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This paper presents results of simulations of synchrotron radiation from electron beams affected by
instabilities in position and angle at the source point. The goal of this work is to develop and test
instrumentation for studies of the effects of the electron beam’s vibrations and drifts on beamline
performance at synchrotron light sources. To perform these simulations, numerical methods were
developed and implemented in the Python version of the Synchrotron Radiation Workshop (SRW) code.
The simulation results were compared against analytical formulas and experimental results obtained from
an x-ray pinhole-camera diagnostics beamline at NSLS-II. We compared the measured data with the
prediction by our code for amplitudes of orbit oscillation from 6–60 μm and frequencies between 1 and
40 Hz, also taking into account the effects of misalignment of the pinhole. The simulation results are in
good agreement with both analytical estimates and experimental data.

DOI: 10.1103/PhysRevAccelBeams.25.024601

I. INTRODUCTION

Modern synchrotron light sources feature ultralow emit-
tance and require highly stable electron beams to take full
advantage of the high source brightness and coherence. The
instability of the beam position/angle is typically required to
be less than a few percent of the beam RMS size/angular
divergence to avoid considerable negative impacts on the
x-ray beam properties. There are some studies on the effects
of the instabilities and developments [1–4]. For complicated
imaging beamlines, it would be difficult to understand the
effects of the instabilities without performing simulations.
Accurate simulations and benchmarking experiments can
help to characterize and, possibly, control the negative
impacts of the electron beam instabilities that otherwise
can limit the performance of modern light source facilities.
Recently, an optical instability calculation was implemented
on a code based on a ray-tracing method [5]. This simulation
allows a deeper understanding of the effects of optical
instabilities and provides useful information for designers

and engineers. Although, the ray-tracing method is a power-
ful implementation. Another calculation method based on
the wave optics was also widely implemented for many
applications which gives accurate results in the diffraction-
dominated regime. For example, calculating a pinhole
cameras resolution or designing beamlines for modern light
sources, such as coherent diffraction imaging or high-
resolution microscopy beamlines rely mainly on wave optic
calculations [6–8]. In this work, we implemented the
calculation of the electron beam instabilities into a code
based on wave optics calculation.
To understand how the electron beam instability, such as

the vibration of the beam in position and angle, affects
beamlines, we need to calculate the synchrotron radiation,
taking into account these instabilities of the source, and
simulate the wavefront propagation through the x-ray optics
of the beamlines. To accomplish this goal, we developed
tools for analysis and simulations within the framework of
the Synchrotron Radiation Workshop (SRW) code.
The SRW is a computer code that simulates synchrotron

radiation (SR) and its propagation through beamline optics
[9,10]. It is used for various applications, such as the design
and optimization of insertion devices and beamline optical
layouts for experiments and beam diagnostics [11,12]. The
SR propagation through beamline optics is calculated using
the Fourier optics approach.
In this paper, we present the results of the development

of the SR emission and propagation calculation methods,
including effects of the orbit instabilities of the electron
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beam at the source. The methods are implemented in the
SRW’s Python library [13]. The simulation methods that
we developed will go a long way toward working out the
specifics of beam stability at the source points as well as the
requirements for achieving stability of the optical elements
in long and complicated beamlines. With modern and
future light sources offering high-brightness beams of
synchrotron radiation, it is more important than ever to
accurately predict the dilution of the sources beam quality
at the detectors. Our tools allow us to simulate time-
dependent transients in the beam orbit positions and angles,
for both random and regular models of the beam motion. It
permits us to carefully assess the reduction of brightness
and coherent flux on the sample, as well as the variation of
the intensities, due to vibrations of the source. It will aid in
setting specifications for the acceptable vibration levels of
the accelerator and beamline components for present and
future high-brightness light sources. It also paves the way
for the development of simulations of optical elements
vibrations, and the related effects in beamlines.
The results obtained using these methods were compared

with an analytical formula and experimental data to verify
the accuracy of the calculations. This work is a continuation
of the beam stability studies at NSLS-II [14,15]; the results
can be applied to other light source facilities as well.

II. CALCULATION OF SYNCHROTRON
RADIATION AND ITS PROPAGATION

For a given magnetic field, the trajectory of a relativistic
electron can be calculated by solving the differential equation
of the Lorenz force with a set of initial conditions. From the
trajectory (Fig. 1), SRW computes the electric field in the
frequency domain Eω using the following equation [9]:

Eω ¼ iek
Z

∞

−∞

�
β − n̂

�
1þ i

kR

��
exp ðikðcτ þ RÞÞ

R
dτ;

ð1Þ

where e is the charge of the electron, k ¼ ω=c is the wave
number of the radiation,ω is the frequency of the SR, c is the

speed of light, β ¼ βðτÞ ¼ vðτÞ=c is the relative velocity of
the electron, R ¼ RðτÞ ¼ jRðτÞj is the instant distance
between the source and the observation point, n̂ ¼ R=R is
a unit vector directed from the source to the observation point,
and i is the imaginary number. This equation is an exact
formula for the SR calculation, so it is valid for both near-field
and far-field approximations.
For the SR propagation, the code implements the Fourier

optics and compatible methods [16,17]. Within this frame-
work, the transverse components of the frequency-domain
electric field at a jth optical element E⊥j can be calculated
from the transverse components of the electric field at a
(j − 1)th optical element E⊥j−1, which is also determined
by the initial conditions of the electron (Fig. 2). The
calculation is done using a propagator:

E⊥jðr⊥j;Ωe;ωÞ¼
ZZ

Kjðr⊥j;r⊥j−1;ωÞ

×E⊥j−1 ðr⊥j−1;Ωe;ωÞdxj−1dyj−1; ð2Þ

where Kjðr⊥j; r⊥j−1Þ is a kernel associated with a jth
optical element (including drift spaces), r⊥j ¼ r⊥jðxj; yjÞ
is a transverse vector of a point on the plane where E⊥j is
considered, and Ωe ¼ ðxe; ye; x0e; y0e; γe; zeÞ is the initial
coordinates of the electron in 6D phase space, where xe,
ye are the initial horizontal and vertical position of the
electron, respectively, x0e, y0e are the initial angles, γe is
the electron’s relative energy, and ze is the initial longi-
tudinal position. Here,E⊥jðr⊥j;Ωe;ωÞ depends on variable
r⊥j, the transverse coordinate of the observation plane,
while Ωe and ω serve as parameters describing the
coordinate of the electron and SR frequency. An example

is a kernel K ¼ −ikL exp ðikSÞ=ð2πS2Þ, where S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðxj − xj−1Þ2 þ ðyj − yj−1Þ2

q
and L is the longi-

tudinal distance between the jth and (j − 1)th planes.
Then Eq. (2) turns into the well-known Huygens-Fresnel
principle.
The calculation presented byEqs. (1) and (2) applies to the

case of a single electron traversing amagnet. To calculate SR
FIG. 1. A diagram showing the electron’s trajectory and
introducing variables for the SR calculation in Eq. (1).

FIG. 2. A diagram introducing variables for the SR propagation
in Eq. (2).
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in the case of a beamwith a finite emittance, we need to take
into account the contributions from many electrons with
different initial conditions forming the beam. The code has a
function to calculate the propagation of partially coherent
wavefronts using the following equation [17]:

Ijðr⊥j;ωÞ ¼
Z

jE⊥jðr⊥j;Ωe;ωÞj2fðΩeÞ dΩe; ð3Þ

where Ij is the intensity contributed from all the electrons in
the beam, E⊥j is the transverse electric field from Eq. (2),
fðΩeÞ is the normalized particle density distribution in 6D
phase space, and dΩe ¼ dxedyedx0edy0edγedze is the infini-
tesimal phase space volume of the beam.
Equation (3) is implemented by summing up contribu-

tions from many electrons with randomized initial con-
ditions based on the beam parameters, i.e., beam size,
angular divergence, and energy spread. Note that if the
system is spatially invariant, Eq. (3) reduces to a con-
volution with respect to a linear combination of the
positions and angles.
Some beamlines require calculations for polychromatic

x-rays over a large spectral range. The transmitted radiation
spectrum depends on the optical elements of the system,
such as filters. The total intensity of the polychromatic
radiation Ijðr⊥jÞ can be calculated by

Ijðr⊥jÞ ¼
Z

Ijðr⊥j;ωÞ gðωÞ dω; ð4Þ

where gðωÞ is a spectral attenuation coefficient associated
with the optical elements of the system.
Combining Eqs. (1)–(4) with the knowledge of a kernel

for each optical element, we can calculate the electric field
at any location along a beamline. The initial conditions,
e.g., initial positions and angles of electrons, can be
adjusted to simulate misalignment effects in electron
trajectories. However, studying the effects of beam insta-
bility requires a time-dependent variation of these initial
parameters Ωe. The SR calculation, including the effects of
the time-dependent variation, will be discussed in the
following sections.

III. INCLUDING ELECTRON ORBIT
INSTABILITIES INTO THE SIMULATION

We modified the SRW Python library by adding con-
tributions of noise to the initial conditions of the electron
beam. The beam vibration can be added directly to the
beam initial conditions since the frequency range of
the vibrations is much smaller than that of the SR fields.
The initial conditions can be modified by adding a time-
dependent noise component:

ΩeðtÞ ¼ Ωb þΩnðtÞ; ð5Þ

where Ωb is the contribution associated with beam param-
eters, i.e., beam size, angular divergence, and energy
spread, and ΩnðtÞ is the contribution from the time-
dependent noise.
During a simulation, random values of the initial

parameters Ωb are generated assuming Gaussian distribu-
tions for the beam size, divergence, and energy spread, and
used as initial conditions to simulate SR from individual
electrons. The time-series data of the noise parameters
ΩnðtÞ can be imported from the real measurements or
generated in Python. For example, we can generate a time-
series of a simple harmonic function of the electron
position in the source point:

ynðtÞ ¼ a sin ð2πftþ ϕ0Þ; ð6Þ

where f is the frequency of the oscillation, ϕ0 is the initial
phase, and t is the time. We constrain the observation time
by the interval of the data collection of the detector at the
beamline, i.e., the time ranges from 0 to T, in which T
corresponds to the data collection. The values ofΩb andΩn
are then used as electron initial conditions, follow-
ing Eq. (5).
Assuming that noises can be considered as stationary

stochastic processes [18] within T, we can use random
numbers, with associated stationary distributions, for the
simulations of noise. The code that we developed provides
random numbers obeying various distributions forΩn, such
as a uniform random distribution, a Gaussian distribution,
or an arbitrary function of uniform random numbers. The
noise can be independently assigned to any of the param-
eters in Ωn ¼ ðxn; yn; x0n; y0n; γn; znÞ. All variables of the
initial conditions, such as positions and angles, can be
assigned using arbitrary time-dependent functions
simultaneously.
This method is suitable for vibrations that are slow

enough such that the intensity variations can be resolved
with the detector of finite time resolution. For high
frequency vibrations where the period of oscillation is
much smaller than the characteristic time of the detector,
this method requires a large number of initial conditions in
order to achieve accurate results, which might not be
efficient. In this high-frequency regime, however, the
detector will see the beam with a larger emittance [19].
Hence, we can implement the calculation by using a larger
beam emittance in Ωb instead of using a time-dependent
variation with high-frequency vibrations in ΩnðtÞ.
In the next section, the average intensity is compared

with analytical estimates to test our calculation methods.
For the analytical estimates, the average intensity can be
calculated by

Īðr⊥Þ ¼
1

T

Z
T

0

Iðr⊥;ΩeðtÞÞ dt: ð7Þ
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Using Eq. (7), we can analytically calculate the average
intensity of a well-known case of SR and compare it with
the intensity calculated from the simulation.

IV. COMPARISON WITH ANALYTICAL
ESTIMATES

As an example, we simulated a simple case of SR from a
constant magnetic (dipole) field in projection geometry,
without any beamline optics. The noise was introduced to
the vertical angle of the electron beam entering the dipole.
Figure 3 shows the intensity distributions with and without
the noise at a distance of 5 m from the source. The photon
energy is 2.39 keV, which corresponds to the critical energy
of SR emitted by 3 GeVelectrons in a 0.4 T magnetic field
of an NSLS-II dipole magnet.
We can compare these results with an analytical formula

for this case. The far-field radiation can be calculated using
an equation (Gaussian unit) [20]:

�
d2I

dωdΩ

�
G
¼ e2

3π2c

�
ωρ

c

�
2
�
1

γ2
þ θ2

�
2

×

�
K2

2=3ðξÞ þ
θ2

1=γ2 þ θ2
K2

1=3ðξÞ
�
; ð8Þ

where ξ ¼ ωρ
3c ð 1γ2 þ θ2Þ3=2, ρ is the radius of the electron’s

trajectory, γ is the Lorenz factor related to the electron’s
energy, θ is the latitude (vertical) angle from the particle to
the observation point, and Kα (α ¼ 1=3; 2=3) are the
modified Bessel functions of the second kind.
We can consider θ in Eq. (8) as the variable affected by

the noise in the following way:

θ ¼ y − ynðtÞ
R

− y0nðtÞ; ð9Þ

where y is the vertical position on the plane of observation,
ynðtÞ is the noise for the vertical electron beam position,
y0nðtÞ is the noise for the vertical electron beam angle, and R

FIG. 3. Simulated intensity of SR (at 2.39 keV, critical energy)
from a filament electron beam for (a) no noise and (b) a harmonic
noise with amplitude a ¼ 0.2 mrad.

FIG. 4. Simulation and analytical results for vertical cuts of the
average intensity distributions at 2.39 keV photon energy for (a) a
harmonic noise in the vertical angle (one period of oscillation)
with amplitudes of 0,0.2,0.4 mrad; (b) a Gaussian noise with the
standard deviations of 0,0.2,0.4 mrad; and (c) comparison of the
simulation results from 10,000 and 50,000 initial conditions with
the analytical result of the Gaussian noise with σ ¼ 0.4 mrad.
The magnetic field and beam parameters are the same as those
used in the calculations illustrated in Fig. 3.
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is the distance between the source and the observation
plane. By combining Eqs. (8) and (9), we can calculate the
intensity at any point on the observation plane. Note that for
a large distance R, the system is more sensitive to the angle
of the beam than the position.
Figure 4 shows comparisons of the intensity distribution

as a function of the vertical position between the SRW

simulation and the analytical calculation for a harmonic and
a Gaussian noise at different amplitudes. The time-average
intensity for the analytical estimates was calculated numeri-
cally using Eq. (7). The intensity is integrated over large
time interval T for the Gaussian noise case and T of one
period of oscillation for the harmonic noise case; for
example, if f ¼ 20 Hz, then T ¼ 50 ms [from Eq. (6)].
It can be seen from Fig. 4 that the results from the

simulation are in good agreement with the analytical
solution. In this example, the numerical simulations were
done for 10,000 electrons’ initial conditions. We can see
small errors in the intensity of less than 2%, which are
attributed to the chosen number of the initial conditions.
Somewhat larger errors in the intensity distribution, cor-
responding to larger amplitude cases, are likely because of
the much lower particle density distribution in the case of
larger amplitudes. Increasing the number of the initial
conditions can reduce the errors as shown in Fig. 4(c).

V. BENCHMARKING SIMULATION AGAINST
BEAM MEASUREMENT AT THE NSLS-II X-RAY

PINHOLE CAMERA BEAMLINE

This section details how the simulation method
described above was used to interpret the results of an
actual experiment performed at the x-ray pinhole-camera
diagnostics beamline that was developed for measuring
parameters of the electron beam in the NSLS-II storage ring
[21], which was developed for measuring parameters of the
electron beam in the NSLS-II storage ring. The system
consists of an 80 × 25 μm (horizontal × vertical) rectan-
gular pinhole located at a distance of 3.033 m from the
electron beam source point in a bending magnet (Fig. 5).
A scintillator, converting x-rays to visible light, is located
13.095 m after the pinhole. The electron beam image in this

beamline is formed by x-rays within a large spectral
bandwidth ranging from 1 to 40 keV.
To estimate the spatial resolution of the pinhole camera,

we calculated its point spread function (PSF), i.e., the x-ray
intensity distribution at the position of the scintillator,
created by a filament (zero-emittance) electron beam. The
calculations were done first for a number of fixed photon
energies, covering the spectrum of bending magnet SR and
taking into account spectral attenuation of the entire
beamline and spectral efficiency of x-ray conversion by
the scintillator. In the calculations we used the wave-optics
methods implemented in the SRW code. After this, the
individual monochromatic intensity distributions were
integrated [see Eq. (4)] to simulate the polychromatic
intensity distribution that can be treated as the PSF of
the pinhole camera. The results of these calculations are
presented in Fig. 6(a). At low photon energies (<5 keV),
the size of the obtained intensity distributions is large due to
the effects of diffraction, whereas at high energies, e.g.,
30 keV, the monochromatic PSF indicates the modulation
related to near-field diffraction. We can see that the size of
the PSF at 10 keV is close to the size of the polychromatic
PSF. Figure 6(b) shows vertical intensity profiles from 2D
convolutions between the PSF and the electron beam
distribution. It can also be seen that the monochromatic
intensity at 10 keV matches well the polychromatic x-ray

FIG. 5. A simplified diagram of the x-ray pinhole-camera
diagnostic beamline at NSLS-II.

FIG. 6. Simulated normalized intensity (vertical profiles) from
the x-ray pinhole-camera diagnostic beamline for polychromatic
x-rays (dashed lines) and monochromatic x-rays (solid lines) for
(a) the PSF and (b) the convolution of the PSF with the particle
density distribution in the electron beam.
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intensity profile. From these estimations, we chose the
energy of 10 keV for the simulations described in the
following sections (since the monochromatic partially
coherent calculations are much more CPU-efficient than
the polychromatic simulations).
To compare the experimental results and the simulations,

we excited the electron beam orbit in the vertical plane with
harmonic signals using a fast corrector. The excitation was
done with different amplitudes and frequencies. Figure 7(a)
shows the image plots from the experiment (top) and the
simulation (bottom) under the conditions of no excitation.
Figure 7(b) shows the image obtained when we excited the
beam with a large amplitude of 60 μm at 20 Hz. The
exposure time of the CCD camera was set to T ¼ 50 ms for
all of the following results. The number of oscillation
periods used in the simulations shown in Fig. 7(b),
according to Eq. (6), was

N ¼ fT ¼ ð20 HzÞ ð50 msÞ ¼ 1:

Note that, in the experiment, the beam size at the source
was about 160 × 20 μm (horizontal × vertical). The beam
current was 40 mA. Also note that the images shown here
and in the following sections were rescaled to reproduce
images at the source, i.e., were divided by the image
magnification of the optical system.
Figure 8 shows the comparison between the intensity

distributions for various amplitudes at 20 Hz (N ¼ 1). The
plots show integrated intensity in the vertical plane. While
the simulation can calculate the intensity in absolute units,
the experimental data were collected in arbitrary units. We
calibrated the intensity from the simulations such that it
would match the experimental data and normalized them

with the intensity from the no-excitation case [Fig. 8(a)].
For all other conditions, we used the same calibration
values. Figure 8(b) shows the image profile with an
excitation of 6 μm, which is about 30% of the beam size.
There was not much difference compared to the data
without an excitation in Fig. 8(a). We note that the
maximum intensity dropped by about 3% and the beam
size increased by less than 3%. To see a clear behavior of
the effects of the noise, we increased the amplitude of
the excitation up to 60 μm (three times the beam size).
Figure 8(c) shows the image corresponding to the ampli-
tude of 30 μm. We can see that the shape distorts from the
Gaussian function due to the harmonic noise starting to
dominate the beam size. Figure 8(d) shows the noise of
60 μm amplitude, where we can see two peaks on the
image profile created by a harmonic distribution similar to
that indicated in Fig. 4(a). Note that the blue lines on each
plot in Fig. 8 show many data sets from different mea-
surements. However, since N was an integer number in this
case, the images were steady, so we see all the lines close to
each other.
The next comparison shows the effects of low-frequency

noise or slow-drifts. We excited the beam with harmonic
signals at 1 Hz (N ¼ 0.05). We compared the results
with amplitudes of excitation of 6 μm and 60 μm
[Figs. 9(a)–9(b)]. In this case, we can see the images have
moved along the horizontal axis, corresponding to different
initial phases of oscillations. The results from the simu-
lation are in good agreement with the experiment. We can
also see that the intensity was slightly reduced when the
beam moved away from the center.
We then compared the effects of the noise for various

frequencies while keeping the amplitude at 60 μm.
Figures 9(c)–9(d) show the plots for frequencies of 5 Hz

FIG. 7. Images of the pinhole camera from the experiment (top) and simulation (bottom) for (a) no excitation and (b) an excitation with
an amplitude of 60 μm, while the beam size was about 20 μm.
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and 30 Hz (corresponding to N ¼ 0.25 and 1.5, respec-
tively). Similar to the 1 Hz case, the values of N are not
integer numbers; due to this, the images moved and we can
see many different lines. These results show more

complicated behavior, but nevertheless, they have some
details in common. The intensity was higher when the
beam was at the turning point of the oscillation. Also, the
image sizes tended to be smaller on the edge than when

FIG. 8. Integrated intensity (vertical profiles) from the experiment (blue lines) and simulation (black lines) with (a) no excitation and
excited with amplitudes (b) 6 μm, (c) 30 μm, and (d) 60 μm.

FIG. 9. Integrated intensity (vertical profiles) from the experiment (blue lines) and simulation (black lines). The beam was excited with
amplitudes and frequencies of (a) 6 μm, 1 Hz, (b) 60 μm, 1 Hz, (c) 60 μm, 5 Hz, and (d) 60 μm, 30 Hz.
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the beam was at the center of the oscillation. This effect was
expected since, under the conditions of the harmonic noise,
the beam moved more slowly and stayed longer around the
turning point compared to when it was at the center of
the oscillation. Hence, after averaging, the intensity around
the edge is higher, which is in contrast to a slow-drift case
when the intensity around the edge is slightly lower than at
the center [see Figs. 9(a)–9(b)]. For very slow frequency

(and stable beam) cases, the effect of misalignment
dominates the effect of the beam motion, which will be
discussed later in this section. The simulation results are in
good agreement with the experiment.
Finally, we present the effects of the misalignment

between the pinhole and the electron beam. We collected
the data with different relative positions between the center
of the pinhole and the beam position. Figure 10 shows

FIG. 10. Images of the pinhole camera from the experiment (top) and the simulation (bottom) with a vertical pinhole misalignment of
(a) −100 μm and (b) 100 μm. The beam was excited with an amplitude of 60 μm.

FIG. 11. Integrated intensity (vertical) with a pinhole misalignment of 100 μm from the experiment (blue lines) and simulation (black
lines). The beam was excited with an amplitude of 60 μm and frequencies of (a) 1 Hz, (b) 5 Hz, (c) 20 Hz, and (d) 40 Hz.
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images from the experiment and simulation with the
pinhole misaligned by −100 μm and 100 μm. The beam
was excited with an amplitude of 60 μm. We can see that
the images change between different misalignments. This
indicates that the pinhole camera system is not spatially
invariant. The relative position of the beam and the pinhole
affects the image profiles on the screen.
Figure 11 shows the integrated intensity with a pinhole

misalignment of 100 μm for different frequencies. The
overall behavior is the same as what we see in Figs. 8–9,
except that the intensity profiles are somewhat asymmetric.
At a very low frequency [Fig. 11(a)], the images moved
slowly and the maximum intensity of each image reduced
quite linearly as a function of the position. For higher
frequencies, we can see two peaks from the effect of the
beam motion as before. The images were not steady for
noninteger values of N [Figs. 11(a)–11(b)] and were steady
for the integer values [Figs. 11(c)–11(d)]. The simulation
results match the experimental data.
This section presents a comparison between the simu-

lation and experiment with the x-ray pinhole-camera
diagnostic beamline. We excited the beam from low to
high amplitudes to study the effects of the noise. The
purpose was to verify the accuracy of the simulation in
different conditions. In reality, the baseline noises in
synchrotron light sources are usually suppressed to be less
than 10% of the beam size. However, some beamlines
require higher beam stability and are affected by the noise
in the real operation. The ultimate goal of this work is to
apply the simulation to study the impact of the noise on
more sensitive user beamlines at NSLS-II.

VI. SUMMARY AND DISCUSSION

We developed methods to calculate the synchrotron
radiation from electron beams affected by noise. The
simulation was developed and implemented in the SRW’s
Python library. The developed functions can generate
several noise distributions, such as uniform random num-
bers and Gaussian distributions, as well as accept user-
defined arbitrary functions. The simulation can also import
raw data from real measurements.
We verified the results from numerical simulations

with analytical calculations and experimental data for
various conditions. The first comparison focused on check-
ing the simulation results with an analytical solution. We
used a simple case of (far-field) SR from a constant
magnetic field to benchmark the data. We compared the
results with a harmonic noise and a Gaussian noise. Both
cases were found to be in good agreement with the
analytical solution—within 2% for 10,000 electrons’ initial
conditions of simulation. If we need higher accuracy, we
can run the simulation with a larger number of initial
conditions. Second, we compared the simulation results
with the experimental data from the x-ray pinhole-camera
diagnostic beamline at NSLS-II. We compared the results

for various conditions, such as different amplitudes and
frequencies. The effects of a pinhole misalignment were
also discussed. The results from the simulation are in good
agreement with the experiment within the uncertainties of
the experimental data.
This work is a continuation of studies on electron and

x-ray beam stability at NSLS-II. The goal of this develop-
ment is to apply our simulation tools to beamlines that are
most sensitive to and, therefore, are most affected by
electron beam instability. It can be also applied to any
beamline in general.
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