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When a relativistic beam moves along a curved trajectory it loses energy on coherent radiation.
The effect of this radiation on the beam dynamics is described by the so call coherent synchrotron radiation
(CSR) longitudinal wake field. Among different models of the CSR wake, the simplest is the one-
dimensional (1D) one where the beam is treated as a line-charge. The self-field of the beam on a curved
trajectory also creates a transverse component of the force. Unfortunately, there is a confusion in the
literature as to whether a 1D model can be worked out for the transverse force inside the beam. In this paper,
we show how such a 1D model can be consistently derived for a general curvilinear beam orbit if one
formulates the equations of motion for the beam particles in Hamiltonian form and uses a renormalized
transverse force. Unfortunately, this scheme cannot be applied to the classical problem of relativistic beam
passing through a single bending magnet, because the scalar potential in the initial conditions for the
Hamiltonian variables cannot be defined in the 1D model. In this case, one should use the 3D transverse
force, for which we derive analytical expressions. For the steady state, our calculations show an excellent
agreement with computer simulations. We also calculate the transient effects for this force at the entrance to
and the exit from the bend. Our results provide a new way to accommodate the transverse force
into the existing and new simulation codes which is important for many applications of the high-current,
small-emittance relativistic beams.
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I. INTRODUCTION

Self-fields often play an important role in the dynamics
of high-current beams of charged particles. When a beam
travels along a straight line, such forces are usually
associated with the space charge effects [1]. The longi-
tudinal space charge force scales with the beam energy as
γ−2, where γ is the Lorentz factor. A longitudinal force also
arises when the beam changes its transverse size (e.g.,
converging toward a final focus in a collider), to keep the
balance between the energy of the Coulomb field of the
bunch and the kinetic energy of the particles [2,3].
When the beam trajectory is bent by magnetic field, the

beam emits electromagnetic radiation which leads to the
emerging of the coherent synchrotron radiation (CSR)
wake field. The longitudinal radiation reaction force asso-
ciatedwith this wake is responsible for the energy balance in
the process of the coherent radiation of the bunch. In
addition to the longitudinal force, particles of a beam
traveling along a curvilinear orbit also experience a trans-
verse force. This force is not caused by the radiation—it
exists even for a coasting beam which does not radiate

coherently. The attention to this force was attracted by
R. Talman in Ref. [4] whose work initiated several sub-
sequent studies [5–7].
The first studies of the steady-state CSR longitudinal

wake were carried out in 1D approximation, that is for a
line-charge beam with a vanishing transverse size [8–10].
This 1D model was later extended for the case of a bending
magnet of finite length [11,12], and for a beam line with
several bending magnets [13–15]. Experimental data from
bunch compression at the Linac Coherent Light Source
[16] showed that the 1D CSR wakefield model in many
cases agrees very well with observations.
It seems natural to try to extend the line-charge beam

model and to add to it the transverse force acting on the beam
when it moves in a curved trajectory. The first attempt in this
directionwasmade in Ref. [9] where a formula for the steady
state transverse force was derived for a line-charge beam
moving in a circle. Unfortunately, attempts to expand this
analysis to the case of a finite bend [17]werenot successful—
the transverse force was calculated only at the locations in
front of the beam, while the most interesting would be to find
the force acting on the beam particles. Moreover, these
attempts initiated a discussion in the literature about the
so-called “cancellation” effect between some terms in the
expression for the transverse force and “misconceptions” in
the treatment of the transverse force [7,18,19].
We give our analysis of the limitations of the 1D model

of the transverse force in Sec. II of this paper. We show that
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using a kind of renormalization procedure one indeed can
obtain the transverse force for a line charge-beam that in the
case of a circular orbit reproduces the result of Ref. [9].
However, if one wants to formulate the initial conditions
for particle equations of motion, the transverse size of
the beam cannot be neglected. In practical applications
one might prefer to work with a 3D expression for the
transverse force that we derive in Sec. III following the
approach developed in our earlier paper [20]. In Sec. IV, we
simplify the general expression for the force for the case of
a circular orbit, and in Sec. V we compare our analytical
results with numerically computed transverse force. We
also show how to calculate the transient transverse force
at the entrance to and the exit from a bending magnet.
We conclude this paper with the summary Sec. VI. Some
technical details of the derivation are placed in the
Appendixes A, B and C.
Throughout this paper we neglect the effect of the metal

boundaries near the beam and assume that the beam
propagates in free space. We consider a relativistic beam
and in most cases use the approximation v ¼ c when we
calculate the field. The CGS system of units is used
throughout the paper. To convert our formulas for the
force to SI units, one has to replace the chargeQ (or charge
per unit length or per unit volume) by Q=4πϵ0 where ϵ0 is
the permittivity of free space.

II. LIMITATIONS OF THE 1D MODEL
FOR THE TRANSVERSE FORCE

Can a 1D model for the transverse force be worked out,
similar to the 1D model of the longitudinal CSR wake
field? In the 1D model the beam is represented by the
charge density per unit length, λðs − ctÞ, where s is the path
length measured along the orbit, and we assume that the
beam particles move with the speed of light.1 The scalar
potential ϕðr; tÞ and the vector potential Aðr; tÞ of such a
beam are given by the following formulas:

ϕðr; tÞ ¼
Z

∞

−∞

ds0

jr − r0ðs0Þj
λðs0 − ctretÞ; ð1aÞ

Aðr; tÞ ¼
Z

∞

−∞

ds0

jr − r0ðs0Þj
τðs0Þλðs0 − ctretÞ; ð1bÞ

where r0ðsÞ defines the beam orbit, tretðr; s0; tÞ ¼
t − jr − r0ðs0Þj=c is the retarded time, and τ is the unit
tangential vector, τðsÞ ¼ dr0ðsÞ=ds. The vector τ in
Eq. (1b) replaced the normalized velocity β ¼ v=c which
in the 1D model is directed along the tangent line to the

orbit. The electric and magnetic fields are expressed
through the potentials,

E ¼ −∇ϕ −
1

c
∂A
∂t ; H ¼ ∇ × A: ð2Þ

Note that if we take the observation point on the beam orbit,
r¼ r0ðsÞ, the integrals (1) logarithmically diverge as s0 → s
(assuming λðs − ctÞ ≠ 0), so the potentials are not defined
inside the beam. For this reason, in general, the electric and
magnetic fields (2) are also singular on the orbit r0ðsÞ inside
the beam. However, there is an important combination of ϕ
and A, the longitudinal potential V, that can be defined
following Ref. [9] everywhere on the orbit,

Vðs; tÞ ¼ ϕ − τ · A

¼
Z

ds0
1 − τðsÞ · τðs0Þ
jr0ðsÞ − r0ðs0Þj

λðs0 − ctretÞ: ð3Þ

The integrand in this expression remains finite when s0 → s
because due to jτj ¼ 1 the zero value of the denominator is
canceled by the zero of the numerator.
A direct calculation of the transverse force eðE⊥þτ×HÞ

inside the beam using Eqs. (1) and (2) leads to diverging
integrals. For a circular orbit this observation goes back to
Ref. [4] and was also shown by direct calculations in [21].
In Ref. [17], the transverse force for a line-charge beam was
derived only for the points on the orbit where λ ¼ 0 (either
in front or behind the bunch), thus reaffirming the con-
clusion that this force diverges inside the beam where
λ ≠ 0. Nevertheless, in one of the first papers on the subject
[6], the following formula for the steady-state effective
horizontal force was derived:

Fx ¼ −2eκλ; ð4Þ

where κ−1 is the bending radius of the orbit and λ is the
charge density per unit length at the location of the particle.
The minus sign in this equation indicates that this force is
centripetal, that is directed toward the center of the circular
orbit. In the recent paper [22], the authors obtained an
equation for an effective transverse force similar to Eq. (4)
but with the factor of 2 in Eq. (4) replaced by some factorΛ,
where 2 ≤ Λ ≤ 4.
An important insight into the problem of the transverse

force comes from the Hamiltonian formulation of the
equations of motion of the beam particles which includes
the self-field of the beam. Such analysis has been carried
in Refs. [23,24] and for completeness is reproduced in
Appendix A. As is well known, the particle motion in an
accelerator is formulated in the standard coordinate system
x, y, s defined in the vicinity of the reference orbit r0ðsÞ
(which we assume to be planar),

rðsÞ ¼ r0ðsÞ þ nðsÞxþ yy; ð5Þ

1Dropping the assumption v ¼ c would lead to an additional
singularity of the fields due to the longitudinal space charge force
∝ γ−2. With some extra effort this singularity can be eliminated
through a renormalization procedure introduced in Ref. [11],
however, an easier approach is to assume γ ¼ ∞.
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where y is the unit vector in the vertical direction and
nðsÞ is the normal vector in the plane of the orbit. The unit
vectors nðsÞ and τðsÞ satisfy the Frenet-Serret equations,2

dτ
ds

¼ −κn;
dn
ds

¼ κτ; ð6Þ

where κðsÞ is the curvature of the orbit defined by
κ ¼ −n · dτ=ds. In the Hamiltonian formalism, one con-
siders the coordinate s as a time-like variable, and the first
two conjugate variables are the time t and the negative
Hamiltonian −H ¼ −ðγmc2 þ eϕÞ; both are considered as
functions of s. For our purposes, it is more convenient to
use the difference ΔH ¼ H − γ0mc2 instead of H, where
γ0mc2 is the nominal energy corresponding to the reference
trajectory r0ðsÞ. The time derivative dt=ds in our ultra-
relativistic limit reduces to dt=ds ¼ c−1. The s-derivative
of ΔH follows directly from the energy conservation
equation (an of course is derivable from the Hamiltonian
formalism, see Appendix A),

dΔH
ds

¼ eτ · Eþ e
dϕ
ds

¼ e
c

�∂ϕ
∂t − τ ·

∂A
∂t

�
; ð7Þ

where in the last step we have expressed the electric field
through the derivatives of the scalar and vector potentials.
The right-hand side of this equation can be expressed in
terms of the function V given by Eq. (3),

dΔH
ds

¼ e
c
∂V
∂t ¼−e

Z
ds0

1− τðsÞ · τðs0Þ
jr0ðsÞ− r0ðs0Þj

λ0ðs0−ctretÞ; ð8Þ

where λ0 denotes the derivative of λ with respect to its
argument.
For the equation of motion in the horizontal plane one

finds (see Eq. (A19) and (A20) in Appendix A),

d2x
ds2

¼ −κ2xþ κ
ΔH − eϕ
γmc2

þ e
γmc2

ðEx − ByÞ: ð9Þ

In this equation κðsÞ ¼ p0c=eB
ðextÞ
y ðsÞ is the local curvature

of the orbit caused by the external vertical magnetic field

BðextÞ
y ðsÞ and p0 is the nominal momentum.3 The last term

on the right-hand side of this equation is due to the
transverse component of the Lorentz force. The problem
with this equation is that ϕ, Ex and By all diverge on the
beam orbit if one uses the 1D model with Eq. (1) and (2) for
the potentials and fields. However, if we combine the last

two terms in Eq. (9) with the potential ϕ into the
renormalized force F in x-direction,

F ¼ eð−κϕþ Ex − ByÞ; ð10Þ

then, as shown in Appendix B, this force is finite every-
where on the orbit of the beam and the general expression
for the force for arbitrary curve r0ðsÞ is given by Eq. (B10).
Equation (9) is then written as

d2x
ds2

¼ −κ2xþ κ
ΔH
γmc2

þ F
γmc2

; ð11Þ

and together with Eq. (8) it defines the 1D model which
includes both the longitudinal CSR wake [as the right-hand
side of Eq. (8)] and the transverse force F . One can also
show [25] that in the case of the steady-state beam moving
on a circular orbit the force given by Eq. (10) reduces to
Eq. (4). This our result disagrees with Ref. [22] where, as
was mentioned above, the factor 2 in Eq. (4) was replaced
by a factor Λ ≥ 2.
At this point it seems that we have succeeded in building

a 1D model that incorporates in it the effects of the
transverse force, and thus affirmatively answered the
question formulated at the beginning of this section. The
problem however arises when we try to formulate the initial
conditions for the equations of motion (8) and (11). To
illustrate this problem, we will consider a passage of a
relativistic beam through a bending magnet as shown in
Fig. 1 (the problem first studied in Ref. [11] for the
longitudinal CSR wake field). The initial conditions are
formulated at the entrance to the magnet, s ¼ 0, after the
beam has traveled along the straight line from s ¼ −∞.
While the initial values of x and x0 for Eq. (11) are naturally
taken from the beam distribution at s ¼ 0, the initial ΔH is
equal to ΔH ¼ ΔE þ eϕ, where ΔE is the energy deviation
from the nominal value. The potential ϕ at s ¼ 0 for a thin
beam, however, as can be shown, involves ln σ⊥ and hence
diverges in the limit σ⊥ → 0.4 In addition, one can show
that the integral on the right-hand side of Eq. (8) and the
integrals in Eq. (B10) also diverge at the lower limit
s ¼ −∞. We come to the conclusion that even though
we have equations of motion for the particles of the line
charge beam, they cannot be used even in the simplest
problem of a beam passing through a single bending
magnet.
This difficulty forces us to reformulate the equations of

motion in terms of the energy deviation of the particle
ΔE ¼ Δγmc2,

dΔE
ds

¼ eτ · E: ð12Þ2The signs in these equations are opposite to the ones used in
our earlier paper [20].

3In this equation we ignore the quadrupole and solenoidal
components of the magnetic field on the orbit, which can be
easily added to the right-hand side.

4This is the reason why this potential cannot be calculated
inside the beam using Eq. (1a).
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As was proved in Ref. [12] the longitudinal part of the
electric field, τ · E, of a line-charge beam is finite at the
location of the bunch, so the right-hand side of Eq. (12) is
well defined. In the horizontal plane, Eq. (9) is now
written as

d2x
ds2

¼ −κ2xþ κ
ΔE
γmc2

þ e
γmc2

ðEx − ByÞ: ð13Þ

The last term in this equation is the transverse force which
should be calculated with account of the finite transverse
beam size σ⊥.
In the next section wewill derive a general expression for

this transverse force.

III. CALCULATION OF THE
TRANSVERSE FORCE

We start from the 3D retarded potentials [26]—the
expressions for the scalar potential ϕðr; tÞ and the vector
potential Aðr; tÞ generated by a beam with the charge
density ρðr; tÞ and current density jðr; tÞ ¼ cβðr; tÞρðr; tÞ,

ϕðr; tÞ ¼
Z

d3r0
ρðr0; tretÞ
jr0 − rj ;

Aðr; tÞ; ¼
Z

d3r0
βðr0; tretÞρðr0; tretÞ

jr0 − rj ; ð14Þ

where the retarded time is tretðr; r0; tÞ ¼ t − jr0 − rj=c and
the integration goes over the whole space. To simplify the
notation, in what follows we drop the arguments
ðr0; tretðr; r0; tÞÞ of the function ρ and use the abbreviated
notation: βðr; tretðr; r0; tÞÞ → β and βðr0; tretðr; r0; tÞÞ → β0.
The expression for the transverse part of the Lorentz force
(per unit charge) is

1

e
F⊥¼E⊥þβ×B¼−∇⊥ϕ−

1

c
∂A
∂t

����⊥þβ×∇×A: ð15Þ

Note that the operator that selects a perpendicular to the
velocity component of a vector a is

a⊥ ¼ a − β−2βðβ · aÞ: ð16Þ

To find the contribution to E from the scalar potential, we
evaluate

∇ϕ ¼
Z

d3r0
� ∇rρ

jr0 − rj þ ρ∇r
1

jr0 − rj
�

¼
Z

d3r0
� ∇rρ

jr0 − rj − ρ
r − r0

jr0 − rj3
�
: ð17Þ

The second term in this expression diverges in 2D, but
converges in 3D. As we will see below this singularity will
be partially canceled by another term in the Lorentz force,
leading to the convergence of the total force in 2D as well.
For the contribution to E from the vector potential we need
to calculate the time derivative of A,

∂A
∂t ¼

Z
d3r0

jr0 − rj ðβ
0∂tretρþ ρ∂tretβ

0Þ; ð18Þ

where we have used the fact that ∂t ¼ ∂tret . We also need to
calculate ∇ × A,

∇× Aðr; tÞ ¼
Z

d3r0
�
ρ

�
∇r

1

jr0 − rj
�
× β0

þ 1

jr0 − rj ð∇rρÞ× β0 þ 1

jr0 − rj ρ∇r × β0
�

¼
Z

d3r0
�
−ρ

r− r0

jr0 − rj3 × β0 þ 1

jr0 − rj ð∇rρÞ× β0

þ 1

jr0 − rjρ∇r × β0
�
; ð19Þ

which gives for the double vectorial product β ×∇ × A,

β × ∇ × A ¼ −
Z

d3r0ρ
jr0 − rj3 β × ðr − r0Þ × β0

þ
Z

d3r0

jr0 − rj ½β × ð∇rρÞ × β0 þ ρβ ×∇r × β0�:

ð20Þ

Up to this point we did not make assumptions regarding
the value of β. In what follows we will assume β ¼ 1. For
the transverse component of −∇ϕ we then have,

−∇⊥ϕ ¼ −
Z

d3r0

jr0 − rj ½∇rρ − βðβ ·∇rρÞ�

þ
Z

d3r0ρ
jr0 − rj3 ½ðr − r0Þ − βðβ · ðr − r0ÞÞ�: ð21Þ

s=0s

FIG. 1. A bending magnet with the beam nominal trajectory
shown by the blue line. The beam shown by red is at its initial
position at the entrance to the magnet.
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Similarly, for the transverse component of the time deriva-
tive of the vector potential we obtain

−
1

c
∂A
∂t

����⊥ ¼ −
1

c

Z
d3r0

jr0 − rj ½β
0 − βðβ0 · βÞ�∂tretρ

−
1

c

Z
d3r0

jr0 − rj ρ½∂tretβ
0 − βðβ · ∂tretβ

0Þ�: ð22Þ

We now combine all terms into the transverse force (15).
Using the expressions

∇r × β0 ¼ −
1

c
1

jr0 − rj ðr − r0Þ × ð∂tretβ
0Þ

and

∇rρ ¼ −
1

c
∂tretρ

r − r0

jr − r0j ;

after some transformations we arrive at the following result

1

e
F⊥ ¼

Z
d3r0ρ
jr0 − rj3 ½ðr − r0Þð1 − β · β0Þ þ ðβ0 − βÞðβ · ðr − r0ÞÞ� þ 1

c

Z
d3r0∂tretρ

jr0 − rj2 ½ðr − r0Þð1 − β · β0Þ þ ðβ0 − βÞðβ · ðr − r0ÞÞ�

−
1

c

Z
d3r0∂tretρ

jr0 − rj ½β0 − βðβ · β0Þ� − 1

c

Z
d3r0ρ
jr0 − rj2 β × ðr − r0Þ × ð∂tretβ

0Þ − 1

c

Z
d3r0ρ
jr0 − rj ½∂tretβ

0 − βðβ · ∂tretβ
0Þ�: ð23Þ

The time derivative ∂tretβ
0 in Eq. (23) is due to a possible

variation of the transverse component of the local velocity
within the beam. This component is typically small, and in
a good approximation can be ignored by setting

βðx; y; s; tÞ ¼ τðsÞ: ð24Þ

Then ∂tretβ
0 vanishes together with the last two terms in

Eq. (23). Projecting the transverse force onto the normal
vector nðsÞ, F⊥ ¼ n · F, we obtain,

1

e
F⊥ ¼

Z
d3r0ρ
jr0 − rj3 ðr − r0Þ · ½nð1 − τ · τ0Þ þ τðn · τ0Þ�

þ 1

c

Z
d3r0∂tretρ

jr0 − rj2 ðr − r0Þ · ½nð1 − τ · τ0Þ þ τðn · τ0Þ�

−
1

c

Z
d3r0∂tretρ

jr0 − rj n · τ0; ð25Þ

In this equation we continue to use the abbreviated notation
introduced in the previous section expanding it with
τðs0Þ → τ0, nðs0Þ → n0. Equation (25) can be further sim-
plified if we note that

τðn · τ0Þ − nðτ · τ0Þ ¼ −n0: ð26Þ

Indeed the left-hand side of this equation is orthogonal to τ0
which is verified by taking the dot product. The minus sign
on the right-hand side is found if we take the limit n0 → n
and τ0 → τ. Using Eq. (26) we obtain

1

e
F⊥ ¼ 1

c

Z
d3r0∂tretρ

jr0 − rj2 ½ðr − r0Þ · ðn − n0Þ − jr0 − rjðn · τ0Þ�

þ
Z

d3r0ρ
jr0 − rj3 ðr − r0Þ · ðn − n0Þ: ð27Þ

Analysis shows that these integrals converge not only in
3D, but also in 2D, that is for a beam in which the vertical
dimension is negligibly small and the integration goes in
the plane of the orbit, d3r0 → d2r0.
Note that for a plane orbit that we assume here the trans-

verse force (25) lies in the plane of the orbit (x-direction).
There is also a component of the transverse force in the
y-direction which is relatively small when compared with
F⊥; we ignore this part of the force in what follows.

IV. STEADY-STATE TRANSVERSE FORCE
ON A CIRCULAR ORBIT

We will now consider a circular orbit of constant radius
κ−1 and will take into account the small size of the beam
assuming that σz; σ⊥ ≪ κ−1. In the standard curvilinear
coordinate system x, y, s, related to the reference orbit r0ðsÞ
(see details in Appendix A), the 3D integration in Eq. (27)
reduces to,5

Z
d3r0 →

Z
dx0ds0dy0: ð28Þ

Our derivation is considerably simplified if we also
assume a long-thin beam, σ⊥ ≪ σz. This requirement turns
out to be not crucial and wewill further discuss its necessity

5In a more precise expression for the integral, dx should be
replaced by dx=ð1þ κxÞ, but this leads to a negligibly small
correction to our result because we assume σ⊥ ≪ κ−1.
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in the next section. For a long-thin beam, the first integral in
Eq. (27), which we will denote by I1, can be reduced
to a 1D integral if we carry out the integration over x, y
coordinates and use the 1D distribution λ ¼R
dx0dy0ρðr0; tretÞ,

I1 ≡ 1

c

Z
dx0dy0ds0∂tretρ

jr0 − rj2 ½ðr − r0Þ · ðn− n0Þ− jr0 − rjðn · τ0Þ�

→ −
Z

ds0λ0

jr00 − r0j2
½ðr0 − r00Þ · ðn− n0Þ− ðn · τ0Þjr00 − r0j�;

ð29Þ

where we took into account that λ is a function of s0 − ctret
so that ∂tretλðs0 − ctretÞ ¼ −cλ0ðs0 − ctretÞ → −cλ0, with λ0

the derivative of the function λ with respect to its
argument. We also use the abbreviated notations:
r0ðsÞ → r0, r0ðs0Þ → r00.
Due to the smallness of the beam, the path length

s0 − s involved in the integral of Eq. (29) is much smaller
than the orbit radius κ−1 and we can use the following
approximations,

jr00 − r0j ≈ js − s0j;
ðr0 − r00Þ · ðn − n0Þ ≈ κðs − s0Þ2;

n · τ0 ≈ κðs − s0Þ: ð30Þ

The argument s0 − ctret of λ0 in Eq. (29) can also be
approximated: for s0 < s,

s0 − ctret ¼ s0 − ctþ 2κ−1 sin

�
κ
s − s0

2

�

≈ u −
1

24
κ2ðs − s0Þ3; ð31Þ

where u ¼ s − ct; and for s0 > s,

s0 − ctret ¼ s0 − ctþ 2κ−1 sin

�
κ
s0 − s
2

�

≈ uþ 2ðs0 − sÞ: ð32Þ

The following approximation is also valid,

n · τ0

jr00 − r0j
≈ κ

�
1 −

1

8
κ2ðs − s0Þ2

�
sgnðs − s0Þ: ð33Þ

Substituting the above expressions into Eq. (29) we obtain,

−
Z

ds0λ0ðs0 − ctretÞ
jr00 − r0j2

½ðr0 − r00Þ · ðn − n0Þ − n · τ0jr00 − r0j�

¼ κ

Z
∞

−∞
ds0λ0ðs0 − ctretÞ

�
−1þ

�
1 −

1

8
κ2ðs − s0Þ2

�
sgnðs − s0Þ

�

≈ −
1

8
κ3

Z
s

−∞
ds0ðs − s0Þ2λ0

�
u −

1

24
κ2ðs − s0Þ3

�
− 2κ

Z
∞

s
ds0λ0ðuþ 2ðs0 − sÞÞ ¼ 0: ð34Þ

We see that for a circular orbit this integral vanishes.
We now consider the second integral in Eq. (27) which

we will denote by I2. It is easy to see that this integral
cannot be taken in the 1D approximation as with did above,
because it would logarithmically diverge at s0 ¼ s. To
overcome this problem, we split the integration region into
three intervals. In the first one we integrate over s0 from−∞
to s − Δs, in the second one we integrate from s − Δs to
sþ Δs, and in the third interval we integrate from sþ Δs
to∞. We choose Δs such that σz ≫ Δs ≫ σ⊥ (here we use
our assumption σz ≫ σ⊥). The integration over the first
and the third intervals can be carried out in the line-
charge approximation, as we did in I1, using Eqs. (30),
(31), and (32). In the first interval, which we denote I2;1,
we have

I2;1 ≈ κ

Z
s−Δs

−∞

ds0

s − s0
λ

�
u −

1

24
κ2ðs − s0Þ3

�

≈ −
1

3
κλðuÞ ln½ð1=24Þκ2Δs3�

þ 1

3
κ

Z
∞

0

lnðζÞλ0ðu − ζÞdζ; ð35Þ

where we have introduced the new integration variable
ζ ¼ ð1=24Þκ2ðs − s0Þ3 and integrated by parts to arrive at
the result; we also neglected small terms in the final
expression. Similarly, we use the line-charge approxima-
tion to calculate the third integral, I2;3,

GENNADY STUPAKOV PHYS. REV. ACCEL. BEAMS 25, 014401 (2022)

014401-6



I2;3 ≈ κ

Z
∞

sþΔs

ds0

s0 − s
λðuþ 2ðs0 − sÞÞ

≈ −κ lnð2ΔsÞλðuÞ − κ

Z
∞

0

lnðζÞλ0ðuþ ζÞdζ; ð36Þ

where the new integration variable is ζ ¼ 2ðs0 − sÞ.
Combining the two integrals we obtain

I2;1 þ I2;3 ¼ −κλðuÞ
�
1

3
lnðκ2=3Þ þ lnðΔs2Þ

�

þ κ

Z
∞

0

lnðζÞ
�
1

3
λ0ðu − ζÞ − λ0ðuþ ζÞ

�
dζ:

ð37Þ

Turning now to the second interval, s − Δs < s0 <
sþ Δs, we need to carry out a 3D integration. Because
of the smallness of Δs, we can neglect the retardation term
in the argument of ρ, ρðr0; tretÞ → ρðr0; tÞ (this approxima-
tion is valid only if σz ≫ σ⊥ which we have assumed
above). Furthermore, we will also assume that in this small
region the distribution function can be represented as a
product of the longitudinal distribution λðuÞ and a trans-
verse distribution μðx; yÞ, ρðr; tÞ ¼ λðuÞμðx; yÞ. Using the
notation z0 ¼ s0 − s and the smallness jz0j ≤ Δs ≪ κ−1, we
have ðr − r0Þ · ðn − n0Þ ≈ κz02, which gives for the contri-
bution from the middle interval, I2;2,

I2;2¼ λðuÞκ
Z

Δs

−Δs
dz0

Z
dx0dy0

z02μðx0;y0Þ
ðz02þðx0−xÞ2þðy0−yÞ2Þ3=2 :

ð38Þ

We first carry out the integral over z0 using

Z
Δs

−Δs
dz0

z02

ðz02 þ l2Þ3=2 ¼ 2

�
arcsinh

�
Δs
l

�
−

Δsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ Δs2

p
�

≈ ln

�
Δs2

l2

�
þ 2ðln 2 − 1Þ: ð39Þ

Here l2 ¼ ðx0 − xÞ2 þ ðy0 − yÞ2 and on the last step we took
into account that Δs ≫ l which follows from our choice
Δs ≫ σ⊥. We then have

I2;2ðu; x; yÞ ¼ λðuÞκ
�
ln

�
Δs2

σ2⊥

�
þ 2ðln 2 − 1Þ − Gðx; yÞ

�
;

ð40Þ

where

Gðx; yÞ ¼ −
Z

∞

−∞
dx0dy0μðx0; y0Þ ln

�ðx − x0Þ2 þ ðy − y0Þ2
σ2⊥

�
:

ð41Þ

The parameter σ⊥ in Eqs. (40) and (41) is added to have a
dimensionless variable in the logarithm function—the
final result does not depend on the value of this
parameter.
We now combine Eq. (37) with Eq. (40) to obtain

the final expression for the transverse force on a circular
orbit,

1

e
F⊥¼ I2;1þ I2;2þ I2;3

¼ λðuÞκ
�
2 ln

�
σ2=3z

κ1=3σ⊥

�
þ2 ln 2−2þ1

3
ln 3þGðx;yÞ

�

þ κ

Z
∞

0

ln

�
ζ

σz

��
1

3
λ0ðu−ζÞ−λ0ðuþζÞ

�
dζ: ð42Þ

As expected, the auxiliary variableΔs disappeared from the
final result.
We note that a special case of the transverse force for a

beam with a uniform radial density distribution was earlier
derived in Ref. [21] using a method that differs from what is
employed in this paper. In Appendix C we compare the
result of Ref. [21] with Eq. (42) and show that they agree
with each other. In that sense Eq. (42) generalizes the result
of Ref. [21] for the case of arbitrary transverse density
distribution in the beam. One can also find in Ref. [21] an
example of using the transverse force for calculation of the
emittance growth of a beam after passing through a bending
magnet.

V. COMPARISON WITH NUMERICAL
RESULTS AND THE TRANSIENT

TRANSVERSE FORCE

In this section we will compare our analytical results
with numerically calculated profiles of the transverse force
from Ref. [27] using the computer code PyCSR3D [28]. The
code calculates the transverse force from first principles
using an integrated Green function for the electromagnetic
field of a point charge moving on a circular orbit. The
calculations with PyCSR3D were carried out for
two sets of parameters shown in Table I assuming
Gaussian beam distributions in all directions. Because in
theory we assume γ ¼ ∞, the calculations in PyCSR3D were
carried out for a large value of γ ¼ 2000 when the
conventional space charge effects in the transverse force
are negligible.

TABLE I. Test parameter sets for PyCSR3D calculations.

Parameter set σx (μm) σy (μm) σz (μm) κ−1 (m)

A 10 10 10 1
B 10 1 10 1
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The calculated profiles of the transverse force for the parameter set A are shown in Fig. 2. Because of the axisymmetry of
the distribution function in this case, σx ¼ σy ¼ σ⊥, the function Gðx; yÞ in Eq. (42) depends only on the radial distance
from the axis, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and is given by the following equation,

GðrÞ ¼ −
1

2πσ2⊥

Z
∞

−∞
dx0dy0e−ðx02þy02Þ=2σ2⊥ ln

�ðx − x0Þ2 þ ðy − y0Þ2
σ2⊥

�

¼ −
1

2πσ2⊥

Z
∞

0

r0dr0
Z

2π

0

dθe−r
02=2σ2⊥ ln

�
r2 þ r02 − 2rr0 cos θ

σ2⊥

�
: ð43Þ

The last integral is easily computed numerically.
The parameter set B calculated with PyCSR3D was

compared with analytical formulas for a flat beam, that is a
beam in which σy ¼ 0. In this limit, for y ¼ 0, the function
G depends only on the horizontal offset x and is given by
the following equation,

GðxÞ ¼ −
1ffiffiffiffiffiffi
2π

p
σx

Z
∞

−∞
dx0e−x02=2σ2x ln

�ðx − x0Þ2
σ2x

�
: ð44Þ

The result of the comparison is shown in Fig. 3. Note that in
contrast with Fig. 2 where we find a perfect agreement,
Fig. 3 shows a small discrepancy between our theory and
PyCSR3D. This is explained by the fact that in theory we
assume an infinitely thin beam in the vertical direction
while in simulations the vertical size of the beam is
finite, σy ¼ 1 μm.
Alsonote that in both cases,AandB,wehave the horizontal

beam size equal to σz in violation of the assumption σ⊥ ≪ σz
made in the derivation of Sec. IV and nevertheless find an
excellent agreement between our analytical formula and the
code. This can be explained as follows: the assumption σ⊥ ≪
σz is only needed to simplify the derivation ofEq. (42), and not
for its validity. This can also be understood by the fact that the

ratio σ⊥=σz is not invariant under the Lorentz transformations
—moving into a frame of reference that travels parallel to the
beam with a relativistic velocity changes the bunch length σz
but not σ⊥. Hence even if the inequality σ⊥ ≪ σz does not
hold in one frame of reference it may be valid in another one.
Equation (27) is not limited to the case of the circular

motion and allows to compute the transverse force at the
entrance and the exit from a bending magnet of finite
length. These calculations use the same simplifications as
in Sec. IV wherein the two integrals in Eq. (27) are split into
the parts I1, I2;1, I2;2, and I2;3 and all of them are calculated
in 1D approximation except for I2;2 for which we used
Eq. (40). In the more general case of a transient wake, in
contrast to the steady state result of Sec. IV, we find that
I1 ≠ 0, and there are contributions from the straight parts of
the orbit before and after the entrance to the integrals I1, I2;1
and I2;1. An example of calculations of the transient
transverse force is shown in Figs. 4 (entrance to the bend)
and 5 (exit from the bend) for the parameter set A.
It is interesting to note how fast the transverse force

reaches the steady state at the entrance to the bend.
For comparison, we mention here that the formation
length [9] for the longitudinal CSR wake in this case is
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FIG. 2. Transverse force for the parameter set A. The solid black and blue lines are calculated using Eqs. (42) and (43) and the dots
show the results of the numerical calculations with PyCSR3D. Left panel: dependence of F⊥ versus z for r ¼ 0 (on axis) and r ¼ σ⊥,
respectively (the values on the axis are larger than at r ¼ σ⊥). Right panel: dependence of F⊥ versus x for z ¼ 0. The force is normalized
by Qκ=σz where Q is the charge of the beam.
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ð24σzκ−2Þ1=3 ¼ 6.7 cm, while we see from Fig. 4 that the
transverse force builds up on a much shorter, millimeter
scale. This is an indication of the local nature of the
transverse force—a large part of this force is carried out
by the interaction of nearby particles and not so much by
the retarded electromagnetic radiation. The decay of the
transverse force in Fig. 5 at the exit from the bend is also
relatively fast.

VI. SUMMARY

In this paper, we showed that formulating the equations
of motion of particles in a relativistic beam in Hamiltonian
form and renormalizing the transverse force, allows one to
calculate this force in 1D, or line-charge, approximation.
A general expression for this force was derived valid for
arbitrary curved trajectory. Unfortunately, these equations
cannot be used for a beam passing through a single bending
magnet because the scalar potential ϕ that enters the initial
conditions for the equations of motion is not defined for a
line-charge beam. We then derived the 3D expression
for transverse force without renormalization, using the
smallness of the beam size, σz; σ⊥ ≪ κ−1, and found an
analytical expression for the steady-state case of a beam
moving on a circular orbit. For particular examples of a
spherically symmetric and a flat beams, our analytical
expressions show an excellent agreement with direct
calculation of the transverse force with the computer code
PyCSR3D. We also calculated the transient effects at the
entrance to and the exit from a bend, and observed that
the transients deviate from the steady state profiles only
on a relatively short distance, much shorter than the
formation length of the CSR longitudinal wake field.
This indicates that in practical applications, for short
bunches, one can use simplified steady state expressions
and ignore the transients.
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APPENDIX A: HAMILTONIAN EQUATIONS

In this Appendix we derive the Hamiltonian equations of
particle motion in a given magnetic field that take into
account the self-field of the beam. We will closely follow
the derivation and the notation of the book [29]. The beam
reference orbit (which is assumed to be planar) correspond-
ing to the nominal momentum, p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ0mcÞ2 −m2c2

p
, is

given by a vectorial function r0ðsÞ, where s is the arc length
measured along the trajectory. The tangential vector
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FIG. 3. Transverse force for the parameter set B. The solid
black and blue lines are calculated using Eq. (44) with x ¼ 0 (on
axis) and x ¼ σx, respectively. The dots show the results of the
numerical calculations with PyCSR3D for the same offsets. The
force is normalized by Qκ=σz where Q is the charge of the beam.
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FIG. 4. Transient transverse force on the axis of the beam at the
entrance to the bend. The numbers near each curve show the
distance from the entrance.
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FIG. 5. Transient transverse force on the axis of the beam after
the exit from the bend. The numbers near each curve show the
distance from the exit.
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τ ¼ dr0=ds and the unit normal vector n are defined so that
dn=ds ¼ κτ and dτ=ds ¼ −κn, where κ is the orbit
curvature. The unit vectors x̂≡ n, ŷ and ŝ≡ τ constitute
a right-handed local coordinate system.

Using s as an independent timelike variable, we start
from the Hamiltonian (5.18) from [29] to which we add the
transverse components of the vector potential, Ax and Ay,
and the electrostatic potential ϕ,

K ¼ −ð1þ κxÞ
�
1

c2
ðH − eϕÞ2 −m2c2 −

�
Πx −

eAx

c

�
2

−
�
Πy −

eAy

c

�
2
�
1=2

−
e
c
Asð1þ κxÞ: ðA1Þ

The canonical coordinates here are: t and −H, x and Πx ¼ px þ eAx=c, y and Πy ¼ py þ eAy=c, with px and py the
components of the kinetic momentum, and H ¼ γmc2 þ eϕ the original Hamiltonian. The full kinetic momentum of the
particle is p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH − eϕÞ2=c2 −m2c2

p
, and its deviation from the nominal (constant) momentum p0 is assumed small,

p
p0

¼ 1þ η; jηj ≪ 1: ðA2Þ

We now Taylor expand the square root in K and replace p2 by p2
0 in the small terms that involve Πx and Πy,

K ≈ −p0ð1þ κxÞð1þ ηÞ
�
1 −

1

2p2
0

�
Πx −

eAx

c

�
2

−
1

2p2
0

�
Πy −

eAy

c

�
2
�
−
e
c
Asð1þ κxÞ: ðA3Þ

It is convenient to introduce ΔH ¼ H − γ0mc2 and express η through ΔH,

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ0mc2 þ ΔH − eϕÞ2=c2 −m2c2

p
p0

− 1 ≈
ΔH − eϕ
cβ0p0

; ðA4Þ

with β0 ¼ p0=γmc. The Hamiltonian (A3) then becomes

K ≈ −p0ð1þ κxÞ
�
1 −

1

2p2
0

�
Πx −

eAx

c

�
2

−
1

2p2
0

�
Πy −

eAy

c

�
2

þ ΔH − eϕ
cβ0p0

�
−
e
c
Asð1þ κxÞ: ðA5Þ

Note that in this Hamiltonian, we assume the smallness of
ðΔH − eϕÞ=cβ0p0, ðpx=p0Þ2 and ðpy=p0Þ2 (and we ne-
glect higher powers and products of these quantities in what
follows), but we do not simplify the factor ð1þ κxÞ to 1
even though the offset x is supposed to be much smaller
than the radius of curvature jκj−1.
We now split from the vector potential As a part Aext

s
that is responsible for the external magnetic field,
As → Aext

s þ As, where from now on As denotes the
contribution from the self field of the beam. The potential
Aext
s is assumed to be independent of time and related to the

external vertical magnetic field through the equation

Aext
s ðs; xÞ ¼ −Bext

y ðsÞx
�
1 −

1

2
κx

�
; ðA6Þ

with the orbit curvature

κðsÞ ¼ eBext
y ðsÞ
p0c

: ðA7Þ

We then have

K ¼ −
e
c
Aext
s ð1þ κxÞ − p0κxþ

e
cβ0

ð1þ κxÞðϕ − β0AsÞ

− ð1þ κxÞΔH
cβ0

þ 1

2p0

ð1þ κxÞ
�
Πx −

eAx

c

�
2

þ 1

2p0

ð1þ κxÞ
�
Πy −

eAy

c

�
2

; ðA8Þ

where we have dropped the constant −p0 in the
Hamiltonian.
We are now ready to formulate the equations of motion

for this Hamiltonian. We start from the t, −ΔH variables,

dt
ds

¼ ∂K
∂ð−ΔHÞ ;

dð−ΔHÞ
ds

¼ −
∂K
∂t : ðA9Þ

The first equation gives

dt
ds

¼ ð1þ κxÞ 1

cβ0
≡ v−1s ; ðA10Þ

with vs the rate of change of the coordinate s. Note that in
this approximation we neglect the variation of the velocity
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due to the internal fields that changes the energy of the
particle. This is a good approximation for relativistic
particles. The second equation gives,

dΔH
ds

¼ e
cβ0

ð1þ κxÞ
�∂ϕ
∂t − β0

∂As

∂t
�

− ð1þ κxÞ
�
Πx −

eAx

c

�
e

cp0

∂Ax

∂t
− ð1þ κxÞ

�
Πy −

eAy

c

�
e

cp0

∂Ay

∂t : ðA11Þ

To better understand the meaning of this equation we divide
it by dt=ds which gives the time derivative of ΔH,

dΔH
dt

¼ e

�∂ϕ
∂t − β0

∂As

∂t
�
− px

eβ0
p0

∂Ax

∂t − py
eβ0
p0

∂Ay

∂t
¼ e

�∂ϕ
∂t − β0

∂As

∂t
�
− eβx

∂Ax

∂t − eβy
∂Ay

∂t : ðA12Þ

This result is equivalent to the statement that the energy
change per unit time is equal to ev · E with E given by
Eq. (2). In the line-charge approximation where β ¼ τ this
equation reduces to Eq. (7).
We now consider the equations of motion in the

horizontal plane. We have

dx
ds

¼ ∂K
∂Πx

;
dΠx

ds
¼ −

∂K
∂x : ðA13Þ

The first equation gives

dx
ds

¼ px

p0

; ðA14Þ

and from the second equation one finds

dΠx

ds
¼ e

c

� ∂
∂xA

ext
s ð1þ κxÞ

�
þ κp0

−
e
cβ0

∂
∂x ½ð1þ κxÞϕ� þ e

c
∂
∂x ½ð1þ κxÞAs�

þ κ
ΔH
cβ0

þ e
cp0

ð1þ κxÞ
�
Πx −

eAx

c

� ∂Ax

∂x
þ e
cp0

ð1þ κxÞ
�
Πy −

eAy

c

� ∂Ay

∂x ; ðA15Þ

where we have neglected small terms of the order of
κp2

x=p0 and κp2
y=p0. Expressing Πx through the momen-

tum px and the derivatives of the potentials through the
components of the electromagnetic field according to the
following equations,

Bs ¼
∂Ay

∂x −
∂Ax

∂y ; Ex ¼ −
∂ϕ
∂x −

1

c
∂Ax

∂t ;

ð1þ κxÞBy ¼
∂Ax

∂s −
∂Asð1þ κxÞ

∂x ; ðA16Þ

after some transformations this expression can be reduced
to the following equation for the time derivative of px

dpx

dt
¼ −cβ0p0

κ2x
1þ κx

þ 1

κ−1 þ x
ðΔH − eϕÞ

þ eEx − eβ0By þ
evy
c

Bs: ðA17Þ

We can now combine Eq. (A14) and (A17) to obtain a
second order differential equation for x,

d2x
ds2

¼ d
ds

px

p0

¼ 1þ κx
p0cβ0

dpx

dt

¼ −κ2xþ κ
ΔH − eϕ
cβ0p0

þ e
cp0βs

ðEx − β0By þ βyBsÞ; ðA18Þ

with βs ¼ vs=c. Alternatively, one can also rewrite
Eq. (A17) as

dpx

dt
¼ −cκβ0p0 þ

cβ0p0

κ−1 þ x
þ 1

κ−1 þ x
ΔH þ F ; ðA19Þ

where F is the renormalized transverse force,

F ¼ −
1

κ−1 þ x
eϕþ eEx − eβ0By þ

evy
c

Bs: ðA20Þ

In the line-charge approximation, we replace κ−1þx→κ−1,
set β0 ¼ 1, and drop the last term that contains vy. This
leads to Eq. (9).

APPENDIX B: TRANSVERE FORCE
IN A LINE-CHARGE BEAM

In this section we will show that the renormalized
transverse force (10) is well defined for a line-charge beam
on the beam orbit. In our calculations, we use the fact that
locally at each point s, the beam orbit r0ðsÞ can be
approximated by a circle of radius κ−1ðsÞ. This allows
us to estimate the behavior of the integrands in various
integrals in the limit s0 → s using the Taylor expansion of
their numerator and the denominator.
We rewrite Eq. (10) in the following form,

F ¼ −κϕþ Ex − By

¼ −κðϕ − AsÞ −
∂ðϕ − AsÞ

∂x −
1

c
∂Ax

∂t −
∂Ax

∂s ; ðB1Þ
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where all the derivatives are evaluated on the reference
orbit. We now split F into four terms,

1

e
F ¼ F ð1Þ þ F ð2Þ þ F ð3Þ þ F ð4Þ; ðB2Þ

with each F ðiÞ corresponding to one term on the right-hand
side of Eq. (B1).
To simplify the notation, in what follows, we will omit

the arguments in the distribution function, λðs0 − ctretÞ → λ,
and replace τðsÞ → τ, τðs0Þ → τ0, nðsÞ → n, nðs0Þ → n0,
r0ðsÞ → r0, r0ðs0Þ → r00, and κðsÞ → κ. We will also
denote by R the function Rðs; s0Þ ¼ r0ðsÞ − r0ðs0Þ and
R ¼ jRðs; s0Þj. Then for the first component of the force
we obtain,

1

e
F ð1Þ ¼ −κðϕ − AsÞ ¼ −κ

Z
∞

−∞

ds0

R
ð1 − τ0 · τÞλ: ðB3Þ

It contains the same integral as in Eq. (3) and as discussed
in Sec. II does not have a singularity when s0 → s. Indeed,
for small js − s0j we have R ≈ js − s0j and 1 − τ0 · τ ∝
js − s0j2, so in the limit s0 → s the integrand in Eq. (B3)
tends to zero.
To evaluate F ð2Þ we need to calculate the x-derivative of

the difference ϕ − As at x ¼ y ¼ 0. Using the expression
tretðr;r0; tÞ¼ t− jr0− rj=c and the relations ∂r=∂xjx¼y¼0 ¼
n and ∂r=∂sjx¼y¼0 ¼ τ we find

∂tret
∂x

����
x¼y¼0

¼ −
1

c
∂
∂x jr − r00j

����
x¼y¼0

¼ −
1

c
R · n
R

;

∂tret
∂s

����
x¼y¼0

¼ −
1

c
∂
∂s jr − r00j

����
x¼y¼0

¼ −
1

c
R · τ
R

: ðB4Þ

This gives for the second term in the force,

1

e
F ð2Þ ¼ −

∂ðϕ − AsÞ
∂x

¼
Z

∞

−∞
ds0

R · n
R3

ð1 − τ0 · τÞλ

−
Z

∞

−∞
ds0

R · n
R2

ð1 − τ0 · τÞλ0: ðB5Þ

In the last term of this equation we replaced
∂tretλðs0 − ctretÞ ¼ −cλ0ðs0 − ctretÞ → −cλ0, where λ0 is the
derivative of the function λ with respect to its argument.
Both integrals on the right-hand side of this equation do not
have singularities when s0 → s even though R vanishes at
s0 ¼ s—the zero of the denominators is compensated by
the zero value of the numerators in the integrands. This is
easily established using the estimates after Eq. (B3)
together with R · n ∝ js − s0j2 in the limit s0 → s.

In the last two terms of Eq. (B1) we need the transverse
component of the vector potential on the orbit. It is found
from Eq. (1) by projecting it onto n,

Axðs; tÞ ¼
Z

∞

−∞
ds0

τ0 · n
R

λ: ðB6Þ

Calculating the time derivative of Ax gives the third term of
the force,

1

e
F ð3Þ ¼ ∂Ax

∂t ¼ −
1

c

Z
∞

−∞

ds0

R
τ0 · nλ0: ðB7Þ

Again, the vanishing R in the integrand at s0 ¼ s is
compensated by the term in the numerator τ0 · n ∝
js − s0j, making the integrand finite at s0 ¼ s.
Finally, we need to calculate the s-derivative of Ax

in F ð4Þ,

∂Ax

∂s ¼ ∂
∂s

Z
∞

−∞

ds0

R
τ0 · nλ: ðB8Þ

The combination τ0 · n=R as a function of s is discontinu-
ous at s ¼ s0, where it jumps from the value equal to κ a
s ¼ s0 − 0 to −κ at s ¼ s0 þ 0. This discontinuity adds to
the formal s-derivative of the integrand in (B8) a delta
function, −2κδðs − s0Þ, and gives the following result,

1

e
F ð4Þ ¼ −

∂Ax

∂s
¼ −2κλðs − ct; tÞ

þ
Z

∞

−∞

ds0

R3
λ½ðR · τÞðτ0 · nÞ − κR2ðτ0 · τÞ�

−
Z

∞

−∞
ds0

ðτ0 · nÞ
R2

ðR · τÞλ0; ðB9Þ

where we have used ∂n=∂s ¼ κτ. Analysis shows that both
integrands in Eq. (B9) are finite when s0 → s.
Combining Eqs. (B3), (B5), (B7), and (B9) and sim-

plifying the resulting expression using the following
relation,

− ðR · nÞðτ0 · τÞ þ ðR · τÞðτ0 · nÞ
¼ R · ½−nðτ0 · τÞ þ τðτ0 · nÞ� ¼ −R · n0;

one arrives at the following final expression for the
renormalized transverse force,

1

e
F ¼ −2κλðs − ctÞ þ

Z
ds0

R3
λ½R · ðn − n0Þ − κR2�

þ
Z

ds0

R2
λ0½Rτ0 · n − R · ðn − n0Þ�: ðB10Þ
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Note that the curvature κ in this equation is taken at the
observation point, κ ¼ κðsÞ.

APPENDIX C: COMPARISON WITH REF. [21]

Equation (42) in Ref. [21] gives an expression for the
transverse force in a beam with a uniform radial distribu-
tion. After correcting a typo in that equation (the function
ln ξ in the integrand should be replaced by lnðξ=RÞ) and
converting it to the notations of the current paper
(R ¼ 1=κ), it takes the following form

1

e
F̄⊥ ¼ λðuÞκ

�
2 ln

�
8

κa

�
− 3.91

�

þ κ

Z
∞

0

lnðζκÞ
�
1

3
λ0ðu − ζÞ − λ0ðuþ ζÞ

�
dζ; ðC1Þ

where a is the beam radius and the bar over F⊥ denotes
averaging over the transverse cross section of the beam. We
now change the normalization of the argument of the
logarithm function in the integrand from κ−1 to σz,

Z
∞

0

lnðζκÞ
�
1

3
λ0ðu − ζÞ − λ0ðuþ ζÞ

�
dζ

¼
Z

∞

0

ln
�
ζ

σz

��
1

3
λ0ðu − ζÞ − λ0ðuþ ζÞ

�
dζ

þ 4

3
λðuÞ lnðκσzÞ; ðC2Þ

and write Eq. (C1) as

1

e
F̄⊥¼ λðuÞκ

�
2 ln

�
σ2=3z

κ1=3a

�
þ0.25

�

þ κ

Z
∞

0

ln

�
ζ

σz

��
1

3
λ0ðu−ζÞ−λ0ðuþζÞ

�
dζ: ðC3Þ

To establish connection of this equation with Eq. (42) we
note that for a uniform radial distribution we can replace σ⊥
in Eq. (41) by the beam radius a and use μðx; yÞ ¼ 1=ðπa2Þ
for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
≤ a, and μ ¼ 0 otherwise. The averaging of

the transverse force over the beam cross section means that
Gðx; yÞ in Eq. (42) should be replaced by

Ḡ¼ 1

πa2

Z
dxdyGðx;yÞ

¼−
2

πa4

Z
a

0

rdr
Z

a

0

r0dr0
Z

2π

0

dθ ln

�
r2þr02−2rr0 cos θ

a2

�

¼0.5; ðC4Þ

where in the last step we used Eq. (41), converted the
integral to the cylindrical coordinates and carried out the
numerical integration. Adding this numerical value Ḡ ¼
0.5 to the remaining numerical factors in Eq. (42),

2 ln 2 − 2þ 1
3
ln 3 ¼ −0.25, we see that Eq. (C3) [and

hence (C1)] indeed coincides with the averaged over the
cross section force (42).
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