − τ0Þ dWk

dξ

þ 1

2!
ðτ̂ − τ0Þ2 d

2Wk
dξ2

þ 1

3!
ðτ̂ − τ0Þ3 d

3Wk
dξ3

þO½ðτ̂ − τ0Þ4�
�

ξ¼Δtðζn;ζjÞþlT0

: ð5Þ

Doing this restricts the theory to wake functions that vary
slowly over the passage of the bunch. This is the case for
most cavity HOMs in electron storage rings, for example,
whose periods of oscillation tend to be much longer than
the bunch duration. Evaluating the integral, expanding and
neglecting all terms except for those that contain τ̂2 leaves

�
τ̂2τ

2

d2Wk
dξ2

−
τ̂2τ2

4

d3Wk
dξ3

�
ξ¼Δtðζn;ζjÞþlT0

: ð6Þ

Doing this is justified for the following reasons. First,
constant-wake terms are neglected. These affect the equi-
librium time offset of the bunch due to the additional
energy loss. They also affect the synchrotron oscillation
frequency due to the change in the slope of the rf voltage. If
desired, these effects can be included in the matrix method
outlined in [2] or it can simply be assumed that they are
small compared to other constant-wake sources, as in [1].
Second, it is assumed that the bunch has no dipole moment
so first order terms in τ̂ are left out. Third, the perturbation
has been defined as containing no net charge. The wake
potential is then written as

Vwake;jðτ; tÞ ¼ −
eIj
E0

X∞
l¼0

�
τ

2

d2Wk
dξ2

−
τ2

4

d3Wk
dξ3

�
ξ¼Δtðζn;ζjÞþlT0

×
Z

ψ jðτ̂; δ̂; t − lT0Þτ̂2dτ̂dδ̂: ð7Þ

The next step is completely analogous to what is done in
[7]. Equation (7) is summed over all drive bunches (or,
more accurately, over all rf buckets whether they contain
any charge or not) and incorporated into a Hamiltonian for
particle motion within the witness bunch. In action-angle
coordinates ðJ;ΦÞ, the Hamiltonian is
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Hn ¼ H0;nðJÞ þ
Xh−1
j¼0

Vwake;jðΦ; JÞ ð8Þ

where the wake potential has been converted to action-
angle coordinates and the first term H0 contains the rf
potential and can also incorporate constant wake terms, as
explained in [7]. The Vlasov equation in action-angle
coordinates is

∂Ψn

∂t þ ∂Φ
∂t

∂Ψn

∂Φ þ ∂J
∂t

∂Ψn

∂J ¼ ∂Ψn

∂t þ ∂Hn

∂J
∂Ψn

∂Φ −
∂Hn

∂Φ
∂Ψn

∂J
¼ 0: ð9Þ

Substituting in the Hamiltonian and neglecting all terms of
higher than first order in the perturbation ψn, remembering
that the wake potential is itself first order, the Vlasov
equation is linearized to

∂ψn

∂t þ ωnðJÞ
∂ψn

∂Φ −
Xh−1
j¼0

∂Vwake;j

∂Φ
∂Ψ0;n

∂J ¼ 0 ð10Þ

where ωnðJÞ ¼ ∂Φ=∂t ¼ ∂Hn=∂J is the action-dependent
incoherent synchrotron frequency which characterizes the
rf potential for that bucket.
Converting Eq. (7) to action-angle coordinates,

substituting it into Eq. (10) and performing the same
manipulations as in [7], the linearized Vlasov equation
becomes

ψ̃nðΦ; JÞe−iΩΦ=ωn ½e−2πiΩ=ωn − 1�

¼ ∂Ψ0;n

∂J
Xh−1
j¼0

eIj
E0

hτ2ij
X∞
l¼0

eilΩT0
1

ωnðJÞ

×
Z

Φþ2π

Φ
dΦ0e−iΩΦ0=ωn

�
1

2

∂τ
∂Φ0

d2Wk
dξ2

−
1

4

∂ðτ2Þ
∂Φ0

d3Wk
dξ3

�
ξ¼Δtðζn;ζjÞþlT0

: ð11Þ

Equation (11) resembles Eq. (15) in [7], the only differ-
ence being the term in square brackets replacing derivatives
of the longitudinal coordinate and the wake function.
Here, Ω is the complex frequency of coherent oscillation
and characterizes the assumed time evolution of the
perturbation:

ψnðΦ; J; tÞ ¼ ψ̃nðΦ; JÞe−iΩt: ð12Þ

The amplitude of the quadrupole oscillation of bunch n is
defined as the quadrupole moment

hτ2in ¼
Z

τ̂2ðΦ; JÞψ̃nðΦ; JÞdΦdJ: ð13Þ

Following on from this, the longitudinal coordinate is
expanded as a Fourier series τ ¼ P

m eimΦτmðJÞ so that,
after performing the integration over Φ0, Eq. (11) becomes

ψ̃nðΦ; JÞ ¼ ∂Ψ0;n

∂J
Xh−1
j¼0

eIj
E0

hτ2ij
X∞
l¼0

eilΩT0
1

ωnðJÞ
X
m

�
mτmðJÞeimΦ

2½m −Ω=ωnðJÞ�
d2Wk
dξ2

−
X
p

ðmþ pÞτmðJÞτpðJÞeiðmþpÞΦ

4½mþ p −Ω=ωnðJÞ�
d3Wk
dξ3

�
ξ¼Δtðζn;ζjÞþlT0

: ð14Þ

The next step is to multiply by τ2 and integrate over all of phase space. Starting with the angle variableΦ, everything on the
right-hand side outside the square brackets is independent and multiplying the terms inside the square brackets by τ2 leaves
the following integration:Z

2π

0

dΦτ2
X
m

�
mτmðJÞeimΦ

2½m −Ω=ωnðJÞ�
d2Wk
dξ2

−
X
p

ðmþ pÞτmðJÞτpðJÞeiðmþpÞΦ

4½mþ p −Ω=ωnðJÞ�
d3Wk
dξ3

�
ξ¼Δtðζn;ζjÞþlT0

¼
Z

2π

0

dΦ
X
m;q;r

�
mτmðJÞτqðJÞτrðJÞeiðmþqþrÞΦ

2½m − Ω=ωnðJÞ�
d2Wk
dξ2

−
X
p

ðmþ pÞτmðJÞτpðJÞτqðJÞτrðJÞeiðmþpþqþrÞΦ

4½mþ p − Ω=ωnðJÞ�
d3Wk
dξ3

�
ξ¼Δtðζn;ζjÞþlT0

: ð15Þ

To solve this, all orders of τ are excluded apart from
jmj ¼ 1, which is equivalent to assuming elliptical orbits
for all particles in longitudinal phase space. We then see
that the first term evaluates to zero because mþ qþ r ≠ 0

for all combinations of jmj ¼ jqj ¼ jrj ¼ 1. Additionally,
the second term is only nonzero whenm ¼ p ≠ q ¼ r. The
third-order term in the Taylor expansion of the wake
function is the lowest-order term that drives the quadrupole
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instability. This is intuitive since the first-order term is
insensitive to the quadrupole moment while the second-
order term is an equivalent kick to the head and the tail, not
affecting the length of a symmetric bunch. Equation (14)
thereby simplifies to

hτ2in ¼
4πe
E0

Xh−1
j¼0

Ijhτ2ij
X∞
l¼0

eilΩT0

×
Z

∞

0

dJ
1

ωnðJÞ
∂Ψ0;n

∂J
jτ1ðJÞj4

Ω2=ω2
nðJÞ − 4

×
d3Wk
dξ3

����
ξ¼Δtðζn;ζjÞþlT0

: ð16Þ

The derivation up to this point answers the challenge laid
down by Lindberg to extend his analysis to moments of the
bunch distribution that are of higher order than dipole [7].
The approximation of elliptical orbits was introduced a
little earlier in order to complete the integration in Eq. (15)
but this is not an overly restrictive approximation and is
made later in [7] for all specific cases that are explored. One
may then wish to perform the last step of evaluating
Eq. (16) for specific rf potentials such as weakly anhar-
monic or quartic or alternatively, attempt to evaluate it
numerically in a similar approach to that of Venturini [8].
The interest here, however, is to focus on nonuniform fill
patterns.
For the integration over J, we assume a quadratic

potential so that the distribution Ψn is Gaussian in both
energy and time offset and ωn is independent of J so there
is no intrabunch Landau damping. The latter assumption
was also made in [1] and was found to be justified for the
nonuniform fill pattern studied. The following relations,
also found in [7], then apply

Ψ0;nðJÞ ¼
e−J=hJin

2πhJin
ð17Þ

τ1ðJÞ ¼ τ−1ðJÞ ¼ στ;n

ffiffiffiffiffiffiffiffiffiffiffi
J

2hJin

s
ð18Þ

hJin ¼ στ;nσδ;n ð19Þ

τ ¼ αc
ωn

δ: ð20Þ

The differentiation with respect to and integration over J
can then be evaluated analytically to give

Z
∞

0

∂Ψ0;n

∂J jτ1j4dJ ¼ −
σ3τ;n

4πσδ;n
¼ −

αcσ
2
τ;n

4πωn
: ð21Þ

Inserting this into Eq. (16) and rearranging the Ω2 − 4ω2
n in

the resulting denominator gives the eigenvalue equation

Ω2hτ2in

¼
Xh−1
j¼0

�
−
eαcσ2τ;n
E0

Ij
X∞
l¼0

eilΩT0
d3Wk
dξ3

þ4ω2
nδnj

�
ξ¼Δtðζn;ζjÞþlT0

×hτ2ij ð22Þ

where δnj is the Kronecker delta.
Finally, we assume a resonant wakefield so that we can

make the following substitution, similarly to in [2]:

X∞
l¼0

eilΩT0
d3Wk
dξ3

����
ξ¼Δtðζn;ζjÞþlT0

¼ −
ωrRL

2QL

�ðiωr − αÞ3eðiωr−αÞΔtðζn;ζjÞ

1 − eðiωr−αþiΩÞT0

þ ð−iωr − αÞ3eð−iωr−αÞΔtðζn;ζjÞ

1 − eð−iωr−αþiΩÞT0

�
; ð23Þ

where ωr is the resonant frequency of the resonator
wake source and RL and QL are the loaded shunt
impedance and quality factor respectively. α ¼ ωr=2=QL
is the damping constant. Substituting Eq. (23) into Eq. (22)
and solving for the eigenvalues in order to determine Ω
allows for the prediction of the coherent frequency and
growth rates of different coupled-bunch quadrupole modes
driven by HOMs.
For the specific case of resonant wakefields, the accuracy

can further be improved by introducing form factors to
account for the variation of the wake function over the
length of the bunch. Instead of Eq. (23), the following
expression would then be substituted into Eq. (22) in the
same place:

−
ωrRLjFjjjFnj

2QL

×

�ðiωr − αÞ3eðiωr−αÞΔtðζn;ζjÞþiðφj−φnÞ

1 − eðiωr−αþiΩÞT0

þ ð−iωr − αÞ3eð−iωr−αÞΔtðζn;ζjÞ−iðφj−φnÞ

1 − eð−iωr−αþiΩÞT0

�
: ð24Þ

where Fj ¼ jFjj expðiφjÞ is the complex form factor of
bunch j as defined in [2]. This restores some of the
accuracy lost in the Taylor expansion in Eq. (6) but is
only applicable to resonant wakefields so there is some loss
of generality. Maintaining the assumptions of Gaussian
bunches, FjF�

n ¼ expð−ω2
rðσ2τ;j þ σ2τ;nÞ=2Þ.

Encouragingly, for uniform fill patterns and the zeroth
order coupled-bunch mode where hτ2ij ¼ hτ2in, substitut-
ing Eq. (24) into Eq. (22) returns something similar to
Eq. (13) in [9]. Furthermore, the same derivation was also
carried out for the dipole moment and the result is
equivalent to Eq. (14) in [1] if Gaussian bunches are
assumed. This derivation is not outlined here since it is even
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more similar to the one in [7], only differing in the last steps
where the generality to arbitrary fill patterns is maintained.
A method for evaluating quadrupole coupled-bunch insta-
bilities analytically that is generalized to arbitrary fill
patterns has therefore been successfully developed.

III. BENCHMARKING

The theory described in Sec. II has been benchmarked
against the results of macroparticle tracking. Similarly to
[1], the theory was used to calculate threshold shunt
impedances of a specific HOM. That is, the shunt imped-
ance at which the growth rate of the least stable coupled-
bunch quadrupole mode is equal to the rate of damping due
to synchrotron radiation. This is twice the radiation damp-
ing rate of the dipole modes as discussed in detail in [10]
and essentially because the equations predict the evolution
of moments of second order hτ2in. Above the threshold
shunt impedance, a coupled-bunch quadrupole instability is
predicted to develop. The predictions are compared with
the results of HOM shunt-impedance scans in macro-
particle tracking. The parameters used are those of the
MAX IV 3 GeV ring, listed in Table I, which is identical to
the table in [1] except here, the parameters of a HOM have
been added. This HOM, later referred to as the “example
HOM,” is 94.9 MHz above the tenth harmonic of the rf
frequency so that it drives coupled-bunch mode number
167 in a uniform fill. Following convention, the damping
time T 0 (inverse of the damping rate) listed in Table I is the
dipole-mode damping time.
It was found that the threshold shunt impedances for

quadrupole instabilities were a lot higher than for a dipole
instability driven by the same HOM. The calculation was
performed for different fill patterns and different Landau-
cavity voltages. A two-step method is used, similar to in [1]

where, in the first step, the phase slippage and bunch
lengths are calculated using the matrix method introduced
in [2] and in the second step, the stability of the stationary
distribution against quadrupolar perturbations is deter-
mined. As in [1], the incoherent synchrotron frequency
ωn was calculated from the gradient of the total rf voltage
using Eq. (17) in [2].
Because of the interplay between the tune shift and

growth rates discussed in [1], an iterative minimization
algorithm was used to arrive at a value for the threshold
shunt impedance. For nonuniform fill patterns, the phase
slippage had to be recalculated every iteration taking into
account the beam loading of the HOM, which can have a
significant impact. Figure 1 illustrates this effect and shows
why such an approach is necessary. This was not done for
the dipole coupled-bunch instabilities studied in [1] but
may have been necessary if cases with lower Landau-cavity
voltages had been studied, as discussed below.
The macroparticle tracking was performed using

MBTRACK and the parameters listed in Table I. The
simulations whose results are presented in this section
include radiation damping and are of 40,000 turns of the
MAX IV 3 GeV ring starting from the stable beam phase
slippage expected in the absence of the HOM as generated
using MBTRACK. A bunch-by-bunch feedback is included to
suppress the dipole instability. This feedback employs
energy detection and applies an energy kick to each bunch
equal to its energy offset multiplied by a gain of −0.4. In
Figs. 2–4, the results of the simulations are shown in two-
dimensional grids where each row is for a different HOM
shunt impedance and each column, the value of some other
parameter. The color of each grid cell represents the RMS
bunch-length variation over the last 20,000 turns of the
simulation. The first 20,000 turns are excluded in order to
properly account for the change of the phase slippage due
to the inhomogeneous beam loading of the HOM. For each
scan of the shunt impedance, the minimum value for which
simulations are performed is one that results in a stableTABLE I. Parameters of the MAX IV 3 GeV ring used for this

study.

Parameter Value

Energy E0 3 GeV
Circumference 528 m
rf frequency frf 99.931 MHz
rf voltage V0 1.251 MV
Beam current 250 mA
Harmonic number h 176
Energy loss per turn U0 363.8 keV
Radiation damping time T 0 25.194 ms
Momentum compaction αc 0.000306
Natural normalized energy spread 0.000769
Landau cavity (LC) harmonic 3
Total LC shunt impedance Rs ¼ V2=ð2PÞ 8.25 MΩ
LC quality factor 20800
HOM frequency on resonance 1094.13 MHz
HOM quality factor 24000
HOM shunt impedance 200 kΩ

FIG. 1. Bunch-centroid time offsets with beam loading of the
HOM at the threshold shunt impedance of the quadrupole
instability compared to the case with no HOM beam loading
at all. The results are for a case where 165 out of 176 rf buckets
are filled and the Landau cavities are detuned by þ150 kHz.
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beam. In the plots, the bunch length oscillation amplitude is
assumed to be equal or lower for shunt impedances below
those minimum values. No similar assumption is made for
shunt impedances above threshold so points for which no
simulation has been run are simply colored black.

A. Landau-cavity detuning

The influence of the Landau cavities was immediately
checked because, as they greatly affect the phase slippage,
it is likely to be large. Results are shown in Fig. 2 for the
example HOM on resonance and a fill pattern where 160 rf
buckets out of 176 are filled with equally charged bunches.
The Landau cavity detuning has been varied between
þ75 kHz and þ275 kHz. With a uniform fill, the former
would result in a total Landau-cavity voltage of 381 kV,
only slightly lower than the 396 kV that would be required
to fully flatten the first derivative of the rf voltage, and
þ275 kHz is close to half the revolution frequency, which
is practically the most a passive Landau cavity can be
detuned to minimize its influence on the phase slippage.
The general trend is that the larger the Landau-cavity

detuning (and thereby, the lower the Landau-cavity volt-
age), the larger the threshold shunt impedance. This was
also seen in [1] and can be attributed to the reduction of the
incoherent synchrotron frequency by the flattening of the rf
potential (before any increase in the tune spread between
bunches reverses the trend). This trend is further amplified
by the effect of the HOM on the beam phase slippage, as
can be seen in the difference between the results of the
theoretical calculation with and without beam loading of
the HOM. The Landau cavities have a smaller influence
on the beam phase slippage as they are further detuned and
so the HOM becomes more dominant. The HOM then
becomes both the driver of the instability and the dominant
source of the interbunch tune spread and this only increases

FIG. 3. Threshold shunt impedances above which a HOM-
driven coupled-bunch quadrupole instability develops for differ-
ent numbers of filled rf buckets as determined by theory
compared to the bunch length stability observed in macroparticle
tracking shown on a color scale where black indicates that no
simulation was run.

FIG. 2. RMS oscillation of the bunch length during macro-
particle simulations indicating the stability of a HOM-driven
coupled-bunch quadrupole instability compared to theoretical
predictions of the threshold shunt impedance against the detuning
of the Landau cavities. Black indicates that no simulation was run.

FIG. 4. Threshold shunt impedances above which a HOM-driven coupled-bunch quadrupole instability develops as determined by
theory compared to the bunch length stability observed in macroparticle tracking shown on a color scale for different HOM frequencies
and for three cases: a Landau-cavity detuning of 75 kHz and a 160 buckets filled (left), the same fill with a Landau-cavity detuning of
150 kHz (center) and a 150 kHz detuning with 165 buckets filled (right). Black indicates that no simulation was run.
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the threshold shunt impedance. On the other hand, at the
smallest Landau detuning of 75 kHz, the beam-loading of
the Landau cavities is large and is the dominant driver of
the beam phase slippage. Consequently, the difference
between the results with and without HOM beam loading
is too small to be visible on the figure.
Effects included in the macroparticle tracking that are not

included in the theory include the diffusion effects of
quantum excitation and Landau damping due to intrabunch
synchrotron tune spread. Nevertheless, there is a good level
of agreement between tracking and the theory over the full
detuning range.

B. Fill pattern

Keeping the HOM at its resonant frequency, the inves-
tigation was continued to see what happens when the fill
pattern is varied. A midrange Landau cavity detuning of
150 kHz was chosen for the scan in fill pattern. Another
value could just as well have been chosen. However, cases
with moderate detuning are important because bunch-by-
bunch feedback systems tend to struggle when there is a
large Landau-cavity voltage because of both the broad
spread in synchrotron tune and the lower average incoher-
ent tune [11]. Furthermore, if the fill pattern is not uniform
and the Landau-cavity voltage is high, it will not be
possible for the timing of the feedback to be optimum
for all bunches simultaneously because of the phase
slippage between them. This is particularly true for systems
whose dynamic range is limited by the use of a local
oscillator at a high rf harmonic for phase detection and/or
the use of a high-frequency cavity kicker to apply energy
kicks to the beam.
The fill pattern was scanned by varying the number of

filled rf buckets from 160 out of 176 to all 176 (a uniform
fill). In all cases, all bunches are in consecutive buckets (so
that there is only one bunch train) and contain equal charge.
The beam current is kept constant at 250 mA so the shorter
the bunch train, the higher the charge stored in each bunch.
The results are shown in Fig. 3. The fill pattern has a

significant effect on the threshold shunt impedance. The
general trend is that the threshold shunt impedance increases
as the number of filled buckets decreases (or the fill pattern
becomes less uniform). This is because of the Landau
damping that arises from the tune spread between the
different buckets. If the HOM beam loading is not included,
a monotonic increase of the threshold shunt impedancewith
decreasing number of bunches is predicted. When it is
included, however, the threshold shunt impedance peaks at
163 filled buckets. This behavior is dependent on the
coupled-bunch mode number as shown later in Sec. IV.
There is good agreement between the theoretical pre-

dictions and the results of the macroparticle tracking across
almost all fill patterns. However, the theory appears to
significantly underestimate the threshold shunt impedance
for a uniform fill and the macroparticle tracking shows a

sharp drop in the threshold shunt impedance when one
bunch is removed. A possible explanation for this is that for
a uniform fill, there is no tune spread between the bunches
and so it is the intrabunch tune spread, which is not
included in the theory, that is the dominant source of
Landau damping. This scenario may never show up in
practice because there will always be some interbunch tune
spread due to random charge variation between the differ-
ent bunches.

C. HOM detuning

Next, the theory was used to predict the threshold shunt
impedances as the resonant frequency of the HOM was
varied. This was done for a fewLandau-cavity detunings and
fill patterns and the results for three separate cases are shown
in Fig. 4. In general, the agreement between theory and
macroparticle tracking is good when the HOM is on
resonance and when the HOM is detuned to higher fre-
quency. However, the agreement is not so good when the
HOM is detuned to lower frequency. This is because the
coupled-bunch quadrupole mode is then shifted to very low
frequency so that one period of coherent oscillation becomes
comparable to the radiation damping time. This can have a
large effect on the results of the theory if, as is the case here,
the damping is not included in the calculation.
For some cases, the theory does not converge on a solution

and so no result is shown for the case with HOM beam
loading included. This does not mean that a solution does not
exist. Rather, the beam-loading of the HOM becomes so
large that the slope of the total voltage at the equilibrium time
offset of some bunches switches sign. The bunches then
effectively become overstretched and the theory is no longer
valid. Otherwise, the change in threshold shunt impedance
caused by including the beam loading of theHOMappears to
be the same across the full tuning range.
For the Landau-cavity detuning of 150 kHz, when the

HOM is detuned by −30 kHz, the macroparticle simula-
tions show an apparent stabilization for shunt impedances
above 900 kΩ. The reason for this is that the phase slippage
and the consequent tune spread become so large due to the
beam loading of the HOM. However, in these simulations,
a steady state phase slippage is not reached in 40,000 turns
(or even in 100,000 turns, which was also tried) so it cannot
be said that the beam is stable.

IV. EXPERIMENT

Following the theoretical and simulation studies outlined
in Sec. III, a method was devised to investigate experimen-
tally the dependence of coupled-bunch quadrupole stability
on the fill pattern. Because it is not possible to vary the shunt
impedance of a HOM in reality, measurements were instead
made of the threshold Landau-cavity voltage above which a
quadrupole instability appears. It has already been shown
that this can act as a proxy measurement of the same thing
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since a lower Landau-cavity voltage (higher Landau-cavity
detuning) will result in a larger threshold shunt impedance as
shown in Fig. 2. Experiments were performed on the
MAX IV 3 GeV ring. As in the simulations (Sec. III), a
longitudinal feedback is needed to keep the coupled-bunch
dipole modes stable. Although some damping of quadrupole
modes can be achieved [4], the feedback used [12] is
principally designed to damp dipolar bunch motion. It
performs phase detection by mixing the sum signal from a
four-button rf pick-up with a 600 MHz local oscillator and
uses a longitudinal cavity kickerwith a resonant frequency of
around 625 MHz [13] as an actuator. As an added moti-
vation, the maximum current that can be stably stored in the
MAX IV 3 GeV ring when relying on the longitudinal
feedback for stability is limited by a coupled-bunch quadru-
pole instability [5], although higher stable currents can be
achieved when relying on Landau damping from the Landau
cavities instead [14].
The experimental results are presented here and com-

pared to calculations for the example HOM. Only quali-
tative agreement is expected since quantitative agreement
would require accurate, detailed knowledge of the driving
impedance which would be a large effort to obtain,
particularly for nonuniform fills where a coupled-bunch
mode could be driven over a broad range of frequencies.
The machine parameters during the measurements were

the same as those listed in Table I except the beam current is
reduced to 160 mA and the rf voltage is increased to
1.314 MV. In this configuration, a coupled-bunch quadru-
pole instability appears when the total Landau-cavity
voltage is sufficiently high. The spectrum of longitudinal
beammotion in a uniform fill when the instability is present
is shown in Fig. 5. The peak at around 1400 Hz is due to the
appearance of the coupled-bunch quadrupole instability. It
is found through a modal decomposition of the bunch-by-
bunch motion [15] that the coupled-bunch mode number of
the quadrupole instability is 138.
It is important to rule out the possibility that the

quadrupole instability is being driven by the feedback

itself. The first piece of evidence for this is that the
instability appears independent of the FIR filter used in
the feedback. To further minimize the influence of the
bunch-by-bunch feedback on the instability, a FIR filter is
selected that has a notch at the frequency of the quadrupole
instability while still being broadband enough to keep the
dipole modes stable. The frequency response of the FIR
filter is included in Fig. 5.
During the investigation, the vertical channel of the

bunch-by-bunch feedback was used to sequentially clean
out bunches one by one to vary the fill pattern while
frequent injections were made to keep the total beam
current constant at 160 mA by increasing the charge stored
in the remaining bunches. For each fill pattern, the total
Landau-cavity voltage at which the quadrupole instability
appeared was recorded. An increased threshold value for
the Landau-cavity voltage indicates that the coupled-bunch
quadrupole mode is stabilized for that fill pattern.
The results are shown in Fig. 6, along with results

calculated for the example HOM, the same machine
parameters and the same constant beam current of
160 mA for all fill patterns. For comparison with Fig. 2,
the theoretically determined threshold Landau voltage for a
uniform fill corresponds to a Landau detuning of 138 kHz.
Voltage is used instead of detuning here as it is easier to
measure experimentally. It can be said that there is
qualitative agreement because the experimental curve
shows the same trend as the theoretical curve for the
unshifted example HOM. That is, the threshold Landau-
cavity voltage increases the fewer the number of filled rf
buckets. Both in measurement and in calculation, the
threshold voltage appears to saturate below a certain
number of filled buckets and then starts to decrease, similar
to what is seen in Fig. 3. As mentioned in Sec. III B, due to
its dynamic range being limited by its front and back-end
frequencies, the bunch-by-bunch feedback becomes less
effective as the phase slippage increases. At these Landau-
cavity voltages, it is therefore not possible to keep the

FIG. 5. Beam spectra as measured by the phase detection of the
bunch-by-bunch feedback system along with the spectrum of
coupled-bunch mode 138 and the frequency response of the FIR
filter used in the feedback loop.

FIG. 6. Threshold Landau-cavity voltage for different fill
patterns in the MAX IV 3 GeV ring and calculation of the same
for the example HOM and for the HOM shifted in frequency so
that it drives coupled-bunch mode 138 when the fill pattern is
uniform.
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dipole mode stable with fewer than 164 buckets filled so no
more points could be measured.
Unlike what might be expected from the macroparticle

tracking results shown in Fig. 3, the experimental data does
not show any increase in the threshold Landau-cavity
voltage for the uniform fill pattern compared to the fill
pattern with one bunch removed. However, as pointed out
in Sec. III B, in reality the fill pattern will never be
completely uniform and there will always be some tune
spread between the different bunches. It is therefore not
possible to recreate the simulation conditions experimen-
tally and establish definitively what happens when the
interbunch tune spread goes to zero.
The theoretical calculation was then repeated with the

frequency of the HOM shifted downwards by 29 revolution
harmonics so that it drives coupled-bunch mode 138 in a
uniform fill, the coupled-bunch mode observed during the
experiment. The results for this case are also included in
Fig. 6. The curve still shows an overall increase in the
threshold Landau-cavity voltage with fewer filled rf buck-
ets but the range of voltages covered by the curve is now
greatly reduced. Furthermore, a wave structure is now
visible in the curve and it appears to have a period of
between 4 and 5 buckets, approximately the same period as
the least stable uniform-fill coupled-bunch mode, number
138 (h=ðh − 138Þ ¼ 4.6). Further calculations reveal that
this is also the case when a different coupled-bunch mode is
the least stable. The curve for the unshifted HOM also
begins to show a similar structure but the period length is
too long to be seen on the figure.
It can be excluded that the cause of the trend observed in

experiment is that the HOM is in a Landau cavity and its
resonant frequency changes when the Landau-cavities are
tuned to adjust the field level, since keeping the detuning
fixed when cleaning out one bunch while keeping the
current constant results in the quadrupole instability being
damped.
The biggest difference between the results of the

measurement and of the theoretical calculation for the
(unshifted) example HOM is that the latter covers a much
larger range of Landau-cavity voltages. In an attempt to
determine the reason for this difference, the dependence on
the HOM parameters was investigated by performing more
calculations. These are summarized in the Appendix, along
with an attempt to find parameters of a single HOM that
reproduce the measured results.
It is possible, however, that the least stable coupled-

bunch quadrupole mode seen in reality is driven across
multiple revolution bands by multiple HOMs. There is
some evidence for this in the fact that the coupled-bunch
mode number observed experimentally with a uniform fill
is not the one that is suggested by the shape of the threshold
curve. As anticipated, more detailed knowledge of the
driving impedance would be desirable for a more quanti-
tative analysis.

V. CONCLUSION

A theory has been developed to evaluate coupled-bunch
quadrupole instabilities for arbitrary fill patterns and in the
presence of Landau cavities if required. The case of a
HOM-driven coupled-bunch quadrupole instability in the
MAX IV 3 GeV ring has been investigated. It is found that,
particularly for cases with no Landau cavities or a low
Landau-cavity voltage, the beam loading of the HOM must
be included because the beam phase slippage is greatly
affected by a HOM with the threshold shunt impedance for
a quadrupole instability. Comparison of theoretical pre-
dictions with the results of macroparticle tracking shows
good agreement for HOMs close to resonance and over a
broad range of Landau-cavity detuning and for different fill
patterns.
In general, it is predicted that a nonuniform fill pattern is

beneficial for preventing coupled-bunch quadrupole insta-
bilities, i.e., the threshold HOM shunt impedance is greatly
increased. Perhaps counterintuitively, it is predicted that the
effect is stronger with detuned Landau cavities or no
Landau cavities at all. This is because, in this case, the
HOM has a large effect on the beam phase slippage and so
is self-stabilizing: the higher the HOM shunt impedance,
the larger the effect it has on the beam phase slippage and
more Landau damping it introduces to prevent an insta-
bility. With tuned-in Landau cavities, the incoherent
synchrotron tune is lower (increasing the growth rates of
coupled-bunch modes) and Landau cavities have a dom-
inant effect over the HOM in terms of inhomogeneous
beam loading.
An experiment was performed at the MAX IV 3 GeV

ring to further investigate the effect of the fill pattern on the
stability of coupled-bunch quadrupole modes. It was found
that reducing the number of filled rf buckets improves the
stability up to a certain point dependent on the coupled-
bunch mode number. This observation will be an important
consideration in the development of the alternative delivery
configuration for the 3 GeV ring that makes use of the
longitudinal bunch-by-bunch feedback and that is
employed in case the Landau cavities have to be parked
because of technical problems. Qualitative agreement was
found with predictions made using the theory, a more
complete impedance model being required for quantitative
predictions. The theory could therefore be used for the
design and development of storage rings where a longi-
tudinal feedback is relied upon for stability since their
performance can be limited by coupled-bunch quadrupole
modes that the feedback system may not be designed
to damp.
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APPENDIX: HOM PARAMETER DEPENDENCE

As discussed in Sec. IV, qualitative agreement between
theoretical calculations and the results of beam measure-
ments has been achieved. Quantitative agreement would
require knowledge of the driving impedance which comes
from cavity HOMs. With the aim of understanding what
kind of impedance would produce the experimental results,
further calculations were done to determine the dependence
of the theoretical results on the HOM parameters, specifi-
cally the shunt impedance, quality factor and the frequency
offset from resonance. While by no means exhaustive, this
investigation should improve understanding of the exper-
imental results. The effect of shifting the HOM by a
multiple of the revolution frequency is discussed in
Sec. IV while moving the HOM by an exact multiple of
the rf frequency should not make much difference except
for the fact that the bunch form factors would be different.
The trend to be interpreted is the effect of the fill pattern

on the threshold Landau-cavity voltage for a coupled-
bunch quadrupole instability. Figure 7 shows the effect of
varying the shunt impedance and quality factor of the
HOM. It can be seen that the main effect of increasing the
shunt impedance is to move the curve to lower Landau-
cavity voltages. This confirms that measuring the threshold
Landau-cavity voltage is a good proxy for measurement of
the threshold shunt impedance. However, it does also
slightly change the range of Landau-cavity voltages
covered by the curve. The effect of varying the quality
factor is very small in this regime because the HOM is on
resonance and in all cases, the damping time of the HOM is
very large in comparison to the time interval between
bunches.
The effect of changing the frequency offset of the HOM

is shown in Fig. 8. Small frequency shifts are chosen so the

effect is mostly in the shape of the curve rather than the
mean value. It can be seen that a positive frequency offset
does result in quite a significant reduction in the range of
the curve without affecting the mean value as much as the
shunt impedance does.
Finally, an attempt was made to find the parameters of a

single HOM that best reproduce the measured curve. This
was based on the following methodology. First, the location
of the peak in the curve was matched by scanning the
revolution harmonic of the HOM. This parameter could
then be fixed as it is discrete in nature and relatively
independent of the other HOM parameters. Next, a combi-
nation of HOM detuning and quality factor was found that
approximately reproduces the range of the measured curve.
Finally, the shunt impedance was scanned to match the
mean value. Further adjustments to the quality factor were
made but these had a small effect. The results are shown in
Fig. 9. Errors on the measured data points have been
estimated as a scale-reading error of 0.75 kV, since the
Landau-cavity voltage was increased in steps of 1.5 kV
until the threshold where the beam went unstable was
found. This step size was limited by the feedback acting on
the measured Landau-cavity field and is clearly small

FIG. 7. Threshold Landau-cavity voltage for different fill
patterns in the MAX IV 3 GeV as calculated for different
HOM shunt impedances and quality factors. The measured curve
is also included for reference.

FIG. 8. Threshold Landau-cavity voltage for different fill
patterns in the MAX IV 3 GeV as calculated for different
frequency offsets of the HOM from resonance. The measured
curve is also included for reference.

FIG. 9. Threshold Landau-cavity voltage for different fill
patterns in the MAX IV 3 GeVas calculated for HOM parameters
chosen to reproduce the measured curve.
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enough. It can be seen that with the specific HOM
parameters found, the theoretical curve reproduces the
measured one reasonably well and achieves a lower
residual sum of squares than a third-order polynomial
fit, which has the same number of parameters. However,
it cannot be said that there is agreement between the two
curves to within the experimental uncertainties.
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