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Vector field analysis is presented for a highly overmoded iris-line structure that can act as a medium of
transportation for THz radiation. The axisymmetric structure is capable of supporting hybrid modes with
desirable features such as low propagation loss, uniformly linear polarization and approximately Gaussian
intensity profile across the iris. A specific application that can benefit from these desirable features is the
transportation of THz undulator radiation over hundreds of meters to reach the experimental halls at the
Linac Coherent Light Source (LCLS) facility at SLAC, Stanford. Such a structure has been modeled before
as a boundary-value problem using Vainstein’s complex-impedance boundary condition and assuming
infinitely thin screens. Given that physical realizations of such screens must have finite thickness and that
the THz wavelength in the 3–15 THz range is expected to be smaller than convenient screen thicknesses in
practice, the question of the impact of finite screen thickness on propagation performance becomes rather
pressing. To address this question, we present a mode-matching analysis of the structure as an open
resonator with finite screen thickness and perturbatively clustered (localized) field expansions, for
computational feasibility. The effect of screen thickness is seen to lower the attenuation constant on the iris
line, which is dominated by diffraction loss. Ohmic loss due to the finite conductivity of metallic surfaces at
the screen edges is found to be small compared to diffraction loss. The propagation loss predictions based
on the Vainstein model are compared with the numerical results from mode matching for infinitely thin
screens, where the former method is observed to agree with the numerical results better at higher Fresnel
numbers (highly overmoded structures). The properties of the dominant mode fields are formally derived
from first principles and a recommended approach is discussed for the inclusion of screen-thickness effects
into propagation loss estimations.
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I. INTRODUCTION

Efficient transportation of THz radiation over long
distances (hundreds of meters) is a challenging problem.
On one hand, the THz wavelength (say, 20–100 μm, for the
range 3–15 THz), being smaller than microwaves, makes
the scaled transverse dimensions of a traditional single-
moded waveguide impractically small over long distances.
On the other hand, being larger than optical wavelengths
makes the THz wave relatively more prone to Fresnel
diffraction. An example of this challenge, which was the
original motivator behind the present study, is the problem
of efficiently transporting radiation from an “afterburner”
THz linear undulator downstream of LCLS over a distance
of 150–350 m, to reach the experimental halls at the LCLS

facility, SLAC, Stanford [1,2]. A traditional quasioptical
solution that utilizes a combination of planar, toroidal or
paraboloidal mirrors to relay the THz beam in multiple
steps is one proposed solution, which typically suffers from
power loss of approximately 1% per mirror as well as some
aberration and misalignment [1,3]. To reach the near
experimental hall at LCLS, for example, through a
150-m path (roughly 34 mirrors) going through the access
maze at LCLS, the mirrors are estimated to incur around
30% power loss [1]. The iris-line structure, whose analysis
is the subject of this paper, is an alternative solution that
was first proposed by Geloni et al. [2] for the THz transport
at LCLS. The iris line supports an attractive hybrid mode
that can deliver (1) a low propagation loss, (2) an almost-
Gaussian intensity profile and (3) an invariant linear
polarization across the iris. These features make it ideal
for direct coupling with the radiation incident from the THz
linear undulator.
The iris-line geometry under consideration consists of a

series of parallel screens, each having a circular iris (gap) of
radius a and centered around the axis z, as shown in Fig. 1.
The periodic structure has a period b and iris radius a
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much larger (hundred or thousand times) than the THz
wavelength in vacuum, λ0, making the structure highly
overmoded. The screens expand transversely to an outer
radius r0 > a that defines the boundary of the enclosing
chamber. The “virtual pipe” furnished by the irises along
the axial (z) direction provides the resonant structure
with a means to act as a waveguide (transmission line).
On the other hand, the structure’s resonance conditions,
controlled by the periodicity and the shape of the annular
regions sandwiched between the screens, will constitute
equivalent boundary conditions from the perspective of the
waveguide.
For a plane wave that is paraxially incident on the

iris line (Fig. 1), the Fresnel diffraction (or knife-edge
diffraction) experienced at the screen edges will cause
part of the wave to be lost into the shadow region
between screens. For a single screen edge illuminated
by a plane wave, this is similar to the well-known
phenomenon of knife-edge obstruction (e.g., [4]), which
causes the diffracted field amplitude to decrease as we go
deeper into the shadow [see Fig. 2(a)] according to the
attenuation factor jFðνÞj, where FðνÞ ¼ 1þi

2

R∞
ν e−iπτ

2=2dτ

and ν is the Fresnel diffraction parameter defined as
ν¼h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd1þd2Þ=ðλ0d1d2Þ

p
. Assuming that the screens

are perfectly absorptive, all the diffracted waves
entering the shadow will constitute lost power from
the perspective of propagation along the axis. This can
be equivalently modeled as an open-resonator structure,
where we let the outer radius r0 go to infinity and the
screens can be assumed to be perfectly absorptive or
conductive; in either case the same diffraction mecha-
nism is seen at the screen edges and none of the
diffracted waves entering the shadow region will return
to the line, as shown Figs. 2(b) and 2(c). Note that such
an ideal open-resonator model (i.e., with r0 → ∞) can be
well approximated in practice by making the distance
r0 − a finite but deep enough such that the power lost to
diffraction is approximately equal to that lost in the limit
r0 → ∞. This is typically achieved by taking the depth
r0 − a to be much larger than the diffraction scale
∼

ffiffiffiffiffiffiffi
bλ0

p
, [5].
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FIG. 1. (a) The iris-line geometry shown in three dimensions,
without the enclosing chamber at the outer radius. (b) A cross
section in the iris line, showing dimensions and labeling.
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FIG. 2. (a) A canonical example of Fresnel diffraction of a
plane wave caused by a single knife-edge obstruction (thin and
absorptive screen). The field strength of the wave traveling from
point S to point P diminishes according to the function jFðνÞj
shown. As the point P moves deeper into the shadow region
behind the screen, the attenuation is increased. The Fresnel
parameter ν ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd1 þ d2Þ=ðλ0d1d2Þ

p
defining the depth of

shadow (or clearance) is found geometrically from the dimen-
sions shown. (b) A simplified illustration of rays lost to
diffraction, as they hit an absorptive screen or get diffracted into
the shadow region bound by two such screens. (c) A simplified
illustration of rays lost to reflection or diffraction in the region
between two conductive screens.
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One way to analyze this open resonator is to consider the
diffraction effects between the screens equivalent to a
complex impedance boundary condition at r ¼ a and
thereby convert the problem into a boundary-value problem
over the closed virtual pipe of radius r ¼ a [2]. Such a
boundary condition has been called the Vainstein boundary
condition [2,6,7] and provides one of the methods of
analysis we shall use to describe the losses on the iris
line. This method, however, assumes infinitely thin screens
(δ ¼ 0). In practice, the screens will have to be of finite
thickness. Indeed, the finite thickness of the screen will be
quite large relative to the wavelength at THz frequencies
and a question is raised as to whether the screen thickness
will influence the attractive features (low loss, invariant
linear polarization and almost-Gaussian amplitude profile)
of propagation using the iris line, as predicted by
Vainstein’s model. To address this question we analyze
the open-resonator structure using the mode matching
method and clustered (localized) field expansions, for
computational feasibility.
For this type of overmoded open-resonator structures, it

will be seen that the dominant power loss mechanism is due
to diffraction or radiation loss, not Ohmic (conductive) loss.
This should be compared with smooth waveguides and
traditional corrugated structures, typically found at micro-
wave frequencies where the depth and period of corruga-
tions are shallow and often ≤ λ=4 (e.g., [8–13]). For
example, the dominant hybrid mode on the iris line will
be shown to have the desirable property of the attenuation
constant decreasing with increasing radius and increasing
frequency, as a function of a−3ω−3=2. The same property for
the attenuation constant is found in smooth circular wave-
guides operating with the TE0n modes [8]. However, the
attenuation on the iris line is mainly due to diffraction loss,
while on the smooth circular waveguide is due to Ohmic
loss (by azimuthal surface currents) [8,14].
Employing this iris line for THz radiation transport

in practice will clearly require a study of not only its
propagation power loss, polarization purity and amplitude
profile, but also of critical considerations such as correct
mode launching and coupling, input transients, dispersion
and tolerance to fabrication errors and mechanical mis-
alignment. In this paper, we confine our scope to the
investigation of propagation loss, polarization and ampli-
tude profile properties, assuming screens of finite thickness
and paraxial plane wave incidence (no electron beam on
the line).
The paper is organized as follows. In Sec. II we briefly

review the Vainstein-based model and use its predictions as
a reference for comparison. We then proceed to Sec. III
where we derive the vector field equations for the dominant
dipole mode of the iris line using the method of mode
matching and clustered expansions. In Sec. IV we discuss
the implementation of mode matching and present its
results for the specific example of the iris-line structure

proposed for THz transport at LCLS, while investigating
the effect of finite screen thickness on the propagation
properties. The paper concludes in Sec. V, followed by
two Appendixes that contain more formal derivations.
Appendix A presents the use of perturbation theory to
formally derive the vector field properties of the hybrid
mode on the iris line starting from Vainstein’s model.
Appendix B uses perturbation theory to provide a justifi-
cation for the use of the method of clustered field
expansions in the analysis of overmoded paraxial iris lines.
Throughout this paper, we assume harmonic time

dependence of the form e−iωt.

II. ANALYSIS BASED ON VAINSTEIN’S
COMPLEX BOUNDARY CONDITION

The open-resonator model of the iris line can be
converted to an equivalent closed-resonator problem which
consists of Vainstein’s approximate boundary condition at
the cylindrical wall r ¼ a. This boundary condition is
formulated by Geloni et al. in [2] as�

Eþ ð1þ iÞβ̂0aM
∂
∂r E

�
r¼a

¼ 0; ð1Þ

where β̂0 ¼ 0.824, M ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
8πNf

p
with Nf ¼ a2=ðbλ0Þ

being the Fresnel number, and E represents the electric
field envelope components Er or Eθ in the cylindrical frame
of coordinates ðr; θ; zÞ. This analytical model assumes
that the parameter M is small (M ≪ 1) and that the
structure is highly oversized compared to the wavelength,
with k0b ≫ 1, where k0 ¼ 2π=λ0 is the wave number in
free space.
Solving the Helmholtz wave equation while imposing

the boundary condition (1) results in a dominant hybrid
mode with invariant linear polarization across the iris, an
amplitude profile approximately equal to the Bessel func-
tion J0ð2.4r=aÞ, and the following propagation power loss
(Lp) law (see Appendix A for derivations):

Lp ¼ ½1 − e−4.75c
3=2b1=2ω−3=2a−3z� × 100%; ð2Þ

where c is the speed of light in vacuum, ω is the angular
frequency and z is the distance traveled down the line.
A key feature of this loss law is the tendency of the
attenuation constant Im½β� to drop with larger radii and
frequencies (inversely proportional to a3 and ω3=2), where
β is the complex propagation constant along the z direction.
An iris line with dimensions a ¼ 5.5 cm and b ¼ 30 cm,

for example, has been proposed [2] for the THz radiation
transport at LCLS. Using the power loss estimation (2), we
see that a THz undulator radiation in the range 3–15 THz
will experience maximum propagation loss of 14% at
3 THz. The loss decreases at higher frequencies, as shown
in Fig. 3. If larger radii are feasible for installation at LCLS,
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lower loss can be achieved by exploiting the cubic-law
dependence of loss on radius a. For example, Fig. 3 shows
a second iris line with a ¼ 10 cm, and a power loss less
than 3% at 3 THz.
The predictions given by (2) do not take into account

the effect of finite screen thickness (δ > 0). In Sec. III, we
analyze the modal fields on the line for nonzero screen
thicknesses and compare the results with those predicted by
Vainstein’s model.

III. ANALYSIS BASED ON MODE MATCHING
IN AN OPEN RESONATOR

In this analysis we begin by expanding the modal fields
in the axial region (region 1 in Fig. 4) and the annular

region (region 2 in Fig. 4), then impose the boundary
conditions at r ¼ a and derive the structure’s characteristic
dispersion relation (k0–β) in matrix form. Solving the
characteristic equation for a given wave number k0 ¼ ω=c
will then yield the complex propagation constant β on the iris
line. The presented approach is similar to the classical
treatment given by Zotter and Bane [15] in terms of matrix
equation conditioning. However, the present treatment is
different from [15] in that it is concerned with the analysis of
an open (r0 → ∞), rather than closed, resonator model and in
that we derive all the field components directly using the
longitudinal components (Ez, Hz) of the fields themselves,
rather than the Hertz potentials. Recall from Whittaker’s
theorem [16,17] that only two independent solutions of the
scalar wave equation are needed to determine all six compo-
nents of the EM field in vacuum. The two approaches are
therefore fundamentally equivalent.

A. Field expansion in the axial region (region 1)

Starting with Maxwell’s curl equations, ∇ ×E ¼ iωμH
and ∇ ×H ¼ −iωϵE, and seeking wave solutions that are
traveling along z in the form eiβz, we can rewrite these curl
equations with all the vectors and the operator ∇ divided
into their axial (along z) and transversal (subscripted with t)
parts, as

ð∇t þ iβzẑÞ × ðEt þ Ez × ẑÞ ¼ iωμðHt þHzẑÞ; ð3Þ

ð∇t þ iβzẑÞ × ðHt þHz × ẑÞ ¼ −iωϵðEt þ EzẑÞ: ð4Þ

For a transverse electric (TE) mode, we substitute Ez ¼ 0
into (3) and (4) and equate vector terms that are parallel to
each other on each side of the equations. After algebraic
vector manipulation, we obtain

Ht ¼
β

ωμ
ẑ ×Et; ∇t ×Et ¼ iωμHzẑ; ∇t ×Ht ¼ 0;

ð5Þ

Ht ¼
iβ
k2t

∇tHz; Et ¼
iωμ
k2t

∇tHz × ẑ: ð6Þ

For a transverse magnetic (TM) mode (Hz ¼ 0), we
similarly find

Et ¼ −
β

ωϵ
ẑ ×Ht; ∇t ×Ht ¼ −iωϵEzẑ; ∇t ×Et ¼ 0;

ð7Þ

Et ¼
iβ
k2t

∇tEz; Ht ¼
−iωϵ
k2t

∇tHz × ẑ: ð8Þ

If the boundary conditions of a given structure provide
a form of coupling (impedance) that links the TE and
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FIG. 3. Power loss for 150 m (to reach the near experimental
hall at LCLS) for the frequency range 3–15 THz, using an iris line
with a period of b ¼ 30 cm and two iris radii (a ¼ 5.5 or 10 cm).
This prediction is based on the Vainstein model and assumes zero
screen thickness. The larger radius is recommended for lower
loss, if mechanically feasible.
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FIG. 4. Regions of analysis for the open-resonator model,
shown over the cross section for one period (gap) in the iris-
line structure.
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TM modes, a hybrid mode is generally produced as a
combination of the TE and TM modes, with

Et ¼
iωμ
k2t

�
∇tHz × ẑþ β

ωμ
∇tEz

�
; ð9Þ

Ht ¼
iωϵ
k2t

�
−∇tEz × ẑþ β

ωϵ
∇tHz

�
: ð10Þ

Consider now our iris-line structure and the field
description for region 1, which must generally meet the
hybrid mode equations (9) and (10), as well as the scalar
transverse Helmholtz equations, ∇2

t Ez þ k2t Ez ¼ 0 and
∇2

t Hz þ k2t Hz ¼ 0, where kt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − β2

p
is the transverse

wave number. Since both the Helmholtz equation and the
present boundary conditions are separable in cylindrical
coordinates [18], we can immediately assume that Ez
and Hz are of the form Ez ¼ CRðrÞΘðθÞZðzÞ and Hz ¼
DR̂ðrÞΘ̂ðθÞẐðzÞ, where C and D are arbitrary constants.
We find the form of the functions RðrÞ;ΘðθÞ and ZðzÞ that
constitute Ez as follows (with a similar treatment for Hz).
Given the periodicity of the structure, ZðzÞ is predicted by
Floquet’s theorem to have the form of a Bloch wave
[19,20], whose field will be periodic from one structural
period to the next, except for a complex phase advance of
eiβ0b, where β0 is the propagation constant along z. Note
that β0 is generally complex to allow for attenuation in
lossy structures (as in our iris-line structure), but would be
real when the structure exhibits no losses to materials or
radiation (i.e., closed structure with perfectly conducting
walls and perfect dielectrics) [20]. We can therefore write
ZðzÞ as ZðzÞ ¼ eiβ0zϕbðzÞ, where ϕbðzÞ is a periodic
function of fundamental period b. Expanding ϕðzÞ as a
spacial Fourier series,

P
n Cnei2nπz=b, leads to

ZðzÞ ¼
X∞
n¼−∞

Cneiβnz; βn ¼ β0 þ 2πn=b; ð11Þ

where βn is the propagation constant and ktn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − β2n

p
is the transverse wave number for the nth spacial harmonic.
As in (9) and (10), the transverse components of the nth
harmonic can be found from its Ezn;Hzn components as

Etn ¼
iωμ
k2tn

�
∇tHzn × ẑþ βn

ωμ
∇tEzn

�
; ð12Þ

Htn ¼
iωϵ
k2tn

�
−∇tEzn × ẑþ βn

ωϵ
∇tHzn

�
: ð13Þ

To find the radial and azimuthal dependences, R and Θ,
we now write the Helmholtz equation ∇2

t Ezn þ k2tnEzn ¼ 0
in cylindrical coordinates. Since the transverse Laplacian
operator [∇2

t ≡ 1
r
∂
∂r ðr ∂

∂rÞ þ 1
r2

∂2
∂θ2] in such coordinates cou-

ples the radial and azimuthal components without coupling
the axial component, the ZðzÞ function drops out of the
equation and we end up with the following equation, after
separating the variables:

r2
R00

R
þ r

R0

R
þ r2k2tn ¼ −

Θ00

Θ
¼ m2; ð14Þ

where m is a constant integer (to keep the azimuthal
dependence a single-valued function of θ). This gives
azimuthal dependence Θ in the form of cos mθ or
sin mθ. With no loss of generality, we use the former for
Ezn and the latter forHzn, since the azimuthal dependence Θ̂
in Hz will turn out (as it must) to be of the same form. We
also anticipate thatmwill be the same across regions 1 and 2,
to maintain phase matching and as it does not depend on n;
we hence reuse the same symbol m in both regions. The
radial dependence is now seen to reduce to

r2R00 þ rR0 þ ½r2k2tn −m2�R ¼ 0; ð15Þ

which is the parametrized Bessel equation. Since the radius
in region 1 is bounded by the iris radius (r ≤ a) and includes
the axis (r ¼ 0), we choose our solution to be the Bessel
function of the first kind, JmðktnrÞ, and reject the second
kind. With a similar treatment for Hzn, we now have

Ezn ¼ cos mθ
X∞
n¼−∞

CnJmðktnrÞeiβnz; ð16Þ

Hzn ¼ sin mθ
X∞
n¼−∞

Dn

Z0

JmðktnrÞeiβnz; ð17Þ

where, for symmetry, we have chosen to give C and D the
same physical dimensions and explicitly isolate the free-
space impedance, Z0 ¼

ffiffiffiffiffiffiffiffi
μ=ϵ

p
. We now substitute (16) and

(17) into (12) and (13) to yield, after algebraic manipulation,
the hybrid field expressions for region 1 as

EzI ¼ cos mθ
X∞
n¼−∞

CnJmðktnrÞeiβnz; ð18Þ

HzI ¼ sin mθ
X∞
n¼−∞

Dn

Z0

JmðktnrÞeiβnz; ð19Þ
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ErI ¼ i cos mθ
X∞
n¼−∞

�
Dn

Z0

ωμm
rk2tn

JmðktnrÞ þ Cn
βn
ktn

J0mðktnrÞ
�
eiβnz; ð20Þ

EθI ¼ i sin mθ
X∞
n¼−∞

�
−
Dn

Z0

ωμ

ktn
J0mðktnrÞ − Cn

βnm
rk2tn

JmðktnrÞ
�
eiβnz; ð21Þ

HrI ¼ i sin mθ
X∞
n¼−∞

�
Dn

Z0

βn
ktn

J0mðktnrÞ þ Cn
ωϵm
rk2tn

JmðktnrÞ
�
eiβnz; ð22Þ

HθI ¼ i cos mθ
X∞
n¼−∞

�
Dn

Z0

βnm
rk2tn

JmðktnrÞ þ Cn
ωϵ

ktn
J0mðktnrÞ

�
eiβnz; ð23Þ

where J0m½·� denotes the derivative of Jm½·� with respect to
its argument. Note that these equations will be further
normalized following mode matching in Sec. III C, to
provide symmetry and convenience during calculation.

B. Field expansion in the annular region (region 2)

Since the field propagation in region 1 will vary
periodically along z with the same fundamental period
as the structure’s, we know that the field in one annular gap
will be the same as that in all gaps. Therefore, we merely
need to solve for one gap. Since the gap is bounded in the z
direction and open in the r direction, we expect it to host a
standing wave along the longitudinal direction and a
traveling wave in the radial direction (radiating outwards).
The latter is expected to meet the usual radiation boundary
condition (E;H → 0) at infinity. For the fields Ez, Hz in
the gap, we also expect to superimpose solutions of the
form e�iβpz in order to form the standing waves. These
fields must satisfy the transverse Helmholtz wave equa-
tions, ∇tEz þ k2tpEz ¼ 0 and ∇tHz þ k2tpHz ¼ 0, where

ktp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − β2p

q
and the index p denotes a given mode

(standing wave) in region 2. Since both the Helmholtz
equation and the structure’s boundary conditions in
region 2 are separable in the cylindrical frame [18],
we follow a treatment similar to the one used above for
region 1 and we assume that Ez ¼ ARðrÞΘðθÞZðzÞ and
Hz ¼ BR̂ðrÞΘ̂ðθÞẐðzÞ, where A, B are arbitrary constants.
For thepth TEmode, considering thatHz must have nodes

at the screen walls (see Fig. 4), then ẐpðzÞ must be of the
form ẐpðzÞ ¼ sin βpðzþ ΔÞ ¼ 1

2i ½eiβpðzþΔÞ − e−iβpðzþΔÞ�,
where βp ¼ pπ=ð2ΔÞ. Similarly, for the pth TM mode,
considering that Ez must have maxima at the screen walls,
ZpðzÞ must be of the form ZpðzÞ ¼ cos βpðzþ ΔÞ ¼
1
2
½eiβpðzþΔÞ þ e−iβpðzþΔÞ�. We now note that Eqs. (9) and

(10), which related the transverse components to the longi-
tudinal fields (Ez,Hz), were originally derived for a traveling
wave (waveguide setup) rather than a standing wave (gap
setup), and will need to be adjusted accordingly. For the

TE (Ez ¼ 0) case, we now need to take ∂=∂z≡ iβp for the
eiβpðzþΔÞ term and ∂=∂z≡ −iβp for the e−iβpðzþΔÞ term; and
similarly for the TM mode. Repeating the derivation steps
taken for region 1 by separating Maxwell’s curl equations in
terms of the longitudinal and transverse parts for the pth
mode, followed by algebraic vector manipulation, gives the
following relations for the TE mode:

Hzp ¼ Bp sin βpðzþ ΔÞR̂pðrÞΘ̂pðθÞ; ð24Þ

Htp ¼ Bp
βp
k2tp

cos βpðzþ ΔÞ∇t½R̂pðrÞΘ̂pðθÞ�; ð25Þ

Etp ¼ Bp
iωμ
k2tp

sin βpðzþ ΔÞ∇t½R̂pðrÞΘ̂pðθÞ� × ẑ: ð26Þ

In a similar manner, we have for the TM mode

Ezp ¼ Ap cos βpðzþ ΔÞRpðrÞΘpðθÞ; ð27Þ

Etp ¼ −Ap
βp
k2tp

sin βpðzþ ΔÞ∇t½RpðrÞΘpðθÞ�; ð28Þ

Htp ¼ −Ap
iωϵ
k2tp

cos βpðzþ ΔÞ∇t½RpðrÞΘpðθÞ� × ẑ: ð29Þ

To find the radial and azimuthal functions (R, Θ) in this
region, we substitute into the Helmholtz equation and use
the cylindrical Laplacian, as was done in region 1. This
leads to the same azimuthal dependence (namely, cos mθ
or sin mθ) and the same parametrized Bessel equation (15).
For its Bessel solutions in region 2, we pick the Hankel

function of the first kind, Hð1Þ
m ðktprÞ, since here we have an

outwardly traveling wave and since, for a time dependence
e−iωt, the second kind Hankel would represent inward
travel (with a similar treatment for the TM mode).
The nature of the traveling wave implied can be easily

revealed by writing down the definition of Hð1Þ
m at large

distances [21], viz.
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R ¼ Hð1Þ
m ðktprÞ ∼

ffiffiffiffiffiffiffiffiffiffiffi
2

πktpr

s
eiktpr eiπm=2eiπ=4: ð30Þ

Substituting the R;Θ; R̂; Θ̂ forms back into Eqs. (24)–(29), we can now explicitly write the full hybrid field expressions
for region 2 as

EzII ¼ cos mθ
X∞
p¼0

Ap cos βpðzþ ΔÞHð1Þ
m ðktprÞ; ð31Þ

HzII ¼ sin mθ
X∞
p¼0

Bp

Z0

sin βpðzþ ΔÞHð1Þ
m ðktprÞ; ð32Þ

ErII ¼ cos mθ
X∞
p¼0

sin βpðzþ ΔÞ
k2tp

�
Bp

Z0

iωμm
r

Hð1Þ
m ðktprÞ − ApβpktpH

0ð1Þ
m ðktprÞ

�
; ð33Þ

EθII ¼ sin mθ
X∞
p¼0

sin βpðzþ ΔÞ
k2tp

�
−
Bp

Z0

iωμktpH
0ð1Þ
m ðktprÞ þ

Apβpm

r
Hð1Þ

m ðktprÞ
�
; ð34Þ

HrII ¼ sin mθ
X∞
p¼0

cos βpðzþ ΔÞ
k2tp

�
Bp

Z0

βpktpH
0ð1Þ
m ðktprÞ þ

Apiωϵm

r
Hð1Þ

m ðktprÞ
�
; ð35Þ

HθII ¼ cos mθ
X∞
p¼0

cos βpðzþ ΔÞ
k2tp

�
Bp

Z0

βpm

r
Hð1Þ

m ðktprÞ þ ApiωϵktpH
0ð1Þ
m ðktprÞ

�
; ð36Þ

where B0 ¼ 0. Note that, for symmetry in equations and
parameters, we take the impedance Z0 explicitly out of the
Bp coefficients. These equations will be further normalized
following mode matching in Sec. III C, to provide sym-
metry and convenience during calculation.
It is important to bear in mind that the fields (31)–(36)

are given for jzj ≤ Δ inside the gap and are identically
0 in the region Δ < jzj ≤ Δþ δ=2, where the screens
are assumed to be made of a perfect conductor
(see Fig. 4).

C. Mode matching at r= a

We now solve for the coefficient families ðAp; BpÞ and
ðCn;DnÞ by enforcing the continuity of the tangential E and
H fields across the boundary r ¼ a (the continuity of the
normal fields follows automatically from Maxwell’s diver-
gence equations). Namely, we require the four conditions
at r ¼ a:

ð1ÞEθI ¼ EθII ; ð2ÞEzI ¼ EzII ;

ð3ÞHθI ¼ HθII ; ð4ÞHzI ¼ HzII : ð37Þ

Enforcing the first condition gives us

X
n

�
Dn

Z0

−iωμ
ktn

J0mðktnaÞ − Cn
iβnm
ak2tn

JmðktnaÞ
�
eiβnz

¼
8<
:

P
p

h
− Bp

Z0
iωμktpH

0ð1Þ
m ðktpaÞ þ Ap

βpm
a Hð1Þ

m ðktpaÞ
i
sin βpðzþΔÞ

k2tp
; for jzj ≤ Δ

0; for Δ < jzj ≤ Δþ δ=2:
ð38Þ

Multiplying both sides by e−iβnz and integrating through 1
b

R b=2
−b=2, using integration by parts twice, this yields (after

manipulation and abbreviating the obvious Bessel argument) Eqs. (39) and (40) below. Following similar steps, we enforce
the second, third and fourth conditions, using integration by parts twice for each case, to also get Eqs. (41)–(43):
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1

b

Z
b=2

−b=2
e−iβnz sin βpðΔþ zÞdz ¼ −i2βp

Δðβ2n − β2pÞ
�
sin βnΔ; for evenp;

−i cos βnΔ; for oddp;
ð39Þ

⇒
Dn

Z0

−iωμJ0m
ktn

þ Cn
−iβnmJm

ak2tn

¼ −i
X
p

�
Bp

Z0

−iωμH0ð1Þ
m

ktp
þ Ap

βpmHmð1Þ

ak2tp

�
2βp

bðβ2n − β2pÞ
�
sin βnΔ; for evenp;

−i cos βnΔ; for oddp;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mnp

ð40Þ

Cn ¼
X
p

Ap
Hð1Þ

m

Jm

2βn
bðβ2n − β2pÞ

�
sin βnΔ; for evenp;

−i cos βnΔ; for oddp;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nnp

ð41Þ

Bp ¼
X
n

iDn

Z0

Jm

Hð1Þ
m

2βp
Δðβ2n − β2pÞ

�
sin βn Δ; for evenp;

i cos βn Δ; for oddp;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b
ΔM

†
pn

ð42Þ

1þ δp0
k2tp

�
Bp

Z0

βpmHð1Þ
m

a
þ ApiωϵktpHm0ð1Þ

�
¼

X
n

�
Cn

ωϵJ0m
ktn

þDn

Z0

βnmJm
ak2tn

�
2βn

Δðβ2n − β2pÞ
�
sin βnΔ; for evenp;

i cos βnΔ; for oddp;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b
ΔN

†
pn

ð43Þ

where the dagger symbol represents Hermitian conjugation
and δp0 is Kronecker’s delta (equal to 1 when p ¼ 0 and
zero otherwise). Note that M and N will denote matrices
that contain elements such as Mnp or Nnp.
Further simplification and symmetry in the equations are

achieved if we momentarily define B0
p ≡ iBp and remove

the imaginary i factor from odd cases in the M, N matrices
by absorbing it into the corresponding Āp; B̄p coefficients,
calling the new matrices M̄; N̄, as follows:

Āp ¼
�
Ap; for evenp

−iAp; for oddp
ð44Þ

B̄p ¼
�
B0
p; for evenp

−iB0
p; for oddp

¼
�
iBp; for evenp

Bp; for oddp
ð45Þ

M̄np ¼ 2βn
bðβ2n − β2pÞ

�
sin βnΔ; for evenp

cos βnΔ; for oddp
ð46Þ

N̄np ¼ 2βp
bðβ2n − β2pÞ

�
sin βnΔ; for evenp

cos βnΔ; for oddp:
ð47Þ

This would render the equations real, since the
coefficients themselves are arbitrary. For symmetry and
convenience, we also normalize the coefficients as

JmðktnaÞCn → Cn, JmðktnaÞDn → Dn, Hð1Þ
m ðktpaÞAp →

Ap and Hð1Þ
m ðktpaÞBp → Bp, which is equivalent to divid-

ing the original mode equations in (18) and (31) by
JmðktnaÞ for all the Bessel terms and their derivatives,

whilst dividing by Hð1Þ
m for all the Hankel terms and their

derivatives. Effecting this normalization gives us the final
field equations in regions 1 and 2 as follows (noting that
B0 ¼ 0):

EzI ¼ cos mθ
X∞
n¼−∞

Cn
JmðktnrÞ
JmðktnaÞ

eiβnz ð48Þ

HzI ¼ sin mθ
X∞
n¼−∞

Dn

Z0

JmðktnrÞ
JmðktnaÞ

eiβnz ð49Þ

ErI ¼ i cos mθ
X∞
n¼−∞

�
Dn

Z0

ωμm
rk2tn

JmðktnrÞ
JmðktnaÞ

þ Cn
βn
ktn

J0mðktnrÞ
JmðktnaÞ

�
eiβnz ð50Þ
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EθI ¼ i sin mθ
X∞
n¼−∞

�
−
Dn

Z0

ωμ

ktn

J0mðktnrÞ
JmðktnaÞ

− Cn
βnm
rk2tn

JmðktnrÞ
JmðktnaÞ

�
eiβnz ð51Þ

HrI ¼ i sin mθ
X∞
n¼−∞

�
Dn

Z0

βn
ktn

J0mðktnrÞ
JmðktnaÞ

þ Cn
ωϵm
rk2tn

JmðktnrÞ
JmðktnaÞ

�
eiβnz ð52Þ

HθI ¼ i cos mθ
X∞
n¼−∞

�
Dn

Z0

βnm
rk2tn

JmðktnrÞ
JmðktnaÞ

þ Cn
ωϵ

ktn

J0mðktnrÞ
JmðktnaÞ

�
eiβnz ð53Þ

EzII ¼ cos mθ
X∞
p¼0

Ap cos βpðzþ ΔÞH
ð1Þ
m ðktprÞ

Hð1Þ
m ðktpaÞ

; ð54Þ

HzII ¼ sin mθ
X∞
p¼0

Bp

Z0

sin βpðzþ ΔÞH
ð1Þ
m ðktprÞ

Hð1Þ
m ðktpaÞ

; ð55Þ

ĒrII ¼ cos mθ
X∞
p¼0

sin βpðzþ ΔÞ
k2tp

�
Bp

Z0

iωμm
r

Hð1Þ
m ðktprÞ

Hð1Þ
m ðktpaÞ

− Apβpktp
H0ð1Þ

m ðktprÞ
Hð1Þ

m ðktpaÞ

�
; ð56Þ

ĒθII ¼ sinmθ
X∞
p¼0

sin βpðzþ ΔÞ
k2tp

�
−
Bp

Z0

iωμktp
H0ð1Þ

m ðktprÞ
Hð1Þ

m ðktpaÞ
þ Apβpm

r

Hð1Þ
m ðktprÞ

Hð1Þ
m ðktpaÞ

�
; ð57Þ

H̄rII ¼ sin mθ
X∞
p¼0

cos βpðzþ ΔÞ
k2tp

�
Bp

Z0

βpktp
H0ð1Þ

m ðktprÞ
Hð1Þ

m ðktpaÞ
þ Apiωϵm

r

Hð1Þ
m ðktprÞ

Hð1Þ
m ðktpaÞ

�
; ð58Þ

H̄θII ¼ cos mθ
X∞
p¼0

cos βpðzþ ΔÞ
k2tp

�
Bp

Z0

βpm

r

Hð1Þ
m ðktprÞ

Hð1Þ
m ðktpaÞ

þ Apiωϵktp
H0ð1Þ

m ðktprÞ
Hð1Þ

m ðktpaÞ

�
: ð59Þ

Using matrix conditioning and reduction steps similar to
those used in [15], we now take the following definitions to
simplify our equations:

Vn ¼
k0
ktn

J0mðktnaÞ
JmðktnaÞ

; ð60Þ

Wn ¼
βnm
ak2tn

; ð61Þ

Xp ¼ k0
ktp

H0ð1Þ
m ðktpaÞ

Hð1Þ
m ðktpaÞ

; ð62Þ

Yp ¼ βpm

ak2tp
; ð63Þ

X̂p ¼ ð1þ δp0Þk0
ktp

H0ð1Þ
m ðktpaÞ

Hð1Þ
m ðktpaÞ

; ð64Þ

where all the matrices in (60)–(64) are diagonal (either in p
or in n) and, therefore, easy to manipulate. The modal
equations can now be written concisely as

WnCn þ VnDn ¼
X∞
p¼0

M̄npðYpĀp − XpB̄pÞ; ð65Þ

Cn ¼
X∞
p¼0

N̄npĀp; ð66Þ

X̂pĀp − YpB̄p ¼ b
Δ

X∞
n¼−∞

N̄T
pnðVnCn þWnDnÞ; ð67Þ

−B̄p ¼ b
Δ

X∞
n¼−∞

M̄T
pnDn: ð68Þ

In full matrix notation we can cast this into

WCþ VD ¼ M̄YĀ − M̄XB̄; ð69Þ
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C ¼ N̄ Ā; ð70Þ

X̂ Ā−YB̄ ¼ b
Δ
ðN̄TVCþ N̄TWDÞ; ð71Þ

−B̄ ¼ b
Δ
M̄TD; ð72Þ

where Ā; B̄; C;D are column matrices, N̄; M̄ are full real
matrices and the remaining matrices are diagonal. We can
further write this system of equations in terms of block
matrices (matrices whose elements are submatrices), as
follows:

�
1 0

W V

��
C

D

�
¼

�
N̄ 0

0 M̄

��
1 0

Y −X

��
Ā

B̄

�
; ð73Þ

�
X̂ −Y
0 −1

��
Ā

B̄

�
¼ b

Δ

�
N̄T 0

0 M̄T

��
V W

0 1

��
C

D

�
; ð74Þ

where 1 and 0 here represent the unity and zero matrices.
We can solve these equations to eliminate the Ā; B̄ pair.
After manipulation, we obtain

�
Ā

B̄

�
¼ b

Δ

�
X̂−1 −X̂−1Y

0 −1

��
N̄T 0

0 M̄T

��
V W

0 1

��
C

D

�
;

�
1 0

W V

��
C

D

�
¼ b

Δ

�
N̄ 0

0 M̄

��
1 0

Y −X

�

×

�
X̂−1 −X̂−1Y

0 −1

��
N̄T 0

0 M̄T

�

×

�
V W

0 1

��
C

D

�
: ð75Þ

By appropriate grouping of the matrices in this homo-
geneous result we can finally write the system’s character-
istic equation explicitly in symmetric form as

0 ¼
��

−V−1 −WV−1

−WV−1 −W2V−1 þ V

�

−
b
Δ

�
−N̄X̂−1N̄T −N̄YX̂−1M̄T

−M̄YX̂−1N̄T −M̄ðY2X̂−1 − XÞM̄T

���
C

D

�
;

ð76Þ

whose determinant must vanish to give the eigensolutions
and the dispersion relation between ω and β0, after we
truncate the p sum to some index Pmax and the n sum to
�Nmax in practice (remembering that the index n runs in
region 1, whilst the index p runs in region 2). Specifically,
we require that

0 ¼ Det

��
−V−1 −WV−1

−WV−1 −W2V−1 þ V

�

−
b
Δ

�
−N̄X̂−1N̄T −N̄YX̂−1M̄T

−M̄YX̂−1N̄T −M̄ðY2X̂−1 − XÞM̄T

��
; ð77Þ

where

βp ¼ pπ=ð2ΔÞ; ktp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − β2p

q
; ð78Þ

βn ¼ β̂0 þ 2πn=b; ktn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − β2n

q
; ð79Þ

Vnn ¼
k0
ktn

J0mðktnaÞ
JmðktnaÞ

; Wnn ¼
βnm
ak2tn

ð80Þ

Xpp ¼ k0
ktp

H0ð1Þ
m ðktpaÞ

Hð1Þ
m ðktpaÞ

; Ypp ¼ βpm

ak2tp
ð81Þ

X̂p ¼ ð1þ δp0Þk0
ktp

H0ð1Þ
m ðktpaÞ

Hð1Þ
m ðktpaÞ

ð82Þ

Mnp ¼ 2βp
bðβ2n − β2pÞ

�
sin βnΔ; for evenp

−i cos βnΔ; for oddp
ð83Þ

Nnp ¼ 2βn
bðβ2n − β2pÞ

�
sin βnΔ; for evenp

−i cos βnΔ; for oddp:
ð84Þ

Solving (77) numerically for a given frequency or wave
number k0 ¼ ω=c will produce the sought complex propa-
gation constant β0 of the iris line, whose real part Re½β0�
will represent the longitudinal phase constant and imagi-
nary part Im½β0� the longitudinal attenuation constant.
Once we have found β0, we can write the full fields by
substituting into (48)–(59).

IV. NUMERICAL IMPLEMENTATION
AND RESULTS

The mode-matching model obtained above is now ready
for numerical implementation on a computer. Our inves-
tigation of the iris line is concerned not only in comparing
the numerical results with the predictions of the model
based on Vainstein’s boundary condition, but also observ-
ing the influence of finite-screen thickness on the attractive
characteristics (propagation loss, polarization and ampli-
tude profile) of the dominant mode. For the open iris-line
structure in hand, we expect radiation loss and the paraxial
propagation (similar to a plane wave, but with slightly bent,
paraboloidal wavefronts [22]) to contribute, respectively,
by giving a nonzero imaginary part of β0 and a real part that
is close but not exactly equal to k0 [see Eq. (B9) in
Appendix B for a more formal description].
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Assuming an incident THz wave with linear polariza-
tion, we are mainly interested in the dominant dipole
mode on the iris line that can couple to and support such a
wave. The basic aim of the numerical code is therefore to
find the zeros of the determinant (77) for a field with
m ¼ 1, which would give us β0 ¼ Re½β0� þ iIm½β0�. Given
the periodicity of the dispersion curves in such a system,
there will be an infinite number of possible solutions. The
dominant mode will naturally be the one with the lowest
attenuation constant (smallest Im½β0�). Given the homo-
geneous equation (76) of the Cn, Dn field coefficients, our
requirement for the determinant of this matrix to vanish is
basically a requirement to find a value of β0 that gives
nontrivial field solutions. Substituting such a β0 back into
the matrix will thus lower its rank and link the field
coefficients Cn, Dn to each other, informing us about the
“shape” (or profile) of the dominant vector field distri-
bution. Solving this in practice using standard computer
tools, such as Wolfram Mathematica (v.12.3.0), can be
formulated as an eigenvalue problem. Indeed, the char-
acteristic matrix (76) and ½C;D�T vector can be written
in shorthand notation as Ax ¼ 0, where A denotes the
matrix (76), x the ½C;D�T vector, and the superscript T
denotes taking the transpose. Then solving the homo-
geneous equation Ax ¼ 0 is equivalent to solving the
eigen equation Au ¼ λuu to find the eigenvector u that
corresponds to the zero eigenvalue (i.e., if λu ¼ 0, then
x≡ u). Taking the Cn and Dn coefficients from this
eigenvector and substituting them, alongside β0, into
(48)–(59) will then allow us to visualize the vector field
polarization and profile, as will be shown in Sec. IV C.
In the following subsections, we discuss the various

aspects related to physical interpretation and practical
implementation of the mode-matching method.

A. Discussion on the truncation and clustering
of field expansions

For numerical implementation, one clearly needs to
truncate the infinite series in the n and p expansions seen
in (48)–(59). Ideally, the expansion in n would be

PNmax
−Nmax

and the expansion in p would be
PPmax

0 , where the value of
Pmax is customarily chosen close to 2Nmax (to facilitate
matching both expansions across boundary, assuming thin
screens) and both are high enough to allow for the solution
to numerically settle at a given accuracy. Indeed, the value
of Pmax can be estimated by intuitively considering how the
field in region 2 is excited by the wave incident in region 1.
Since we assume paraxial incidence (β0 ≈ k0) from the THz
source along the z axis, and since the proposed structure is
highly overmoded, with each period b in the order of
∼3000 wavelengths, the longitudinal (guided) wavelength
will roughly be equal to its value in free space ∼λ0 ¼ ω=c.
When this wave is matching tangentially across the
boundary (r ¼ a) towards region 2, whose width is 2Δ

(see Fig. 4), we expect the excitation of the mode whose
longitudinal standing wave in region 2 has a half-
wavelength value close to the value of ∼λ0=2. This implies
that the dominant mode number (call it p ¼ P0) in region 2
will be approximately the integer closest to 2Δ

λ0=2
. This,

indeed, turns out to be the case, as can be observed through
numerical computations.
The modes in region 2, however, can be categorized, as in

traditional smooth waveguides, to either propagating or
evanescent modes. The former happens when k0 > βp

[giving real ktp, with phase velocity v > c and Hð1Þ
m ðktprÞ

Hankel function radiation], while the latter corresponds to
k0 < βp [giving purely imaginary ktp ¼ iγp, where γp is a
real number, with v < c and KmðγprÞ modified Bessel
function radiation]. The dispersion curve of such a wave-
guide takes the usual form of a parabola that is entirely above
the 45-deg line (speed of light line), asymptotically
approaching it from above in the high-frequency limit;
see Fig. 5. Therefore, the integer P0 closest to 2Δ

λ0=2
must

actually be chosen as the floor integer (i.e., the closest
integer from below) to represent a propagating mode
(radiation) in region 2. Such a mode will typically be
responsible for most of the attenuation seen in Im½β0�. If
the ceiling integer was chosen instead, it would correspond
to the largest evanescent mode. Therefore, in our imple-
mentation and throughout the results below P0 will refer to
the floor integer of 2Δ

λ0=2
¼ 4Δ

λ0
.

The choice of P0 also serves as a natural midpoint
around which we may choose to “cluster” (or localize) our
p expansion, so that, instead of summing over

PPmax
p¼0, we

sum over
PP0þpSteps

P0−pSteps , where we choose pSteps during
numerical implementation. A tradeoff clearly exists
between higher accuracy of the results (higher pSteps)
and the computational burden (time and memory) required
to perform the calculation. Our choice to use, or not use,
clustering will depend on how overmoded a structure is and
how difficult it is to run a regular expansion (without
clustering). Note that a regular expansion

PPmax
0 is equiv-

alent to a clustered expansion
PP0þpSteps

P0−pSteps , if pSteps
happened to be equal to P0 and Pmax happened to be
equal to 2P0. Moreover, if a regular expansion up to Pmax
stopped short of reaching P0 (that is, if Pmax < P0), no
correct solution will be found, because the dominant mode
would not be included. This highlights the usefulness of
clustered expansion when we can only expand in a limited
number of terms (e.g., due to computational limitations),
since the clustered expansion will always include the
dominant mode; see Fig. 6.
A similar concept can be used to cluster the n expansion

around the dominant harmonic, which is the closest
(rounded) integer (call it n ¼ N0) to the expected value
b
λ0
. Unlike P0, there is no need to seek the floor or ceiling
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integer values for N0. Furthermore, we also need to include
the Fourier image of the dominant harmonic.
At this point, we are faced with a question as to where to

look for the value of β0 on the dispersion curves, when such
curves are periodic in βn ¼ β0 þ 2πn=b? (see Fig. 5). The
periodicity naturally implies that all harmonic bins (lobes)
are equivalent and we can choose to designate the index
n ¼ 0 to any of them. However, since our structure is a
highly overmoded structure with a paraxial wave front that
can be considered a small perturbation compared to the
TEM limit on the dispersion diagram, the dispersion curves
forming the passbands in Fig. 5 will be in the vicinity of the
parabolic curve of a smooth waveguide (small iris-loading

effect). Indeed, in the limit of no iris loading (no diffraction
losses), these passbands coalesce back to give the parabolic
curve [20]. For a perturbative iris effect, the dominant
harmonic is expected to be near the corresponding ðk0; β0Þ
point on the parabolic curve in Fig. 5. Consequently,
we choose n ¼ 0 to be the index for the dominant
mode corresponding to βn ¼ β0 ≈ k0, which is equivalent
to N0 ≈ b=λ0 harmonic bins away from zero on the
βn axis. The Fourier image of the dominant mode will
hence be at n ¼ −2N0, and a clustering of the formPN0þnSteps

N0−nSteps þ
P−2N0þnSteps

−2N0−nSteps may be used for practical
computations.
The advantage of working around a dominant mode that

is slightly perturbed (i.e., clustering the field expansion)
seems to, in some sense, offset the computational disad-
vantage of operating with such a highly overmoded
structure. Had the iris loading been too strong [e.g., small
Fresnel number Nf ¼ a2=ðbλÞ], more wave reflections
between the irises would have resulted in several strong
harmonic terms, which are not necessarily the original one
near the parabolic curve (the periodic dispersion curves in
Fig. 5 would be relatively flattened) and a preferred
designation for the n ¼ 0 harmonic bin would no longer
be clear. Good discussions on the interpretation of the n
harmonic bins and the limiting cases can be found in
Refs. [11,20].
The discussion above introduces the method of cluster-

ing in light of its intuitive nature in practice and the

(a)

(b)

FIG. 6. (a) A clustered expansion in n, taking the paraxial
dominant harmonic (in red) to be the basic harmonic (βn ¼ β0) at
n ¼ 0, which corresponds to approximately N0 wavelengths per
structure period, where N0 is the nearest integer to b=λ0. This
means that the image of the dominant harmonic is at the index
n ¼ −2N0 (in red). Note that the expansion is equivalent toPnSteps

−nSteps þ
P−2N0þnSteps

−2N0−nSteps , where we choose nSteps. (b) A regu-
lar versus clustered expansion in p, where the dominant mode in
region 2 (excited by the paraxial incidence in region 1) happens at
index p ¼ P0, where P0 is the floor integer nearest to 2Δ=ðλ0=2Þ
from below (i.e., number of half wavelengths in the width 2Δ).
The regular expansion here is

PpSteps
p¼0 , and the clustered

expansion is
PP0þpSteps

p¼P0−pSteps, where we choose pSteps.

FIG. 5. A qualitative sketch demonstrating the effect of iris
loading on an otherwise-smooth pipe as the depth of iris loading
(added admittance) is changed. In this sketch βn is assumed to be
real (no loss). For a smooth pipe, the continuous parabola (green) is
observed, where phase velocity v ≥ c and k0 ≥ β0 for propagating
modes, asymptotically leading to the limit of TEM propagation
at the 45-deg line. As we start loading the pipe with shallow
(weak) irises, the propagated modes are allowed in certain
passbands, attenuated in stop bands, and the dispersion curves
(red) become periodic in βn, with every side lobe period (index n)
now corresponding to a Fourier harmonic bin, where βn ¼
β0 þ 2πn=b. This allows for slow and fast waves to propagate
(depending on the used harmonic). If the irises are gradually
removed, the passband curves (red) expand and coalesce back into
the parabolic curves of the smooth pipe (green) [20]. If the iris
loading increases, the passbands (blue) are compressed, and in the
limit they become flat spectral lines, with wider stop bands in
between. Since our structure is highly overmoded with a paraxial
incidence, we effectively operate in the perturbation region (purple
shade) in the vicinity of the parabolic curve and make our choice
for the n ¼ 0 harmonic band accordingly; see the simplified
example of point ðβ�0; k�0Þ on the figure.
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behavior inferred from the k0-β dispersion curves. A more
formal justification for using clustering in highly over-
moded paraxial lines is provided in Appendix B, for
completeness.

B. Structure scales

Since the iris-line dimensions (a, b) under consideration
are in the order of hundreds or thousands of wavelengths at
THz frequencies, making the line highly overmoded, the
computational cost experienced for mode-matching analy-
sis and iterative optimization can be prohibitively high. To
help develop our understanding of overmoded iris-line
structures and to help optimize our numerical algorithms,
we utilize the clustering method where possible and we
solve the problem over three scales. While keeping the
aspect ratios fixed, each scale represents a similar structure
with dimensions scaled 10 times relative to those of the
next scale. Scale-1 dimensions are 100-times smaller than
our intended structure (thus, 100 times less overmoded),
Scale-2 is 10-times smaller than our intended structure, and
Scale-3 is our intended structure; see Table I. All scales are
analyzed at the same frequency of 3 THz. Clearly, solving
Scales-1 and -2 are less computationally prohibitive than
Scale-3, where the structure period spans thousands of
wavelengths. Working over scales will also allow us to spot
different behavior trends as the scale moves from mildly
overmoded to highly overmoded, as will be reported in
Sec. IV C. When validating Vainstein’s model using mode
matching, it is important to keep an eye on the small
parameter M and the number k0b in each scale, since
Vainstein’s model assumes M ≪ 1 and k0b ≫ 1, which
imply a better validity in highly overmoded structures.
Thus, Scale-3 is expected to have stronger relevance to the
predictions by Vainstein’s model, compared to Scale-1 and
Scale-2.

C. Numerical results

The results of mode-matching calculations are summa-
rized in Table II for the three scales of the iris line listed in
Table I. In addition to comparing the mode-matching

TABLE I. The three different scales considered during the
present analysis: mildly overmoded (Scale-1), overmoded
(Scale-2) and highly overmoded (Scale-3). Scale-3 is the struc-
ture proposed for the LCLS THz transport problem. For each
scale, N0 indicates the structure period (b) measured in wave-
lengths and Nf ¼ a2=ðbλ0Þ is the Fresnel number. The values
given for screen-thickness δ are example values to indicate the
scaling. All shown dimensions are in mm.

Scale a b λ0 δ N0ð≈b=λ0Þ Nf

1 0.55 3.33 0.1 0.01 ∼33λ0 0.9
2 5.50 33.33 0.1 0.10 ∼333λ0 9.1
3 55.00 333.33 0.1 1.00 ∼3333λ0 90.8

TABLE II. Results from the mode-matching model
for each scale, listing the corresponding Vainstein-based
prediction (for δ ¼ 0) for comparison and showing the
influence of screen thickness. Note that the validity of the
Vainstein predictions is better for M ≪ 1 and k0b ≫ 1.
The indicated values for P0, pSteps and nSteps are given
for the case with δ ¼ 0. The used values of pSteps=nSteps are
given in brackets under the scale name in each heading.
Note that ΔIm½β0�=Im½β0� here denotes the change in the
imaginary part of β0 relative to its value for zero-thickness
screens. The values of β0, k0 are given in 1/m, while a; b; λ0 and
δ are given in mm.

Scale-1 Vainstein-based Mode-matching model

(264=33) Re½β0�, Im½β0� δ Re½β0�, Im½β0�, ΔIm½β0�
Im½β0� %

a 0.55 62732.2, 52.5 0.00 62725.5, 26.20, −00.0%
b 3.33 0.01 62722.5, 31.64, þ20.8%
λ0 0.1 0.02 62725.23, 37.51, þ43.1%
k0 62831.9 0.03 62738.97, 39.18, þ49.4%
k0b 209.4 0.04 62728.80, 20.02 − 23.9%
M 0.21 0.05 62721.74, 24.68, −5.9%
N0 33 0.06 62719.89, 30.10, þ14.8%
P0 66 0.07 62722.71, 36.00, þ37.3%

0.08 62736.08, 38.35, þ46.3%
0.09 62727.62, 20.05, −23.5%
0.10 62721.20, 24.41, −06.9%
0.15 62720.09, 22.96, −12.4%
0.20 62719.26, 22.90, −12.6%
0.25 62719.40, 22.00, −16.1%
0.30 62718.07, 21.10, −19.5%

Scale-2 Vainstein-based Mode-matching model

(1332=333) Re½β0�, Im½β0� δ Re½β0�, Im½β0�, ΔIm½β0�
Im½β0� %

a 5.50 62830.5, 0.166 0.0 62830.50, 0.1090, −0.0%
b 33.33 0.1 62830.50, 0.1070, −1.8%
λ0 0.1 0.2 62830.49, 0.1060, −2.8%
k0 62831.9 0.3 62830.48, 0.1050, −3.7%
k0b 2094.4 0.4 62830.48, 0.1042, −4.6%
M 0.07 0.5 62830.48, 0.1038, −4.8%
N0 333 0.6 62830.49, 0.1035, −5.0%
P0 666 0.7 62830.48, 0.1030, −5.5%

0.8 62830.48, 0.1028, −5.7%
0.9 62830.48, 0.1025, −6.0%
1.0 62830.48, 0.1020, −6.4%
1.75 62830.47, 0.0966, −11.4%
2.5 62830.47, 0.0935, −14.2%
3.0 62830.47, 0.0936, −14.1%

Scale-3 Vainstein-based Mode-matching model

(6666=3333) Re½β0�, Im½β0� δ Re½β0�, Im½β0�, ΔIm½β0�
Im½β0� %

a 55.00 62831.8, 0.00052 0 62831.8, 0.000625, −00.0%
b 333.33 1 62831.8, 0.000414, −33.2%
λ0 0.1 2 62831.8, 0.000410, −33.9%
k0 62831.9 3 62831.8, 0.000400, −35.4%
k0b 20943.9 5 62831.8, 0.000397, −36.0%
M 0.02 10 62831.8, 0.000385, −37.9%
N0 3333 25 62831.8, 0.000361, −41.8%
P0 6666 30 62831.8, 0.000362, −41.6%
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prediction with the Vainstein-based predictions for δ ¼ 0
screens, the table shows the effect of increased screen
thickness (varying δ) on the attenuation constant (Im½β0�),
for the different scales. Following an iterative process, the
solution was computed for a given pSteps=nSteps choice,
then recomputed for gradually increased values of pSteps
and nSteps in each iteration, until settlement is reached
with less than ∼0.5% error. Table II indicates the smallest
pSteps=nSteps values found for numerical settlement in
each scale. Figures 7 and 8 show how the attenuation loss
constant is changing for the full-scale (Scale-3) structure as
well as the two smaller scales.
It is noted from Fig. 8 that the full-scale structure

(Scale-3) will have 33.9% reduction in the attenuation

constant Im½β0� for a screen that is 2-mm thick. The change
is less acute for Scale-2 structures around equivalent
relative-thickness points (δ=b). Scale-1 exhibits some
oscillatory behavior for Im½β0� as a function of δ for
relatively thin screens, before it settles in value for thicker
screens. This may be attributed to the small Fresnel number
of Scale-1, effectively taking the structure from the per-
turbative diffraction limit into stronger iris loading (admit-
tance) where more harmonic terms experience stronger
reflections and can interfere constructively and destruc-
tively, as implied by Fig. 5.
Note from Table II that, for zero thickness screens, the

predictions by the Vainstein-based model for Im½β0� deviate
from those found numerically by about ∼100% for Scale-1
(M ¼ 0.2), ∼52% for Scale-2 (M ¼ 0.07) and ∼17% for
Scale-3 (M ¼ 0.02). Clearly, the agreement is better in the
limit of small M (highly diffractive/overmoded structure,
with large Frensel number) where Vainstein’s model is
expected to increasingly hold. Within this validity limit,
one may use the Vainstein model for a quick first approxi-
mation of propagation loss and then add a correction to
account for screen thickness effect, as predicted by the
presented mode-matching results. For example, at 3 THz,
the iris line originally proposed by Ref. [2] for LCLS (with
a ¼ 5.5 cm and b ¼ 30 cm) would give power loss as low
as 13.8% per 150 m (to reach the near experimental hall at
LCLS) using the Vainstein model and assuming infinitely
thin screens (see Fig. 3). When the screens are around 2-mm
thick, for realistic implementation, we can adjust this value
using the mode-matching predictions in Table II as an
approximate guide, reducing the final power loss estimate
to 9.4%. If mechanically feasible, we can also use a larger
iris radius of 10 cm (exploiting the 1=a3 dependence of loss

FIG. 7. Effect of varying screen thickness δ from zero to ∼b=10
(that is 0.0–30.0 mm) on Im½β0�, for the Scale-3 structure with
period b ¼ 333.33 mm, calculated at pSteps=nSteps ¼
6666=3333. Selected points on the curve give explicit value of
δ in mm. See data in Table II for details.

FIG. 8. Effect of varying screen thickness δ from zero to ∼b=10
on Im½β0�, for the three scales discussed above, shown together on
the same figure for comparison. Selected points on the curve give
explicit value of δ in mm. See data in Table II for details.

FIG. 9. Propagation loss is shown as a function of frequency for
two iris radii (a ¼ 5.5 or 10 cm), two screen thicknesses (0 or
2 mm) and over a distance of 150 m to reach the near experimental
hall in LCLS. The iris-line period is b ¼ 30 cm and the effect of
thickness is found from the mode-matching analysis and then used
to refine Vainstein’s model (assuming that it is the same effect for
both cases, namely ΔIm½β0�=Im½β� ≅ −33.9%). The larger radius
is recommended, if mechanically feasible and does not have a
considerable transient at the line’s entrance.
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factor on radius), to achieve an even lower loss of 2.4% per
150 m for infinitely thin screens, which becomes 1.6% for
2-mm thick screens (assuming similar δ effect as in the
previous case); see Fig. 9.

Using the same approach, Table III summarizes propa-
gation power loss values in the range of 3–15 THz for two
lines: one with path length of 150 m to reach LCLS’s near
experimental hall, while the other is for 350 m to reach the
far experimental hall.
The influence of screen thickness on field polarization

and amplitude profile is shown in Fig. 10 for three
indicative examples of screen thickness. The polarization
(horizontal and invariant across the iris) and amplitude
profile (closely resembling a J0ð2.4r=aÞ function) seem to
be unaffected by the thickness variation.

D. Ohmic losses

Given the small skin depth of good conductors, such as
copper or aluminum, at THz frequencies, we can use the
well-known perturbation technique to compute the Ohmic
(conductor) losses at metallic screens, using our knowledge
of the tangent magnetic field distribution near the screens
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FIG. 10. Scale-3 field polarization and amplitude profile plots, calculated at pSteps=nSteps ¼ 6666=3333 and plotted at
nSteps ¼ 1111: (a)–(c) for δ ¼ 0 mm, (d)–(f) for δ ¼ 2 mm, and (g)–(i) for δ ¼ 10 mm. The polarization and amplitude profiles
seem unaffected by the small increase in screen thickness. Subplots (c), (f) and (i) show E-field amplitude profile cuts at the y ¼ 0 plane
across the iris, compared to the idealized shape of the J0ð2.4r=aÞ function. A small sharp spike is observed in the amplitude profile in (f)
and (i), which may be a result of low numerical resolution (truncation).

TABLE III. Propagation power loss at 3 THz for the iris line
with b ¼ 30 cm, two options of radius a, and over 150 or 350 m
transport distance. For LCLS, these are approximately the
distances to the near experimental halls (NEH) and far exper-
imental hall (FEH), respectively. The values are estimated using
Vainstein’s model after adjustment for screen thickness (assum-
ing ΔIm½β0�=Im½β� ≅ −33.9%).

Propagation power loss at 3 THz

Iris radius a (mm) 55 55 100 100
Screen thickness δ (mm) 0 2 0 2

150-m path (for NEH) 13.8% 9.4% 2.4% 1.6%
350-m path (for FEH) 29.3% 20.5% 5.6% 3.7%
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when such screens are assumed to be perfectly conductive
[14]. Specifically, the attenuation constant due to the
conductive loss, α, is estimated by the usual formula,

α ≅
Pz

2P0

; ð85Þ

where Pz ¼ 1
2
Rs∬ jHtanj2adθdz is the power lost to con-

ductive edges of the screen per unit length of the line, P0 ¼
1
2
Re½∬E ×H� · ẑrdrdθ� ¼ 1

2
Re½∬ ðErH�

θ − EθH�
rÞrdrdθ� is

the total power on the line, and Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμ=ð2σÞp

is the
surface resistance for a screen with conductivity σ.
Although this estimation is idealistic in the sense that it
does not include effects such as surface roughness at THz
frequencies, it provides a useful first approximation of the
order of magnitude of Ohmic loss compared to diffraction
loss (see Sec. IV F for further notes on practical imple-
mentation). Finding the fields through the mode-matching
equations (48)–(59) then substituting in α, we find that the
Ohmic losses on the iris line are small compared to the loss
due to diffraction or radiation. For example, the attenuation
constant α for a Scale-3 iris-line structure with 2-mm thick
screens is found to be approximately 2.7 × 10−7 (1/m) for
copper screens and 3.5 × 10−7 (1/m) for aluminum screens,
which are more than 1000 times smaller than the attenu-
ation constant Im½β0� ≅ 0.00041 (1/m) due to diffraction
(see Table II).

E. Limiting case test (Δ → 0)

As a compatibility check, we drove the current mode-
matching model toward the limit of vanishing gap
(approaching a smooth line) to compare the predicted
eigenvalues with the well-known values for a smooth circular
waveguide. As expected, the hybrid mode decoupled into TE
and TM modes in this limit, with the values of β0 now
approaching a purely real value (due to suppressed radiation
by the closing gaps) and equal to the analytical values of

βTE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − ðV 0

mj=aÞ2
q

and βTM¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20−ðVmj=aÞ2

q
, where

V 0
mj is the jth root of the J

0
m function, and Vmj is the jth root

of the Jm function [14].
Specifically, using a Scale-1 structure with a gap as small

as 2Δ ¼ 10−5 mm, the mode-matching code gave βTE ¼
62742.6114531þ i0.0023 and βTM ¼ 62444.425897þ
i0.0055, compared to the analytic prediction (with at
2Δ ¼ 0) of 62742.611427þ i0 and 62444.425854þ i0,
respectively. Notice the good agreement and that the
imaginary parts given by the mode matching are much
smaller (negligible) compared to their values for the open
gaps, which had Im½β0� ∼ 26 (see Table II).

F. Transients, mode launching and other considerations

As was mentioned in Sec. I, the full implementation of
this iris-line structure will require addressing further

questions, in addition to those discussed above (propaga-
tion loss, polarization purity and amplitude profile). The
remaining questions include investigations of the
dispersion, mode launching and matching from source
to iris line with high efficiency, sensitivity to mechanical
tolerances and fabrication misalignments, additional
losses on realistic metallic surfaces, and the transient
regime at the iris line’s entrance (before the mode settles).
Such important questions are not the subject of this paper
and will be examined in a subsequent publication by the
authors. The investigation and control of mode-coupling
efficiency for undulator radiation under practical beam
parameters, loss on realistic metallic surfaces, as well as
other design considerations, are planned at SLAC using a
shorter section of the iris line as an experimental
demonstration. Here we briefly remark that mode launch-
ing is also expected to have a strong influence on the
length of the transient at the iris line’s entrance. Indeed, if
the incident wave is assumed to be an abstract plane
wave, then reaching an equilibrium in the form of a dipole
mode on the iris line is expected to be roughly around a
distance ∼πa2=λ0 from the entrance (e.g., see [23,24]).
However, if the field is launched using a specific mode
from the source (e.g., a Gaussian profile with linear
polarization from a THz linear undulator), then the
transient is expected to be much shorter.

V. CONCLUSIONS

Vector field analysis using mode matching and clustered
expansions has been presented for an overmoded iris-line
structure for THz radiation transportation. The analysis
includes the effect of finite screen thickness on the
propagation properties of the dominant hybrid mode. As
a specific application, the iris line was investigated as a
method for THz radiation transport at LCLS, in the
frequency range 3–15 THz. It is observed that having
finite screen thicknesses, up to one tenth of the period of the
iris line (δ < b=10), seems to reduce the attenuation
constant Im½β0� down to approximately −40% for the
highly overmoded THz iris-line structure proposed for
THz transport at LCLS. The horizontal polarization purity
across the gap seems to be unaffected by the finite screen
thickness. The field amplitude profile, which approxi-
mately follows a J0 function profile (close to Gaussian),
also seems to be unaffected by the finite screen thickness.
The Vainstein-based model predictions, for zero-thickness
screens, seems to hold increasingly in agreement with
mode-matching numerical predictions for highly diffrac-
tive/overmoded structures (limit of small M parameter and
large Fresnel numbers), but deviates considerably from
numerical mode-matching predictions for mildly over-
moded structures or low Fresnel numbers. Finally, it is
observed that the propagation losses on this type of iris line
are dominated mainly by diffraction loss, rather than
Ohmic loss.
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APPENDIX A: DERIVATION OF POWER LOSS,
FIELD POLARIZATION AND FIELD INTENSITY

PROPERTIES BASED ON VAINSTEIN’S
BOUNDARY CONDITION

In this Appendix, we use perturbation theory to derive
the vector field equations for the desirable dominant
mode on the iris line from Vainstein’s boundary condition,
highlighting its low propagation loss, linear polarization
and amplitude profile.
Vainstein’s complex impedance condition on the virtual

pipe (see Fig. 1) of the iris line naturally implies that the
general modes propagating in the line will be of the hybrid
type (TE and TM modes couple through the impedance).
The boundary condition of Vainstein at r ¼ a as formulated
by Geloni et al. [2] can be written for the Er and Eθ field
envelopes as�

Eþ ð1þ iÞβ̂0aM
∂
∂r E

�
r¼a

¼ 0; ðA1Þ

where β̂0 ¼ 0.824, as given in [2,6,7].
The hybrid-mode field equations are known for a regular

pipe geometry and, if we drop the common factor eiβze−iωt

for simplicity (i.e., work in terms of envelopes only), can
be written in terms of the transverse and longitudinal
components as

Er ¼
�
iβ
k2t

E0ktJ0nðktrÞ þ
ik0n
k2t r

H0JnðktrÞ
�
cos nθ ðA2Þ

Eθ ¼ −
�
iβn
k2t r

E0JnðktrÞ þ
ik
k2t

H0ktJ0nðktrÞ
�
sin nθ ðA3Þ

Ez ¼ E0JnðktrÞ cos nθ ðA4Þ

Hr ¼
�
iβ
k2t

H0ktJ0nðktrÞ þ
ik0n
k2t r

E0JnðktrÞ
�
sin nθ ðA5Þ

Hθ ¼
�
iβn
k2t r

H0JnðktrÞ þ
ik0
k2t

E0ktJ0nðktrÞ
�
cos nθ ðA6Þ

Hz ¼ H0JnðktrÞ sin nθ; ðA7Þ

where E0 and H0 are constants.
In this overmoded structure, with relatively large Fresnel

number, Nf ¼ a2
λb, it is convenient to work in terms of the

small parameter (in anticipation of perturbative analysis)
that is inversely proportional to Nf. Such a parameter is
M ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
8πNf

p
, which was originally introduced in

Ref. [2]. Applying now the condition (A1) to the Er, Eθ

fields in (A2) yields the following two relations:

0 ¼ JnðktaÞ
�
n
a
H0 −

n
a2

ð1þ iÞβ̂0aMH0

�

þ J0nðktaÞ
�
ktE0 þ ð1þ iÞβ̂0aM

nkt
a

H0

�
þ J00nðktaÞ½ð1þ iÞβ̂0aMk2t E0� ðA8Þ

0 ¼ JnðktaÞ
�
−
n
a
E0 þ

n
a2

ð1þ iÞβ̂0aME0

�

þ J0nðktaÞ
�
−ktH0 − ð1þ iÞβ̂0aM

nkt
a

E0

�
þ J00nðktaÞ½−ð1þ iÞβ̂0aMk2t H0�: ðA9Þ

To nontrivially solve these two equations for the eigen-
value kt (the transverse wave number), let us multiply (A8)
by E0=H0 and then add/substrate (A9), respectively, to
have

0 ¼
�
E2
0

H0

−H0

�
½J0nðktaÞ þ ð1þ iÞβ̂0aMktJ00nðktaÞ�

ðA10Þ

0¼
�
E0

H0

þH0

E0

�
½J0nðktaÞ þ ð1þ iÞβ̂0aMktJ00nðktaÞ�

þ 2n
akt

JnðktaÞ þ 2ð1þ iÞβ̂0M
�
nJ0nðktaÞ−

n
akt

JnðktaÞ
�
:

ðA11Þ

Let us use perturbation theory in the small parameter M,
and expand kt as

kt ¼ kt0 þ c1M þOðM2Þ: ðA12Þ

For the unperturbed case when M → 0, the conditions
(A10) and (A11) reduce to

0 ¼
�
E2
0

H0

−H0

�
J0nðktaÞ ðA13Þ

0 ¼
�
E0

H0

þH0

E0

��
J0nðktaÞ þ

2n
akt

JnðktaÞ
�
: ðA14Þ

From (A13), it is clear that we must either have E0 ¼ H0

or E0 ¼ −H0 as solutions. The former of these two is the
desirable (balanced) hybrid mode that has a peak amplitude
profile at the center of the iris and minimum at the walls
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(akin to the HE11 mode in traditional microwave corru-
gated waveguides [8,12,13]). The latter of the two, on the
other hand, will result in a surface mode that “sticks” to the
walls, with a null at the center of the iris, and is undesirably
lossy (akin to EH11 mode in traditional microwave
corrugated waveguides [8,12,13]). Substituting in (A14)
we immediately see how having E0 ¼ H0 in (A14) will
result in Jn−1ðktaÞ ¼ 0 with kt0 ¼ Vðn−1Þj=a, whereas for
E0 ¼ −H0 we have Jnþ1ðktaÞ ¼ 0 with kt0 ¼ Vðnþ1Þj=a,
where Vnj denotes the jth root (zero) of the Bessel function
Jn. The dominant (lowest-order) modes in each of these
cases are obtained when n ¼ 1 and give J0ð2.4r=aÞ versus
J2ð5.1r=aÞ profiles, respectively. Note that in the case for
n ¼ 0 it can be easily shown that the hybrid mode is
degenerated to the TE or TM mode families. Let us now
continue our treatment with the desirable balanced mode
(E0 ¼ H0), with β ≈ k0 for paraxial high-frequency propa-
gation above cutoff, and using perturbation theory to the
first order in M and with kt0 ¼ Vðn−1Þj=a.
Using the following Bessel identities [21],

J0nðkt0aÞ þ Jnþ1ðkt0aÞ ¼
n

kt0a
Jnðkt0aÞ; ðA15Þ

J0nðkt0aÞ − Jn−1ðkt0aÞ ¼
−n
kt0a

Jnðkt0aÞ; ðA16Þ

and exploiting the fact that our boundary condition has
already forced Jn−1ðkt0aÞ ¼ 0 in the unperturbed limit,
we can deduce the following relations and perturbative
expansions, up to O½M�,

J0n−1ðkt0aÞ ¼ −Jnðkt0aÞ; ðA17Þ

J0nðkt0aÞ ¼ −
n

kt0a
Jnðkt0aÞ; ðA18Þ

J00nðkt0aÞ ¼ ½J0nðkt0aÞ�0

¼ Jnðkt0aÞ
�
nð1þ nÞ
a2k2t0

− 1

�
: ðA19Þ

JnðktaÞ ¼ Jnðkt0aþ c1MaÞ
¼ Jnðkt0aÞ þ c1MaJ0nðkt0aÞ þ � � �

≅ Jnðkt0aÞ
�
1 −

nc1M
kt0

�
ðA20Þ

J0nðktaÞ ¼ J0nðkt0aþ c1MaÞ
¼ J0nðkt0aÞ þ c1MaJ00nðkt0aÞ

≅ Jnðkt0aÞ
�
c1Ma

nðnþ 1Þ
a2k2t0

− ac1M −
n

akt0

�
ðA21Þ

J00nðktaÞ¼J00nðkt0aþc1MaÞ
¼J00nðkt0aÞþc1MaJ000n ðkt0aÞþ���

≅Jnðkt0aÞ
�
nðnþ1Þ
a2k2t0

−1

�
þc1MaJ000n ðkt0aÞ: ðA22Þ

Substituting from (A20)–(A22) into the original con-
dition in (A11), to first order inM, and using the shorthand

notation Jnðkt0aÞ≡ Jn and ½nðnþ1Þ
a2k2t0

− 1�≡ ψ , we find c1 as

follows:

0 ¼ ½J0nðktaÞ þ ð1þ iÞβ̂0aMktJ00nðktaÞ� þ
n
akt

JnðktaÞ þ ð1þ iÞβ̂0M
�
nJ0nðktaÞ −

n
akt

JnðktaÞ
�

¼ Jn

�
−n −

nc1M
kt0

þ ψ ½ð1þ iÞβ̂0a2Mk2t0 þ a2kt0c1M�
�
þ Jnn

�
1 −

nc1M
kt0

�

þ ð1þ iÞβ̂0Mank2t0

�
−n
akt0

Jn þ c1aMψJn

�
− ð1þ iÞβ̂0Mkt0n

�
Jn

�
1 −

nc1M
kt0

��
¼ c1Mða2kt0ψ − n2 − nÞ þ ð1þ iÞβ̂0Mkt0ða2kt0ψ − n2 − nÞ

⇒ c1 ¼ −ð1þ iÞβ̂0kt0 ; kt ¼
Vðn−1Þj½1 − ð1þ iÞβ̂0M�

a
; ðA23Þ

where n ¼ 1; 2; 3;….

The lowest-order (dominant) hybrid mode (n ¼ 1,
j ¼ 1) will therefore have approximately the desired profile
of a J01½2.4ra ½1 − ð1þ iÞβ̂0M�� function. For smallM, this is
similar to the usual profile of the J0ð2.4r=aÞ function,

but without allowing the “skirt” of the J0 function to go
exactly to zero on the radius r ¼ a (as it would have in a
smooth pipe). This allows the hybrid mode to exist at the
boundary due to coupling (impedance) and gives the
desired features of this mode of the iris line. The important
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result (A23) agreeswith that predicted by [2] and is similar to
the theory of the HE11 balanced hybrid mode in traditional
microwave corrugated guides (e.g., see [8,12,13]). One
should note, however, that the current model using
Vainstein’s boundary condition is mainly governed by
diffraction phenomena, which dominates the propagation
loss (A24), rather than by Ohmic (conductor) losses.
The propagation loss on the line can now be quantified

using the imaginary part of β, as the attenuation constant.
Using the fact that β2 ¼ k20 − k2t and the result in (A23), we
can now find the power loss (Lp) on the line by simply
calculating 1 − e−2Im½β�, which gives, after algebraic
manipulation, the following:

Lp ¼ ½1 − e−V
2
mjβ̂0c

3=2b1=2ω−3=2a−3z� × 100%; ðA24Þ

where m≡ n − 1 ¼ 0; 1; 2;…. Equation (A24) indicates
lower losses for higher frequencies (as a function of ω−1=2)
and for larger radii (as a function of a−3). Equation (2) is a
special case of (A24), taken at n ¼ 1, j ¼ 1.
We can now proceed to examine the polarization of this

desirable mode. For this balanced modewith n ≠ 0, we find
that (A2) can be reduced to

Er ¼
iβ
kt
E0Jn−1ðktrÞ cos nθ ðA25Þ

Eθ ¼ −
iβ
kt
E0Jn−1ðktrÞ sin nθ ðA26Þ

Hr ¼
iβ
kt
E0Jn−1ðktrÞ sin nθ ðA27Þ

Hθ ¼
iβ
kt
E0Jn−1ðktrÞ cos nθ: ðA28Þ

To examine the E-field polarization, let us now
convert Eqs. (A25) and (A26) to the Cartesian coordinates
using the transformation r̂ ¼ x̂ cos θ þ ŷ sin θ and θ̂ ¼
−x̂ sin θ þ ŷ cos θ. After simplifying, this gives the fol-
lowing expression for the transverse field:

Et¼
ikE0

kt
Jn−1ðktrÞ½r̂ cos nθ− θ̂ sin nθ�

¼ ikE0

kt
Jn−1ðktrÞ½x̂cosð1−nÞθþ ŷsinð1−nÞθ�: ðA29Þ

This result highlights the character of the polarization for
the iris-line balanced modes. For the dominant mode of
interest (n ¼ 1, j ¼ 1), (A29) and (A23) give

Ex11 ¼ x̂
iakE0J0ð2.4a r½1 − ð1þ iÞβ̂0M�Þ

2.4½1 − ð1þ iÞβ̂0M� ; ðA30Þ

≈x̂
iakE0

2.4
J0

�
2.4
a

r

�
for M → 0; ðA31Þ

Ēy11 ¼ ŷ 0; ðA32Þ
which means that the field is only polarized horizontally
and it remains so across the entire aperture of the iris (fixed
dipole polarization) while its amplitude profile is approx-
imately ≈J0ð2.4r=aÞ. This gives an intensity profile that is
similar to a Gaussian intensity [note, the profile of J20 has
about 97% overlap with a perfect Gaussian intensity, when
both are normalized to the same maximum and have the
same 1=e2 width below the maximum; see Fig. 11(b)].
Therefore, the dominant balanced mode of the iris line is
suitable for direct coupling with undulator radiation [see
Fig. 11(a)]. As noted earlier, the complex argument of the
Bessel function, with small complex perturbation propor-
tional to M will cause the edges of the function skirts to be
slightly lifted off zero at r ¼ a, allowing for the hybrid
nature of the mode to be established. Indeed, this can be
seen explicitly by writing out the real part of the final field
expression. Since the Bessel’s function Jn is an entire
function (i.e., analytic everywhere in the complex plane),
the profile of Ex11 in (A31) can be explicitly reduced further
(withM > 0) to its real and imaginary parts. For any fixed r
value, one can Taylor expand in the small parameter M to
find that the field profile is proportional to

Ey11 ¼ 0; ðA33Þ

Ex11 ∝ J0

�
2.4r
a

−
2.4r
a

β̂0Mð1þ iÞ
�
; ðA34Þ

∝ J0

�
2.4r
a

�
−
2.4r
a

β̂0Mð1þ iÞJ00
�
2.4r
a

�

∝ J0

�
2.4r
a

�
þ 2.4r

a
β̂0MJ1

�
2.4r
a

�
þ i

2.4r
a

β̂0MJ1

�
2.4r
a

�
:

ðA35Þ
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FIG. 11. (a) Transverse electric field stream lines and amplitude
strength for the dominant hybrid mode (n ¼ 1, j ¼ 1) of the iris
line at high-frequency operation (overmoded) above cutoff
(k0 ≈ β), based on Eqs. (A25) and (A26). This mode is promising
for direct coupling with radiation from a THz linear undulator at
LCLS. (b) A comparison between the intensity profiles of the
Bessel function J20ðrÞ and the Gaussian e−r

2=σ2 , where σ is the
amplitude rms width.
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Thus, the real part of the field profile is given approx-
imately as

Ey11 ¼ 0; ðA36Þ

Ex11 ∝ J0

�
2.4r
a

�
þ 2.4r

a
β̂0MJ1

�
2.4r
a

�
; ðA37Þ

which is shown in Fig. 12. This shows the polarization and
amplitude profile features of the dipole mode on the iris
line. As one may expect, this mode is akin to dipole modes
traditionally seen in similar periodic structures when driven
by ultrarelativistic electron bunches; e.g., see [15,25].

APPENDIX B: FORMAL JUSTIFICATION FOR
THE USE OF CLUSTERING TO APPROXIMATE

FIELD EXPANSIONS IN AN OVERMODED
PARAXIAL LINE

In this Appendix, we use perturbation theory to derive a
justification to the practice of clustering in field expansions,
as used in Sec. III for a highly overmoded iris line with
paraxial incidence. Specifically, we wish to show that one
can assume that the following two summations are inter-
changeable:

XNmax

−Nmax

↔
XnSteps

−nSteps
þ

X−2N0þnSteps

−2N0−nSteps
; ðB1Þ

where the first sum on the rhs is clustered around 0
(dominant harmonic, at n ¼ 0), while the second sum is
clustered around its image (at n ¼ −n0 ¼ −2N0), where
N0 is defined as the nearest integer to the number of
wavelengths per structure period, b=λ0; see Fig. 13. Here
nSteps is chosen by us to provide a local (truncated) span
around the dominant harmonic and its image, such that the

overall summation is shorter than the regular summation
that would run continuously from −Nmax to þNmax, with
the arbitrary index Nmax chosen high enough as to
encompass all harmonics between and around the dominant
harmonic and its image. The idea behind such a practice
stems from an intuitive assumption that the dominant mode
corresponds to an almost-TEM wave that is paraxially
incident onto the overmoded iris line and slightly perturbed
by the presence of the large irises, as discussed in Sec. III.
Let us show that this assumption is formally justifiable.
Without loss of generality, we specialize the discussion to
the dipole mode (m ¼ 1) of the iris line.
We know that the propagation constant for the nth

harmonic is βn ¼ β0 þ 2πn=b, where β0 approaches the
wave number k0 for paraxial propagation high above cutoff.
In the limit of an ideal line (lossless with TEM wave), we
can put βn ¼ k0 þ 2πn=b, which would lead to a transverse
wave number ktn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − β2n

p
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πn=nÞ2 þ 4πnk0=b

p
.

The dipole mode field equations at a given point along the
line, say z ¼ 0, are given [from (48)–(53)] by

EzI ¼ cos θ
X∞
n¼−∞

Cn
J1ðktnrÞ
J1ðktnaÞ

ðB2Þ

HzI ¼ sin θ
X∞
n¼−∞

Dn

Z0

J1ðktnrÞ
J1ðktnaÞ

ðB3Þ

ErI ¼ i cos θ
X∞
n¼−∞

Dnωμ

Z0rk2tn

J1ðktnrÞ
J1ðktnaÞ

þCnβn
ktn

J01ðktnrÞ
J1ðktnaÞ

ðB4Þ

EθI ¼ i sin θ
X∞
n¼−∞

−
Dnωμ

Z0ktn

J01ðktnrÞ
J1ðktnaÞ

−
Cnβn
rk2tn

J1ðktnrÞ
J1ðktnaÞ

ðB5Þ

FIG. 13. An illustration of the harmonic distribution over the
index n under discussion (top axis), where the dashed line depicts
the expected decay in harmonic strength as we move away from
the band edges (in red) that represent the dominant harmonic and
its image. Given the symmetry in the Bessel functions involved in
the different bands, it is sufficient to focus our treatment on the
middle band, between −n0 and 0, where ktn is real. A convenient
positive integer d is introduced in the derivations, for the middle
band, and is illustrated in the bottom axis.

FIG. 12. A comparison between the real part of the field
expansion (A37) and the function J0ð2.4r=aÞ. The effect of
having a small complex perturbation in the argument of the
Bessel function will be to slightly lift the amplitude off zero near
the edges, compared to the real function J0ð2.4r=aÞ.
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HrI ¼ i sin θ
X∞
n¼−∞

Dnβn
Z0ktn

J01ðktnrÞ
J1ðktnaÞ

þCnωϵ

rk2tn

J1ðktnrÞ
J1ðktnaÞ

ðB6Þ

HθI ¼ i cos θ
X∞
n¼−∞

Dnβn
Z0rk2tn

J1ðktnrÞ
J1ðktnaÞ

þCnωϵ

ktn

J01ðktnrÞ
J1ðktnaÞ

: ðB7Þ

It is clear from ktn ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πn=nÞ2 þ 4πnk0=b

p
that

certain n values will lead to real ktn values, while other
n values will lead to purely imaginary ktn ¼ iγn, where γn is
real. For the former, the Bessel functions in (B2)–(B7) are
Bessel functions of the first type [e.g., J1ðktnrÞ], whereas
for the latter case, they become, using the relation
JmðiγnrÞ ¼ imImðγnrÞ, modified Bessel functions of the
first type [e.g., I1ðγnrÞ]. To work in terms of real ktn wewill
need negative n values that satisfy 4πjnjk0=b ≥ 4jnj2π2=b2,
which leads to the requirement that −n0 ≤ n ≤ 0, where
n0 ¼ 2b=λ0 ¼ 2N0. For the remaining values of n, γn is
real. See Fig. 13. Given the symmetry between the two
types of formulations, we can work in either set of wave
numbers and Bessel functions (ktn and Jm, or γn and Im)
and expect the other to have similar features. We can
therefore confine the remainder of this discussion to the
formulation using ktn and Jm functions over the middle
band shown in Fig. 13. For the same iris-line dimensions
used in Sec. IV, we have a ¼ 0.05 m, b ¼ 0.33 m,
λ0 ¼ 10−4 m, which give −6666 ¼ −n0 ≤ n ≤ 0. We rec-
ognize the edges of this range as the terms we initially
assumed to be the dominant harmonic and its image. Let us
next show that the strength of all the harmonics between
these two terms (n ¼ 0;−n0) get smaller and smaller as we
move away from edges.
Consider the total complex power associated with each

harmonic traveling down the iris line, by calculating the
integral (call it I) of the Poynting vector over the line’s
cross section,

I ¼
Za
r¼0

Z2π
θ¼0

drdθ rðEn ×H�
nÞ · ẑ

¼
Za
0

Z2π
0

drdθ rðErnH�
θn − EθnH�

rnÞ; ðB8Þ

where the asterisk denotes complex conjugation. Before
substituting the modal field expressions (B2)–(B7) into
(B8) to find the respective powers carried by the harmonics,
we should lift the idealistic assumption of lossless line,
since the line will exhibit some loss. We introduce two
perturbation parameters and write the complex propagation
constant as

β0 ¼ k0ð1þ ε1Þ þ iε2k0; ðB9Þ

where ε1 ≪ 1 and ε2 ≪ 1 represent, respectively, the
small shift in real part of β0 relative to k0 and the small
attenuation experienced by the waves on the line. Working
to first order in the small parameters ε1, ε2, this leads, after
algebraic manipulation, to

βn ¼
�
k0ð1þ ε1Þ þ

2πn
b

�
þ i½ε2k0� ðB10Þ

jβnj2 ≅ k20 þ
�
2πn
b

�
2

þ 2k0

�
2πn
b

þ ε1

�
1þ 2πn

b

��
¼ k20 þ ϕ2

n; ðB11Þ

β2n ≅ k20 þ ϕ2
n þ 2iε2k20

�
1þ 2πn

bk0

�
; where ðB12Þ

ϕ2
n ¼

�
2πn
b

�
2

þ 2k0

�
2πn
b

þ ε1

�
1þ 2πn

b

��
: ðB13Þ

Within the present range of n, we define the convenient
positive-integer measure d as d ¼ n0 − jnj, using it as our
variable, and we substitute n → −jnj in (B10)–(B13), to
yield, after reduction to first order in ε1, ε2 and renaming ϕn
as ϕd,

ϕd ¼ −
4k20
n20

dðn0 − dÞ − 2k20
n0

ε1ðn0 − 2dÞ ðB14Þ

β2n ≅ k20 þ ϕ2
d − i2ε2k20

�
n0 − 2d

n0

�
ðB15Þ

k2tn ≅ −ϕd

�
1þ iε2ðn0 − 2dÞn0

2dðn0 − dÞ þ ε1n0ðn0 − 2dÞ
�

ðB16Þ

ktn ≅ ψ1 þ iε2ψ2; where ðB17Þ

ψ1 ¼
ffiffiffiffiffiffiffiffiffi
−ϕd

p
ðB18Þ

ψ2 ¼
ffiffiffiffiffiffiffiffiffi
−ϕd

p ðn0 − 2dÞn0
4dðn0 − dÞ þ ε1n0ðn0 − 2dÞ ; ðB19Þ

noting that ψ1, ψ2 are both real.
Substituting from the fields in (B2)–(B7) into the integral

(B8), with the shorthand notation J1ðktnrÞ → J1, we now
have (after algebraic reduction and integrating over θ)
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I ¼ πk0
2Z0jktnj2jJ1ðktnaÞj2

�
ðβ�njDnj2 þ βnjCnj2Þ

Za
0

dr

×

�
rjJ0j2 þ

2

rjktnj2
jJ1j2 − 2Re

�
J1J0�0
ktn

��

þ
�
2k0Re½CnD�

n� þ CnD�
n
ϕ0
n

k0

�
2Re

�Za
0

dr
J1J0�1
ktn

�	
;

ðB20Þ

where we identify four integrals to be performed, all of
which involve Bessel functions with complex arguments.
To find these integrals analytically, we convert the complex
argument inside the Bessel functions into a real one by
using (B14)–(B17), Taylor expansions in the small imagi-
nary parameter ε2 (responsible for loss) and the standard
Bessel identities for derivatives [21], to write

J0ðktnrÞ ≅ J0ðψ1rÞ − iε2ψ2rJ1ðψ1rÞ; ðB21Þ

jJ0ðktnrÞj2 ≅ J20ðψ1rÞ; ðB22Þ

J1ðktnrÞ ≅ J1ðψ1rÞ þ iε2ψ2r

�
J0ðψ1rÞ −

1

ψ1r
J1ðψ1rÞ

�
;

ðB23Þ

jJ1ðktnrÞj2 ≅ J21ðψ1rÞ; ðB24Þ

J01ðktnrÞ ≅
�
J0ðψ1rÞ −

J1ðψ1rÞ
ψ1r

�
þ iε2

ψ2

ψ2
1r
½ð1 − ψ2

1r
2 þ ψ1ÞJ1ðψ1rÞ

− ψ1rJ0ðψ1rÞ�; ðB25Þ

which allow us to evaluate the four integrals. The result of
integration can be summarized as

Za
0

dr

�
rjJ0j2 þ

2

rjktnj2
jJ1j2 − 2Re

�
J1J0�0
ktn

��

¼ a2

2
J20ðψ1aÞ þ

�
a2

2
þ 1

ϕd

�
J21ðψ1aÞ; ðB26Þ

2Re

�Za
0

dr
J1J0�1
ktn

�
¼ 1

ϕd
½1 − J21ðψ1aÞ�: ðB27Þ

We can now substitute back into (B20), noticing that we
can approximate jktnj2jJ1ðktnaÞj2 ≅ ϕdJ21ðψ1rÞ, to finally
yield the power in the nth harmonic as

I ≅
−πk0
2Z0ϕd

�
ðβ�njDnj2 þ βnjCnj2Þ

�
a2

2

J20ðψ1rÞ
J21ðψ1aÞ

þ a2

2
þ 1

ϕd

�

þ 2Re½CnD�
n�
k0
ϕd

�
1

J21ðψ1aÞ
− 1

�

þ CnD�
n
1

k0

�
1

J21ðψ1aÞ
− 1

�	
: ðB28Þ

This result highlights how all the terms on the rhs will be
modulated by the function ϕ−1

d , which is a convex function
of d that decays as we move towards the midpoint of the
band. Thus, this function is responsible for local harmonic
power decay as we move away from the dominant
harmonic and its image (at the band edges where d tends
to 0 and n0); see Fig. (13). Using (B14), we can plot this
convex modulating function as shown in Fig. 14(a). Note
that even though some of the terms in the rhs of (B28)
contain the function 1=J21ðψ1aÞ, which is highly oscillatory
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FIG. 14. (a) A plot of the convex modulation function, jϕ−1
d j,

responsible for the clustering effect, for the overmoded iris-line
example with a ¼ 0.055 m, b ¼ 0.33 m, ε1 ¼ 0.0001 and n0 of
6666. (b) An example of the effect of the modulation on the
oscillatory term 1=J21ðψ1aÞ, plotted using the formula (B30) for
the same parameters. The edges of the band (where d tends to 0 or
6666), correspond to the dominant harmonic and its image;
clustering is manifested in how the envelope of all harmonics
decreases as we move away from band edges.
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for an overmoded structure, their envelope will still be
modulated by the function ϕ−1

d to exhibit lower power
strengths as their harmonic index n (or d) moves away
from dominant harmonic and its image. Indeed, this
can be conveniently visualized by explicitly taking
the asymptotical form of J1 for large argument [21],
J1ðψ1aÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπψ1aÞ

p
sinðψ1a − π=4Þ, then perturba-

tively expanding this form as well as the ψ1 function, to
first order in the small parameter ε1, to give, after algebraic
manipulation,

ψ1 ≅
2k0
n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðn0 − dÞ

p �
1þ ε1

n0ðn0 − 2dÞ
4dðn0 − dÞ

�
; ðB29Þ

1

J21ðψ1aÞ
≅

n0½1 − ε1
n0ðn0−2dÞ
4dðn0−dÞ �

2πak0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðn0 − dÞp �

1 − sin
4k0a
n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðn0 − dÞ

p �

− ε1
n0
2π

n0 − 2d
dðn0 − dÞ cos

4k0a
n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðn0 − dÞ

p
:

ðB30Þ

Figure 14(b) uses (B30) to plot the modulated oscillatory
term ½ϕdJ21ðψ1aÞ�−1, showing the clustering envelope over
the oscillating terms.
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