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Compact dc high-voltage photoelectron guns are able to meet the sophisticated demands of high-current
applications such as energy recovery linacs. A main design parameter for such sources is the electric field
strength, which depends on the electrode geometry and is limited by the field emission threshold of the
electrode material. In order to minimize the maximum field strength for optimal gun operation,
isogeometric analysis (IGA) can be used to exploit the axisymmetric geometry and describe its cross
section by nonuniform rational B-splines, the control points of which are the parameters to be optimized.
This computationally efficient method is capable of describing CAD-generated geometries using open
source software (GEOPDES, NLOPT, OCTAVE) and it can simplify the step from design to simulation. We will
present the mathematical formulation, the software workflow, and the results of an IGA-based shape
optimization for a planned high-voltage upgrade of the dc photogun teststand Photo-CATCH at TU
Darmstadt. The software builds on a general framework for isogeometric analysis and allows for easy
adaptations to other geometries or quantities of interest. Simulations assuming a bias voltage of −300 kV
yielded maximum field gradients of 9.06 MVm−1 on the surface of an inverted insulator electrode and
below 3 MVm−1 on the surface of the photocathode.

DOI: 10.1103/PhysRevAccelBeams.25.034601

I. INTRODUCTION

Advanced applications of electron accelerators such as
energy recovery linacs (ERLs) [1,2] require beams with
high current and small emittance, therefore placing sophis-
ticated demands on electron sources. State-of-the-art DC
high-voltage photoelectron guns are promising candidates
for meeting these requirements [3,4]. The electrostatic
design for this type of source, in light of optimizing the
beam properties, has been discussed for many decades
[5,6]. For example, there exists extensive research focused
on the optimization of beam parameters depending on
electron bunch parameters [7]. For instance, the electrode

geometry was optimized for beam emittance in [8], using a
set of parameters that describe a few key geometric
features. In contrast, this paper is dedicated to optimizing
the freeform shape of the electrode in terms of CAD basis
functions to minimize the electric field strength, which has
a crucial impact on field emission and thus still represents a
major design problem depending on the specific geometry
of the setup.
Low-level field emission can have a significant negative

impact on the vacuum conditions within the gun and may
severely degrade beam quality and operational lifetime [9].
High-level field emission can cause extensive damage to
both electrode and insulator, necessitating repair or even
replacement of the components. However, a high bias
voltage is desired to provide sufficient initial acceleration
for the beam and to minimize the emittance in spite of space
charge effects. Since common negative bias voltages of dc
photoelectron guns are in the range of −100 kV to
−500 kV [10–13], the combination of such high voltages
with a suitable electrode geometry and material poses a
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great challenge for the design of compact guns. The
decisive limiting factor is the field emission threshold of
the electrode material, imposing a maximum electric field
strength on the geometric design. While increasing the
curvature of the electrode surface reduces the field maxi-
mum, the overall size of the electrode is limited since the
surface area susceptible to field emission should be kept
small. Furthermore, a larger surface area also downgrades
the vacuum conditions [14] and lastly, a larger electrode
requires a larger vacuum chamber, which can be imprac-
tical due to cost and space constraints. A promising
approach is the so-called inverted insulator geometry
gun (IIGG) design [10,15], which significantly reduces
the size of the electrode by placing the high-voltage
insulator inside the vacuum chamber.
Practical experience shows that unavoidable material

impurities and limitations in machining may cause signifi-
cant variations in the field emission threshold. It is therefore
paramount to keep themaximum electric field strength of the
design well below the threshold. For stainless steel (1.4429
ESU), a commonly used electrode material, the threshold
estimate from operational observations is 10 MVm−1 [16].
Other available materials, such as niobium, titanium, and
molybdenum possess a higher threshold for field emission
[17,18], but are more expensive and more difficult to
machine. Common electrode designs range from simple
spherical and cylindrical forms to more complex geometries
like the T-shaped design used at JLab [15]. At TUDarmstadt
a test facility for photocathode activation, test, and cleaning
using atomic hydrogen, Photo- CATCH, which is also
dedicated to dc photoelectron gun research anddevelopment,
has been established recently [19]. It uses an axisymmetric
IIGG, featuring a two-part electrode consisting of a main
electrode body and an extendable lift for photocathode
loading [20]. An upgrade from −60 kV to −300 kV bias
voltage has been envisioned and is currently under develop-
ment. In order to meet design constraints concerning
available space and chamber size, an adaptation and opti-
mization of the existinggeometry is necessary. The important
components of the planned design are shown in Fig. 1.
A key limitation of the design optimization process is the

manual input and adaption of shapes based on simulations
that must be repeated accordingly. An automation of these
steps is desired in order to accelerate and simplify the
design process. This leads to numerical shape optimization.
Since the spatial description of the electric field inside the
gun follows (the electrostatic approximation of) Maxwell’s
partial differential equations (PDEs), the shape optimiza-
tion problem is PDE-constrained [21]. Furthermore, there
commonly is no closed-form solution available for complex
geometries, so the PDE is solved numerically, for example,
by finite elements [22]. PDE-constrained optimization is
well known in the computational electromagnetics com-
munity, see the textbook [23] and references therein.
Particularly in the context of electron guns, several design
workflows to optimize their geometry have been proposed

in the last decades [24–28]. However, all of them belong to
the class of parameter-based optimization, i.e., the designer
has to create a template which contains the design variables
describing the geometry, e.g., width, height, and radius.
This restricts the design space and is an inconvenient
manual effort. On the other hand, computer aided design
(CAD) tools allow freeform shapes in terms of splines and
nonuniform rational basis splines (NURBS) [29,30].
Numerical shape optimization uses the parameters of

these NURBS as the degrees of freedom (DOFs) and thus
allows for an improved balance between design freedom
and ease of implementation. Both parameter and shape
optimization may also be used to describe the shape and
position of holes in the geometry, however neither is able to
introduce new ones. This requires a further generalization
and leads to topology optimization; this however is not of
interest for our application. An illustration of the different
types of geometric design optimization is given in Fig. 2.
There are additional important differences between our

method and previous workflows. In the approaches cited
above, each geometry realization is discretized separately,
which requires rather fine spatial resolutions to avoid
numerical errors due to remeshing (“mesh noise”) and
may again require additional manual intervention.
According to Sandia Labs about 75% of the simulation
time in research laboratories is spent on modeling,

FIG. 1. Basic components of the IIGG design in a longitudinal
cross section of the vacuum chamber.

FIG. 2. Different types of design optimization. From left to
right: parameter, shape, and topology optimization.
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parametrization, mesh generation, as well as pre- and
postprocessing [31]. Yet another distinction should be
made regarding the quality of the resulting field solutions.
The current state of the art in the accelerator community are
low order finite element codes, e.g., POISSON [32].
However, even higher-order classical finite element codes,
such as CST [33] yield noisy fields due to the lack of global
regularity, see [[34] Figure 4]. This is cumbersome for
particle tracking and either needs smoothing or dedicated
(symmetry preserving, mixed element) meshing. To avoid
these problems, this paper proposes a spline-based shape
optimization workflow using isogeometric analysis (IGA)
[35], which integrates finite element analysis into the
conventional NURBS-based CAD design workflow and
allows for integrated particle tracking. IGA-based optimiza-
tion is well established in many communities, but less
explored in electromagnetism. However, [36,37] applied
IGA-based optimization to accelerator magnets (without
tracking) and more recently [38] suggested a freeform
optimization workflow based on shape calculus for rotating
electricmachines;more references can be found in the survey
article [39].
The paper is structured as follows: after this introduction,

Sec. II gives a short summary on CAD geometry handling
and introduces splines. The following Sec. III introduces
the electric field problem, its weak formulation and dis-
cretization. Then Sec. IV formulates the optimization
problem and introduces numerical methods for its solution,
and Sec. V discusses the results for the particular gun in the
context of Photo-CATCH. Finally, the paper closes with
conclusions and an outlook.

II. SPLINES AND GEOMETRY

CAD models are essentially represented by B-splines
[29] and NURBS [40], since they can exactly describe
circular objects, allow local smoothness control, and give
an intuitive definition of freeform curves and surfaces by
so-called control points [41].

A. B-splines

A basis fBi;pgN1

i¼1 of a one-dimensional B-spline space
Sp
α of degree p and regularity α may be constructed from a

knot vector Ξ ¼ ðξ1; ξ2;…; ξnÞ ∈ ½0; 1�n, ξ1 ≤ ξ2 ≤ … ≤
ξn using the Cox-de Boor algorithm [42]

Bi;0ðξÞ ¼
�
1 if ξi ≤ ξ < ξiþ1

0 otherwise

Bi;pðξÞ ¼
ξ − ξi

ξiþp − ξi
Bi;p−1ðξÞ þ

ξiþpþ1 − ξ

ξiþpþ1 − ξiþ1

Biþ1;p−1ðξÞ:

The knot vector uniquely determines the basis and its
properties, including smoothness and the like. The knots
need not be unique and the multiplicity mj of a knot value
ξj determines the continuity of the basis in that knot to be

Cp−mj . Furthermore, a knot vector is said to be open if its
first and last knot each have multiplicity pþ 1. For
geometry modeling this usually is the case, since it makes
the curve interpolatory in these knots. It also leads to a
distinction between the first and last, and the internal knots.
The latter influence the shape of the basis splines, as they
represent the interfaces between each of the polynomial
pieces (or elements) that make up the splines.

B. Geometry description

Given a set of control points fPigN1

i¼1 ⊂ R3, a three-
dimensional B-spline curve is described by a linear
combination of the basis functions

CPðξÞ ¼
XN1

i¼1

PiBi;pðξÞ: ð1Þ

This representation is convenient for shape optimization for
multiple reasons. For one, the uniqueness of the basis for a
given knot vector leads to an interpretation of the control
points as giving the curve its shape. As a consequence,
changes in the coordinates of the control points directly
translate to changes in the shape of the curve and most
importantly they do so smoothly. An exemplary curve
along with the corresponding basis is shown in Fig. 3(a).
The extension of (1) to the bivariate case follows from
choosing bases fBi;p1

gN1

i¼1, fBj;p2
gN2

j¼1 of Sp1;p2
α1;α2 and a

control mesh, given by an ordered set of N1 × N2 control
points Pi;j. A B-spline surface SP is then defined via

SP ¼
XN1

i¼1

XN2

j¼1

Pi;jBi;p1
Bj;p2

;

and also volumetric (trivariate) mappings VP can be defined
analogously. For the construction and handling of the bi-
and trivariate geometry descriptions we make use of the
free NURBS package [43].

C. Refinement

There are several approaches to refine an existing B-spline
basis fBi;pgN1

i¼1. One is degree elevation, whereby the
polynomial degree p of the basis functions is increased.
To preserve the continuity of the original curve, the multi-
plicity of each knot ends up being increased alongside the
degree. Furthermore each element, i.e., each polynomial
piece, gains newcontrol points equal to the increase in degree
and the positions of all control points are recomputed such
that the shape and parametrization of the curve are main-
tained. Figure 3(b) shows an example of the process.
A second refinement strategy is given by knot insertion.

Here, an arbitrary internal knot is added to the knot vector.
This does not impact the degree of the basis, however the total
number of basis functions is still increased and the continuity
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of the basis is reduced in the new knot. For each inserted knot
a new control point is added aswell and again the positions of
all control points are determined in away to keep the shape of
the curve intact. An illustration of the process is given in
Fig. 3(c). Note that after inserting a knot at 0.5 the basis
becomesC0 continuous in that point, as expected. For amore
comprehensive treatment of the geometry descriptions and
refinement strategies we refer to [35].

III. FIELD FORMULATION AND
DISCRETIZATION

Let Ω be the computational domain of the electron gun
with boundary ∂Ω. In the absence of space charges, the
electric field strength E ¼ EðxÞ;x ∈ Ω within the gun is
described by the electrostatic subset of Maxwell’s equa-
tions [44]

∇ ×E ¼ 0 and ∇ · ðεEÞ ¼ 0

in Ω, where the permittivity is given by

ε ¼
�
εins in Ωins

ε0 otherwise;

compare Fig. 4. Here ε0 and εins are the permittivities of
empty space and the insulator respectively. We assume that
the domain is given by a multipatch spline mapping from

the reference domain Ω̂ ¼ ð0; 1Þ3 to the physical domain,
that is, Ω ¼ ΩðPÞ in terms of control points P, see [45].
Introducing the electric scalar potential ϕ by E ¼ −∇ϕ
yields the boundary value problem [[44] Sec. 1.7]

∇ · ðε∇ϕÞ ¼ 0 in Ω; ð2Þ

along with the Dirichlet boundary conditions ϕ ¼ ϕDi
on

ΓDi
(i ¼ 0, 1, 2), see Fig. 4.

A. Weak formulation

Exploiting the axisymmetry of the configuration we may
restrict our analysis to Ω2D, i.e., the ρ-z-plane. Let V ¼
H1ðΩ2DÞ denote the space of square-integrable functions
with square-integrable gradients [22]. Following the

(a) (b) (c)

FIG. 3. Exemplary B-spline curves and their basis functions. The original knot vector is Ξ ¼ ð01×3; 0.3; 0.5; 11×3Þ and the control
points are P1 ¼ ð0; 1Þ, P2 ¼ ð1;−1Þ, P3 ¼ ð3; 2Þ, P4 ¼ ð5; 4Þ and P5 ¼ ð7; 1Þ. (a) Original curve and basis functions. (b) Curve and
basis functions after elevating the degree by 1. (c) Curve and basis functions after inserting knots at 0.5 and 0.7.

FIG. 4. Original geometry and boundary conditions of the
domain Ω2D. Grey lines indicate patch boundaries.
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Ritz-Galerkin approach, we deduce the weak form of (2) as:
find ϕ ∈ VD such that

Z
Ω2D

ε∇ϕ · ∇ϕ0 ρ dρ dz ¼ 0 ð3Þ

for every ϕ0 ∈ V0, where VD indicates the space of
functions in V satisfying the Dirichlet boundary conditions,
while V0 indicates the V subspace of functions vanishing
on ΓD. A finite-elementlike discretization of (3) is obtained
by restricting to a finite-dimensional subspace Vh ⊂ V.
Using basis functions fvigNi¼1 of Vh we express the
potential as

ϕh ¼
XN
i¼1

φivi; φi ∈ R ð4Þ

and the approximated electric field strength follows from
Eh ¼ −∇ϕh. The linear system of equations reads

Kεφ ¼ −ϱ; ð5Þ

where we only consider the Ndof unconstrained coefficients
as degrees of freedom, i.e.,

ðKεÞij ¼
Z
Ω2D

ε∇vj · ∇vi ρ dρ dz ð6Þ

for 1 ≤ i, j ≤ Ndof and include the coefficients known due
to boundary conditions in the right-hand side ϱ.
Please note, until now the basis functions have not yet

been specified. The next section will propose to use
B-splines instead of the more common finite-element-type
hat functions [35].

B. Isogeometric analysis

The main idea of IGA is to use B-splines or NURBS not
only for the geometry description but also to represent the
solution. This enables the solution of numerical problems, as
the one defined above, on computational domains without
introducing a geometric modeling error. Moreover, the
thereby obtained geometry parametrization lends itself very
nicely toward shape optimization, since it offers an intuitive
set of degrees of freedom which immediately deform the
underlyingmesh. Finally, the use of high orderB-spline basis
functions in (5) guarantees rapid convergence and a high
continuity of the solution [35].
Let SP∶ Ω̂2D → Ω2D denote the bivariate geometry

mapping from the reference domain Ω̂2D ≔ ð0; 1Þ2 to the
physical domain, from which eventually a 3D description is
obtained by revolution [46]. Assuming that SP is piecewise
smoothly invertible, we may define the approximation
space Vh using a gradient preserving transformation

Vh ¼ fv∶ v ¼ v̂ ∘ S−1P ; v̂ ∈ V̂hg:

Here V̂h is a discrete space on the parametric domain, for
which we elect to use the space of B-splines with degree pi

and continuity αi along dimension i, denoted by Sp1;p2
α1;α2 in

the presented two-dimensional case. We have implemented
the weak form and the discretization by IGAwithin the free
software GEOPDES [47].

IV. SHAPE OPTIMIZATION

The overall aim is to optimize the geometry of the
electron gun to achieve two, possibly competing, goals.
First, we want to minimize the maximum electric field
strength on the electrode surface, and secondly, we want to
ensure a proper beam. Since the regions of the geometry
that are relevant for field emission are far away from the
cathode and the beam axis, we investigate the two problems
separately. We optimize the shape first and then perform
particle tracking to determine the beam properties of the
optimized geometry.
Only the shape of the electrode is relevant for the

geometry, i.e., the boundary ΓD1
in Fig. 4. Furthermore,

as can be seen in Fig. 5(a), it makes sense to restrict our
attention to the domain Ω2D

opt, as indicated in Fig. 4. The
degrees of freedom for the optimization are given by the
positions of the control points P of the curve CPðρ; zÞ
describing that part of ΓD1

, which intersects with Ω2D
opt. On

a further note, the volume of the electrode may not exceed
some fixed value Vc due to space and weight considerations.
For this, let VelðPÞ denote the volume of the electrode in
dependence on ΓD1

ðPÞ, as characterized in Fig. 1.
We allow geometries from an admissible set

A ¼ fðP1;…;PNopt
Þ∶Pi ≤ Pi ≤ P̄i; i ¼ 1;…; Noptg;

where ≤ is to be read componentwise. A accounts for
constraints on the coordinates of the control points in terms
of upper P̄i, and lower bounds Pi, for example, to
avoid intersections. The optimization problem is finally
obtained as

min
P∈A

max
x∈Ω2D

optðPÞ
kEhðx;PÞk2 ð7Þ

subject to

Ehðx;PÞ ¼ −∇ϕhðx;PÞ via ð4 – 5Þ
VelðPÞ ≤ Vc

ftrackðEhðx;PÞÞ < tol; ð8Þ

where x ¼ ðρ; zÞ⊤ is a position in the ρ-z-plane and the
inner optimization, max kEhðx;PÞk2, is approximated by a
discrete maximum over a set of sample points which are
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used for the numerical quadrature of (6). The function ftrack
denotes quantities of interest from the particle tracking, as
defined in Sec. V C, and tol describes associated bounds
that ensure functionality.
The above formulation of the optimization problem

neglects two aspects which may also be critical for the
electrostatic design of electron guns: the high- voltage
cable conductor and the electric field magnitude at the triple
point, where electrode, insulator and vacuum meet. The
position of the triple point is highlighted in Fig. 5 by the
pop-outs. Including the high-voltage cable will have little
effect on the maximum field on the electrode surface, but it
may significantly influence the field at the triple point. To
showcase the flexibility and effectiveness of our approach,
we also add a term to (7) that aims to minimize the field at
the triple point xtp leading to the objective function

min
P∈A

�
max

x∈Ω2D
optðPÞ

kEhðx;PÞk2 þ w
XNU

i¼1

kEhðxi;PÞk2
�
; ð9Þ

where w is a weighting factor to balance the two terms and
U ¼ UðxtpÞ is a neighborhood of xtp, from which NU

sample points are taken to approximate the value at the
triple point. It should be noted that the field becomes
infinite at the triple point due to the sharp corner of the
geometry, see Fig. 4 and [[44] Sec. 2.11]. Therefore, we
only evaluate the discrete representation of the field in the
sample points, such that this issue can be mitigated. The
results in Sec. V indicate that this improves the design, but
the results must still be treated with care.

The question of which optimization algorithm to employ
for solving the given problem is determined by the lack of
smoothness of the min max problem, the unavailability of
derivatives, and the nature of the constraints. In this work,
we use a two step process consisting of the successive
application of a global, followed by a local, optimization
algorithm. The global algorithm (ISRES) is an evolution
strategy based on a stochastic ranking to balance the
objective function with a constraint based penalty function
[48]. It does not need to compute or estimate derivatives of
the objective function and at the same time is able to handle
arbitrary nonlinear constraints, thus it meets our require-
ments. However the associated computational effort is
comparatively high, as is to be expected with global
optimization in general and evolutionary algorithms in
particular. The local algorithm (COBYLA) works by creating
linear approximations of both the objective and constraint
functions via interpolating their evaluations at the vertices
of a simplex [49]. This method again meets our criteria of
not needing to compute derivatives of the objective
function and being able to deal with nonlinear constraints.
Even more importantly, the computational cost of this local
algorithm is much less compared to that of the global one.
We can therefore select a smaller tolerance on the change of
the objective function over consecutive iterations and still
obtain results in a shorter period of time.
For either algorithm we make use of the freely available

implementations from the NLOPT package [50]. Derivatives,
alternative formulations, or approximations of the optimi-
zation problem (7) may allow for more sophisticated
algorithms. In particular, one may look for a “smoother”

(a)

(c)

(b)

FIG. 5. Electric field magnitude for the original [Fig. 5(a)] and optimized [Fig. 5(b) according to (7) and Fig. 5(c) according to (9)]
geometries. The plot representation uniformly divides each patch into 8 elements per coordinate direction (nsub ¼ 8) and the pop-outs
zoom in on the triple point. Computed using GEOPDES.
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objective function that avoids the discrete maximum, or
aim for convexity of the optimization problem.

V. NUMERICAL RESULTS

Based on the abstract formulation of the optimization
problem given in (7), let us discuss the specific choices for
the electron gun shown in Fig. 1. We begin the optimization
procedure with a B-spline curve of degree p ¼ 7 without
any internal knots. This is equivalent to a simple poly-
nomial of degree 7, however both in terms of the presented
isogeometric setting, and also for later refinements, it
makes sense to interpret it in the B-spline context. The
curve is a reasonable compromise between design freedom,
simplicity, and the desire to obtain a smooth and manu-
facturable solution. The control points of the initial guess
are determined by a least squares fit of the original “flat”
design, as shown in Fig. 6, and the exact parameters can be
found in [51]. In order to keep the overall geometry intact,
the first and last control points are both fixed in their
original positions over the course of the optimization.

A. Optimization results

Two successive optimization cycles are performed, as
described in Sec. IV. The first one uses a global optimi-
zation algorithm (ISRES) with a relative tolerance of 10−3 on
the objective function, and the second utilizes a local
algorithm (COBYLA) with a relative tolerance of 10−4.
The volume constraint is set at Vc ¼ 625 cm3, based on
the assumptions that the insulator assembly can support a
maximum weight of 5 kg and a stainless steel (type:
1.4404) electrode is used. The bounds for the admissible
set can be found in [51].
The resulting shapes are shown in Fig. 7 and for

comparison, we also include the optimized curve obtained
by using the modified objective function (9). As the high-
voltage cable is still missing from the model, we only use
the local algorithm for the second formulation, since the
results are most likely not reliable for the final design.
Nonetheless we find that the shapes look similar and the

larger bulge at the back of the electrode for the modified
objective is suitable for shielding the triple point. From this
point onward we refer to the curve obtained via COBYLA,
compare Fig. 7, as the optimized shape if not explicitly
stated otherwise and it will serve as the starting point for
further analyses. Regarding the computational effort, the
global optimization algorithm took about a week to find a
solution satisfying our strict numerical tolerances, however
it is possible to lower this number significantly by choosing
a larger value for the tolerance or electing to only perform a
local optimization. In contrast, the local algorithm only
required computation times of around 7 hours to find a
sufficiently accurate solution.
The electric field solutions corresponding to the original

and both optimized curves are depicted in Fig. 5. We
observe a clearly visible reduction of the maximum field
strength, and in addition, the change in the electric field
magnitude along the electrode appears to be smoother for
the optimized geometries. For the solution based on the
isogeometric technique described in Sec. III B, the open
source package GEOPDES is used [47]. The B-spline space is
chosen as S3;3

2;2 and each of the parametric domains, of the
patches indicated in Fig. 4, is divided into nsub ¼ 16
elements per coordinate direction using uniform knot
insertion. For verification, both the original and optimized
geometries are imported into CST Studio Suite 2019 and
the field problem is solved using their adaptive mesh
refinement with a tolerance of 10−4, based on a discretiza-
tion with second order tetrahedral elements. The Dirichlet
boundary conditions, as marked in Fig. 4, are chosen as
ΓD0

¼ 0 V, ΓD1
ðPÞ ¼ −300 kV, and ΓD2

¼ 1 kV.
The numerical values of the objective functions and the

volume constraint, for the original and both optimized
geometries respectively, are listed in Table I, where

E⋆
max ¼ max

x∈Ω2D
optðPÞ

kEhðx;PÞk2

is introduced for brevity; ⋆ refers to the used code. We
observe a significant reduction in the maximum electric

FIG. 6. Original curve and the least squares fit serving as the
initial shape for the optimization.

FIG. 7. Curves obtained from optimizations employing ISRES,
COBYLA and the modified objective function (9) respectively.
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field strength, such that it falls well below the desired
10 MVm−1 for the optimized electrode. The volume
constraint is also fulfilled at 618 cm3 even though the
initial shape had violated the requirement (630 cm3).
Finally, it can be seen that the results of our code (IGA)
and CST’s EM Studio (CST) are in good agreement.
Apart from the electrode, the maximum electric field

strength on the cathode surface is also of interest. The
numerical solution gives a value of 2.99 MVm−1 (EIGA

c )
for the optimized geometry, well below the 3.9 MVm−1
that are documented for the former Jefferson Lab FEL gun
that was routinely operated at −320 kV [52]. This value is
expected to yield a sufficiently low energy spread [53], and
preliminary results are shown in Sec. V C. A more
thorough integration of a particle tracking software into
the shape optimization process will allow further improve-
ment upon this value.
Another important quantity is themagnitude of the electric

field at the so-called triple point, where electrode, insulator,
and vacuummeet.Closeups of the field surrounding the triple
point are shown in Fig. 5. Our simulations predict a value of
3.27 MVm−1 (EIGA

tp ) for the optimized geometry, a signifi-
cant increase compared to the 2.55 MVm−1 for the original
geometry. The studies in [54] suggest that one should aim for
field strengths below 1 MVm−1 at the triple point. We see
that the modified formulation (9) significantly reduces the
field strength at this point. However, it may be necessary to
further optimize the design and include additional shielding
to minimize the field gradient at this critical point, as shown
in [55]. Such measures could also influence the potential
distribution and electric field magnitude along the outer
insulator at the back of the electrode. Numerical results for
these quantities can be seen in Fig. 8 and show a nonlinear
behavior. Adapting the design to linearize the field strength
along the insulator surface may improve performance and
reduce the chance of electrical breakdown at high volt-
ages [12,54].
Lastly, the maximum value of the field gradient on the

surface of the anode ring is 5.63 MVm−1 (EIGA
ar ) according

to our computations. It is also possible to further reduce this
value, since the shape of the anode ring was not optimized
in this work. The field magnitudes, at all critical points and
for both the original and optimized geometries, are listed in
Table I. Looking at the results, it can be seen that while

decreasing the field strength at the triple point, the second
formulation (9) leads to a higher gradient on the electrode
surface.
We conclude our study of the geometry by looking at the

convergence of the optimized parameters with respect to
degree elevation and knot insertion. As discussed in Sec. II,
both refinement types add control points to an existing
curve which increases the number of degrees of freedom. In
the case of knot insertion the solution space is expanded
even further, since the continuity of the basis in the new
knot values is reduced, thus allowing a reduced continuity
of the curve. The results in terms of the maximum electric
field strength and the volume of the electrode are shown in
Fig. 9. In the case of degree elevation, the degree of the
curve is continually increased by 1, i.e., p ∈ f7; 8; 9; 10g.
For knot insertion, the intervals of the underlying knot

TABLE I. Electric field magnitude at critical points for the
original and optimized geometries. We use ·tp, ·c and ·ar to refer
to the values at the triple point, cathode, and anode ring,
respectively.

(MVm−1) EIGA
max ECST

max EIGA
tp EIGA

c EIGA
ar

Original 13 12.93 2.55 2.31 6.5
Optimized 9.06 9.06 3.27 2.99 5.63
Triple point 10.94 … 1.9 3.22 5.3

FIG. 8. Potential distribution and magnitude of the electric field
gradient along the outer insulator.

FIG. 9. Convergence of maximum electric field magnitude and
volume constraint with respect to curve degree and number of
internal knots.
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vector are repeatedly halved by inserting additional knots,
i.e., Ξ0¼ð01×7;11×7Þ, Ξ1¼ð01×7;12 ;11×7Þ, Ξ2 ¼ ð01×7; 14 ;
1
2
; 3
4
; 11×7Þ, Ξ3 ¼ ð01×7; 18 ; 14 ; 38 ; 12 ; 58 ; 34 ; 78 ; 11×7Þ, while the

degree is kept constant at p ¼ 7. The corresponding
optimization cycles are carried out with COBYLA. One
can clearly observe a correlation between the number of
control points Nopt and the quality of the solution. For this
example, the solutions based on knot insertion seem to
make better use of the available volume when compared to
the ones from degree elevation, however this may simply be
due to a local optimum.

B. Smoothness of IGA solutions

In Sec. I and Sec. III B we mentioned the higher global
smoothness of the discrete fields when using IGA instead
of classical finite elements. This is especially relevant for
tracking applications, as the quality of the particle trajec-
tories directly depends on the quality and properties of the
electric field. Even if the tracking tool only supports
pointwise data import; this is, for example, the case for
ASTRA [56], regularity can be reconstructed if high order
interpolation is used. ASTRA can make use of higher order
polynomial interpolation internally, such that fields and
first derivatives with respect to the space coordinates are
continuous functions, e.g., when computing space charge
effects [[56] Secs. 4.3, 4.4, and 6.9]. To illustrate our point,
Fig. 10 shows a comparison between an IGA based solution
using GEOPDES and a linear finite element solution from
CST. We use Ex, Ey to denote the x- or y-components of the
electric field strength respectively and look at the field close
to the beam axis. Again we employ the adaptive refinement
tool of CST with a tolerance of 10−4 to obtain a “realistic”
comparison. The results show a distinct difference in favor
of IGA, since the unstructured mesh of the FE method,
combined with the low order basis functions, leads to noisy
fields.
As the shape optimization is only carried out inΩ2D

opt, one
may assume that the tracking results are not severely
affected by it, and therefore we did not consider the last

constraint (8) within the optimization. Nonetheless, the
following section shows a preliminary investigation of the
emission process and electron acceleration to ensure a solid
gun performance with the optimized geometry.

C. Particle tracking

Aside from fulfilling the previously discussed optimi-
zation criteria, the electric field should also be suitable for
the initial acceleration of electrons emitted from the photo-
cathode. In order to verify this, we perform simulations
using the well-established particle tracking software ASTRA

[56]. Once the particle trajectories are computed, it is
possible to evaluate statistical quantities that give insight
into the gun performance. Two of these quantities of
interest are the root mean square (RMS) beam width xrms ∈
RNz and the related normalized transverse RMS emittance
ϵx ∈ RNz , both in the x- and y- direction, where Nz is the
number of discrete points along the z-axis where the
trajectories are known.
In this context, Fig. 11 shows the initial macroparticle

distribution in space for Np ¼ 211 particles, which was
obtained from a measurement using the DataRay
BeamMap2 Beam Profiler. The laser spot has an oval shape
with RMS radii of rx;rms ¼ 0.41 mm and ry;rms ¼ 0.72 mm.
The corresponding data is also available at [51]. The
emission times of the particles are drawn from a normal
distribution with mean 0 s and standard deviation 5 ps. This
represents a practical compromise between accuracy and
simplicity, however there exists extensivework on the details
of the emission process and the bunch profile in time [57].
The thermal emittance, representing the minimal emittance
of a photoemission electron source, depends on material
properties and the illuminating wavelength [58], and there-
fore on the photocathodematerial. In order to conduct amore
general simulation, we thus assume the particles to have no
initial momentum. The total bunch charge is estimated at
100 fC, corresponding to the planned operation of the gun at
Photo-CATCH. The gun is expected to produce a continuous
waveform beam with a current of 300 μA at a repetition rate
of 3 GHz, which is optimized for the operational parameters

FIG. 10. Comparison of electric field solutions computed using IGA (left) and linear tetrahedral finite elements (right). The results
clearly showcase the advantages of IGA for obtaining smooth fields for tracking purposes.

FREEFORM SHAPE OPTIMIZATION OF A COMPACT … PHYS. REV. ACCEL. BEAMS 25, 034601 (2022)

034601-9



of the superconducting electron accelerator S-DALINAC at
TU Darmstadt [59,60].
In addition to the already described parameters we initially

choose a total of Np ¼ 211 macroparticles, a time step of
aboutΔt ¼ 0.244 ps for the Runge-Kutta integrator, and we
set the grid for the electric field to be equidistant with nx ¼
ny ¼ 16 points (Δx ¼ Δy ¼ 0.156 mm) in the transverse
directions and nz ¼ 256 points (Δz ¼ 0.547 mm) in the
longitudinal direction. The space charge computation is
performed on a grid with nr ¼ 64 (Δr ¼ 0.039 mm) radial
and nl ¼ 64 (Δl ¼ 2.188 mm) longitudinal cells. We define
x̄rms and ϵ̄x to be reference solutions computed with refined
parameters. More specifically, we look at two further
simulations: The first uses half of the original time step
Δt, twice the number of grid points and cells, as well as
double the number of macroparticles Np. The second one is
the aforementioned reference, which again halves or doubles
the parameter values. We then consider errors defined by

δxrms ¼ max
1≤i≤Nz

ðxrmsÞi − ðx̄rmsÞi
ðx̄rmsÞi

δϵx ¼ max
1≤i≤Nz

ðϵxÞi − ðϵ̄xÞi
ðϵ̄xÞi

in the computed statistical quantities with respect to the
selected parameters. The corresponding numerical results are
collected in Table II.We observe changes below 5%between

the reference and the first refinement step, indicating reliable
results.
The computational effort for the tracking simulations has

two parts: The creation of fieldmaps based on the numerical
field solution, and the actual particle tracking procedure.
For the initial parameters, the fieldmap computation took
about one hour and the tracking algorithm required around
ten minutes to complete a single run. Thus the fieldmap
computation clearly is the bottleneck in terms of integrating
particle simulations into the optimization procedure.
However, it may be possible to obtain sufficiently accurate
maps with significantly less effort and only verify
the results afterwards using a more accurate simulation.
The computation times for the refined simulations can be
estimated by a linear scaling, i.e., doubling the number of
longitudinal grid cells or particles roughly doubles the
execution time as well. It should also be noted that the
creation of fieldmaps is a highly parallelizable task, such
that considerable speedup could be achieved by a more
optimized implementation.
The numerical solutions for xrms and yrms, interpreted as

functions of z, are shown in Fig. 12. Also included is the
bunch length zrms, which may be defined analogously. It
can be observed that the optimization slightly worsens
these beam parameters, but not by an intolerable amount.

FIG. 11. Initial spatial distribution of the Np ¼ 211 macro-
particles to be emitted from the cathode. The positions are
sampled from a measurement of the diode laser in use at
Photo-CATCH.

TABLE II. Relative errors in the quantities of interest; for the
actual values see Table III.

(%) δxrms
δyrms

δzrms
δϵx δϵy δϵz

Initial 4.563 2.243 0.942 8.423 10.439 6.262
Refined 1.553 0.992 0.514 4.079 4.305 3.437

FIG. 12. RMS beam widths and RMS beam length for the
original and optimized geometries as obtained from ASTRA using
the reference parameters.

TABLE III. Quantities of interest for the original and optimized
geometries. All quantities are evaluated at the chamber exit.

xrms
(mm)

yrms
(mm)

zrms
(mm)

ϵx (mrad
mm)

ϵy (mrad
mm)

ϵz (keV
mm)

Original 0.161 0.22 1.195 0.116 0.208 0.06
Optimized 0.258 0.36 1.189 0.108 0.194 0.06
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In contrast we even find a small improvement in the
emittance values. Still, this indicates that future work could
achieve yet better results by also considering the shape of
the electrode leading into the photocathode. Our quantities
of interest, evaluated at the chamber exit, are listed in
Table III. They match the values measured at operating
photoelectron guns [11,12], indicating the reliability of our
simulations.
Lastly, Fig. 13 shows that the beam fits well inside the

20 mm aperture of the anode ring, even when considering
an upscaling of the values by a factor of 10 to include a
safety margin. In addition to the values collected in
Table III, an RMS energy spread of ΔErms ¼ 48.4eV is
observed at the chamber exit for a field strength of
2.99 MVm−1 on the photocathode surface at −300 kV
bias voltage. Comparing these values to the 84 eV with
2.5 MVm−1 at −200 kV bias voltage reported in [53],
further supports the validity of our results. It should still be
possible to improve on these values, since the laser shape
that was used for the simulations was unprocessed after
emission from the laser diode. Moreover, the procedure
presented in this work focused solely on reducing the
maximum electric field strength on the electrode surface
and did not include the full shapes of the electrode or anode
ring in the optimization. Taking their effects on the beam
parameters into account could therefore provide additional
improvements. As mentioned before, the initial momentum
of the emitted particles needs to be included as well, which
is expected to increase both RMS emittance and RMS
energy spread. Specific optimization of the emission
properties is the focus of ongoing work.

VI. CONCLUSION AND OUTLOOK

A successful IGA-based shape optimization of a dc high-
voltage photoelectron gun was performed. The maximum
electric field strength of the optimized geometry was
computed as 9.06 MVm−1, which is well below the field
emission threshold of 10 MVm−1. This constitutes a
reduction in the maximum field gradient by more than
25% compared to the initial design prior to optimization.
Furthermore, the optimized electrode complies with the
weight and volume restrictions, and the maximum field
strength on the cathode surface is determined to be

2.99 MVm−1, which allows for a sufficiently low energy
spread of the electron beam. The procedure was carried out
for an electrode voltage of −300 kV and an anode voltage
of 1 kV, with a fixed anode cathode gap of 80 mm. Some
beam parameters of the resulting geometry, namely the
RMS beam widths and length, the normalized transverse
and longitudinal RMS beam emittances, and the RMS
energy spread were investigated using the particle tracking
software ASTRA. Preliminary results were found to be in
agreement with measurements at operating guns and
exhibited values suitable for the setup at Photo-CATCH.
The work presented here focused solely on the optimi-

zation of the maximum electric field strength. In the future,
the same procedure may be applied to the entire electrode,
and the anode ring also, optimizing both their shapes and
the anode-cathode distance. This includes fully coupling
the shape optimization with a particle tracking software as
well, to optimize the emission properties of the gun and
investigate the influence of the electrode geometry on beam
characteristics for ERL-typical bunch charges of 100 pC
and above. In this context, it could also prove useful to
allow for a direct evaluation of the spline basis functions
within the tracking code, to make full use of the increased
accuracy and smoothness without sacrificing computa-
tional efficiency.
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