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A precise determination of the β function at different locations of an accelerator is essential to allow
accurate optics correction and to ensure high machine performance. The β function can only be measured
directly at locations where beam position monitors are installed. For other locations, we rely on a
K-modulation technique. However, this technique presents some limitations resulting in imprecise β values
when the phase advance between the modulated quadrupole and the observation point is separated by 90°.
To mitigate these limitations, we have introduced the same phase advance as an additional constraint in the
K-modulation algorithm. In this paper, the improvement of the β measurement uncertainty is quantified for
different optics configurations for both, the LHC and the proton synchrotron (PS) booster. The new
algorithm is used to reanalyze measured data during van der Meer scans for luminosity calibration
providing significantly more accurate results than obtained previously. Moreover, in the PS booster, this
improvement has also reduced the uncertainty of the β function at different locations of the machine.

DOI: 10.1103/PhysRevAccelBeams.25.041002

I. INTRODUCTION

The LHC is designed to achieve a high peak luminosity
by transversely squeezing the beams at the interaction
points (IPs) [1]. To achieve high luminosities, ensuring
machine protection and avoiding luminosity imbalances
between experiments, accurate measurements, and good
control of β� are required. The currently preferred method
to determine β� in the LHC is the K-modulation technique
[2–8]. This method relies on the modulation of the gradient
of the quadrupoles closest to the IP. The induced tune shifts
allow a determination of the average β function at the
modulated quadrupoles. The waist shift w and β� can then
be calculated via interpolation. The accuracy of the
reconstructed β� relies on the measurement uncertainty
of the tune, the quadrupole gradient and positioning
uncertainties, and other machine parameters. A particular
case where K modulation has an important role is during
van der Meer (vdM) scans in the LHC [9]. During vdM
scans, the transverse separation of the two beams at the IP is
scanned in both planes in order to calibrate luminosity
monitors. To obtain an accurate luminosity calibration, a
precise measurement of β� is required. During 2016 vdM

scans, an optics configuration with β� ¼ 19 m in IP1 and
IP5 was used. The measurement of β� using K modulation
provided inconsistent results in some cases [9]. These
results were thought to be due to the limitations of the
K-modulation algorithm. This result triggered the present
study to try to overcome the limitations of the current
algorithm and to extend it in order to obtain more reliable
results, in particular for vdM optics. In this paper, the
limitations of the K-modulation algorithm are explained as
well as the new techniques implemented by adding the
phase advance at the interactive region (IR) as a constraint.
The new algorithm has been tested in simulations for
determining β� in different optics configurations. The data
obtained during vdM scans in 2016 [9] have been rean-
alyzed reducing the uncertainty of the result. In order to
further extend the applicability of this algorithm to other
accelerators, simulations using the proton synchrotron (PS)
booster lattice have been carried out showing also signifi-
cant improvements in the accuracy of the measurement of
the β function at locations where no diagnostic devices are
available.

II. K-MODULATION TECHNIQUE

To illustrate the principle of theK-modulation technique,
we focus our attention on the LHC interaction regions
(IRs). However, this technique is not restricted to this
example as it will be shown in the next sections. This study
is particularly relevant for 90-degree phase advance lattices.
In the LHC, there are no beam position monitors (BPMs)

installed at the IP, therefore, the β function at this location
must be extrapolated from its measurement at a different
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location. There exist several techniques for determining the
optics function at the IP. Among them, K modulation has
proven to be the preferred technique for measuring β� [3],
although this technique is not restricted to the IP and can be
applied at different locations around the ring. The relation-
ship between the variation in the quadrupole strength Δk,
the average β function at the modulated quadrupole βav, and
the tune variation is given by

βx;yav ¼ �fcotð2πQx;yÞ½1 − cosð2πΔQx;yÞ�

þ sinð2πQx;yÞg ≈�4π
ΔQx;y

ΔkL
; ð1Þ

where Qx;y is the horizontal and vertical tunes and L is the
length of the modulated quadrupole. From this point on, we
omit the x and y subindices. The value β� is calculated from
the value of the β function at the quadrupole through the
calculation of the waist position w and the β function at the
waist βw as shown in Fig. 1. The K-modulation algorithm
uses Eq. (1) to estimate the average β function at the
quadrupole. To simplify the following derivations, we use
the thin lens approximation. The relationship between the β
function at the quadrupole, βq, and the β function at the
waist position, βw, is given by

βq ¼ βw þ ðLQ=2þ L� − wÞ2
βw

; ð2Þ

where L� is the length of the last drift before the IP and
LQ=2 is the half length of the last quadrupole. Solving the
second degree equation, we obtain

β�w ¼
βq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2q − 4ðLQ=2þ L� − wÞ2

q
2

; ð3Þ

which comprises two solutions: βþw and β−w.
The reconstructed βw function and waist w, given by K

modulation, are related to β� by

β� ¼ β�w þ w2

β�w
: ð4Þ

The precise derivation computing actual averages and
using two quadrupoles can be found in [3]. In Eq. (4), two
possible solutions are found for β�. For low-β� optics
configurations, these two solutions are usually very far
apart from each other. However, and as we will see later, for
high-β� optics configurations, the two solutions are closer
and the optimization algorithmmay not be sensitive enough
to distinguish them.
The algorithm used to reconstruct β� fits the measured

average β function at the quadrupole for different values of
the tune during the strength modulation. In addition, the
results of the modulation of the two last quadrupoles in
both sides of the IP are combined into a single penalty
function used in the simplex optimization algorithm is
given by

χ2 ¼ Δβ2foc þ Δβ2def ; ð5Þ

where βfoc and βdef are the corresponding average β
functions, βav at the focusing and defocusing quadrupoles,
respectively, which correspond to the two quadrupoles in
both sides of the IP. This approach may lead to convergence
issues. In the next sections, a new penalty function is
introduced in order to obtain a more accurate determination
of β�.

A. Limitations

K modulation presents some limitations in the accuracy
of the reconstructed β�, in particular for optics configura-
tions where β� ≈ L�, as it is the case for vdM optics
configuration. By taking the derivative of Eq. (3) and
assuming w ≪ L�, one can show that to first order the
uncertainty in β� is related to the uncertainty in β function
at the modulated quadrupole as [10],

σβ�

β�
¼
���� ∂β

�

∂β
���� σβavβav

¼
β� þ ðL�þLQ=2Þ2

β�

jβ� − ðL�þLQ=2Þ2
β� j

σβav
βav

¼ Λ
σβav
βav

; ð6Þ

where Λ is the proportionality factor between the error in
the determination of the β function at the quadrupole and
the error induced in the determination of β�. In Fig. 2, the
graphical representation of Λ is shown. One can see that for
β� ≈ L� þ LQ=2, a small error in the βav determination may
induce a large error in β�. This is partially compensated by
introducing in the algorithm the results of the modulation of
the two quadrupoles in both sides of the IP. These large
errors in the determination of β� are of particular impor-
tance for vdM optics where large β functions at the IP are
used (about 19 m in IP1 and IP5) and comparable to the
length of the last drift plus half of the last quadrupole
length.

FIG. 1. Illustration of an interaction region and optics
function [3].

H. GARCIA-MORALES et al. PHYS. REV. ACCEL. BEAMS 25, 041002 (2022)

041002-2



A different approach to view this divergence is consid-
ering the phase advance in the IR. For β� ≈ L� þ LQ=2, the
phase advance between the IP and L� is

ϕ ¼
Z

L�þLQ=2

0

ds
βðsÞ ¼

Z
L�þLQ=2

0

ds

β� þ s2
L�þLQ=2

¼ π

4
: ð7Þ

Since the β-beating wave propagates as 2ϕ, where ϕ is
the IR phase advance obtained in Eq. (7), it implies that for
a phase advance from the last quadrupole to the IP of π=4
(45°), the β-beating wave propagates to the IP with 90°, i.e.,
orthogonal to the phase value at the quadrupole.
Another limitation arises from the fact that the two

solutions of Eq. (3) might be very close to each other. We
can define the distance between the two solutions using

Δβw ¼ βþw − β−w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2av − 4ðL� þ LQ=2 − wÞ2

q
; ð8Þ

when β� ≪ 1 and the waist w ≪ L�, β2av ≫ 4ðL� þ
LQ=2 − wÞ2 and therefore, Δβw ≫ β�. However, when
β� is comparable to L� (i.e., for vdM optics), β2av ≈ 4ðL� þ
LQ=2 − wÞ2 and therefore, Δβw ≈ 0 and the two solutions
for βw are very close to each other. In this situation, the
optimization algorithm, introduced before, may end up
converging to the wrong solution (βþw ), due to measurement
uncertainties.
The trend of Eq. (8) as a function ofβ� can be seen in Fig. 3

for w ¼ 0. One can see that the two solutions take the same
value (Δβw ¼ 0 m) when β� ¼ L� þ LQ=2, as it was found
in Eq. (6). In particular, and always assuming that thewaistw
is small compared toL�, for β� ¼ β−w ¼ 30 cm, the average β
function at the quadrupole is βav ¼ 1763 m and thus, the
second solution is, βþw ¼ β� þ Δβw ≈ Δβw ¼ 1763 m.
Therefore, in this case, it is highly improbable that the

algorithm converges to the βþw solution. However, for
β� ¼ 19 m, resulting in an average β function at the quadru-
pole, βav ≈ 46.84 m. This gives a difference between the two
solutions of onlyΔβw ≈ 9 m. In this case, the probability for
the algorithm to converge to the wrong solution (βþw ) is not
negligible. This paper presents an improvement of the
K-modulation technique to overcome these limitations by
adding new constraints.

III. K MODULATION FOR DIFFERENT OPTICS
CONFIGURATIONS

K-modulation simulations were performed using MAD-X
code [11] to extend the study to ten different optics
configurations with different β� from 12 to 50 m.
Systematic errors were introduced, namely a magnet

FIG. 2. Error amplification when given by Eq. (6) when
β� ≈ L� þ LQ=2. For the LHC, L� ¼ 23 m and LQ=2 ¼ 2.1 m.

FIG. 3. Difference between the two solutions given by Eq. (8)
as a function of β�.

FIG. 4. Relative error in β� extracted from simulations as a
function of the selected optics and a tune uncertainty
δQ ¼ 5 × 10−5. We can see that for β� ∼ L� þ LQ=2, the relative
error in β� increases significantly.
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misalignment of 6 mm and a magnet strength error of
ΔK=K ¼ 10−3.We evaluate the error in the β� determination
as a function of the selected β� for the case of a tune
uncertainty of δQ ¼ 5.0 × 10−5. The value for Δβ�=β� is
obtained by comparing the error in β� obtained from K
modulation with the reference β�. As it can be seen in Fig. 4,
for β� ¼ 25 m, the error diverges while the error decreases
when β� is larger or smaller. Themaximum relative deviation
occurs at exactly the same location predicted above and
shown in Fig. 2. In Fig. 5, the contribution from different
errors is shown for the horizontal plane in IP1 for B1. This
was obtained by simulating the different sources of errors
separately. In all optics configurations, misalignment seems
to have a larger impact on the error of β�.

IV. CONSTRAINING K-MODULATION
SOLUTIONS USING IR PHASE ADVANCE

The penalty function shown in Eq. (5) only takes into
account the average β functions at the quadrupoles. If an
additional term, taking into account another observable, is
added, the solution can be further constrained and the
uncertainty in β� is reduced. In particular, the phase
advance in the IR plays an important role in the determi-
nation of β�. For that reason, the measured phase advance at
the IR using an ac dipole is introduced when available. To
measure the IR phase advance, the ac dipole is used to
generate a transverse excitation. By means of harmonic
analysis on the recorded BPM signal, we can extract the
phase advance between the two adjacent BPMs in both
sides of the IP. The phase advance ϕIP along the drift that
contains the IP can be evaluated as [12]

ϕIR ¼ arctan

�
L̂� − w
βw

�
þ arctan

�
L̂� þ w
βw

�
; ð9Þ

where L̂� is the distance between the IP and the closest BPM.
From Eq. (9), we can calculate the phase advance using the
reconstructed βw and w. This value is compared to the
reference value obtained from the measurement of the phase
advance. The figure of merit χ2 from Eq. (5) can be extended
to include the additional phase advance constraint,

χ2¼ð1−ΩÞ
��

Δβfoc
βfoc

�
2

þ
�
Δβdef
βdef

�
2
�
þΩ

�
ΔϕIR

ϕIR

�
2

: ð10Þ

In order to account for the different magnitudes of the
change in β and ϕ, the different terms have been normalized
to their design parameters. In such a way, the algorithm
tries to reduce Δβ and Δϕ independently of the actual
values of these parameters. The contributions in Eq. (10)
are weighted and the weight can be adjusted manually in
order to give higher preference to the phase or to the β-
function value at the quadrupole location. In the next
section, we present more details about the impact of the
value of Ω for different optics configurations.

V. SIMULATIONS

In this section, the phase advance constraint has been
tested to evaluate its impact in different optics configura-
tions. Since we expect significant differences between
different optics, two different regimes have been tested:
high-β� and low-β� optics configurations.

A. High-β� optics

For vdM scans, an optics configuration with β� ¼
19.2 m is used to perform simulations of K modulation.
Systematic errors in the quadrupole magnetic fields dis-
tributed according to Table I [13], 6 mm longitudinal
misalignment of the quadrupoles randomly assigned and
a tune uncertainty of δQ ¼ 5 × 10−5 are included in the
simulations. A total of 500 seeds were simulated with errors
randomly assigned to the different quadrupoles. The spread
in β� and IR phase ϕIR from the model before simulating
K-mod techniques are shown in Fig. 6. This gives the
reference of the spread in β�. The standard deviation of
this distribution is about 1 m in both planes. This reflects
the initial statistical uncertainty we expect before the
measurement. Among these 500 seeds, and after applying

FIG. 5. Contribution of different errors to the total error in the
β� determination from K modulation for B1 vertical plane in IP1
for different optics configurations.

TABLE I. Magnetic errors used in different quadrupoles taking
[13] as a reference with a larger relative error in MQX.

Quadrupole Relative error (10−4)

MQ 17
MQM 12
MQY 7
MQX 7
MQW 13
MQT 77
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K modulation, some of them converged to the wrong
solution for β� as explained in previous sections. For one of
these seeds, we have scanned the value of waist w and the β
function at this location, βw, and the figure of merit χ2 from
Eq. (10) was evaluated in each case for different values of
the weight Ω. We can see in the top plot of Fig. 7 that when
the phase advance is not included as a constraint (top plot,
Ω ¼ 0), the algorithm converges to the secondary mini-
mum. When the phase constraint is included (middle plot,
Ω ¼ 0.1) using a realistic model of the machine that
mimics the actual phase measurement, the secondary
minimum disappears and the algorithm converges to the
only minimum available which corresponds to the expected
solution. If the weightΩ is further increased, any remainder
of the secondary minimum is removed and the convergence
to the primary minimum is ensured. In addition, the
uncertainty of the waist w is not affected as it can be seen
in Fig. 8.
The actual value of Ω that removes the secondary

minimum depends on the particular combination of errors
in the machine. Therefore, its value must be chosen large
enough to ensure that there are no cases where the

algorithm converges to the nonoptimal solution. In
Fig. 9 (top), the relative number of seeds converging to
the right minimum is shown as a function of the weight Ω.
First, we can see that for low values of Ω, the number of

FIG. 6. Histograms for β� beating and ϕIR extracted from the
model after introducing magnetic errors in the quadrupoles for
IP1 before K modulation is applied.

FIG. 7. Example of how the optimization algorithm can
converge to the wrong solution (top) and how the introduction
of the phase advance constraint [Ω ¼ 0.1 (middle) and Ω ¼ 0.2
(bottom)] helps in finding the real minimum for the case of vdM
optics configuration.
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seeds that fail to converge to the right minimum is above
5%. We observe that all seeds converge correctly already
for Ω ¼ 0.07. However, since the phase advance between
BPMs in both sides of the IP does not provide information
about the waist, we risk reducing the uncertainty of the
reconstructed w. Nevertheless, we have seen that very high
values of Ω are required to affect negatively the uncertainty
of the waist w. Therefore, we have taken a more
conservative approach by choosing Ω ¼ 0.2 as the default
value to ensure a right convergence for all seeds. In
addition, in Fig. 9 (bottom), the error in the reconstructed
β� using K modulation as a function of Ω is shown.
Initially, for Ω ¼ 0, the uncertainty goes beyond 12%.
When the weight Ω is increased, the uncertainty is reduced
to less than 0.7%. Hence, we conclude that, when we
constrain the solution with the phase advance, the uncer-
tainty of the reconstructed β� using K modulation is also
reduced significantly.
Taking into account all 500 seeds, the average recon-

structed β� is shown in Table II including its deviation
from the value obtained from the perturbed model.

The uncertainty in β� is reduced by more than a factor
of 10 when the phase constraint is taken into account. For
values of the weight Ω larger than 0.2, the uncertainty of β�
is not further reduced. This example demonstrates that the
addition of the IR phase constraint greatly improves the
performance of the K-modulation algorithm for high-β�
configurations.

B. Injection optics

We consider now the case of LHC injection optics with
β� ¼ 11 m in IP1 and IP5. This case is of particular interest
since the corrections of the optics at injection require
special dedication and the value of β� is still high. The
LHC injection optics accommodates the beam coming
from the super PS during the filling process. Once the
machine is full, the energy ramp starts and the optics is
smoothly adapted accordingly. One of the recent improve-
ments is to start squeezing the beams at the IPs already
during the ramp, the so-called ramp and squeeze. Since the
optics is changed discretely, one has to ensure that at each
step the optics are properly corrected. For that reason, a
good knowledge of the optics at each step is crucial to
ensure that the full process of ramp and squeeze is
completed.
We have performed K-modulation simulations to recon-

struct β� using the phase advance as a constraint using the

TABLE II. Reconstructed average and uncertainty of β� and
waist from K modulation for β� ¼ 19 m optics configuration.

Ω β�x [m] rms (Δβ�x=β�x) [%] β�y [m] rms (Δβ�y=β�y) [%]

0.0 19.5 11.1 19.7 12.1
0.1 19.2 0.6 19.3 0.5
0.2 19.2 0.7 19.3 0.4

FIG. 9. Fraction of the reconstructed β� values using K
modulation that converges to the wrong solution (top) and
statistical uncertainty of the measurements (bottom).

FIG. 8. Histogram of the reconstructed vertical β� (top) and
vertical waist (bottom) w using K modulation in IP1 for different
values of the weight Ω.
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regular LHC injection optics. In Fig. 10, the results of the
waist w and βw scans are shown for different values of the
weightΩ. We can see that in this case, the weightΩmust be
chosenΩ ¼ 0.5 in order to remove the minimum that drives
to the second and nonoptimal solution. One can also see

that the island corresponding to the nonoptimal solution
covers a larger area than for β� ¼ 19 m. This means that,
even if this local minimum is higher than the real minimum,
the probability of falling in this area is significantly high.
For that reason, it is recommended to use the phase
constraint to remove the secondary minimum and ensure
that the algorithm converges to the right solution.

C. Low-β� optics

The impact of the implementation of the IR phase
advance to constrain the K-modulation solutions has also
been tested for low-β� optics configurations. In particular,
we have used LHC optics with β� ¼ 30 cm in IP1 and IP5.
In that case, we expect the algorithm to always converge to
the optimal solution even without including the phase
advance in the IR as a constraint. As it was shown
analytically, this is due to the fact that the two solutions
coming from Eq. (3) are initially very far apart from each
other. As it is seen in Fig. 11, the effect of increasing the
phase weight Ω would not significantly modify the

FIG. 10. Scans over w and βw and the figure of merit value
obtained for different phase advance weights: Ω ¼ 0 (top), Ω ¼
0.2 (middle), and Ω ¼ 0.5 (bottom) for LHC injection optics.

FIG. 11. Example of the optimization algorithm for low-β� for
Ω ¼ 0 (top) and Ω ¼ 0.2 (bottom). Regardless of the value of the
weight, Ω will always converge the right solution.
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topology of the result and, therefore, it has little impact on
the convergence dynamics of the optimization algorithm.
Taking into account all 500 simulated seeds, the recon-

structed values for β� and its deviation from the value
obtained with the perturbed model are shown in Table III.
We can see that the relative deviations of β� are always
below 10%, which is the estimated value found for
HL-LHC in [3] for a 33-cm optics configuration and the
same tune uncertainty of 5 × 10−5. Note that to meet the
tight β� control requirements in HL-LHC, a tune uncer-
tainty of about 2 × 10−5 would be needed or a combination
of different measurement techniques [12]. As expected
from the above analytical derivations, the impact of the
phase advance constraint inK modulation for low-β� optics
is negligible.

VI. MEASUREMENTS USING VDM OPTICS

Data from a dedicated machine development (MD)
session that was carried out in 2016 for vdM optics
measurement are reanalyzed taking into account the
improvements in the algorithm presented above. In total,
eight quadrupole modulations were performed, one per side
of IP1 and IP5 and two on either side of IP8 with and
without orbit feedback activated. It is important to quantify

the uncertainty on the tune measurement itself since it
contributes to the total error in the reconstruction of β�.
The uncertainty of the tune measurement is evaluated
during a 5 min period before the start of the quadrupole
modulation. In Table IV, the measured tune uncertainty in
each case is shown. Nevertheless, for both measurements
and simulations, a slightly more pessimistic scenario has
been considered and a tune uncertainty of 5 × 10−5 was
used. Other systematic errors were introduced, namely
magnet misalignment of 6 mm and magnet strength errors
of ΔK=K ¼ 10−3.
Previous analyses reported in [9] revealed that, in some

cases, when the phase advance is not included to constrain
the solution of the β�, the algorithm was not able to
converge to the right solution. These large deviations can be
partially mitigated by introducing the measured IR phase
advance to constrain the solution. In Table V, the measured
phase advances in the IR using the ac dipole to constrain the
K-modulation solution are shown. In Table VII, the
reconstructed β� at the different IPs is shown for a phase
weight of Ω ¼ 0.2. This table can be compared with the
same analysis performed with Ω ¼ 0 VI. We can see that
now the results are closer to the expected values and the
uncertainties have been reduced significantly. Therefore,
beyond the tests performed in simulations, we see that the

TABLE III. Reconstructed average and uncertainty of β� from
K modulation for β� ¼ 30 cm optics configuration.

Ω β�x [cm] rms (Δβ�x=β�x) [%] β�y [cm] rms (Δβ�y=β�y) [%]

0.0 33.8 6 34.0 8
0.1 33.8 6 34.0 8
0.2 33.8 6 34.0 8

TABLE IV. Tune uncertainties during the MD carried out for
vdM optics measurements.

δQx½10−5� δQy½10−5�
B1 3.2 3.2
B2 2.3 3.4

TABLE V. Measured phase advance and standard deviation (in 2π units) in IR1, IR5, and IR8 during the 2016 MD
on vdM optics.

Beam 1 Beam 2

IP ϕx σϕx
[10−4] ϕy σϕy

[10−4] ϕx σϕx
[10−4] ϕx σϕy

[10−4]

1 0.2595 5 0.2606 3 0.2873 7 0.2633 5
5 0.2660 6 0.2775 3 0.2750 4 0.2593 6
8 0.2389 7 0.2342 7 0.2422 6 0.2233 4

TABLE VI. Measured β� and its associated error in IP1, IP5, and IP8 using K mod during the 2016 MD on vdM
optics after introducing the IR phase advance as a constraint with Ω ¼ 0.

Beam 1 Beam 2

IP β�nom [m] β�x [m] Δβ�x
β�x

[%] β�y [m] Δβ�y
β�y

[%] β�x [m] Δβ�x
β�x

[%] β�y [m] Δβ�y
β�y

[%]

1 19.2 17.40 5.7 18.12 0.5 17.70 1.0 17.37 0.4
5 19.2 20.87 0.6 19.59 0.4 16.19 0.2 18.59 0.4
8 24 21.49 0.7 20.00 0.5 26.36 0.04 22 70
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improvements introduced in the algorithm to find β� also
have a significant impact on the measurements. These
improvements allow to obtain a new set of reference values
for β� during vdM optics scans. Table VII can be used as a
reference for run 2 studies on luminosity calibration in the
experiments. In future vdM scans during run 3, this new
methodology will be applied in order to precisely calibrate
luminosity.

VII. APPLICATION TO PS BOOSTER

In the preceding sections, it was shown that divergent
uncertainty on the extrapolation of β functions to exper-
imental IPs in the LHC represented a serious challenge to
the successful operation of that machine. The divergence
was associated with optics conditions wherein β� ≈ L�.
Such a limitation was shown to be overcome through
modification of the standard method of K-mod extrapola-
tion, to include an additional constraint based on meas-
urement of the phase advance across the insertion.
In practice, similar limitations on the application of K

modulation arise invariousmachines.A clear example of this
can be seen in the PS booster at CERN. The PS booster is a
25m radius synchrotron accelerating protons in four stacked
rings from the kinetic energy of 160 MeV to 2.0 GeV. It
directly serves the Isotope mass Separator On-Line facility
(ISOLDE) experiment atCERN, aswell as serving as the first
synchrotron in the CERN injector chain. As such, it
represents averydifferentmachine configuration to theLHC.
Precise emittance measurement is of particular interest to

PS booster operation, which requires an accurate knowl-
edge of the β functions at the location of the wirescanners
(BWS). The PS booster operates at integer tunes of Qint ¼
4 in both planes, with a Δϕ ≈ 90° phase advance between
BPMs. Consequently, the capability of turn-by-turn optics
methods is extremely limited. Figure 12 shows the MAD-X
layout and optics of the PS booster in the vicinity of a PS
booster wirescanner (this layout is representative of all
BWS locations).
Minimal space is available in the PS booster for addition

of extra BPMs close to the wirescanner. Consequently, K
modulation of the focusing quadrupoles (QFO) on either
side of the wirescanner, followed by extrapolation of the
measured βQFO to the wirescanner location, would be of
significant interest. In practice, the PS booster operates very

close to the divergent condition onΛ [outlined in Eq. (6)] in
the wirescanner insertion, particularly in the vertical plane.
This is illustrated in Fig. 13, which shows extrapolated
uncertainty via Eq. (6) for several σβ=β. Depending on the
specific operational scenario and β beating, the PS booster
can move closer or further from the divergent condition.
To assess the viability of K modulation, extrapolation

was attempted in simulations from the focusing quadru-
poles on either side of the wirescanner. About 1000
instances of the PS booster model were considered,
encompassing the operational range of working points.
For the purpose of testing, a constant 0.05% error was taken
on the average β function in the quads. The extrapolation
was then performed with perfect machine knowledge (the
extrapolation was performed using the same Polymorphic

TABLE VII. Measured β� and its associated error in IP1, IP5, and IP8 using K mod during the 2016 MD on vdM
optics after introducing the IR phase advance as a constraint with Ω ¼ 0.2.

Beam 1 Beam 2

IP β�nom [m] β�x [m] Δβ�x
β�x

[%] β�y [m] Δβ�y
β�y

[%] β�x [m] Δβ�x
β�x

[%] β�y [m] Δβ�y
β�y

[%]

1 19.2 18.7 2.1 18.73 0.4 17.58 0.4 17.96 0.4
5 19.2 20.30 0.3 19.18 0.3 16.56 0.5 19.15 0.3
8 24 22.63 0.5 22.41 0.5 19.6 3.3 18.90 0.2

FIG. 12. MAD-X layout of the PS booster lattice in the vicinity
of wirescanner (top) together with simulated phase advance
(center) and β functions (bottom). The wirescanner location is
indicated by a red line.
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Tracking Code model as defined for the test case). Results
from the standard K-mod constraint, Eq. (5), are shown in
Fig. 14 (orange).
Up to 40% errors were obtained on the inferred β at the

wirescanner, even for an unrealistically small error on the
average β at the quadrupoles. Clearly, the standard K-mod
extrapolation (Fig. 14, orange) does not represent a viable
option to determine β at the wirescanners.
A similar analysis was performed using the modified

K-mod extrapolation technique outlined in the preceding
sections, via optimization of Eq. (10). The phase advance
between the closest BPMs to the wirescanner (shown in
Fig. 12, pink) provided the additional constraint, and a
weighting of Ω ¼ 0.3 on the phase constraint was
employed, this having shown positive results for the LHC
studies presented previously. Results for 1000 test cases
with the modified extrapolation technique are shown in
Fig. 14 (black). In this case, an excellent agreement between
the true and inferred β at the wirescanners was obtained.
Data shown in Fig. 14 (black) correspond to an unreal-

istically goodmeasurement quality for theK modulation but
demonstrates in principle that using the refined extrapolation
constraint allowsmeasurement of the optics at the PS booster
wirescanners. A further scenario was considered, where
realistic measurement uncertainties were introduced into
the test cases. Measurement errors were added to the
average β at the quadrupoles with a Gaussian distribution
of σβ;avg ¼ 2%, truncated at 3σ. Gaussian longitudinal
alignment errors with σs ¼ 0.5 cm, truncated at 3σ were
applied. Errors on the quadrupole strength used to define
averageβ at the quads during optimizationwere taken to have
σβ;avg ¼ 0.5%, truncated at 3σ. A measurement error on the
inter-BPM phase advance used in the extrapolation con-
straint was applied with σϕ ¼ 2π × ð5 × 10−4Þ, truncated at
3σ. Results for 1000 test cases including these measurement
errors are shown in Fig. 15 (light blue). A histogram of the

applied error added to the average β at the quadrupoles is also
shown in dark blue (where the mean error between the left
and right quads is indicated).

FIG. 13. Analytical uncertainty on extrapolated β, as deter-
mined by Eq. (6), from the PS booster QFO in the wirescanner
insertions.
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FIG. 14. Histograms of the percentage error on the βy at the
location of the PS booster wirescanner, as determined in
simulation via extrapolation from the nearest quadrupoles.
Results are shown for 1000 test cases of the PS booster model
encompassing the operational range of working points. Results
are shown for the standard K-mod extrapolation method via
minimization of Eq. (5) (orange) and for the K-mod extrapolation
including the phase constraint, Eq. (10), with Ω ¼ 0.3 (black).
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FIG. 15. Histograms of the percentage error on the βy at the
location of the PS booster wirescanner, as determined in
simulation via extrapolation from the nearest quadrupoles,
including constraint on the phase advance of the closest BPMs.
Results are shown for 1000 test cases of the PS booster model
encompassing the operational range of working points and
including a range of realistic measurement errors (light blue).
A histogram of the applied test-case error on the average β at the
modulated quadrupoles is shown in dark blue. The value given is
the mean of the error introduced to the left and right quadrupoles.
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A maximum deviation of 7% was obtained for the
inferred βBWS from the true value. This is comparable to
the applied distribution of errors on the average β at the
quadrupoles. Given a sufficient quality of K-modulation
measurement at the quadrupoles therefore, extrapolation
of the measurement to the PS booster wirescanner appears
viable using the method outlined in this paper.
Consequently, investigation of the hardware upgrades
necessary to facilitate independent modulation of the
nearby quadrupoles is ongoing in the PS booster.

VIII. CONCLUSIONS

K modulation is the most accurate technique to deter-
mine β function at the IPs of the LHC. Nevertheless, it
presents a significant limitation when the phase advance
between the modulated quadrupole and the observation
location is separated by 90-degree phase advance.
This is reflected in van der Meer optics in the LHC,

where β⋆ is comparable to L⋆. We have shown that
introducing the measured phase advance in the IR to
further constrain the K-modulation β�, we can avoid this
limitation and improve the uncertainty of the reconstructed
β�. In particular, it has a significant impact when high-β�
optics is considered as it is the case for the optics
configuration used during vdM scans. It could be also
beneficial if β� is also measured at injection which might be
the case during run 3.
Profiting from this development, a new analysis on data

obtained using K modulation for β� determination during
vdM scans was carried out and new reference values for β�
at different IPs were obtained. This information is essential
for a precise luminosity calibration in the experiments. This
new methodology will be also fundamental for future
studies that require precise measurements of β� during
run 3 and the HL-LHC.
The analysis was extended to the PS booster showing

also significant improvements on the determination of the β
function. This last result demonstrates that this new
algorithm can be further extended to any other machine,
in particular when the phase advance between the modu-
lated quadrupole and the BPM is 90°.
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