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The space-charge-induced resonance band just above the betatron phase advance of 90° per cell is of
great practical importance. The instability is closely related to the linear collective mode and can thus give
rise to severe emittance growth at high beam density. In a circular machine, this type of second-order
resonance occurs not only at half-integer tunes but also near quarter-integer tunes, depending on the lattice
superperiodicity. Self-consistent numerical simulations are carried out to elucidate the resonance feature
above the 90° cell tune. The present results suggest the existence of three different resonance mechanisms
working there; namely, the fourth-order incoherent resonance in the beam tail, the second-order and fourth-
order coherent resonances in the beam core. It is reconfirmed that no serious emittance growth occurs even
if particles deep inside the core satisfy the incoherent resonance condition. The recently proposed stop-
band diagram, free from the concept of incoherent tune spread, appears to be consistent with the numerical
observations.
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I. INTRODUCTION

Owing to the recent progress of accelerator technologies,
the performance of high-intensity hadron machines is
getting better and better. For instance, it is now possible
to accelerate a megawatt-class high-power proton beam
with very low particle losses of the order of 0.1% [1].
Future hadron machines will aim at even more challenging
goals, which makes it vital to take various space-charge-
induced effects carefully into account in their conceptual
design stages. It is particularly important to establish a
basic understanding of collective resonances.
As the Coulomb interaction reaches a long distance,

individual particles forming a dense beam core cannot
move independently. Even if the beam intensity is low, the
space-charge interaction is known to seriously affect the
performance of an advanced cooler storage ring where
the beam is strongly compressed in phase space [2]. The
most popular approach to such space-charge issues is the
use of self-consistent simulation codes, though reliable
long-term simulations still need a considerable amount of
CPU time. Compact non-neutral plasma trap systems
can also provide a powerful means for an experimental

investigation of intense beam behavior in alternating-
gradient (AG) lattices [3–7].
Modern particle accelerators rely on the principle of

strong focusing almost without exception [8,9]. Discrete
focusing elements, generally quadrupole magnets, are
aligned along the beam orbit to confine relativistic charged
particles in the transverse dimensions. When the design
orbit is closed as in a synchrotron, the beam receives
periodic driving forces from the magnets every turn and
thus loses its stability due to resonance under a specific
condition. In the case of noncoupling resonance that occurs
in either the horizontal or vertical direction, the single-
particle resonance condition is given by mν0 ¼ n where ν0
is the betatron tune, m represents the order of the driving
field, and n is an integer [10,11]. Resonance of lower order
is usually stronger. Gradient errors in the quadrupole
magnets lead to the harmful linear (m ¼ 2) instability that
is often called “half-integer resonance” because the corre-
sponding resonance condition can be written as ν0 ¼ n=2.
At high beam density, the dangerous linear parametric

resonance driven by the Coulomb self-field (SF) potential
can be excited near quarter integer tunes. This effect,
sometimes referred to as envelope instability, has been
discussed by many researchers mostly with linear
transport designs in mind [12–18]. A detailed experi-
mental study of the quarter-integer stop band was per-
formed in the heavy-ion linac at the GSI, pointing out the
role of the fourth-order resonance dominating over the
envelope instability [19,20]. The concept of the coherent
linear resonance has been used also for the designs of
some high-intensity storage rings [21–23].
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A great deal of experimental effort was once put into
observing the linear coherent effect at the Heavy Ion
Medical Accelerator in Chiba (HIMAC) [24,25]. Since
the HIMAC structure has even symmetry (the lattice
superperiodicity is six), the linear parametric resonance
is expected at half-integer tunes. In a ring of odd symmetry,
such as the hadron synchrotrons at the Japan Proton
Accelerator Research Complex (J-PARC) [1,26], the severe
SF-driven instability of the linear coherent mode may take
place near quarter-integer tunes as opposed to the conven-
tional incoherent picture that only predicts weak fourth-
order resonances there. The improvement of accelerator
performance these days has raised the possibility that not
only linear but also even nonlinear coherent parametric
instabilities may play a certain role in circular machines
[27–29].
A recent simulation study has concluded that there are

basically two different types of resonances near the bare
betatron phase advance of 90° per AG cell [30]; one is the
second-order coherent parametric resonance and the other
fourth-order incoherent resonances activated in the beam
core as well as in the beam tail. In the following, we put an
essentially different interpretation on this important reso-
nance overlapping issue. We shall show that not two but
three different types of resonances should be present
slightly above a quarter-integer cell tune. Coasting beams
are assumed throughout this theoretical study to concen-
trate upon the stability of the transverse betatron motion. As
the main purpose of the paper is the characterization of
overlapping resonances around an envelope-instability
band, we consider a sequence of focusing-defocusing
(FD) cells for simplicity instead of complex AG lattices.
The paper is organized as follows. In Sec. II, we give an

overview of the resonance stop-band diagram recently
proposed to spot the best machine working area in the
betatron tune space [27,29]. A simple measure is then
introduced in Sec. III to identify particles belonging to the
beam tail. Self-consistent simulation results obtained with
the particle-in-cell (PIC) code “WARP” [31] are shown in
Sec. IV, confirming our expectations. Concluding remarks
are finally made in Sec. V.

II. STOP-BAND DIAGRAM

A. Coherent and incoherent resonance conditions

It was pointed out over a half century ago that the
betatron motion of a charged particle exposed to external
periodic driving forces becomes unstable under the
condition

kν0x þ lν0y ¼ n; ð1Þ

where ðν0x; ν0yÞ denote the bare tunes around the synchro-
tron, and ðk;l; nÞ are integers [32]. The driving potential of
this resonance is proportional to xjkjyjlj with ðx; yÞ being

the transverse spatial coordinates. The order of the reso-
nance ism ¼ jkj þ jlj. This condition should be accurate if
the effect of Coulomb interaction among individual par-
ticles is negligible.
The most common generalization of the single-particle

resonance condition above, widely accepted in the com-
munity, is as follows:

kνx þ lνy ¼ n; ð2Þ

where ðνx; νyÞ denote the incoherent tunes shifted from the
bare tunes by the amount of ðΔνx;ΔνyÞ. The incoherent
tune shifts ΔνxðyÞ ¼ ν0xð0yÞ − νxðyÞ, depending on which
particle we observe, can be estimated by assuming some
rigid distribution function. The concept of the incoherent
resonance could approximately apply to particles in the
beam tail (halo) because their Coulomb coupling with the
beam’s main body (core) is relatively weak. The core
potential is only weakly affected by the presence of those
tail particles, which means that they feel the core space-
charge force as if it originates from an external source. This
is basically why the particle-core model works to give an
approximate description of mismatch-induced halo forma-
tion [33].
Unlike in the tail region, the correlation among the

motions of individual particles is no longer negligible in the
beam core. An accurate resonance criterion can be reached
only by treating the core motion in a self-consistent manner.
Even if a certain core particle fulfills the incoherent
condition in Eq. (2), the betatron oscillation amplitude
does not necessarily grow; the beam as a whole can
maintain stability or no serious emittance growth occurs
[34–36]. The core motion is essentially collective, so its
stability is determined not by the incoherent oscillation of
each single particle but by the coupled oscillations of all
particles forming the core.
When the tune of a particular coherent oscillation mode

is close to a half integer, the mode may become unstable.
The two-dimensional (2D) coherent resonance condition,
recently conjectured based on a one-dimensional (1D)
Vlasov theory [37], can be expressed as

kðν0x − CmΔν̄xÞ þ lðν0y − CmΔν̄yÞ ¼
n0

2
; ð3Þ

where n0 is an integer, ðΔν̄x;Δν̄yÞ are the root-mean-
squared (rms) tune shifts, and Cm is a positive constant
depending on the resonance order m. The rms tune
shifts are related to the rms tune depressions ηxðyÞ as
Δν̄xðyÞ ¼ ð1 − ηxðyÞÞν0xð0yÞ. These rms parameters, regarded
as a measure of beam density in phase space, are evaluated
from the rms envelope equations independently of the
distribution function [38]. According to 1D Vlasov theo-
ries, the coherent tune-shift factor Cm is less than unity but
gradually increases as the resonance order m becomes
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higher. A recent self-consistent numerical study has con-
cluded that C2 ≈ 0.7, C3 ≈ 0.8, and C4 ≈ 0.9 [27]. These
numbers shall be used in the following sections.
In a synchrotron consisting of Nsp lattice superperiods,

the driving harmonic number n0 on the right-hand side of
Eq. (3) is replaced by Nspn0. The external fields (EF)
produced, e.g., by nonlinear correction magnets can
enhance the coherent instability of the same order but only
with even n0.
The period of the core oscillation agrees with the lattice

period unless the beam is strongly mismatched. Since the
core space-charge potential acts as an external driving
source to tail particles, the right-hand side of Eq. (2) should
also be Nspn0 rather than n. Furthermore, we anticipate that
tail-particle resonances are excited more seriously with
even k and even l, considering the spatial symmetry of the
beam core focused by the quadratic AG potential. Particular
attention should thus be required to the incoherent reso-
nances under the condition

2kνx þ 2lνy ¼ Nspn0 ð4Þ

with relatively small tune shifts ðΔνx;ΔνyÞ.

B. Beam-stability map

In general, the tune shifts ðΔνx;ΔνyÞ become greater for
particles closer to the center of the beam core. The
incoherent tunes of individual particles then spread over
a finite area in ν0x-ν0y plane, depending on the beam
density and distribution function. The area covered by the
incoherent tune spread is named “necktie” after its shape.

The original purpose of the so-called “necktie diagram”
was to foresee most preferable operating tunes with which
one could avoid possible resonance-induced beam loss.
Such information is vital in the conceptual design stage of
any circular machine. If the incoherent resonance condition
in Eq. (2) really applies to the whole beam, the machine
working point must be chosen such that the necktie does
not cross any low-order single-particle resonance lines
defined by Eq. (1).
As remarked above, the basic resonance mechanisms of

a space-charge-dominated beam well matched to the
machine lattice should be classified into two main catego-
ries, namely, the coherent resonance in the beam core and
incoherent resonances of tail particles. The condition of the
former resonance is given by Eq. (3) and the latter by
Eq. (2) or (4). On the basis of this understanding, we
proposed a new type of stability tune diagram free from the
necktie concept [27,29]. A couple of examples correspond-
ing to the lattice condition of the J-PARC Main Ring (MR)
are exhibited in Fig. 1. The MR has a three-fold symmetric
structure ðNsp ¼ 3Þ with correction sextupoles inserted in
every lattice superperiod. The horizontal and vertical rms
tune depressions are assumed to be equal, i.e.,
ηx ¼ ηyð≡ηÞ. The rms emittances in the two transverse
directions are also roughly equal, which strongly sup-
presses the linear difference resonance along ν0x − ν0y ¼ 0

(dashed line) [27]. The original operating point of the MR
was moved to ðν0x; ν0yÞ ¼ ð21.35; 21.43Þ in 2016 after the
intensity upgrade [26]. This new operating point is located
within the largest resonance-free area shown in Fig. 1(a).
A stop-band diagram as in Fig. 1 can readily be

constructed for any circular lattice in the following way
[29]. We first draw low-order coherent resonance lines in

FIG. 1. Stop-band diagrams corresponding to the current operating condition of the J-PARCMR. The rms tune depression is estimated
to be (a) η ≈ 0.994 at 3 GeVand (b) η ≈ 0.999 at 10 GeV. The coherent resonance bands of up to the third-order (m ≤ 3) are plotted on
the basis of Eq. (3) with C2 ¼ 0.7 and C3 ¼ 0.8. The third-order resonance driven by the normal sextupole magnets for orbit correction
overlaps with the second-order resonance slightly above ν0x ¼ 21. The width of each stop band is defined by the approximate formula in
Eq. (5). The safety factor ζkl is set equal to unity for all stop bands. We have ignored the effect of error fields that produce additional
stop bands.
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ν0x-ν0y plane, making use of Eq. (3). Attention should be
paid to all coherent resonances of up to the third order
(m ≤ 3) at least. If the beam stays in the machine for a long
period at relatively low energy or only very little emittance
growth is tolerated, it is advisable to take care of the fourth-
order’s (m ¼ 4) as well for safety, which automatically
covers the potentially dangerous incoherent resonances
[under the condition (4)] of up to the eighth order. A finite
width δνkl is then given to each resonance line. It is,
however, extremely difficult to make a good estimate of
δνkl because it depends on the detailed lattice design and
even the distribution function of the beam.
Applying the smooth approximation to the Vlasov

prediction in Ref. [37], we derived a simple formula

δνkl ≈ 2ζklfklð1 − CmÞ
1 − η

η
ν̄0 ð5Þ

that can be used for a quick initial estimate for the band
width. Here, ζklð≥ 1Þ is the safety factor, and the average
ν̄0 ¼ ðν0x þ ν0yÞ=2 is taken, assuming a modest tune split.
fkl is defined by

fkl ≡ jlεx þ kεyj
jljεx þ jkjεy

; ð6Þ

where εx and εy are the horizontal and vertical rms
emittances at injection. This factor reflects the fact that a
particular difference resonance ðkl < 0Þ can be almost
eliminated by adjusting the initial emittance ratio to
εx=εy ¼ jk=lj [27]. Equation (5) points out that the width
of a higher-order stop band is narrower. Since Cm
approaches unity as the m number increases, it becomes
more and more difficult to detect the instability of a highly
nonlinear mode even if it is not Landau damped. The self-
inhibition mechanism mentioned later also prevents us
from identifying a clear signature of nonlinear-mode
excitation.
In addition to the coherent core instability, we need to

avoid incoherent resonances in the beam tail. The condition
in Eq. (4) indicates that each coherent resonance band may
be accompanied by incoherent tail resonances of twice the
order. In fact, the coherent condition in Eq. (3) can be
rewritten as 2kðν0x−CmΔν̄xÞþ2lðν0y−CmΔν̄yÞ¼Nspn0.
Since Cm is near unity (except for the dipole mode), this
line is located close to the incoherent resonance line of the
order 2mð¼ 2jkj þ 2jljÞ defined by Eq. (4). The incoherent
tune shifts ΔνxðyÞ of tail particles are generally not so
large as the rms shift Δν̄xðyÞ. The region of possible tail
resonances, therefore, lies below the lower boundary of
each coherent resonance band as illustrated in Fig. 1.
Franchetti, Métral et al. have discussed a similar feature
of beam instabilities in the vicinity of a single-particle
resonance line [39,40]. They found two distinct instability

regimes lying side by side, one of which yields continuous
particle losses and the other only emittance blowup with no
significant losses.
The coherent tune-shift factor Cm of a higher-order mode

is closer to unity, which makes the band width δνkl
narrower. Moreover, the coherent core instability has a
self-inhibition mechanism; weak nonlinear resonance
automatically ceases to develop before leading to a well-
detectable level of beam loss because the resonance-
induced emittance growth reduces the beam density, thus
resulting in the shift and shrinkage of the stop band. High-
precision emittance measurement is usually required to find
out the coherent resonance band if it exists. On the other
hand, the betatron amplitudes of the tail particles captured
by the incoherent resonance will keep growing until they hit
the chamber wall. We suspect that most of beam losses
observed in operating synchrotrons may be due to the
incoherent effect in the beam tail.
The coherent resonance condition (3) together with the

band-width formula (5) defines an approximate total width
of each noncoupling instability band that includes the
coherent core and incoherent tail resonance regions. As
the coherent band shift is CmΔν̄ with Δν̄ denoting either
Δν̄x or Δν̄y, the upper boundary of the stop band is
distanced from the adjacent single-particle resonance line
by CmΔν̄þ δνm=2ð≡wmÞ with the coherent band width
δνm ¼ 2ð1 − CmÞΔν̄=η. If η is not too far from unity, wm is
roughly equal to Δν̄ independently of the resonance order
m. Note that the extent of the Gaussian necktie is about
twice as large as Δν̄.
It is currently believed that the coherent instability of a

nonlinear mode is hardly detectable (unless driven by
external fields) or likely Landau-damped in a Gaussian
beam. Even if so, the new stability map is still useful as it
predicts the approximate boundaries of the regions where
SF-driven incoherent resonances may occur in the beam
tail. Major incoherent particle losses could be avoided by
putting the operating point above the line defined by
Eq. (3). This is a somewhat conservative criterion, but at
least, more accurate than the conventional design guideline
based on the necktie.
We stress the point that the proposed stability map is

invented to show where in the tune space an intense hadron
beam may become unstable due to possible resonant
instabilities, even though it is well matched to the lattice
at the beginning. Complicated transient phenomena during,
e.g., beam injection and accumulation are outside the scope
of the resonance-band theory. The purpose of our stability
map is the same as the original purpose of the necktie
diagram, that is, predicting the best machine operating
region in the tune space. We are not very interested in
identifying, after something bad happened under actual
complicated experimental conditions of a particular
machine, which single-particle resonance lines are respon-
sible for the observed beam loss.
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C. Overlapping resonances above
a quarter-integer tune

Theoretically, the noncoupling resonance of the mth
order always overlaps with the 2mth-order’s as is obvious
from the resonance conditions. It does not matter whether
the instability is coherent or incoherent. The overlapping of
the coherent dipole (m ¼ 1) instability with the coherent
quadrupole (m ¼ 2) instability has been experimentally
confirmed by means of the “Simulator of Particle Orbit
Dynamics” (S-POD), a novel tabletop ion-trap apparatus
that provides a multi-particle Coulomb system physically
equivalent to an intense relativistic beam in a large-scale
accelerator [6]. It is rather easy to separate these two low-
order modes because, firstly, the coherent dipole resonance
is quite strong leading to the complete loss of the whole
bunch once excited, secondly, the tune-shift factor C1 is
very different from those of other higher-order modes and,
thirdly, the band width of the dipole instability is narrow.
In the vicinity of a quarter-integer tune, we have a

possibility of the second-order (m ¼ 2) and fourth-order
(m ¼ 4) coherent core resonances plus the fourth-order
incoherent tail resonances. Such multiple resonance over-
lapping is also possible, in principle, for higher-order
nonlinear modes. For instance, we expect a third-order
(m ¼ 3) coherent stop band partially overlapped with a
narrow sixth-order’s (m ¼ 6), though the latter highly
nonlinear core instability is probably undetectable. We
would, however, be able to detect the six-order incoherent
effect in the beam tail because it eventually causes some
particle losses. Recent experimental results have even
shown clear signatures of incoherent space-charge-driven
resonances of the eighth order [41,42].
Figure 2 shows the stop-band diagram near a quarter-

integer cell tune when η is fixed at 0.9 in both transverse

directions. The difference resonance along the dashed line
is deactivated because of the assumption that εx ¼ εy. Two
coherent resonance bands ofm ¼ 2 and 4 have overlapped.
The fourth-order band is much narrower due to the C4

factor closer to unity than C2. It is positioned near the high-
tune side of the second-order coherent band because the
magnitude of the band shift C4Δν̄ is greater thanC2Δν̄. The
diagram in Fig. 2 tells that no severe emittance growth will
occur in the region ν0xð0yÞ > 1=4þ Δν̄ ≈ 0.28.
It should be informative to comment on the maximum

incoherent tune spread, in other words, the size of the
necktie. At the beam density considered here, maxðΔνxðyÞÞ
is nearly 0.05, which means that, according to the conven-
tional design criterion, the operating bare tune must be
chosen above 0.30 in order to avoid resonant beam loss. As
demonstrated later, this is clearly an overestimation; the
actual band width is much narrower and closer to the
above-mentioned coherent estimate, i.e., Δν̄ ≈ 0.03.

III. TAIL SEPARATION

Tail particles execute the betatron oscillations with large
amplitudes in full phase space, four-dimensional (4D) in
the present case. Their oscillation energies are relatively
large compared with those of core particles. The information
necessary to identify outermost particles in phase space can
be obtained from the Hamiltonian. Recalling the fact that the
Coulomb potential energy is not so large in a synchrotron
(accordingly, the tune depression is always near unity), we
here consider the contribution from the linear space-charge
terms only. The approximateHamiltonian can then bewritten
with the action variables JxðyÞ as

H ¼ Jx
βx

þ Jy
βy

; ð7Þ

whereβxðyÞ denote themodified betatron functions calculated
from the rms envelope equations with space charge [38]. The
actions of a certain single particle at the canonical coordi-
nates ðx; y; px; pyÞ, including the influence of the space-
charge potential, are evaluated from

2Jx ¼ βxp2
x þ 2αxxpx þ γxx2; ð8Þ

2Jy ¼ βyp2
y þ 2αyypy þ γyy2; ð9Þ

where αxðyÞ and γxðyÞ are the Courant-Snyder functions
derived easily from the space-charge-modified βxðyÞ.
Taking the average of Eq. (7) over a lattice superperiod or
around the ring, we introduce the parameter

E≡ ηxν0xJx þ ηyν0yJy ð10Þ

that can beused as ameasure of the approximate amplitude of
a single-particle oscillation in 4D space. This simplified

FIG. 2. Stop-band diagram near the cell tune of 0.25 (the
betatron phase advance of 90°) under the condition εx ¼ εy.
The rms tune depression is assumed to be 0.9 everywhere in the
diagram.
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formula should be acceptable unless ηxðyÞ is too far
from unity.
In WARP simulations, we check the E-values of indi-

vidual particles at injection to separate the contribution
from large-amplitude particles to the rms emittance. Those
tail particles defined at the entrance are excluded from the
emittance evaluation thereafter, which clarifies whether the
emittance of the core part grows or keeps the initial level.
The rms emittance growth at the exit of the Nth cell is
defined as

ΔεðκÞðNÞ≡ εðκÞðNÞ − εðκÞð0Þ
εð0Þð0Þ × 100½%�; ð11Þ

where ε is the sum of the horizontal and vertical rms
emittances. The index κ stands for the percentage of
outermost particles marked initially and disregarded in
the emittance evaluation; for instance, the calculation of
εð20Þ uses eighty percent of all particles.

IV. SIMULATION RESULTS

PIC simulations with the WARP code were carried out to
explore the beam behavior in the vicinity of a quarter-
integer cell tune. We used the Gaussian-type distribution
initially matched the FD lattice including the Debye
screening effect [43]. The matching is satisfactory espe-
cially in a relatively low beam-density range (η ¼ 0.9)
assumed here. The emittance growth induced by an initial
mismatch is negligible, which enables us to identify a
signature of even very weak instability.
For the sake of simplicity, the horizontal and vertical bare

tunes were set equal; namely, ν0x ¼ ν0yð≡ν0Þ. Figure 3
depicts the tune dependence of emittance growth after the
beam passed through 100 cells, 200 cells and 1000 cells. The
rms tune depressions are adjusted to 0.9 in both transverse
directions as in the case of Fig. 2. We realize that the band
width within which significant emittance growth has
occurred is much narrower than the maximum extent of
the Gaussian necktie that is roughly 0.05 in the present case
(see, e.g., Fig. 8). The vertical lines in the picture indicate the
approximate boundaries of the two coherent resonance
regions. The incoherent tail resonances are expected just
above the single-particle resonance line ð0.250 < ν0≲
0.260Þ, while the coherent core resonances of the second
and fourth orders occur within the ranges 0.260≲ ν0 ≲
0.278 and 0.272≲ ν0 ≲ 0.278, respectively, according to the
stop-band diagram in Fig. 2.
Three curves in each panel of Fig. 3 are obtained from

somewhat different ensembles of particles selected initially
with the truncation factors κ ¼ 0%, 10%, and 20%. The
emittance growth in the tail-resonance region can be elim-
inated almost completely by disregarding only 10–20% of
outermost particles in 4D phase space; the emittance growth
below ν0 of around 0.26 is caused solely by the tail part

separable from the core part. In striking contrast, the
κ-dependence of the growth rate is weak inside the predicted
core-resonance domain (between the vertical solid lines).
These facts imply that the resonance mechanisms below and
above ν0 ≈ 0.26 differ essentially.

A. Phase-space configurations

Typical phase-space configurations in the tail-resonance
region ðν0 ¼ 0.257Þ, the second-order core-resonance band
ðν0 ¼ 0.263Þ, and the fourth-order core-resonance band
ðν0 ¼ 0.275Þ, are plotted in Figs. 4–6. The abscissa ðx̃Þ and
ordinate ðp̃xÞ in these figures are scaled to be dimension-
less; specifically, we have divided the horizontal canonical
variables ðx; pxÞ by their rms averages at the entrance. The
color of each macroparticle is chosen depending on the
initial E-value, and kept unchanged until the transport exit.
The color varies from red to blue as the initial energy
increases.

FIG. 3. Emittance growth of a Gaussian beam propagating
through a long AG transport channel. The transport distances are
(a) 100 FD cells, (b) 200 FD cells, and (c) 1000 FD cells. The rms
tune depression is fixed at 0.9 regardless of the operating cell tune
ν0. Vertical lines show the boundaries of the second-order
(m ¼ 2) and fourth-order (m ¼ 4) coherent resonance bands
estimated from Eqs. (3) and (5) with C2 ¼ 0.7 and C4 ¼ 0.9.
The phase-space configurations at the three operating tunes
indicated by arrows in the middle picture are exhibited in
Figs. 4–6.
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At ν0 ¼ 0.263 around which most severe emittance
growth has occurred, the fourth-order resonance is excited
first in the beam tail, followed by much stronger instability
that completely destroys the core (Fig. 5). A clear two-arm

structure is developed in phase space, indicating the
instability of the second-order mode. Note that the final
distributions obtained with three different κ-factors look
nearly identical.
The phase-space profile at ν0 ¼ 0.257 (Fig. 4) in the tail-

resonance region is obviously different from what we found
in Fig. 5. The core is almost unaffected throughout the
transport channel (except for a slight distortion of its
boundary), but on the other hand, a large halo is formed
around it. It is apparent from Fig. 4 that only about 10% of
particles with high initial energies contribute to the halo
formation, which is why the rms emittance growth at
ν0 ¼ 0.257 disappears with κ ¼ 10% in Fig. 3.
A question now is whether we see an analogous beam

behavior around ν0 ¼ 0.275 where the resonance of the
same order as at ν0 ¼ 0.257 is expected theoretically.
Although both resonances below the lower boundary
(Fig. 4) and near the upper boundary (Fig. 6) of the core
instability band are of the fourth order, we recognize a
substantial disparity between them. Unlike the case of
Fig. 4 where the core maintains the initial configuration, a
four-island structure has been formed at ν0 ¼ 0.275 (Fig. 6)
inside the core with almost no tail expansion as observed in
Fig. 4. We also notice that many particles initially located
around the core center have spread all over but their
amplitudes are bounded within a relatively narrow area
comparable to the initial core size. Even if we increase the
κ-factor, the rms emittance still grows similarly in time at
ν0 ¼ 0.275 as shown in Fig. 7(c). The time evolution of the

FIG. 4. Phase-space configurations at ν0 ¼ 0.257 with three
different tail-truncation factors (κ ¼ 0, 10, 20), observed at (a) the
transport entrance, (b) 100th FD cell, and (c) 500th FD cell.

FIG. 5. Phase-space configurations at ν0 ¼ 0.263 with three
different tail-truncation factors (κ ¼ 0, 10, 20), observed at (a) the
transport entrance, (b) 100th FD cell, and (c) 500th FD cell.

FIG. 6. Phase-space configurations at ν0 ¼ 0.275 with three
different tail-truncation factors (κ ¼ 0, 10, 20), observed at (a) the
transport entrance, (b) 100th FD cell, and (c) 500th FD cell.
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emittance growth at ν0 ¼ 0.263 is also insensitive to the
κ-factor [Fig. 7(b)]. In both Figs. 5 and 6, the final phase-
space configurations in the lower three panels look more or
less similar. In contrast, significant κ-dependence can be
seen in the beam profiles displayed in Fig. 4(c).

B. Incoherent-tune spectra

The numerical observations in the last subsection
strongly suggest that the resonances at ν0 ¼ 0.263 and
0.275 belong to the same family. The fundamental mecha-
nism of instability at ν0 ¼ 0.257 is different from the other
two. This interpretation is consistent with the resonance
theory and diagram discussed in Sec. II. According to the
proposed theory, the former two at ν0 ¼ 0.263 and 0.275
are the coherent effect in the core while the latter at ν0 ¼
0.257 the incoherent effect in the beam tail. A signature of
the possible fourth-order coherent mode excitation has been
observed even experimentally in the S-POD system [42].
Above the upper boundary of the coherent band

(ν0 ≳ 0.28), no resonant instability to which one must
pay serious attention has occurred; only negligible emit-
tance growth is observed in spite of the core deformation as
depicted in Fig. 8. In this example, the operating tune is
adjusted to 0.290 beyond the predicted coherent instability
band. The necktie has been distorted around the point

ðν0x; ν0yÞ ¼ ð0.25; 0.25Þ, but only limited rms emittance
growth (less than a few percent over 1000 cells) occurs as is
evident from Fig. 3. Such distortion of an incoherent tune
spread around single-particle resonance lines has been
repeatedly observed in past PIC simulations [27,29,30].
Even if core particles with large incoherent tune shifts
exactly satisfy the condition in Eq. (2), no severe emittance
growth occurs as long as the operating point is put outside
the coherent resonance band. In a practical sense, therefore,
we do not have to care about the tune-spectrum distortion
like Fig. 8 that happens in the range ν0 ≳ 1=4þ Δν̄.
For comparison, we show in Fig. 9 the incoherent-tune

distribution when the operating point is set at ν0 ¼ 0.275 in
the middle of the fourth-order core resonance band. The
incoherent tunes are evaluated by Fourier analyzing the
orbits of individual particles after the initial beam insta-
bility was more or less settled; the tune spectrum is
obtained based on the orbit data from 300th cell to
1300th cell. What we see in Fig. 9 is a sort of consequence
after the particles were redistributed due to the core
instability. The upper panel indicates that a lot of particles
originally positioned well below the line ν0xð0yÞ ¼ 1=4 got
unstable and eventually populated around or above it. A
similar phenomenon also takes place when the beam is
captured by a different type of nonlinear coherent reso-
nance. See the Appendix for the case where the operating
point is chosen within a coherent parametric resonance
band of the third order.
The influence of the linear coherent instability upon the

core is surely more destructive than the fourth-order effect.
As illustrated in Fig. 7(b), the development of the strong

FIG. 7. Time evolution of the rms emittance-growth rates in the
three cases of Figs. 4–6. The operating bare tune per cell is fixed
at (a) ν0 ¼ 0.257, (b) ν0 ¼ 0.263, and (c) ν0 ¼ 0.275.

FIG. 8. Incoherent tune spread of a Gaussian beam at ν0x ¼
ν0y ¼ 0.290 (red dot) where the emittance growth is negligible.
The rms tune depression is adjusted initially to η ¼ 0.9, the same
as in the case of Fig. 3.
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core instability is settled after around the 300th FD cell at
which the emittance growth has reached about 300%. The
Fourier analysis of the betatron orbits of individual particles
in this final state results in Fig. 10; it turns out that almost
all particles are moved above ν0xð0yÞ ¼ 1=4 in tune space,

forming a sharp peak. Unlike in the case of nonlinear
coherent resonances, no small second mountain below
ν0xð0yÞ ¼ 1=4 remains. The core is completely destroyed
and the resultant large emittance growth reduces the beam’s
phase-space density considerably, making the tune spread
much narrower than the original size (∼0.05).
In any case, even if many particles were eventually

accumulated near or above ν0xð0yÞ ¼ 1=4, it does not
necessarily mean that the incoherent mechanism is respon-
sible for the collapse of the initial beam distribution.
Recalling the tune-spread profile at the entrance, we
understand that major instability was initiated in Figs. 9
and 10 not on the line ν0xð0yÞ ¼ 1=4 but well below it,
kicking many particles out of the original core. A piece of
related information is given in Appendix.

V. CONCLUDING REMARKS

We have conducted a detailed study about the so-called
“90° stop band” potentially dangerous at high beam density
not only in linacs but also in circular hadron machines.
Self-consistent numerical simulations were performed to
clarify the resonance feature above the betatron phase
advance of 90° per unit AG cell. The resonance theory
recently proposed in Refs. [27] and [29] was applied to
explain the numerical observations. The present results
suggest the existence of three different types of resonances;
in addition to the linear coherent resonance (envelope
instability) in the beam core, the coherent and incoherent
resonances of the fourth order will be encountered within
the 90° stop band.
The coherent fourth-order stop band is located near the

upper boundary of the instability region whose total width
is given approximately by Δν̄ (provided no external driving
force exists). The incoherent fourth-order stop band lies just
above the single-particle resonance line ν0xð0yÞ ¼ 1=4
because this type of resonance is effective only in the
beam tail where the incoherent tune shift of each particle is
relatively small. The unstable particles captured by the
incoherent resonances are only a minor portion of the
whole beam and separable from the other part, which is not
the case with the coherent core resonances. The core
stability is not seriously affected by the incoherent mecha-
nism as expected from self-consistent theories. The new
stop-band diagram appears to be consistent with the PIC
simulation data. No severe emittance growth occurs outside
the predicted instability band of the width Δν̄ (much
narrower than the maximum incoherent tune spread of
the Gaussian beam) even though many core particles are
sitting exactly on the neighboring incoherent resonance
lines. Caution should be demanded when the conventional
necktie is used for the conceptual design of a high-intensity
circular lattice.
Similar multiple resonance overlapping is theoretically

possible for higher orders as well, but highly nonlinear

FIG. 9. Incoherent tune spread of a Gaussian beam after the
rapid initial emittance growth due to the fourth-order resonance
was nearly settled. The operating point is set at ν0x ¼ ν0y ¼ 0.275
(red dot) where non-negligible emittance growth occurs. The rms
tune depression is adjusted initially to η ¼ 0.9.

FIG. 10. Incoherent tune spread of a Gaussian beam at ν0x ¼
ν0y ¼ 0.263 (red dot) where the severe coherent envelope
instability is expected. The conditions of the PIC simulation
and Fourier analysis are the same as adopted in Fig. 9 (except for
the operating bare tunes).
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coherent modes are weak (or simply Landau-damped) and
even deactivated spontaneously. The incoherent resonance
mechanism in the beam tail will then play a more important
role from a practical point of view. A core resonance band of
higher order is narrower and has a larger shift from its
adjacent single-particle resonance line, which expands the
tail-resonance region. In many cases, therefore, beam losses
in operating synchrotrons could be linkedmore closely to the
incoherent tail effect [44]. If this is really the case, wemay be
able to broaden the usable operating region in the tune space
by controlling the tail loss somehow. In the case of Fig. 3, for
example, the emittance growth and resultant beam loss in the
tail-resonance region ðν0 ≲ 0.26Þ will be suppressed if we
inject a hard-edged beam. Such broadening of the stability
area has been confirmed in past PIC simulations with the
waterbag and parabolic distributions [27].
The phase-space configuration of any real beam is not

the precise Gaussian as considered here but often deviated
from the Gaussian profile especially after complicated
injection procedures. In the 3-GeV rapid cycling synchro-
tron at J-PARC, the sophisticated injection painting scheme
has been employed to form a non-Gaussian beam inten-
tionally for space-charge mitigation; the real-space profile
of the accumulated long bunch is roughly uniform in the
longitudinal direction and near-parabolic in the transverse
[45,46]. Holmes et al. proposed the formation of a hard-
edged beam by means of the painting [47]. We believe that
these attempts must be beneficial for minimizing the beam
loss of tail origin, thus somewhat widening the stable
operating area in tune space.

APPENDIX: INCOHERENT TUNE
DISTRIBUTION OF A WATERBAG BEAM

CAPTURED BY A COHERENT PARAMETRIC
RESONANCE OF THE THIRD ORDER

The coherent resonance condition in Eq. (3) predicts the
possibility of the third-order (m ¼ 3) noncoupling insta-
bility slightly above the line ν0xð0yÞ ¼ 1=6. Figure 11 shows
a typical WARP result obtained at ν0 ¼ 0.192 with an
initially matched waterbag beam. The core has been

deformed into a trianglelike shape, which indicates the
excitation of the third-order resonance as expected. This
can never be the incoherent effect because the conventional
condition in Eq. (2) only predicts the sixth-order resonance
near the bare tune of 1=6.
In this example, the rms emittance starts to grow rapidly

at around 300th FD cell and comes into a sort of plateau
after around 600th cell where the emittance growth of
roughly 70% is reached. The incoherent tunes of individual
particles, calculated from their betatron orbits between
500th and 1500th cell, are plotted in Fig. 12. Similarly to
the fourth-order case in Fig. 9, many core particles move to
the high-tune side, forming a peak near the line ν0xð0yÞ ¼
1=6 (though the initial instability was definitely the third-
order coherent).
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