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The low energy RHIC electron cooling (LEReC) system is the world’s first electron cooler utilizing radio
frequency (rf) accelerated electron bunches, and a nonmagnetized electron beam. It is also the first electron
cooler applied directly to colliding hadron beams. The unique approach to cooling makes beam dynamics
in LEReC very different from the conventional electron coolers. Numerous LEReC parameters can affect
the cooling rate. One of the most critical factors is the alignment of the electron and ion trajectories in the
cooling section. In this work, we apply Bayesian optimization to check and if needed to optimize the
trajectories’ alignment. Experimental results are presented and it is demonstrated that machine learning
(ML) methods can be applied to perform the control tasks effectively in the RHIC controls system.

DOI: 10.1103/PhysRevAccelBeams.25.014601

I. INTRODUCTION

To increase the collision rate [1] at the Relativistic Heavy
Ion Collider (RHIC), the Collider-Accelerator Department
(C-AD) at Brookhaven National Laboratory (BNL) devel-
oped, commissioned and operated the Low Energy RHIC
electron Cooler (LEReC) [2,3]. LEReC was successfully
used to increase the luminosity in 2020 and 2021 runs.
LEReC is the world’s first electron cooler where electron

bunches are acceleratedwith an rf linac. The layout is shown
in Fig. 1. The electrons are generated from the 400 keV
photo-gun and accelerated to the designed energy of 1.6–
2MeV (depending on the energy of the ions to be cooled) in
the 704 MHz superconducting rf cavity. Through the
transport line, the electrons are delivered first to the cooling
section (CS) in the “Yellow”RHIC ring and then, passing the
180 degree bend, to the CS in the “Blue” RHIC ring, thus
cooling the ion bunches in both rings of the collider. Finally,
the electron beam is extracted from the Blue CS and dumped
in the beam dump. The electron bunches are repeated with

704 MHz frequency and are “packed” into 9 MHz macro-
bunches (each contains 30–36 electron bunches), which
match the frequency of the RHIC ion bunches. Hence, on its
passage through the CS each ion bunch interacts with an
electron macrobunch containing 30–36 electron bunches.
In the cooling section the ions experience a friction force

from the co-propagating electrons. As a result of the
electron-ion interaction both the momentum spread and
the angular spread of the ion bunch is getting reduced and
its phase-space density is getting increased [4,5].
The cooling force experienced by ions strongly depends

on both the angular spread of the electron bunches and on
the relative electron beam trajectory angles with respect to
the ion beam.
The ion beam trajectory in the 20 m long LEReC cooling

section is a straight line due to the high magnetic rigidity of
the ions. The electron beam has low magnetic rigidity and
is easily steered by not-perfectly aligned short CS solenoids
located every 3 meters and by the transverse space charge
of the ion beam. To keep electron beam trajectory angles
small, each CS solenoid is combined with a pair of
horizontal/vertical trajectory correctors. There is a Beam
Position Monitor (BPM) installed downstream of each CS
solenoid and it is capable of measuring both the ion and the
electron beam positions.
The requirements for aligning electron-ion trajectories

can be converted to requirements for matching electron and
ion beam positions at each of the 8 CS BPMs with 100 μm

*ygao@bnl.gov
†wl674@cornell.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 25, 014601 (2022)

2469-9888=22=25(1)=014601(9) 014601-1 Published by the American Physical Society

https://orcid.org/0000-0002-9336-0640
https://orcid.org/0000-0002-8599-8329
https://orcid.org/0000-0002-6891-4189
https://orcid.org/0000-0001-9765-1245
https://orcid.org/0000-0003-3394-4756
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.25.014601&domain=pdf&date_stamp=2022-01-07
https://doi.org/10.1103/PhysRevAccelBeams.25.014601
https://doi.org/10.1103/PhysRevAccelBeams.25.014601
https://doi.org/10.1103/PhysRevAccelBeams.25.014601
https://doi.org/10.1103/PhysRevAccelBeams.25.014601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


accuracy in both horizontal (x) and vertical (y) directions
[6]. The ion and electron beam positions at the BPM
locations are analyzed by separate measurement modules,
filtering the incoming signal with 9 MHz frequency for the
ions and 704 MHz frequency for the electrons. The
procedure for relative calibration of the ion and electron
position measurements is described in [6]. The required
accuracy of electron-ion trajectory alignment was success-
fully achieved at the start of the 2020 RHIC run. This was
an important step, which together with other LEReC
optimizations allowed us to obtain operational cooling
and a substantial increase in RHIC luminosity.
The main purpose of this work is two-fold.
First, it works as an independent way to optimize the

cooling. There is always the possibility that due to some
errors the BPM offsets are not corrected to the required
level. Thus, it is worthwhile to check the electron-ion
alignment with an independent method. This work provides
a way to perform such a check by using the Bayesian
approach. It determines an optimum trajectory which can
be used as a reference for the control system’s orbit
correction routine. The results it generated can also be
used to verify the validity of the traditional tuning routine.
Second, it demonstrates that machine learning (ML)

methods can be applied in the LEReC system to perform
traditional control tasks effectively, which opens up the
possibility of trying different ML methods in the system.
As far as we know, this is the first work of applying

Bayesian optimization on trajectory alignment in an elec-
tron cooling system.
In the following, Sec. II introduces the basics of the

Bayesian optimization (BO) method and the algorithm
parameters we used in this work, and summarizes related
work of using BO in the accelerator field. Section III
presents simulation results [7] conducted in aLEReC system
simulator [8]. The purpose of the simulation is to prepare for
the experiments on the live system. The experimental results
are shown in Sec. IV, which demonstrates that optimum
cooling can be achieved and maintained by using the BO
approach. Finally, Sec. VI concludes this work.

II. BAYESIAN OPTIMIZATION

Bayesian optimization (BO) attempts to optimize an
objective function f with as few samples as possible. It is

particularly useful when the explicit expression of f is
unknown and evaluation of f is expensive, such as tuning
the hyperparameters of a deep neural network.
A general procedure of BO is depicted in Fig. 2. As we

can see, instead of sampling the original expensive objec-
tive f, BO builds a surrogate model of f and uses an
acquisition function to guide the sampling procedure.
A Gaussian process (GP) is a very popular surrogate

model used in BO [9]. A GP is a distribution over functions
fðxÞ ∼ GPðμðxÞ; kðx; x0ÞÞ, which can be constructed
on a set of N observed data points DN ¼ fðx1; y1Þ;
ðx2; y2Þ;…; ðxN; yNÞg, where yn; n ¼ 1; 2;…; N is usually
a noisy response fðxnÞ þ ϵ with some normally distributed
noise ϵ. A sample from a GP at a point x returns the
predicted mean μðxÞ and variance σðxÞ of a normal
distribution over the possible function values at x.
For convenience, the mean function of a GP is usually

assumed to be the zero function μðxÞ ¼ 0. The covariance
(kernel) function kðx; x0Þ describes how the objective varies
(e.g., smoothness) in terms of the changes in the input space
[10]. Common choices of kernels are squared exponential
kernel, rational quadratic kernel, periodic kernel, etc. New
kernels can also be created by combining other kernels via
addition and multiplication. In this work, we use the Matérn
kernel [Eq. (1)] with ν ¼ 3=2, which can be seen as a
generalization of the Gaussian radial basis function [10].

CvðdÞ ¼ σ2
21−ν

ΓðνÞ
� ffiffiffiffiffi

2ν
p d

ρ

�
ν

Kν

� ffiffiffiffiffi
2ν

p d
ρ

�
ð1Þ

where d is the distance between two points, Γ is the gamma
function, Kν is the modified Bessel function of the second
kind. ρ and ν are positive parameters of the Matérn covari-
ance. ρ is the length scale of the kernel, and is usually default
to 1 at the beginning of the training process. ν controls the

FIG. 2. Bayesian optimization process.

FIG. 1. LEReC system layout.
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smoothness of the learned function. The smaller ν, the less
smooth the approximated function is. Here, we use ν ¼ 3=2.
Another important component of BO is the acquisition

function. The main role of an acquisition function is to
guide the sampling process. In general, the acquisition
function is designed so that high acquisition values corre-
spond to potentially high objective values. Hence, the next
sample point is selected by maximizing the acquisition
function Að·Þ. That is, the process will next sample f at
point argmaxxAðxjDN Þ. In this work, we optimize the
acquisition function using DIRECT [11], a deterministic,
derivative-free optimizer.
Some commonly used acquisition functions [9] are

expected improvement (EI), upper confidence bound
(UCB), and GP-UCB.
EI calculates the objective’s expected improvement on a

point x over the current best observation fðxþÞ:
EIðxÞ ¼ Eðmaxf0;fðxÞ−fðxþÞgjDN Þ

¼
�ðμðxÞ−fðxþÞÞΦðZÞþ σðxÞϕðZÞ if σðxÞ> 0

0 if σðxÞ ¼ 0

Z¼ μðxÞ−fðxþÞ
σðxÞ

whereΦð·Þ and ϕð·Þ denote the cumulative density function
(CDF) and probability density function (PDF) of the
standard Gaussian distribution respectively.
UCB calculates a linear combination of mean and

variance by a weight factor κ:

UCBðxÞ ¼ μðxÞ þ κσðxÞ ð2Þ
The parameter κ balances the trade off between exploitation
(mean) and exploration (variance), with larger κ values
favor exploration and vice versa.
Alternatively, work [12] proposed a no-regret scheme

called GP-UCB:

GP −UCBðxÞ ¼ μðxÞ þ
ffiffiffiffi
βt

p
σðxÞ ð3Þ

where βt ¼ 2 logðjDjt2π2=6δÞ, jDj is the dimension of the
observation dataset, t is the algorithm’s current running
round, and (1 − δ) is the no-regret probability.
In this work, we use UCB as the acquisition function.

The complete Bayesian optimization routine is summarized
in Algorithm 1.

Bayesian optimization has been applied in a broad
variety of fields, such as engineering design, environment
science, robotics and machine learning, financial market,
etc. Some BO applications are summarized in [13].
As in the accelerator controls field, work [14,15] showed

simulation results of using Bayesian optimization to tune
quadrupole magnets settings in the LCLS Free-Electron
Laser (FEL) at SLAC. Comparisons have been made with
hand-tuning and with the existing Nelder-Mead optimiza-
tion method. Moreover, work [15] showed that by leverag-
ing knowledge of accelerator physics and building
correlated kernels, the GP converges faster in simulation
scenarios where the input dimensions are correlated.
In work [16], a variant of Bayesian optimization called

SafeLineBO was proposed, which divides global problem
into sequential subproblems that can be solved efficiently
without violating safety constraints. Then the algorithm
was compared with the simple parameter scanning and
Nelder-Mead method to tune the FEL outputs of the
SwissFEL with up to 40 parameters.
Work [17] proposed an alternative method to the

classical Bayesian optimization that was trained on his-
torical data. The new method incorporated a physics model
of the system, and built a Gaussian process (GP) which uses
a physics model-informed kernel. Then a simulation
experiment was conducted of optimizing the electron beam
loss rate on the SPEAR3 storage ring, and the results
showed that the GP with a physics model-informed kernel
converges faster than both the GP with a data-informed
kernel and the Nelder-Mead simplex optimizer.
The technique used in this work has no fundamental

differences in the assumptions with the ones mentioned
above, but it is the first work of applying Bayesian
optimization on beam trajectory alignment in an electron
cooling system. It has practical value in the context of
LEReC and the future Electron-Ion Collider (EIC) project.

III. SIMULATION RESULTS

In this section, we list some major simulation results
acquired by using a LEReC system simulator [8]. A more
comprehensive summary of the simulation results is pre-
sented in [7].
The main goal of the simulation is to validate the

Bayesian technique’s performance and prepare for the
experiments in the actual LEReC system.
The simulation considers a realistic scenario in which

the electrons travel in the same way as in the real system,
as shown in Fig. 3. There are 8 beam position
monitors (BPMs) along each of the “yellow” and “blue”
cooling section. Each BPM reports 2D data points—x
and y coordinates of the electron beam. Since the x
and y planes are symmetric, in the simulation only
the y plane is considered and has a range of ½−3; 3� mm.
The ion beam is always in the center position of
ðx ¼ 0; y ¼ 0Þ.

Algorithm 1. Bayesian Optimization.

Require: Objective function f, observation datasetDN , GP prior
M ¼ GPðμðxÞ; kðx; x0ÞÞ, acquisition function Að·Þ.

1: for t ¼ 1; 2;… do
2: Decide a new sample point xnew ¼ argmaxxAðxjDN Þ.
3: Query the objective ynew ¼ fðxnewÞ þ ϵ.
4: Update DN and the GP model.
5: end for
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To avoid interrupting the normal operations of the
live system, a LEReC simulator is used. It takes electron
positions (BPMs readings) as the inputs and outputs the
transverse cooling rate. The transverse cooling rate is
defined as the decreasing speed of the transverse ion beam
size. A more negative cooling rate means the beam size
decreases faster, hence a better cooling result.
Due to the high computational complexity of the simu-

lator, in the simulation we examine two features of the
electron positions instead of using the 8 BPMs readings
directly. Those two features are the root mean square (rms)
and the dtandard deviation (std). The rms value (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2=n

p
)

measures on average how far away the electron trajectory is
from the ions. The std value (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðx − μðxÞÞ2=n
p

) measures
how much the electron trajectory varies while cotraveling
with the ions. Those two features are chosen because they
can represent the BPMs’ information well and are easy for
the algorithm to learn.
The simulation results are summarized in Figs. 4 and 5.

The Bayesian model was trained on 60 random samples
(blue) and then used to make 15 more samples (red).
Figure 4 shows the rms value distribution (top) and the std
value distribution (bottom) of the BPM readings. As we can
see, both the rms and std values of the Bayesian samples are
closer to 0 compared with the random samples. It indicates
that the algorithm learns a way to optimize the cooling rate,
which is decreasing the rms and std values of the electron

positions. In other words, an electron trajectory that is
closer to the center and has less variation tends to produce a
better cooling rate, which matches our expectations.
Figure 5 shows the statistical distribution of the cooling
rates from all the samples. It quantitatively verifies that the
Bayesian samples have more populations (higher percent-
age) that possess a faster cooling rate compared with the
random samples.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate experimentally the
effectiveness of the Bayesian method on optimizing the
cooling rate in the live LEReC system.

A. Preliminaries

The LEReC system contains “yellow” and “blue” cool-
ing sections, and along each of them there are 8 beam
position monitors (BPMs). An orbit correction program is
used to regulate the electrons’ trajectories based on those
BPMs readings. The program can continuously tune
corrector magnets to keep electrons at some specific
positions throughout the cooling sections.
The beam-based calibration and alignment of the CS

BPMs is performed to zero the BPMs offsets. The ion
trajectory is kept at the center of the cooling section. Hence,
the present target BPM positions for electrons are
ðx ¼ 0; y ¼ 0Þ. That should produce the best cooling rate,
provided that the electron bunches’ angular spread and
momentum spread are optimized and that the relativistic
γ-factors of both beams are well matched. However, the
possibility of errors in BPM offset measurements always
remains. Therefore, Bayesian optimization (BO) is used as
an independent approach to discover an electron trajectory
that optimizes the cooling rate, which also in turn validates
the correctness of the beam-based alignment method.
Bayesian optimization as introduced in Sec. II takes the

BPM readings as inputs and the cooling rates as outputs. It
establishes a relationship between BPMs and cooling rates
directly. Hence, the BPMs measurement errors are taken
into account inherently. Moreover, BO can handle the

FIG. 3. The simulation considers a real-world scenario where
electrons travel through the cooling sections and are monitored
by 8 BPMs.

FIG. 4. Comparisons of rms and std values of BPM readings
from the random samples (blue) and Bayesian samples (red). The
Bayesian samples clearly have both rms and std values closer to 0
compared with the random samples. It indicates that the algorithm
learns a way to optimize the cooling rate by reducing both rms and
std values of electron trajectories, whichmatches our expectations.

FIG. 5. The statistical distribution shows that the Bayesian
samples (red) have a larger percentage of populations that possess
a higher cooling rate compared with the random samples (blue).
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Gaussian random noise which exists in the system. Thus,
the output trajectories from the BO should reflect the
optimum BPM positions of the electrons.
The transverse cooling rate λ is defined as the decreasing

speed of the transverse ion beam size δ, which is calculated
as λ ¼ ð1=δÞðdδ=dtÞ. Therefore, a more negative λ indi-
cates a faster cooling rate, and vice versa.
The goal of the experiment is to maximize −λ by tuning

the target BPM values using the orbit correction program.
Due to the limited machine time, the experiment only
considers the first 4 BPMs. In our studies the beam is
moved in a range of ½−3; 3� mm in each of the BPMs. We
take 40 initial samples to train the algorithm. At each step
of the sampling process, the algorithm sets an anchor point
and randomly uniformly samples around that point. Then, it
modifies the anchor point by a step size. The anchor point is
kept within the input range throughout the process.
The advantage of this sampling routine compared to the

plain random sampling is that it explores the entire input
domain in an organized manner, which ensures that the
training set contains various enough different input values
and at the same time prevents dramatic changes in the
machine settings. It also maintains certain randomness in
the sampling process at each step. The detailed procedure is
described in Algorithm 2. In the experiment, we take
r ¼ 0.3, S ¼ 0.6, ts ¼ 120 s.
The initial samples and their corresponding objective

values are shown in Fig. 6. We also tried sampling each
input dimension independently, but it turns out this simul-
taneously sampling pattern gives the best optimization
results.
From the top plot of Fig. 6 we can see that the inputs

have iterated through the entire input domain, which is
crucial for the fast convergence of the BO method. The
objectives’ pattern can also be revealed more evidently

when the inputs are sampled systematically as shown in the
bottom plot. We can see that input positions around 0
potentially generate higher cooling rates than others, which
further validates the simulation results in Sec. III.
In the LEReC system, there are many factors that can

affect the ion beam size (e.g., ion intensity, device meas-
urement errors, etc.), which makes the beam size data
noisy.1 An example period of data during the experiment is
shown2 in Fig. 7. Due to the noise presented in δ, the
original formula for cooling rate λ ¼ ð1=δÞðdδ=dtÞ gen-
erates many misleading variations (large error bars in the
bottom plot of Fig. 6) in the objective values. Those
variations diminish the algorithm’s performance signifi-
cantly, and eventually stop the algorithm from converging.
This issue will be demonstrated and addressed in the next
section.

B. Objective function sensitivity

After training, the BOmethod is used to control the BPM
positions. As noted above, the use of point δ values (beam
sizes) in λ ¼ ð1=δÞðdδ=dtÞ makes the objective function
very unstable. Figure 8 illustrates the BO samples’ trajec-
tory, we can see that the objective (bottom plot) decreases
too fast even when the algorithm converges to an optimum
strategy (top plot, e.g., sample 7 to 11 and 13 to 17). Such
instability confuses the algorithm and eventually makes it
diverge as the algorithm does not have enough time to learn
properly the correlation between the inputs and outputs.
Therefore, we modified the equation so that instead of

using single beam size values it uses average beam
sizes in an interval to calculate the cooling rate λ ¼
ð1=avgðδÞÞðavgðdδÞ=dtÞ. It stabilizes the objective behav-
iors, thus giving the algorithm more time to learn. The
length of the interval is defined as the “radius r” of the

Algorithm 2. Initial Sampling Routine.

Require:Observation datasetDN , random sampling function fR,
random sampling radius r, step size S, statistic period ts.

1: Set DN ¼ =0.
2: Set an anchor point xach ¼ −3.
3: Set the initial operation sop ¼ ‘þ ’.
4: for t ¼ 1; 2;…; 40 do
5: if xach is outside of the range ½−3; 3� then
6: Reverse xach to the previous value, flip sop ¼ −sop.
7: end if
8: Randomly uniformly sample around the anchor point,
xnew ¼ fRðxach; rÞ.

9: Set the BPMs at xnew.
10: Collect transverse beam size data during ts, and calculate
the cooling rate as ynew ¼ ð1=δÞðdδ=dtÞ.

11: Add ðxnew; ynewÞ to the dataset DN .
12: According to the sop, modify the anchor point by a step size
xach ¼ xach þ = − S.

13: end for

FIG. 6. 40 training points are sampled using Algorithm 2. The
inputs step through the entire range (top) which helps to reveal a
clear pattern of the outputs (bottom). As we can see, input
positions around 0 potentially have higher objectives.

1The beam size is measured by H-jet [18] and plotted using the
rms value.

2By using the system tool “LogView,” which is designed for
displaying logged data.
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algorithm. By tuning r the objective function’s sensitivity
can be controlled, which further affects how the algorithm
behaves.
Figure 9 shows the algorithm’s behaviors under different

r values. Generally, the larger the radius grows the less
sensitivity the objective has. The right part of Fig. 9 shows
an extreme case when r ¼ 30, the radius is so large that the
objective function becomes insensitive even to the inputs.
The algorithm explores to the upper bound of the input
domain to infer the model, but the output is unable to
respond accordingly. However, a large radius can reduce
the uncertainty greatly, as shown by the error bar plots.
Thus, the radius should be set properly such that the
objective function is not too sensitive to the noise but also
can respond to the input changes reasonably well.

C. Results

After trying different values, we take r ¼ 15 and the
complete results are presented in Fig. 10. The plots show

that the BO method can converge to the optimum solution
very quickly. One thing worth mentioning is that by using
the radius parameter the Bayesian samples do not generate
as high objective values as the initial 40 training samples,
but it makes the process more stable. As shown in the
bottom plot, the errors from the Bayesian samples are much
smaller compared with the ones from the training samples.
The purpose of the objective values is to train the algorithm
correctly so it can effectively learn the behaviors of the
system. The use of the radius parameter adds extra
flexibility to the algorithm and brings more practical
benefits.
The corresponding electron trajectories (displayed by the

application “LogView”) in the live system are shown in

FIG. 7. An example period of transverse ion beam size data are
fetched from the real system during the experiment. It shows the
data are noisy.

FIG. 8. Demonstration of the volatility of the original objective
function. Due to the use of point δ values in λ ¼ ð1=δÞðdδ=dtÞ
and the noise in δ, the original objective varies too fast (bottom)
even when the algorithm converges to an optimum strategy (top,
e.g., from step 7 to 11 or 13 to 17). This eventually makes the
algorithm diverge (after step 17) as the algorithm does not have
enough time to learn properly the correlation between the inputs
and outputs.

FIG. 9. Effects of different radius values on the algorithm’s
behaviors. For a small radius r ¼ 10 (left column), the objective
function is still sensitive to changes (e.g., sample 10 to 14). But
compared with the original objective (see Fig. 8), the process has
become more stable (e.g., sample 7 to 10). For a large radius
r ¼ 30 (right column), the objective function becomes too
insensitive. It is unable to change properly according to the
inputs. As the inputs step through the entire range (top right), the
objective values do not change with a proper scale (bottom right).
Both cases should be avoided as they do not provide correct
system information for the algorithm to learn.

FIG. 10. The final experiment is performed by using a radius of
15. The outputs is not too sensitive to the noise but also sensitive
enough to respond to the input changes properly. The first 40
points are the training samples. After training, the algorithm
converges very quickly (already reaches a close neighborhood
after the first 3 steps, top plot) to an optimum solution, which
corresponds to the center position of ðx ¼ 0; y ¼ 0Þ.
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Fig. 11. It demonstrates that the BO method is capable of
tuning the electrons from the farthest point (−3 mm) to the
optimum position efficiently and can maintain that trajec-
tory, which shows the effectiveness of the algorithm.
Moreover, the trajectory returned by the BO method
indicates that an electron trajectory around the center
position (x ¼ 0, y ¼ 0) maximizes the cooling rate, which
verifies the correctness of the traditional orbit correction
program and also confirms that the BPMs in the system are
calibrated reasonably well.

V. FUTURE WORK

There are several variants of Bayesian optimization that
could bring extra performance benefits. Due to the limited
machine time, we leave them to future work.

A. Physics model-informed BO

In the above experiment, we keep updating the model
with the new data available, therefore the method is data-
informed (DI).
In contrast to the DI method, work [17] introduces a

physics model-informed (PMI) method. It gets the name
from the way it constructs the GP kernel. In a DI method,
the GP kernel is updated step by step. Whereas in a PMI
method, the GP kernel is calculated directly by using
physics data model. Specifically, the method calculates the
kernel’s precision matrix by expanding a Hessian matrix
around the optimum point obtained from historical
data. Then, the kernel is used directly in the optimization
without any further updating. The Hessian matrix contains
important information about the local curvature of the
objective function around its optimum and can guide the
BO to navigate through the input space to locate the true
optimum. Hence, the physics model-informed method
could potentially be more efficient.
To demonstrate the difference, a simulation is

conducted where we have a Gaussian-like maximization
objective with 4-dimensional inputs. Each input has a

range of ½−3; 3�. Figure 12 shows 20 initial training
samples that are taken using Algorithm 2 within the input
range.
Figure 13 shows the comparison results of the

performance between the data-informed (left) and the
physics model-informed BO (right). From the plots we
can see that the physics model-informed BO produces a
more steady optimum solution and a higher average
objective value.

B. Contextual Gaussian process

Both the data-informed and physics model-informed
methods can only work well in a static environment.
However, a real-world scenario often involves some
dynamic factors which can affect the optimum. For
example [19], suppose we want to monitor the highest
temperature in a building by a collection of sensors across
the building. Due to battery limitations of the sensors, each
time we can only select a small part of the sensors to
activate and do the monitoring job. Due to the fact that the
sun is moving relative to the building, the hottest area in the
building shifts depending on the time of the day. The goal is

FIG. 11. After training, the algorithm is used to control the
electron beam trajectories. As we can see, the algorithm tunes the
electrons back to the center and maintains it there, which in turns
verifies the correctness of the beam-based alignment method.

FIG. 12. 20 training points are sampled using Algorithm 2.
Both the data-informed (DI) method and the physics model-
informed (PMI) method use the same training data.

FIG. 13. Comparison of results from the optimization per-
formed by the data-informed (DI, top left) and by the physics
model-informed BO (PMI, top right). Both methods converge to
the optimum solution very quickly. Moreover, the PMI method
produces a more steady solution (top row), and hence a higher
level of objective values (bottom row).
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to learn which sensors to activate at what time of the day.
The time of the day is the dynamic factor (context) in this
task that will affect the optimum solution. Traditional
Bayesian optimization methods such as DI or PMI cannot
handle such dynamic contexts, therefore cannot generate
the optimum solution.
In work [19], a method called the contextual Gaussian

process (CGP) was proposed to handle the environmental
factors by using separate kernels to model the inputs and
contexts. An overall kernel for the entire process is then
constructed by either using addition or multiplication of
those elemental kernels depending on the relationship
between the inputs and the contexts.
With the same simulation settings in Sec. VA, a

sinusoidal signal is added to the Gaussian objective as
the changing context. This is a simplified dynamic scenario
where the context only affects the objective value but not
the optimum solution (still the center position). Figure 14
shows the initial training samples with a context (purple
line) added. Note that now the objective is dependent on
both the inputs and the context.

Physics model-informed BO is used to optimize this
contextual objective function. The results are shown in
Fig. 15. We can see that without the CGP modeling the
context (top left), the algorithm fails to converge as the
objective now varies only partially related to the input
changes. Whereas, adding the CGP (top right) enables the
algorithm to precisely learn the correlations between
the inputs and the objective and successfully converge to
the optimum center position.

VI. CONCLUSIONS

In this work, we applied Bayesian optimization (BO) to
maximize the cooling rate in the LEReC system. Both the
simulation and experimental results show that the BO
method is very effective in producing and maintaining
good electron positions to optimize the cooling rate.
It also verifies the correctness of the traditional orbit
correction program and the BPM calibrations. It opens
up many possibilities of trying different machine learning
methods on optimizing performance for control tasks
in the RHIC complex, as well as the future Electron-Ion
Collider (EIC).
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