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The coupled-bunch instability for arbitrary multibunch configurations is investigated in its generality.
The theoretical framework adopted is based on the general eigenvalue analysis based on the known
formulas of the complex frequency shifts for the uniform multibunch configuration case. Closed formulas
are derived for special cases. For the configuration consisting of a uniform filling pattern with a gap of
missing bunches, the theoretical results are found to be in good agreement with measurements of the
transverse coupled-bunch instability driven by the resistive wall impedance performed at the NSLS-II
storage ring.
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I. INTRODUCTION

The design of modern light sources, with their goal to
store beams with low-emittance and high-average current,
requires detailed studies to minimize detrimental effects on
the beam quality induced by short- and long-range wake-
fields. These wakefields are generated by the electromag-
netic interaction of the circulating beam with the storage
ring vacuum components and, acting back on the beam,
determine current dependent instability thresholds that can
pose severe limitations to the achievable beam current [1].
An example of a long-range wakefield potentially driving a
coupled-bunch instability is represented by the resistive
wall wakefield studied in this paper. Light sources operate
with a variety of multibunch configurations that differ from
the uniform one. A common mode of operation, which is
adopted by the NSLS-II storage ring [2], consists of a
bunch train with a gap in the uniform filling pattern [3],
aimed to combat multibunch instabilities driven by ions.
The gap, however, introduces transient beam loading, an
effect that has a negative impact on the performance of the
rf-system, especially when higher-harmonic cavities for
bunch lengthening are used [4]. Several light sources have
therefore considered configurations with multigaps to
improve performance. Modes of operation with hybrid
filling patterns aimed to accommodate special experimental
conditions such as in time resolved experiments [4–8] are

also commonly used. The analysis of the stability of
nonuniform multibunch configurations is therefore an
important issue.
The coupled-bunch instability theory for uniform filling

patterns is well developed [9,10]. Attempts for a general
theoretical analysis in the case of arbitrary filling patterns
have been discussed, with various degrees of approximation,
in Refs. [11–15]. In this paper, we adopt the general
theoretical framework developed in Ref. [16], where starting
from a system of coupled Vlasov equations governing the
evolution of the phase space densities of the circulating
bunches, it is shown that the stability analysis is reduced to
the formulation of an eigenvalue problem defined by the
complex frequency shifts of the uniform filling pattern case.
The solution of the eigenvalue problem allows the determi-
nation of the eigenvalue with the largest imaginary part, thus
characterizing the growth rate of the fastest coupled bunch
instability,with the instability threshold obtained by equating
the fastest growth rate to the radiation damping rate. The
analysis is restricted to the dipole mode of oscillation and to
the case of zero chromaticity. We therefore neglect short-
range wakefields and the important head-tail damping effect
at positive chromaticity, aswell as the effect froma transverse
bunch-by-bunch feedback system, all crucial ingredients for
stabilizing standard modes of operation in storage rings.
Such effects are taken into account, for example, in the nested
head-tail Vlasov solver discussed in Ref. [15], and can be
studied numerically with particle tracking codes such as the
Vlasov-Fokker-Planck solver space [16]. Our choice to
neglect the aforementioned effects is motivated by our intent
to simplify the comparison between theory and measure-
ments, by isolating the coupled-bunch interaction as the
dominant effect determining the instability threshold.
The paper is organized as follows. In Sec. II, we discuss

the resistive wall impedance budget of the NSLS-II storage
ring, as the major contributor to the transverse coupled
bunch instability. In Sec. III, we revisit the theory of the

*Corresponding author.
gbassi@bnl.gov

†blednykh@bnl.gov
‡vsmalyuk@bnl.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 25, 014402 (2022)

2469-9888=22=25(1)=014402(9) 014402-1 Published by the American Physical Society

https://orcid.org/0000-0003-3617-9578
https://orcid.org/0000-0001-9391-1820
https://orcid.org/0000-0002-7962-0039
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.25.014402&domain=pdf&date_stamp=2022-01-25
https://doi.org/10.1103/PhysRevAccelBeams.25.014402
https://doi.org/10.1103/PhysRevAccelBeams.25.014402
https://doi.org/10.1103/PhysRevAccelBeams.25.014402
https://doi.org/10.1103/PhysRevAccelBeams.25.014402
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


coupled-bunch instability for arbitrary multibunch configu-
rations developed in Ref. [16], and derive closed formulas
for some specific cases. In Sec. IV, we discuss measure-
ments of the vertical coupled-bunch instability performed at
the NSLS-II storage ring and compare them with the results
of the eigenanalysis presented in Sec. III.

II. RESISTIVE WALL IMPEDANCE

In NSLS-II, the major contribution to the transverse
coupled-bunch instability is given by the resistive wall
impedance, Z⊥

1 , of the storage ring components, assuming
the standard thick wall approximation. Its use is justified by
the smallness of the coating thickness of the vacuum
components and by the fact that the lowest frequency
contribution to the coupled-bunch instability threshold is
given by ReZ⊥

1 sampled at ð1 − qÞω0, where ω0 is the
angular revolution frequency and q the fractional part of the
betatron tune νβ ¼ ωβ=ω0, where ωβ is the betatron
frequency [17]. For one component of the storage ring,
the thick wall formula, valid for jωj ≤ c=s0, reads [18]

Z⊥
1 ðωÞ ¼ ð1 − isgnðωÞÞZ0s0L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0cjωj

p
2πωb4

;

s0 ¼
ffiffiffiffiffiffiffiffiffiffi
2b2

Z0σc

3

s
; ð1Þ

where Z0 is the impedance of free space and c the speed of
light in vacuum, and L, σc, and b are the length, electrical
conductivity, and half aperture of the impedance structure,
respectively. The electrical conductivity σc of the material
of the storage ring vacuum components is shown in Table I,
together with the relevant contributions to the vertical
resistive wall impedance budget, where a distinction is
made between contributions from arcs and straight sec-
tions. In Table I, the different elements have the following
meaning: vacuum chamber (CH), fast corrector (FC), and
damping wiggler (DW). The contribution from N elements
is weighted by the average of the beta function over the
length of the impedance structure

β̄y;i ¼
1

Li

Z
siþLi=2

si−Li=2
ds0βyðs0Þ; i ¼ 1;…; N; ð2Þ

where si is the location of the center of the element along
the ring. Eliminating s0 in Eq. (1), the total average
impedance Z̄1

⊥ is defined as

Z̄⊥
1 ðωÞ¼ð1− isgnðωÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z0cjωj

p
2πω

K; K¼
X
i

αi; ð3Þ

where αi ¼ fiLiβ̄y;i=ð ffiffiffiffiffiffiffi
σc;i

p
b3i Þ and fi is a geometric factor:

fi ¼ 1 for components with circular geometry, fi ¼ π2=12
for components with parallel geometry. In Table I, the value

TABLE I. NSLS-II resistive wall impedance.

Material Symbol σc (MS/m)

Electrical conductivity of resistive wall components
Stainless steel SS 1.35
Aluminum Al 31.6
Inconel Inc 0.775

Main contributions from arcs

Element Material L (m) β̄y (m) b (mm) α=K (%)

CH1 Al 536.4 17.6 12.5 70.8
CH2 SS 11.5 8 12.5 3.3

Main contributions from straight sections

Cell Element Material L (m) β̄y (m) b (mm) α=K (%)

1 CH Al 5.2 22 12.5 6.2a

1 FC Inc 0.37 8.3 12.5 4.4b

6 CH Al 5.2 22 12.5 3.4c

6 FC Inc 0.37 8.7 12.5 4.7d

8 DW Al 7.5 4 5.75 7.2e

aIncluding the contribution from cells 9, 13, 15, 25, 27, and 29, which are identical to cell 1.
bTotal contribution from all odd cells, which have two FCs each.
cIncluding the contribution from cells 14, 20, and 26, which are identical to cell 6.
dTotal contribution from all even cells, which have two FCs each.
eIncluding the contribution from cells 18 and 28, which are identical to cell 8.
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α=K refers to the contribution in percentage of the various
impedance elements. Figure 1(a) shows the beta functions
of two cells of the NSLS-II storage ring [2], which adopts a
double bend achromat lattice with 30 periods, thus dividing
the storage ring in 30 cells. The two cells shown in Fig. 1(a)
correspond to one super-period of the lattice. The main
contribution to the total impedance budget, approximately
70%, is given by the aluminum vacuum chamber, as shown
in Table I. Its contribution from one half of the lattice super-
period is shown in Fig. 1(b). Figures 1(c) and 1(d) show
contributions from storage ring components localized in
straight sections, with the contributions weighted by the
average beta function over the impedance structure length
according to Eq. (2).

III. EIGENVALUE ANALYSIS

We adopt the theoretical framework of the coupled-bunch
instability for arbitrary filling patterns developed inRef. [16],
which leads to the formulation of an eigenvalue problem
defined in terms of the complex frequency shifts of the
uniform filling pattern case. Here, we briefly revisit the
theory, more details can be found in Ref. [16]. The most
general multibunch configuration is defined by h bunches,
where h is the harmonic number (representing the number of
available rf-buckets), with Nm particles (m ¼ 0;…; h − 1),
circulating in the storage ring with the reference particles of
the bunches separated by the distance d ¼ C=h, where C is
the ring circumference. The starting framework of the
theoretical formulation is defined by a system of h-coupled
Vlasov equations, which give the time evolution of the phase
space densitiesΨm associatedwith themth bunch. The phase

space coordinates are ðτ; δ; x; pÞ, where τ is arrival time, δ ¼
ðE − E0Þ=E0 the relative energy deviation, where E0 is the
energy of the reference particle in electronvolts, and x andpx
are the transverse position and transverse momentum,
respectively. Here x represents the transverse coordinate,
either horizontal or vertical. We assume linearized longi-
tudinal equations of motion and neglect quantum radiation
effects. For the evolution of the dipole moment, the last
assumption has the effect to neglect an exponential decay
determined by the radiation damping constant. The trans-
verse phase space densities Ψmðτ; δ; x; px; tÞ, associated to
themth bunchwithNm particles, satisfy the following system
of h-coupled Vlasov equations for 0 ≤ m ≤ h − 1

∂Ψm

∂t − ηδ
∂Ψm

∂τ þω2
s

η
τ
∂Ψm

∂δ þpx
∂Ψm

∂x −ω2
βx

∂Ψm

∂px

−Ax

Xþ∞

k¼0

Xh−1
m0¼0

Nm0

�Z
τ

−∞
dτ0W̄1ðτ− τ0 þakm0mT0Þ

×
Z þ∞

−∞
dx0x0ρm0 ðτ0; x0; t−akm0mT0Þ

�∂Ψm

∂px
¼ 0; ð4Þ

where ρmðτ;x; tÞ¼
R
dδ
R
dpxΨmðτ;δ;x;px; tÞ and akm0m ¼

kþ ðm0 −mÞ=h, Ax ¼ eωβ=ðT0E0Þ [19], where T0 is the
revolution period, e is the electron charge, ωβ is the betatron
frequency, η ¼ α − 1=γ2 is the slippage factor where α is the
momentum compaction factor, ωs is the synchrotron fre-
quency, W̄1 is the total average transversewake function, andP

h−1
m¼0Nm ¼ Nh ¼ NT is the total number of particles in the

fillingpattern,withN the number of particles per bunch in the
uniform filling pattern case. We neglect longitudinal wake
fields, so for the longitudinal equations of motion we
consider _τ ¼ −ηδ, _δ ¼ ω2

sτ=η; _≡ d=dt. The equation
for the evolution of the dipole moments hxmi ¼R
dτdδdxdpxxΨm and hpxmi ¼

R
dτdδdxdpxpxΨm can be

found by integrating by parts the Vlasov equations
using the boundary conditions for Ψm. Using the approxi-
mation ρmðτ; x; tÞ ¼ λðτÞμmðx; tÞ, where μmðτ; tÞ ¼R
dτρmðτ; x; tÞ is the transverse distribution density of the

mth bunch and it is assumed that all bunches have the same
stationary longitudinal distribution density λðτÞ, it can be
shown [16] that hxmi satisfies

hẍmi þ ω2
βhxmi ¼ −Ax

Xþ∞

k¼0

Xh−1
m0¼0

fðakm0mT0Þ

× Nm0 hxm0 iðt − akm0mT0Þ; ð5Þ

where fðxÞ≡ R dτ R dτ0W̄1ðτ − τ0 þ xÞλðτÞλðτ0Þ. In deriv-
ing Eq. (5), it is assumed that the transverse wake function
W̄1ðτÞ varies slowly over the support of the longitudinal
distributiondensity λðτÞ. Proceedingbyomitting the brackets
in the equations, i.e., xm should be understood as hxmi, and
defining the coupled-bunch mode x̃μ by

FIG. 1. (a) One superperiod of the NSLS-II DBA lattice
consisting of two cells with short and long straight sections.
Vertical beta function (magenta trace) variation and its average
(green trace) over the length of the impedance element (red
rectangle): (b) aluminum vacuum chamber in the first half
superperiod; (c) DWs in cell 8; (d) bending magnet chamber
in cell 1.
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x̃μðtÞ ¼
Xh−1
m¼0

xmðtÞe−i2πmμ=h and ð6Þ

xmðtÞ ¼
1

h

Xh−1
μ¼0

x̃μðtÞei2πmμ=h; ð7Þ

from Eq. (5) it follows the modes x̃μ are coupled and satisfy
the equations of motion

̈̃xμðtÞþω2
βx̃μðtÞ ¼−

Ax

h

X∞
k¼0

f

�
k
T0

h

�
ei2πμk=h

×
Xh−1
μ0¼0

x̃μ0
�
t− k

T0

h

�Xh−1
m¼0

Nmei2πmðμ0−μÞ=h:

ð8Þ

In the uniform filling pattern case, Nm ¼ N, thus from the
orthogonality condition

P
h−1
m¼0 e

i2πmðμ0−μÞ=h ¼ hδμ0μ, where
δμ0μ is the Kronecker delta, it follows that the modes x̃μ are
uncoupled and satisfy

̈x̃μðtÞ þ ω2
βx̃μðtÞ ¼ −AxN

X∞
k¼0

f

�
k
T0

h

�
ei2πμk=h: ð9Þ

Since xm ∈ R, it follows that x̃μ ¼ x̃⋆h−μ, thus it is natural to
define the multibunch mode by

xðμÞm ðtÞ¼ 1

h
ðx̃μðtÞei2πmμ=hþ x̃h−μðtÞe−i2πmμ=hÞ

¼ 2

h

�
Rex̃μðtÞcos

2πμm
h

− Imx̃μðtÞsin
2πμm
h

�
: ð10Þ

We assume a perturbative solution of Eq. (8) of the form

x̃μðtÞ ¼ aμe−iðωβþΩÞt; jΩj ≪ ωβ; Ω ∈ C: ð11Þ

Defining τ−1 ≡ ImΩ, ωr ≡ ReΩ, and assuming

Imx̃μð0Þ ¼ 0, it follows that the multibunch mode xðμÞm takes
the form

xðμÞm ðtÞ ¼ ae
t
τ cos

�
2πμm
h

− ðωβ þ ωrÞt
�
; ð12Þ

where a ¼ 2Rex̃μð0Þ=h. By inserting Eq. (11) in (8) we
obtain the eigenvalue equation determining the transverse
stability of themultibunch configuration given byEq. (46) of
Ref. [16]

ðB − ΩIÞa ¼ 0;

Bμμ0 ¼
ΩU

μ

NT

Xh−1
m¼0

Nmei2πmðμ0−μÞ=h; ð13Þ

where a ¼ ½a0;…; ah−1�T is the eigenvector corresponding
to the eigenvalue Ω, and ΩU

μ are the eigenvalues of the
uniform filling pattern case (Bμμ0 ¼ ΩU

μ if μ0 ¼ μ, 0 other-
wise), and are given by

ΩU
μ ¼ −i

I0
2T0E0

Xþ∞

p¼−∞
jλ̃ðp0Þj2Z̄⊥

1 ½p0�; ð14Þ

where p0 ¼ ðphþ μÞω0 þ ωβ, ω0 ¼ 2π=T0, I0 is the aver-
age current which can be equivalently expressed as
I0 ¼ e

P
h−1
m¼0Nm=T0 ¼ eNh=T0 ¼ eNT=T0, and Z̄⊥

1 is
the total average transverse impedance related to the
transverse wakefield W1 by Z⊥

1 ðωÞ ¼ i
R
dτeiωτW1ðτÞ,

W1ðτÞ ¼ −i=ð2πÞ R dωe−iωτZ⊥
1 ðωÞ. λ̃ðωÞ is the Fourier

transform of the longitudinal distribution density, assumed
to be given and the same for all bunches.
Solving for the characteristic polynomial pðΩÞ ¼ jB −

ΩIj ¼ 0 and assuming h distinct eigenvalues Ωm, the
general solution x̃gμðtÞ is given by

x̃gμðtÞ ¼
Xh−1
m¼0

cmaμme−iðωβþΩmÞt; ð15Þ

where am ¼ ½a0m;…; ah−1m�T are the eigenvectors associ-
ated to the eigenvalues Ωm.
The complex frequency shift ΩU

μ given by Eq. (14) is
computed with parameters listed in Table II and Z̄1

⊥ given
by Eq. (3). The growth rate τ−1μ ¼ ImΩU

μ and coherent tune
shift νr;μ ¼ ωr;μ=ω0, where ωr;μ ¼ ReΩU

μ , are shown in
Figs. 2(a) and 2(b), respectively, with I0 evaluated at the
instability threshold Ith, which is determined by setting
ImΩU

μ ¼ 1=τy and by finding the mode μ which maximizes
fðμÞ≡ −

Pþ∞
p¼−∞ jλ̃ðp0Þj2ReZ̄⊥

1 ½p0�, i.e.,

TABLE II. Parameters for the NSLS-II 3DWs lattice.

Parameter Symbol Value Unit

Energy E0 3 GeV
Revolution period T0 2.64 μs
Harmonic number h 1320
Momentum compaction α 0.00037
Synchrotron tune νs 0.007
Horizontal tune νx 32.22
Vertical tune νy 16.26
rf-Voltage Vrf 3 MV
Transverse damping time τx;y 22.5 ms
Longitudinal damping time τs 11.9 ms
Energy spread σδ 0.00087
Bunch length σt 14.5 ps
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IUth ¼
2T0E0

τy max fðμÞ : ð16Þ

We can equivalently state that the instability threshold Ith is
obtained by equating the fastest growth time (determined
by the eigenvalue with the largest imaginary part) to the
radiation damping time τy.
SinceReZ̄⊥

1 ðωÞ > 0 ifω > 0, and< 0 ifω > 0, max fðμÞ
can be approximated by keeping only the term with p ¼ −1
and by evaluatingReZ̄⊥

1 at its smallest, negative value, which
occurs for μ ¼ h − ½νβ� − 1, where ½νβ� is the integer part of
the betatron tune. With parameters given in Table II, the
integer part of the vertical tune is ½νβ� ¼ 16, thus the fastest
growing mode is 1303. We note that the most stable
mode occurs for μ ¼ h − ½νβ�, thus for μ ¼ 1304. The
corresponding complex frequency shifts read ΩU

1303 ¼
ð−59.9; 44.9Þ s−1 and ΩU

1304 ¼ ð−90.7;−75.8Þ s−1.
Equidistant filling patterns are defined by multibunch

configurations in which M bunches occupy symmetrically
only a subset of all the available rf-buckets, i.e., where M
bunches are separated by the distance d ¼ C=M, with
M ≤ h. The number of possible equidistant multibunch
configurations, thus the possible values ofM, is determined
by the prime factorization of the harmonic number h. For the
NSLS-II storage ring, as shown in Table II, h ¼ 1320 ¼
23 × 3 × 5 × 11.

A. Elementary case: M = 3

The complexity of the solution of the eigenvalue problem
for arbitrary multibunch configurations is illustrated in the
case of M ¼ 3 equidistant bunches, in which case the
eigenvalues can be expressed in closed form. The corre-
sponding eigenvalue problem defined by Eq. (13) reads

jB −ΩIj ¼

��������
ΩU

0 −Ω aΩU
0 a�ΩU

0

a�ΩU
1 ΩU

1 −Ω aΩU
1

aΩU
2 a�ΩU

2 ΩU
2 −Ω

��������
¼ 0; ð17Þ

where a ¼ N̄0 − αN̄1 − α�N̄2, α ¼ ð1 − ffiffiffi
3

p
iÞ=2, N̄m ¼

Nm=NT and � denotes complex conjugate. Eliminating N̄2

with the use of N̄0 þ N̄1 þ N̄2 ¼ 1, it follows that Eq. (17)
reads

jB − ΩIj ¼ Ω3 þ bΩ2 þ cΩþ d ¼ 0; ð18Þ

with coefficients given by

b ¼ −TrB ¼ −ðΩU
0 þΩU

1 þΩU
2 Þ; ð19Þ

c ¼ −3ðΩU
0 ΩU

1 þ ΩU
0 ΩU

2 þ ΩU
1 ΩU

2 Þ
× ½N̄0ðN̄0 − 1Þ þ N̄0N̄1 þ N̄1ðN̄1 − 1Þ�; ð20Þ

d ¼ 27N̄0N̄1ðN̄0 þ N̄1 − 1ÞΩU
0 ΩU

1 ΩU
2 : ð21Þ

The general solution of Eq. (18), which is cubic, is written in
the following compact form

Ωμ ¼ −
1

3

�
bþ ξμCþ Δ0

ξμC

�
; μ ∈ f0; 1; 2g; ð22Þ

where C¼ ½ðΔ1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1−4Δ3
0

q
Þ=2�1=3, Δ0 ¼ b2 − 3c, Δ1 ¼

2b3 − 9bcþ 27d, and ξ ¼ α�. With parameters listed in
Table II, the complex frequency shifts ΩU

μ for the uniform
filling pattern case with M ¼ 3 read ΩU

0 ¼ ð−7923.2;
−8.6Þ s−1,ΩU

1 ¼ð−7960.3;−70.7Þ s−1 andΩU
2 ¼ð−7930.7;

30.3Þ s−1. The largest imaginary part of the eigenvalues given
by Eq. (22) is shown in Fig. 3 as a function of N̄0 and N̄1. It is
worth noting that the fastest instability is determined by
values of (N̄0; N̄1) in the neighborhood of ð1=3; 1=3Þ, which
represents the uniform filling pattern case.Milder instabilities
are identified along the isolines determined by N̄1 ¼ N̄0,
N̄2 ¼ N̄0, and N̄2 ¼ N̄1. A slight nonuniformity in the filling
pattern is therefore sufficient to improve stability.
In the case of a missing bunch, i.e., N̄2 ¼ 0, using N̄0 þ

N̄1 þ N̄2 ¼ 1 it follows from Eq. (21) that d ¼ 0, thus
Eq. (18) reduces to

ΩðΩ2 þ bΩþ cÞ ¼ 0; ð23Þ

with c ¼ −3N̄0ðN̄0 − 1ÞðΩU
0 ΩU

1 þ ΩU
0 ΩU

2 þ ΩU
1 ΩU

2 Þ. It
follows that one of the eigenvalues is zero, Ω2 ¼ 0, and
the other two read

Ω0;1 ¼
TrB
2

� 1

2
½TrB2

þ 12N̄0ðN̄0 − 1ÞðΩU
0 ΩU

1 þ ΩU
0 ΩU

2 þΩU
1 ΩU

2 Þ�1=2:
ð24Þ
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FIG. 2. Complex frequency shift for the uniform filling pattern
with M ¼ h ¼ 1320 at instability threshold IUth ¼ 12.7 mA:
growth rate (a); coherent tune shift (b). The fastest unstable
mode μ ¼ 1303 has growth rate τ−1μ ¼ 1=τy, where τy is the
vertical radiation damping time.

COUPLED-BUNCH INSTABILITY FOR ARBITRARY … PHYS. REV. ACCEL. BEAMS 25, 014402 (2022)

014402-5



B. Uniform filling pattern with M ≤ h

We remind that with M, we represent the number of
bunches filling the ring equidistantly. If in addition, we
assume uniformity, i.e., all bunches have the same number
of particles NT=M, we obtain uniform filling patterns with
M bunches. We call the configuration withM ¼ hmaximal
uniform filling pattern. The complex frequency shift with
the largest imaginary part (largest growth rate) for all
possible uniform filling patterns at I0 ¼ 12.7 mA is shown
in Fig. 4 by the red dots, with the frames (a) and
(b) displaying the growth rate and coherent tune shift,
respectively. For comparison, the complex frequency shift
given by Eq. (32) corresponding to the uniform filling
pattern case with a gap g ¼ M − 2, thus describing a
configuration with two bunches, is also shown in Fig. 4
(blue squares). We note that uniform configurations with
M > 33 are more stable than the configuration with two
bunches with a gap, thus giving a counterexample of
Kohaupt argument [11], which states that the fastest
instability is given by the maximal uniform filling pattern.

C. Gap in the equidistant filling pattern:
N̄m = 0 for m > M − g

To discuss the case of a gap g in the equidistant
multibunch configuration with M bunches, we rewrite
the matrix B given by Eq. (13) in the form

B ¼ ΩUH; Hμμ0 ¼
XM−1

m¼0

N̄mei2πmðμ0−μÞ=M; ð25Þ

where ΩU ¼ diagðΩU
0 ;…;ΩU

M−1Þ. Here we use standard
results of the theory of matrices [20]. Let us assumeΩU has
rankM. It follows that rankðBÞ ¼ rankðHÞ. The Hermitian
matrix H is circulant, therefore all the eigenvalues are real
and given by

λm ¼
XM−1

m0¼0

N̄m0
XM−1

p¼0

ei2πpðm0−mÞ=M ¼ MN̄m; ð26Þ

where we made use of the orthonormality conditionP
M−1
p¼0 e

i2πpðm0−mÞ=M ¼ Mδm0m. Therefore in the case of a
gap g with missing bunches, i.e., N̄m ¼ 0 for m > M − g,
rankðHÞ ¼ M − g, thus rankðBÞ ¼ M − g as well. It fol-
lows that the characteristic polynomial of B reads

pðΩÞ ¼ Ωg
XM−g

k¼0

ckΩk: ð27Þ

We have therefore proved that the number of zero-eigen-
values is equal to the length of the gap g.
With the use of the Fadded-LeVerrier algorithm [20], we

construct now an explicit form of pðΩÞ for the case
g ¼ M − 2, namely

pðΩÞ ¼ ΩM−2ðcMΩ2 þ cM−1Ωþ cM−2Þ; ð28Þ

where cM ¼ 1, cM−1 ¼ −TrB, and cM−2 ¼ −ðTrB2−
ðTrBÞ2Þ=2. Using the identities

ðTrBÞ2 ¼
XM−1

μ¼0

ΩU
μ
2 þ 2

XM−1

μ¼0

XM−1

μ0¼μþ1

ΩU
μ ΩU

μ0 ; ð29Þ

TrB2 ¼
XM−1

μ¼0

XM−1

μ0¼0

ΩU
μ ΩU

μ0 jHμ;μ0 j2

¼
XM−1

μ¼0

ΩU
μ
2 þ 2

XM−1

μ¼0

XM−1

μ0¼μþ1

ΩU
μ ΩU

μ0 jHμ;μ0 j2; ð30Þ

FIG. 3. Largest imaginary part (largest growth rate) of the
complex frequency shifts given by Eq. (22) for the equidistant
multibunch configuration with M ¼ 3. I0 ¼ 12.7 mA.
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it follows that

TrB2 ¼ ðTrBÞ2 þ 2
XM−1

μ¼0

XM−1

μ0¼μþ1

ΩU
μ ΩU

μ0 ðjHμ;μ0 j2 − 1Þ

¼ ðTrBÞ2
�
1þ 1

2

XM−1

μ¼0

XM−1

μ0¼μþ1

gμμ0ΩU
μ ΩU

μ0

�
; ð31Þ

where gμμ0 ¼ 4ðjHμμ0 j2 − 1Þ=ððTrBÞ2Þ, thus the eigenval-
ues of Eq. (28) read Ωk ¼ 0 for k ≥ 2 and

Ω0;1 ¼
TrB
2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

XM−1

μ¼0

XM−1

μ0¼μþ1

gμμ0ΩU
μ ΩU

μ0

vuut !
: ð32Þ

In the case N̄0 ¼ N̄1 ¼ 1=2, N̄m ¼ 0 for m ≥ 2, we have
gμμ0 ¼ ðcos 2πðμ − μ0Þ=M − 1Þ=2. For the case M ¼ 3, by
noting that c01 ¼ c02 ¼ c12 ¼ −3, it follows that Eq. (32)
reduces to Eq. (24) with N̄0 ¼ 0.5. With parameters listed in
Table II, the eigenvalues read Ω0 ¼ ð−11892.7; 18.7Þ s−1,
Ω1 ¼ ð−11921.7;−67.7Þ s−1, andΩ2 ¼ 0. The fastest insta-
bility has therefore a growth rate ImΩ0 ¼ 18.7 s−1. For
comparison, the growth rate of the fastest growing mode of
the uniform filling pattern case given by Eq. (22) is bigger,
i.e., ImΩU

2 ¼ 30.4 s−1. The eigenvalue with the largest
imaginary part for all possible uniform filling patterns with
M ≤ h and I0 ¼ 12.7 mA is shown by the blue squares in
Fig. 4(a), with the coherent tune shift shown in Fig. 4(b).

IV. MEASUREMENTS WITH A GAP IN THE
MAXIMAL UNIFORM FILLING PATTERN

The theory of the coupled-bunch instability for arbitrary
multibunch configurations has been benchmarked against
measurements at the NSLS-II storage ring. In benchmark-
ing theory with measurements, the theoretical instability
threshold is obtained by equating the fastest growth time
(determined by the eigenvalue with the largest imaginary
part) to the radiation damping time τy. This is equivalent to
assume that Eq. (15) has an extra multiplicative factor
expð−t=τyÞ. This assumption has been verified in the
benchmark of Eq. (13) against Vlasov-Fokker-Planck
simulations with space [16], where a detailed discussion
of the procedure adopted to calculate numerically the
growth rates can be found [21].
The theoretical instability threshold for an arbitrary

multibunch configuration, Ith, is determined by calculating
first the theoretical instability threshold for the uniform
filling case, IUth, which is defined by Eq. (16). With μ ¼
1303 and τy ¼ 22.5 ms, it follows IUth ¼ 12.7 mA (see
Fig. 2). Second, to determine Ith, we solve the eigenvalue
equation (13) replacing I0 with IUth in Eq. (14). The
corresponding matrix B, with an abuse of notation, is

denoted BðIUthÞ. Since the instability threshold Ith is
determined by solving Eq. (13) with BðIthÞ, using the fact
that BðIthÞ=BðIUthÞ ¼ Ith=IUth, it follows that the eigenvalues
of BðIthÞ are Ith=IUth times the eigenvalues of BðIUthÞ, thus

Ith ¼ IUth
τg
τy
; ð33Þ

where τg is the growth time of the fastest growing mode,
determined by the eigenvalue of BðIUthÞ with the largest
imaginary part. The measurements have been performed
with a gap in the maximal uniform filling pattern, with the
instability driven by the vertical resistive wall impedance
with parameters listed in Table I. The storage ring has been
configured with the 3DWs lattice at zero linear chroma-
ticity [22], with the gaps of the three damping wigglers
closed and all the other insertion device gaps open. The
coupled-bunch instability threshold as a function of the gap
has been determined experimentally from the stability of
Beam Position Monitor (BPM) measurements as discussed
in Fig. 5 where the measurements performed at different
average currents are shown for the case Mg ¼ M − g ¼
600 (left frames) and Mg ¼ M − g ¼ 1200 (right frames),
where g is the gap in the maximal (M ¼ 1320) uniform
filling pattern, with the measurements of all the other cases
showing a similar behavior. The frames (a)–(h) show the
time evolution of the average bunch centroid position over
50K turns, as detected from 6 of the 180 regular BPMs
distributed around the NSLS-II storage ring, with the
frames (a)–(d) and (e)–(h) showing unstable and stable
betatron motion, respectively, characterized by a peak-to-
peak variation above 10 μm in the unstable case, and a
peak-to-peak variation well below 5 μm, at the noise level,
in the stable case. The transition from stable to unstable
motion can be seen more clearly in frequency domain, as
shown in the bottom frames (i) and (l), where the average
spectra of the time domain BPM measurements are
calculated with a Discrete Time Fourier Transform
(DTFT) [23]. For a good control of the spectral leakage,
a window function of length L ¼ 40k turns has been used,
and the DTFT has been computed with a sampling rate
Δfy ¼ Δνyf0 ¼ 3.79 Hz, where f0 is the revolution fre-
quency. In frequency domain, the peak in the spectra shown
above instability threshold exceed 100 times the noise level
shown by the spectra below threshold. The peak in the
spectrum close to the vertical tune shown by the blue trace
gives an upper bound to the instability threshold. We
define the measured instability threshold Ith, as plotted
in Fig. 6(a), as the arithmetic mean between the adjacent
stable and unstable currents as shown in (i) and (l) by the
green and blue traces, respectively. Accordingly, for the
two cases shown in Fig. 5, we have the following threshold
currents: Ith ¼ 10.5 mA for Mg ¼ 600 ((i)) and Ith ¼
12.6 mA for Mg ¼ 1200 ((l)). All the measurements have
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been performed with the same step change in the average
current ΔI0 ¼ 0.2 mA. Some of the multibunch configu-
rations, as measured from the NSLS-II filling pattern
monitor, are shown in Fig. 6(b). The measured instability
thresholds as a function of Mg ¼ M − g are plotted in
Fig. 6(a), where they are shown to be in close agreement
with the numerical solution of the eigenvalue problem
given by Eq. (13). It is worth noting that the instability
threshold decreases with the increase of the gap g, with the
most stable configuration given by the maximal uniform
filling pattern. The close agreement between theory and
simulations, besides benchmarking the eigenanalysis for
arbitrary multibunch configurations, validates the accuracy
of the impedance model used.

V. CONCLUSIONS

We discussed theoretically the coupled-bunch instability
for arbitrary multibunch configurations and benchmarked
its predictions against measurements performed at the
NSLS-II storage rings. Besides helpful for the design of
hybrid modes of operations in storage rings, the results
discussed in this paper, in particular the closed formulas
presented for some special cases, might be useful for
benchmarking beam dynamics codes that model the
coupled-bunch instability for arbitrary filling patterns.
The primary goal of the paper has been to present a clear
comparison with measurements of the coupled-bunch
instability theory, setting the experimental conditions in
order to isolate the coupled-bunch interaction has the
dominant effect driving the instability. To this end, we
set the chromaticity to zero in order to avoid the chromatic
head-tail damping driven by short-range wakefields, that
would have required a broadband impedance model thus
complicating the analysis. For the same reason, we did not
include a feedback model. A partial analysis of such effects
has been done in Ref. [24], with single-bunch studies of the
combined effect of chromaticity and feedback on the
transverse head-tail instability, and in Ref. [25], with a
numerical study of the stabilizing effect of the chromatic
head-tail damping on the transverse coupled-bunch insta-
bility. The extension of the theoretical analysis discussed in
this paper to include the aforementioned effects, as well as
further benchmarking against measurements and particle
tracking codes, will be the subject of future work.
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