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For a precise determination of the rf properties of superconducting materials, a calorimetric
measurement is carried out with the aid of a so-called quadrupole resonator (QPR). This procedure is
affected by certain systematic measurement errors with various sources of uncertainties. In this paper, to
reduce the impact of geometrical uncertainties on the measurement bias, the modified steepest descent
method is used for the multiobjective shape optimization of a QPR in terms of an expectation measure.
Thereby, variations of geometrical parameters are modeled by the polynomial chaos expansion technique.
Then, the resulting Maxwell’s eigenvalue problem with random input data is solved using the polynomial
chaos-based stochastic collocation method. Furthermore, to assess the contribution of the particular
geometrical parameters, the variance-based sensitivity analysis is proposed. This allows for modifying the
steepest descent algorithm, which results in reducing the computational load needed to find optimal
solutions. Finally, optimization results in the form of an efficient approximation of the Pareto front for a
three-dimensional model of the QPR are shown.
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I. INTRODUCTION

In modern particle accelerators, superconducting rf
(SRF) cavities are widely used to provide high-accelerating
gradients to a beam of particles while ensuring moderate
power losses. The surface resistance of superconducting
materials is in the range of tens of nano-ohms at very low
temperature. The QPR is a special dedicated device used
for the measurement of the surface resistance of super-
conducting samples, and is composed of a pillbox-like
cavity containing four-vertically placed hollow rods [1–3].
By exciting a quadrupole-like magnetic field on the super-
conducting sample and using calorimetric methods, the
surface resistance of the sample is investigated. The
measurement data and the expected loss on the sample,
which is obtained from the rf simulation of the QPR, are
used to determine the surface resistance of the sample. The
measurement procedure is affected by various sources of
uncertainties. In general, they are related to the resolution

of electronic equipment, geometrical deviations of a cavity
design, and the accuracy of numerical simulations. In
addition, the surface treatment methods including ultra-
sonic bath, buffered chemical polishing, and high-pressure
rinsing result in a certain level of surface roughness [4]. As
a result, they all have a direct impact on the accuracy of the
surface-resistance measurement and therefore should be
reflected in the modeling procedure in order to provide
reliable and robust simulation results.
In recent years, a considerable number of studies have

been carried out on uncertainty quantification (UQ) within
the context of accelerator physics, see, e.g., Refs. [5–11].
In general, methods that can be used to find the estimation of
the statistical moments can be divided into two main groups.
The first one corresponds to sampling methods such as the
Monte Carlo-based approach [12,13], the stochastic collo-
cationmethod (SCM) [14–17], while the second one belongs
to non sampling–based techniques [18–20] such as the
spectral Galerkin method. Other approaches exist and are
known such as the perturbation method [21,22].
In many applications, a shape optimization problem with

uncertainties is usually formulated in terms of objectives
which contradict each other. In such a case, the Pareto
concept appears, which can be understood as a set of
optimal compromises between the conflicting objectives
[23]. The major research on the multiobjective (MO) shape
optimization, which are based on deterministic assump-
tions (randomness of input parameters is not considered),
might yield impractical or suboptimal solutions due to the
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real-engineering conditions, resulting in various sources
of uncertainties [24]. To deal with this problem, e.g., the
concept of the almost Pareto-optimal points has been
introduced in Ref. [25]. Probabilistic approaches to the
MO optimization with uncertainties, in turn, have been
derived in Refs. [26–29]. In Ref. [30], an efficient numeri-
cal strategy for the Bayesian solution of inverse problems
based on the Polynomial Chaos (PC)-based SCM (PC-
SCM) has been used to construct a polynomial approxi-
mation of the forward solution over the support of the prior
distribution. Correspondingly, the gradient-based MO opti-
mization method with uncertainties has been successfully
designed and used in Ref. [31]. In Ref. [32], in turn, the
physically justified weighted sum method has been
explored to solve the robust shape optimization problem,
constrained by a stochastic partial differential equation
(PDE). Within that work, the MO shape optimization
problem under uncertainties has been reformulated in terms
of the variance-based sensitivity (VBS) analysis [33,34].
In the framework of QPR optimization, a physically

based method, developed at the Helmholtz-Zentrum Berlin
(HZB), has been proposed in Ref. [1]. In this work, the
first-order approximation of partial derivatives of objective
functions, obtained from parameter sweep, has been used
for modifying the QPR design. This approach, however,
allows only for finding a better design in the average sense.
It means that the improvement of all considered conflicting
objectives is not guaranteed (even without introducing
the uncertain input parameters). Though, this modified
design of a resonant cavity had not been optimal from the
mathematical view point, it was quite successful. It should
be noticed, however, that these approaches, which even-
tually are based on deterministic assumptions, need to be
carefully applied, since the cavity shape significantly
influences the eigenmodes and eigenvectors as well as
other figures of merit. For this reason, a local measure in the
form of partial derivatives may not provide reliable results
for both the forward and the optimization problem [10].
Yet, it should be noticed that the pre-existing configu-

rations of QPRs of the CERN- or HZB-type [1,2] suffer
from the Lorentz force detuning in their operating. More
specifically, it can be observed within the measurement
procedure of the surface resistance for the third operating
mode, which provides unexpectedly biased results [4].
Moreover, a result of the recent QPR redesign at CERN
[35] also shows such behavior in all modes of operation.
According to the authors of Ref. [4], one possible explan-
ation of the problems with the measurement bias of the
surface resistance at the third mode might be mechanical
vibrations of the rods leading to significant power dis-
sipation at the flange due to asymmetrically displaced rods.
The latter phenomenon has been more deeply investigated
using the UQ framework in Ref. [36]. Another solution
might be to model the QPR by a set of electromagnetic-
stress-heat PDEs and study the influence of geometric and

material uncertainties on the performance of the QPR.
However, in the current stage of work, we have restricted
ourselves only to the electromagnetic aspect in the redesign
process. Obviously, the presented approach is only a first
step in the discussion on the design of an improved QPR and
the further studies, the electrodynamics modeling is intended
to be incorporated into the optimization framework.
The main contribution of this paper is, on the one hand,

to optimize the existing HZB-QPR under geometric uncer-
tainties in order to increase the average magnetic field on
the sample which consequently leads to a better measure-
ment resolution. On the other hand, equally important
objectives are to increase the homogeneity of the magnetic
field distribution on the sample and also to reduce the field
within the coaxial gap, which results in decreasing the
unwanted heating of the normal-conducting flange which
helps to mitigate the measurement bias, observed for the
third mode. For these reasons, the shape optimization
problem is formulated in terms of the expected values of
suitably chosen figures of merit. Hereby, in order to mimic
the production tolerances, the concept of the UQ is
involved in the modeling phase of the QPR. The crucial
achievement of this work lies also in incorporating the VBS
into the MO optimization formulation. This results in
further reducing the computational burden, needed for
efficient approximation of the Pareto front. According to
the author’s best knowledge, the MO shape optimization
problem of the QPR with geometrical random input
parameters has not been studied yet in the proposed
framework.
The structure of the paper is as follows: Section II

focuses on the physical model of the QPR, the calorimetric
method and corresponding systematic errors and various
sources of uncertainties. Section III, in turn, deals with the
stochastic Maxwell’s eigenvalue problem. The UQ via
the PC-SCM including the concept of the variance-
based decomposition is a topic of Sec. IV. In Sec. V, the
constrained MO problem with uncertainties is formulated
and solved. Furthermore, the efficiency of the proposed
method is shown in Sec. VI. Finally, Sec. VII involves
concluding remarks and promising directions of ongoing
research.

II. PHYSICAL MODEL OF A QPR

In this section, the structure and operating principles of
a QPR are shortly discussed. Several figures of merit are
revisited, which allow for assessing different geometries.
The uncertainties related to the calorimetric method and the
design of a QPR are briefly reviewed in order to illustrate
the motivation for our work.

A. Mechanical design

In the particle accelerator technology, current rf reso-
nators are most often made of niobium and operated at very
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low temperatures in a superconducting state to minimize
surface losses. For a precise determination of the rf
properties of such superconducting materials, QPRs are
used, exploiting a well-known calorimetric measurement
method [2]. There are also other design for test resonators
to obtain rf properties, see Ref. [37] for an overview.
However, the QPR design has two advantages: (i) it allows
a direct measurement of the surface resistance with a sub-
nΩ resolution and (ii) the applied temperature, frequency,
and magnetic field values are of the typical range for
accelerator operation. Hence, the advantages allow to
directly relate obtained results to cavity results. Its design
was originally developed in the 1990s at CERN [38] and
was further adopted to 433 MHz, 866 MHz, and 1.3 GHz,
respectively, at the HZB. Furthermore, an electromagnetic
and mechanical redesign of the existing CERN-QPR was
done with the goal to optimize the measurement range and
the resolution in Ref. [35]. The HZB-QPR is used in our
research as a case study. The mechanical layout with
the technical drawing of the QPR is shown in Fig. 1. Its
niobium screening cylinder consists of two separate
niobium cans. They are electron-beam welded and vac-
uum-brazed to stainless steel flanges [3]. In the center of the
first can, four-wire transmission lines are placed, made of
niobium rods, which are connected to the upper cover plate
of the QPR. These rods are hollow to enable liquid helium
to flow inside and maintain the operating condition. At the
bottom ends, the rods are shorted pairwise in the form of
half rings. Furthermore, the calorimetry chamber, thermally
isolated from the cavity, is mounted at the bottom of the
cylinder, below the two loops. In this way, the resulting
magnetic fields are focused onto the sample, which results
in power dissipation that is measured by temperature
probes inside the calorimetry chamber. In consequence,
the surface resistance is investigated using the calorimetric
“rf-dc-compensation” method [2].

B. Measurement principle

To measure the surface resistance of a sample, the QPR
utilizes the “rf-dc-compensation” method, which idea is
depicted in Fig. 2. First, the sample is heated to a desired
temperature of interest T int using the dc heater, which
operates in a feedback loop with a proportional–integral–
derivative controller. This allows for determining the heater
power PDC1 required for temperature stabilization. Next,
the rf is turned on, which results in increasing the heat load
on the sample. Then, the temperature controller reduces the
power in order to reach the thermal equilibrium for the
initial temperature T int. In steady state, the reduced heater
power PDC2 is determined and recorded. Hence, the rf
dissipated power on the sample surface ΩS is defined
by the difference in the DC heater power △PrfðpÞ ≔
½PDC1ðpÞ − PDC2ðpÞ� and it is given by

△PrfðpÞ ¼
1

2

Z
ΩS

RSðpÞkHðpÞk2dx;

where HðpÞ, RSðpÞ, and p denote the magnetic field, the
surface resistance, and a vector of certain geometrical
parameters, respectively. k · k denotes the induced norm
of complex-valued functions in the space L2ðΩÞ. Thereby,
under assumptions that RSðpÞ is independent of HðpÞ and
homogeneously distributed across ΩS, the surface resis-
tance is defined as

RSðpÞ ≐
½PDC1ðpÞ − PDC2ðpÞ�

1
2

R
ΩS

kHðpÞk2dx ; ð1Þ

where the integral term appearing in the denominator is
computed numerically as a product of a simulation constant
c and the stored energy U in the cavity. The latter quantity
is measured using a pickup antenna. For details, we refer to
Refs. [2,39]. Consequently, various sources of uncertainties
are associated with the “rf-dc-compensation” method.

C. Measurement bias due to uncertainties

Taking this into account, the following sources of
uncertainties as well as the systematic measurement error

FIG. 1. Illustration of the CERN-QPR [3] (left), technical
drawing [2] (right).

FIG. 2. According to the calorimetric method, the surface
resistance of a superconducting sample is derived from a dc
measurement [1].
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have impact on the measurement resolution and precision
(further details are given in Ref. [1]): (i) The bias of
the rf power measurement due to the power meter and
the cable calibration amounts to 0.2 [dB] and 0.1 [dB],
respectively.
(ii) The accuracy of the required simulation constant c,

which relates the denominator of Eq. (1) to the stored
energy in the cavity. The associated uncertainty depends
(a) on the precision of the numerical computation of the
eigenmodes and (b) the geometrical deviations of the
physical resonator with respect to the ideal one considered
in the simulation. The latter is hard to estimate. For this
reason, the standard deviation 5% of c is assumed around a
nominal value.
(iii) The nonuniform heat distribution of the rf field

on the sample is negligibly small compared to the other
measurement biases.
(iv) Unwanted heating of the normal-conducting flange,

that is located below the sample cylinder, results in
significant measurement bias for high-quality factor sam-
ples, leading to overestimation of residual resistance.
(v) Finally, the pulsed measurement results in stochastic

uncertainty.
In particular, the proper functioning of the QPR is

negatively influenced by manufacturing imperfections
including the roughness of the superconducting surfaces,
lack of parallelism of the sample surface, and the quadru-
pole pole shoes as well as insufficient concentric alignment
of the coaxial structure [8,40].

D. QPR figures of merit

Let D ∈ R3 denote the computational domain of the
QPR and Ω ⊂ D be the subdomain, which is parameterized
by variables p ¼ ðp1;…; pQÞ⊤, as shown in Fig. 3. Then,
to investigate the impact of the uncertain domain ΩðpÞ via
H ≔ HΩ on the performance of the QPR, the following
figures of merit are considered [1]: (i) Operating modes
(frequencies) of the QPR

f0;1ðΩÞ ¼ 0.429 ½GHz�;
f0;2ðΩÞ ¼ 0.866 ½GHz�;
f0;3ðΩÞ ¼ 1.311 ½GHz�: ð2aÞ

(ii) The denominator of Eq. (1) normalized to the stored
energy represents the focus ofH onto the surface of sample
ΩS and is given as

f1;nðΩ;HÞ ≔ 1

2U

Z
ΩS

kHk2dx: ð2bÞ

This parameter is also referred to by the symbol c. A higher
value of f1;nð·Þ implies an improvement of the measure-
ment resolution and, consequently, an increase of the
measurement signal. (iii) The homogeneity of the magnetic

field distribution on the surface of the sample is represented
by the following dimensionless quantity

f2;nðΩ;HÞ ≔
R
ΩS

kHk2dx
jΩSjmaxx∈ΩS

ðkHk2Þ ; ð2cÞ

which maximizes the measurement signal through the
increase of the dissipated power at given magnetic peak
field maxx∈ΩS

ðkHk2Þ on ΩS. (iv) The penetration of the
magnetic field into the coaxial gap around the sample
cylinder might lead to heating up of the normal-conducting
flanges and subsequently gives rise to measurement bias.
The following dimensionless parameter quantifies the
penetration of the magnetic field into the coaxial gap at
a given loss on the surface of sample

f3;nðΩ;HÞ ≔
R
ΩS

kHk2dxR
ΩF

kHk2dx ; ð2dÞ

where ΩF is related to the region of the flange. In this paper
the denominator of Eq. (2d) is evaluated in the coaxial
gap at 7 cm below the surface of sample. (v) The peak
surface magnetic field inside the QPR is typically located
on the rods. This can limit the maximum attainable field on
the sample due to the magnetic break down limit of the
superconducting materials. Thus, the following dimension-
less parameter should be maximized

f4;nðΩ;HÞ ≔ maxx∈ΩS
ðkHkÞ

maxx∈ΩR
ðkHkÞ ; ð2eÞ

where maxx∈ΩS
ðkHkÞ and maxx∈ΩR

ðkHkÞ are the peak
magnetic field on the sample ΩS and on the rods ΩR,
respectively. (vi) The limitations caused by high surface

FIG. 3. Cross section of a HZB-QPR (left) and a parameterized
model of the pole shoes (right). The nomenclature used in the
parameterization of the pole shoes follows [1].
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electric field on the rods, e.g., field emission, could be
lowered by maximizing

f5;nðΩ;HÞ ≔ μ0maxx∈ΩS
ðkHkÞ

maxx∈ΩR
ðkEkÞ ; ð2fÞ

where maxx∈ΩR
ðkEkÞ denotes the maximum electric field

on the rods and μ0 is the magnetic permeability of
vacuum.The subscripts n ¼ 1, 2, 3 indicate the particular
operating frequency and k · k is the induced norm of
complex-valued functions.
It can be summarized that the associated uncertainties have

significant impact not only on the outcome of the measure-
ment methodology but also on the stability and operational
conditions of the QPR. Therefore, in this work, the uncer-
tainty propagation in the three-dimensional (3D)model of the
QPR is investigated. Here, special emphasis is laid on the
influence of the geometrical parameters on reliable operation
of theQPRunderworking conditions. Thus, in Secs. III andV
the problem listed in subsection II C as the second item of
uncertainty source is mainly addressed. The third item
(nonuniformheat distribution) is also included by considering
Eq. (2c) as one of the objective functions.

III. STOCHASTIC FORWARD PROBLEM

This section briefly discusses a 3D model of the QPR
that is governed by the Maxwell’s eigenproblem (MEP).
Next, the uncertainty of geometric parameters is introduced
into the MEP model and described in a probabilistic
framework. This allows for mimicking manufacturing
imperfections appearing in the industrial process.

A. Problem setup in deterministic settings

Let p ¼ ðp1;…; pQÞ⊤ ∈ Π ⊂ RQ denote a vector of
geometrical parameters, for example, these variables that
are depicted in Fig. 3. Furthermore, denote by D ⊂ Rd;
d ¼ 3, a bounded and simply connected physical domain
with sufficiently smooth boundary ∂D representing the
QPR structure shown in Fig. 3. Next, suppose ϵr and μr
stand for the relative electric permittivity and the relative
magnetic permeability, which are linear functions of space.
Then, the associated eigenpairs ðEðpÞ; λðpÞÞ for each mode
given in terms of the phasor of the electric field eigenvector
E and the eigenfrequency λ ¼ ω2

c2
0

satisfy the MEP for

electric fields in the time-harmonic regime

−∇×

�
1

μr
∇×Eðx;pÞ

�
þ λðpÞϵrEðx;pÞ ¼ 0; in D;

n×Eðx;pÞ ¼ 0; on ∂DP;

n×

�
1

μr
∇×Eðx;pÞ

�
¼ 0; on ∂DN

ð3Þ

with the angular frequency ω ¼ 2πf and the speed of
light c0. Here, ∂DP denotes the portion of the boundary
with the perfect electrical conductor condition, while ∂DN
is the portion of boundary with Neumann condition
and n the outward unit normal to the boundary, where
∂D ¼ ∂DP ∪ ∂DN.
Next, the uncertain parameters p need to be specified.

B. Probabilistic framework for uncertainty

The probabilistic framework [16] is used for modeling
geometrical uncertainties as Q-variate random vectors with
independent components. It is assumed that they are
defined in the probabilistic space ðA;F ; PÞ, where A is
a sample space, F denotes a sigma algebra, and P∶F →
½0; 1� refers to a probability measure. Furthermore, we
denote by ρq∶Γq → Rþ the probability density function
(PDF) of the random variable pqðξÞ; ξ ∈ A and by
Γq ≡ pqðAÞ ∈ R the image of pq with its support

Γ ¼ QQ
q¼1 Γq ⊂ RQ, for q ¼ 1;…; Q. Then, a joint PDF

of the random vector pðξÞ is assumed to exist and is
given by

ρðpÞ ¼
YQ
q¼1

ρqðpqÞ; ð4Þ

where the dependence of ξ has been suppressed. Finally,
the modified random vector of geometrical parameters is
given by

pðξÞ ¼ ðp1ðξ1Þ;…; pQðξQÞÞ⊤∶ Γ → Π ⊂ RQ: ð5Þ

Consequently, the application of the probabilistic frame-
work for modeling uncertainty allows one to conduct
numerical formulations in the finite dimensional random
space ðΓ;BQ; ρdpÞwith BQ being theQ-dimensional Borel
space [41].

C. Stochastic Maxwell’s Eigenproblem

Consider now the random complex function u∶Γ → Cd,
for which the probabilistic Hilbert space on the complex
field is introduced L2ðΓÞ ¼ fuðpÞ∶E½kuðpÞk2� < ∞g,
see, e.g., Ref. [42]. Then, the expected value of uðpÞ is
defined as

E½uðpÞ� ≔
Z
Γ
uðpÞ ρdp: ð6Þ

Likewise, an inner product for two random functions
uðpÞ; vðpÞÞ∶Γ → Cd is given by

ðuðpÞ; vðpÞÞL2
ρðΓÞ ≔

Z
Γ
uðpÞ × vðpÞρ dp; ð7Þ
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where vðpÞ denotes the complex conjugate. Moreover,
based on the definition (6) the variance of a random
complex function uðpÞ ∈ L2ðΓÞ reads as

Var½uðpÞ� ≔ E½kuðpÞk2� − kE½uðpÞ�k2; ð8Þ

which is always real and positive.
Finally, the weak formulation of the MEP with random

input parameters p is given as follows: Find E ∈ Vρ

such that

E

�Z
D

1

μr
ð∇ ×EÞ · ð∇ × vÞdx

�
¼ E

�Z
D
λϵrE · vdx

�
ð9Þ

is satisfied for all v ∈ Vρ with Vρ defined as the tensor
product Vρ ¼ H1

0ðDÞ ⊗ L2
ρðΓÞ, where H1

0 is the Sobolev
space of the complex-valued functions with first-order
weak derivatives and the 0 subscript refers to vanishing
tangential component of E on ∂DP, see, e.g., Ref. [43].
The variational formulation of Eq. (9) involves expect-

ations of the weak form, formulated in the physical space,
which can be solved using, e.g., the finite elements
method or the Finite Integration Technique [44]. For
the solution of Eq. (9), the nonintrusive method called
PC-SCM [16,45] (also known as pseudospectral
approach) is preferable. This method is outlined below
in Sec. IV.

IV. PSEUDOSPECTRAL APPROACH

In this section, the mathematical framework of the
PC-based SCM [16] is shortly presented. For this reason,
the mathematical bases of the PC expansion will be briefly
introduced.

A. Polynomial chaos expansion

The homogeneous PC was introduced in Ref. [46]. It
employs the Hermite orthogonal polynomials in terms of
Gaussian random variables to provide the spectral expan-
sion of the stochastic processes. This idea, furthermore,
has been revisited in Ref. [19] and applied to the field of
engineering. More recently, a broader framework, the so-
called generalized PC, has been developed by Ref. [14].
It is based on the Wiener-Askey scheme and allows for
representing more efficiently non-Gaussian processes as
well. According to the theory of Refs. [45–47] any second-
order random function y ∈ L2ðΓÞ can be represented by a
weighted sum of polynomials ΦðpÞ, which are dependent
on random variables p of the known PDF ρðpÞ.
Let i be a multi-index i ¼ ði1;…; iQÞ ∈ IQ;P, where P

denotes the polynomial order. Next, denote by IQ;P the set
of multi-indices, which is defined as

IQ;P ¼ fi ¼ ði1;…; iQÞ ∈ NQ
0 ∶jij ≤ Pg:

where j · j ≔ i1 þ � � � þ iQ is the l1 norm. Then, given a
square-integrable, random complex function with finite
variance y ∈ L2ðΓÞ, a truncated PC expansion is introduced
[14–16,20,45]

yðpÞ ≐
X
i∈IQ;P

ỹiΦiðpÞ; ỹi ∈ C: ð10Þ

Here, ỹi are a priori unknown coefficient functions to
be determined, while the multivariate PC basis functions
ΦiðpÞ are generated from

ΦiðpÞ ¼
YQ
k¼1

ΦikðpkÞ; i ∈ IQ;P; ð11Þ

where ΦikðpkÞ are univariate polynomials of degree
ik ∈ N0, which are orthogonal with respect to ρkðpÞ.
A popular choice for the functions Φik are orthonormal
polynomials.1 Let Φ0 ≔ 1. Thus, when using Eq. (7) it
follows that

ðΦiq ;ΦjqÞL2
ρðΓÞ ≔

Z
Γ
ΦiqðpqÞΦjqðpqÞρðpqÞdpq

¼
�
0 for iq ≠ jq
1 for iq ¼ jq:

ð12Þ

Certainly, the condition (12) and the independence of pq

imply the orthonormality of ΦiðpÞ. The number K of PC
basis functions of total order P in dimension Q is given by

K ¼ jIQ;Pj ¼
ðPþQÞ!
P!Q!

:

The truncated PC expansion in Eq. (10) converges in the
mean-square sense under following conditions [15]:
(i) yðpÞ has finite variance and (ii) the coefficients ỹi are
calculated from the projection equation,

ỹi ≔ ðyðpÞ;ΦiðpÞÞL2
ρðΓÞ ¼ E½yðpÞΦiðpÞ�: ð13Þ

In general, Eq. (13) gives rise to two main methods, which
explore the projection equation in a different way. The first
one is the spectral Galerkin method [19], which belongs
to the intrusive techniques and applies Eq. (13) and,
consequently, Eq. (12) to project governing equations.
As a result, a dedicated solver needs to be used to solve
the resulting huge system of equations due to the spectral
expansion. The second, nonintrusive technique, i.e., the
pseudospectral approach [16], which, likewise the
Monte Carlo methods, allows for reusing existing deter-
ministic solvers but in a much more efficient way, in case

1In the case of an orthogonal system of basis polynomials a
normalization can be performed easily, see, e.g., [15].
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of smooth models. In this work, the focus is laid on the
latter approach.

B. UQ via PC expansion

The pseudospectral approach [16] applies the projection
equation only to output quantities of interest. As a typical
nonintrusive method, it only requires repetitive simulations
of a deterministic model at quadrature points pðkÞ ∈ Γ;
k ¼ 1;…; K. Then, the discrete projection of given solu-
tions yðpkÞ on the basis polynomials Φi by using the
multidimensional quadrature with associated weights wk

ỹi ≐
XK
k¼1

wk yðpðkÞÞΦiðpðkÞÞ; ð14Þ

yields the approximation of probabilistic integrals (13).
The effectiveness of this approach strongly depends on
the choice of quadrature nodes. If not carefully chosen the
straightforward application of the tensor product of a one-
dimensional Gauss interpolation formula might become
computationally expensive. Thus, to overcome the so-called
curse of dimensionality problem, either the Smolyak algo-
rithm [48,49] or the effective Stroud [50,51] formulas can be
applied.
In general, the Stroud integration rules yield uniform,

beta or normally distributed points, which are weighted
by 1

N with N denoting the number of points. Specifically, in
this work, normally distributed points generated by the
Stroud-3 formula are considered. This choice is motivated
by the physics of the analyzed application, i.e., due to a lack
of statistical data it is assumed that the geometrical
tolerance of the QPR design caused by the manufacturing
process is normally distributed. Correspondingly, in a
model with Q uncertain parameters, only 2Q quadrature
points are required [17]. Now, consider, for example, the
jth component of the normally distributed points around
the mean p̄j with the standard deviation σj, [17,52]

pi
j ¼ p̄j þ σj × zjq;

with i given as i ¼ 2r − 1; i ¼ 2r, respectively, for
r ¼ 1;…; bQ=2c

z2r−1j ¼
ffiffiffi
2

p
cos

�ð2r − 1Þjπ
Q

�
;

z2rj ¼
ffiffiffi
2

p
sin

�ð2r − 1Þjπ
Q

�
: ð15Þ

Here, if Q is odd, then zQj ¼ ð−1Þj, while an operator
bQ=2c returns the largest natural number smaller than or
equal to Q=2. Though, the Stroud formulas are very
effective because they yield a very small number of
quadrature points, they have also a fixed accuracy.

C. Statistical information and sensitivity analysis

Due to the orthonormality (12) of the polynomial basis,
once the PC expansion (10) is found, all statistical
information can be retrieved. In particular, the expected
value and the variance are given by

E½yðpÞ� ≐ ỹ0; Var½yðpÞ� ≐
X
i∈IQ;P
i≠0

jỹij2; ð16Þ

usingΦ0 ¼ 1. Based on Eq. (10), also other quantities such
as the local sensitivity, the variance-based global sensitivity,
the approximation of the PDF, and of the cumulative PDF
can directly be evaluated, see, e.g., Ref. [15].
For example, the local sensitivity (a partial derivative),

i.e., the pqth mean sensitivity is obtained by integrating
over the whole parameter space and it is given by [53]

E

� ∂y
∂pq

�
≐

X
i∈IQ;P
i≠0

�
ỹi

Z ∂ΦiðpÞ
∂pq

ρdp

�
; ð17Þ

for q ¼ 1;…; Q. On the contrary, the global sensitivity
approach does not specify any additional condition as
pq ¼ p̄q. Instead, it considers only a model, e.g., Eq. (10)
and analogous decomposition to the ANOVA [34] (the
ANalysis of VAriance) is conducted to find the contribution
of particular random variables to the total variance. For
this reason, it should be regarded as a more reliable tool,
especially in the case of modeling and optimization
processes.
The Sobol decomposition of Eq. (10) yields the (first-

order) VBS coefficients [33]

S¼ðsÞl;q∈RL;Q and sl;q¼
1

VarðylðpÞÞ
X
i∈Iq

jỹl;ij2; ð18Þ

with sets Iq ¼ fi ∈ N0∶iq > 0; im≠q ¼ 0g and the total
variance of particular objective functions, l ¼ 1;…; L,
denoted by VarðylÞ. In order to calculate sl:q, all random
inputs except pq are fixed. Thus a mixed effect, that is, the
interactions between pq and other random variables are
neglected here. The upper and lower bounds of sl;q are
given by 0 ≤ sl;q ≤ 1. A value close to 1 denotes a large
contribution to the variance, while a small contribution is
determined by a value close to 0. The total effect, that is, the
fractional contribution to the total variation of yðpÞ due to
parameter pq, when considering all other model parameters
can also be analyzed [34].
For example, Figs. 4–6 present, for all operating modes,

the results for VBS analysis of the quantities of interest
with respect to the Gaussian design parameters, listed in
Table I. In particular, it can be observed that deviations
of p2 ðrrodsÞ and p3 ðhloopÞ, have the greatest influence on
the operating frequencies, given by Eq. (2a). The geometric
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parameters such as p5 ðwloopÞ, p6 ðdloopÞ, and p7 ðrcoilÞ,
in turn, have significantly larger contributions to the focusing
strength, expressed by Eq. (2b). Correspondingly, the
variations of p4 ðrloopÞ and p8 ðrsampleÞ can be identified
to have a large impact on both the homogeneity and
dimensionless factors, defined by Eqs. (2c) and (2e),
respectively. In the end, this analysis can guide new designs
but also improve the existing QPR configurations. In

contrast, the VBS decomposition provided for the magnetic
peak values, that is, Eqs. (2e) and (2f) shows the significant
differences with respect to design parameters within the
range of operating modes (cf. the two last bars of Figs. 4–6).
The flow of the algorithm of the pseudospectral method

has been shown in Fig. 7 and, additionally, described in
the pseudocode as Algorithm 1 in order to allow better
understanding.
In order to find a robust design of the QPR, the UQ

analysis needs to be incorporated into the optimization
flow. Section V is devoted to the parametric MO shape
optimization under uncertainties.

V. SHAPE OPTIMIZATION

In this section, the parametric MO shape optimization
under uncertainties in terms of statistical moments is
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FIG. 4. Result of the global sensitivity analysis for f·;1ðpÞ.

TABLE I. Means p̄q and standard deviation σq of random
inputs.

Name p̄q [mm] σq [mm]

p1 (gap) 0.54 0.027
p2 (rrods) 13.40 0.67
p3 (hloop) 9.50 0.475
p4 (rloop) 5.00 0.25
p5 (wloop) 40.00 2.000
p6 (dloop) 6.00 0.300
p7 (rcoil) 22.48 1.124
p8 (rsample) 38.50 1.929
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FIG. 5. Result of the global sensitivity analysis for f·;2ðpÞ.
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FIG. 6. Result of the global sensitivity analysis for f·;3ðpÞ.

FIG. 7. Algorithm for the PC-SCM employing CST STUDIO
SUITE® [44] as “black-box” simulation engine. In the flow
indicated above Dakota [68] has been exploited.
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formulated. Therein, the global sensitivity is used to modify
a scheme of the MO steepest descent algorithm.

A. Objective functionals

Due to the geometrical uncertainties associated with pðξÞ
all the figures of merit (2a)–(2d) become functionals of the
random geometry, denoted by ΩðpÞ ⊂ D. In the context of
classical optimal control theory [54], especially its elabora-
tion for optimization problems under uncertainties [55,56],
they can be represented in terms of certain target statistical
quantities of interest, Fl½ΩðpÞ;H� such as the expectation
value, the linear sum of the mean and the variance value,
the risk-aware probabilistic measure, the cumulative density
function, see, e.g., Ref. [57]. Correspondingly, the perfor-
mance function of the QPR design can be represented as a
functional FlðΩðpÞ;HÞ of uncertain geometrical parameters
pðξÞ, which is embedded in both the shape Ω and the state
variable H ≔ HΩ, i.e.,

FlðΩðpÞ;HÞ ≔ 1

2
E½kflðHÞ − F̄0

l k2�; ð19Þ

for l ¼ 1;…; L, L ¼ 3 with FlðΩðpÞ;HÞ∶H1
0ðDÞ ⊗

L2
ρðΓÞ → R, which measure the distance between the

objective functional fl;3ð·;HÞ and the prescribed target
value F̄0

l , in terms of the expectation value. This choice
results from the observed measurement bias of the surface
resistance for the third operating mode of the QPR, n ¼ 3,
reported in Ref. [4] as well as from the VBS analysis, which
is shown in Figs. 4–6. On the one hand, we aim at improving
the accuracy or sensitivity of the measurement signal by
maximizing the expectation of the focusing and homo-
geneity factors, that is, F1ðΩðpÞ;HÞ and F2ðΩðpÞ;HÞ,
respectively. On the other hand, the expectation of the
dimensionless factor represented by F3ðΩðpÞ;HÞ needs
to maximized, due to the unwanted heating of the normal-
conducting flange.

Apparently, the finite assumption on the random field
with Q random variables, considered in Sec. III B, which is
a result of the Doob–Dynkin Lemma [58], enables us to
reformulate the stochastic shape optimization problem in a
parametric MEP-constrained shape optimisation problem.
Consequently, results from the deterministic optimization
theory can be applied [8,54–56] for the optimization of the
QPR design under uncertainty.

B. Shape optimization problem under uncertainties

The parametric MEP-constrained shape optimization
problem of the QPR under uncertainties pðξÞ aims to
identify an optimal domain Ω�ðpÞ as solution of

inf
Ωðp̄Þ∈Uadd

FðΩðpÞ;HÞ ¼ ½F1ð·Þ; F2ð·Þ; F3ð·Þ�⊤ ð20aÞ

s:t:E

�Z
D

�
1

μr
ð∇×EÞ ·ð∇×vÞ−λϵrE ·v

�
dx

�
¼0 ð20bÞ

for H ≔ HΩ ¼ 1
ωμ∇ ×EΩ within a set of admissible

shapes (parameters)

Uadd ¼ fpðξÞ ∈ Πj0 ≤ pmin ≤ p ≤ pmaxg; ð20cÞ

where for any ΩðpÞ ∈ Uadd and E ≔ EΩ, v ≔ vΩ ∈ Vρ

holds ΩðpÞ ⊂ D.
Here, the inequality sign ≤ between vectors in Eq. (20c)

needs to be understood in a component-wise sense as
follows: 0≤pminq ≤ p̄q∓3 ·σq≤pmaxq , q ¼ 1;…; Q with
mean values p̄q and standard deviations σq of particular
random input variables pq. Furthermore, it is assumed that
specific constraints 0 ≤ pminq ≤ pmaxq result from certain
technological requirements. For instance, bounds of par-
ticular random geometrical parameters used in the VBS
analysis are specified in Table I.
In what follows, the focus is on using a gradient-based

method [59] to solve the problem (20). To this purpose, a
shape derivative needs to be provided.

C. Approximation of shape derivative

In the PDE-constrained shape optimization problem,
the existence of a shape derivative has been proved by
the Hadamard-Zalesio theorem, see, e.g., (Ref. [60],
Theorem 3.6). It states that a shape derivative for domains
with smooth enough boundaries, can be represented as a
distribution on the boundary, which depends only on the
normal component of the perturbation

dFlðΩ;VÞ ≔
Z
∂D

hlðxÞVðxÞ · ndx;

with hðxÞ ∈ L1ð∂DÞ, where V∶Rd → Rd denotes the
velocity field, while n is the outward normal unit vector.

Algorithm 1. Pseudospectral approach for UQ.

1: Initialization:
2: –Π ¼ ðp1;…; pQÞ, Eq. (5) ▹ a set of in. rand. param.
3: –ρðpÞ, Eq. (4) ▹ PDF for input variations
4: –PCtype, PCorder ▹ PC expansion parameters
5: –w;pðkÞ, Eq. (15) ▹ gener. weights & points
6: for k ¼ 1…; K do
7: solve MVPðpðkÞÞ Eq. (3) ▹ Quadrature points loop
8: for i ¼ fi1;…; iQg do
9: ỹi ← E½yðpÞΦiðpÞ�, Eq. (14) ▹ discrete projection
10: Post-processing:
11: eval. E½yðpÞ�, Var½yðpÞ�,
Eq. (16)

▹ statistics

12: for q ¼ 1…; Q do
13: eval. E½ ∂y∂pq

�; Sq, Eqs. (17)–(18) ▹ loc. & glob. sens
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The distributed shape derivative dFlðΩ;VÞ may also be
expressed in a more general form as a volume integral over
the whole domain [61].
Shape derivatives in stochastic settings are a topic of

our ongoing research. Apparently, under certain regularity
conditions [62], the shape derivative of functionals
FlðΩðpÞ;HÞ; l ¼ 1;…; L, defined by Eq. (19), can be
derived in the continuous framework using the velocity
and adjoint variable methods as in Refs. [36,63]

dFlðΩðpÞ;VÞ

¼ E

�Z
∂Ω

�
1

μr1
−

1

μr2

�
ð∇×E1Þ · ð∇×E2Þ⊤ðVq · nÞdx

�

− E

�Z
∂Ω

λðϵr1 − ϵr2ÞE1 ·E⊤
2 ðVq · nÞdx

�
; ð21Þ

where the derivative of the boundary coordinate with
respect to the qth design variable is denoted by
Vq ≔ ∂x

∂pq
, q ¼ 1…; Q. Here, E1 ∈ Vρ and E2 ∈ Vρ refer

to the direct problem (9) and to a dual problem, respec-
tively, which needs to be separately formulated for each
objective functional and solved in order to calculate the
shape derivative according to Eq. (21). Moreover, when the
effective Stroud-3 formula is used as a multidimensional
quadrature rule, 2Q simulations of the deterministic
problem (9) are needed to sufficiently approximate the
probabilistic integrals (14) and, in consequence, to find
the statistical moments (16). Thus, for the analyzed setup,
2QL ¼ 30 simulations in every iteration of the MO
optimization process are required to find the shape deriva-
tive, defined by Eq. (21). But the Pareto front is approxi-
mated by N ¼ 101 points. Hence, even when the steepest
descent gradient method is used for solving the MO
optimization problem, defined by Eq. (20), this task for
the given setup becomes time-consuming in the case of the
3D model of the QPR.
For these reasons, in this work, the shape derivative (21)

is approximated using Eq. (17) for l ¼ 1;…; L,

dFlðΩðpÞÞ ≐
X
i∈IQ;P

g̃l;i
∂ΦiðpÞ
∂pq

∂p
∂ξq

����
pq¼p̄q

; ð22Þ

with dFlðΩðpÞÞ ∈ RQ and q ¼ 1…; Q. This approxima-
tion results from the Taylor’s expansion-based approach
for a deterministic measure of the robustness, developed,
e.g., in Ref. [21].

D. Modified scheme of MO steepest descent

Since, a MO optimization problem of functionals com-
peting with each other is considered, the concept of
optimality needs to be replaced by the Pareto optimality
framework. Accordingly, the solution of Eq. (20) is said to
be a set of optimal compromises in the Pareto sense,

under following conditions [23] (i) Ω�ðp̄Þ ¼ Ωðp̄�Þ ∈ Uadd
dominates Ωðp̄Þ ∈ Uadd, if FðΩ�ðp̄ÞÞ ≤ FðΩðp̄ÞÞ and
FðΩ�ðp̄ÞÞ ≠ FðΩðp̄ÞÞ, (ii) Ω�ðp̄Þ ∈ Uadd is called (glob-
ally) Pareto optimal, if there exists no Ωðp̄Þ ∈ Uadd domi-
nating Ω�ðp̄Þ.
Here, a set of nondominated point is called the Pareto

set PS, while its image is denoted as the Pareto front PF.
Now, to incorporate the global measure, i.e., the VBS

analysis into a MO optimization flow, the enhancement
gradient JFlðΩðpÞÞ ∈ RQ for l ¼ 1…; L is introduced as

JFðΩðpÞÞ ≔ S⊤ · ½dF1ðΩðpÞÞ;…; dFLðΩðpÞÞ�: ð23Þ

This formulation allows to benefit from both the local (22)
and the global (18) sensitivity analysis. Thus, in the
modified scheme of the MO steepest descent algorithm,
a matrix S with the VBS coefficients serves as a precondi-
tioner. It results in speeding up the approximation of the
Pareto front in terms of number of calling objective
functions.
Furthermore, provided that some regularity conditions

with respect to Eq. (20a) are satisfied, it can be shown
that the MO steepest descent method converges to a point
satisfying the Karush-Kuhn-Tucker (KKT) conditions for
Pareto optimality [59,64], such that

XL
l¼1

αl ¼ 1 and
XL
l¼1

αlJFlðΩ�ðpÞÞ ¼ 0: ð24Þ

Therefore, the set of all the points, which satisfy Eq. (24) is
called the set of substationary points PS;sub. In contrary, if
ΩðpÞ ∉ PS;sub, then there exits a descent direction d ∈ RQ

dðΩðpÞÞ ¼ −
XL
l¼1

αlJFlðΩðpÞÞ; ð25Þ

such that

−JFlðΩðpÞÞ⊤ · dðΩðpÞÞ ≥ 0; l ¼ 1;…; L; ð26Þ

for which all the objectives are nonincreasing. One way to
determine a descent direction, which satisfies Eq. (26), is to
solve the auxiliary suboptimization problem [65]. The other
approach relies on analytically deriving dðΩðpÞÞ by using
the orthogonal projection [64,66]. For the convenience of
the readers both methods are shortly described in the
Appendix.
Ultimately, when using a line search approach the MO

steepest descent algorithm reads as

Ωðp̄hkþ1iÞ ¼ Ωðp̄hki þ κhkidhkþ1iÞ; ð27Þ

where the step length κhki > 0 is computed by an Armijo-
like rule. Alternatively, the quadratic interpolation method
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can be used [59,66]. For a better clarity, the proposed
method has been written as Algorithm 2 in the form of the
pseudocode.
Finally, to speed up the Pareto front identification, in the

12th line of Algorithm 2, the expectations appearing in the
if condition are replaced by their deterministic approx-
imations, that is, Flð·Þ ≐ flð·Þ; l ¼ 1;…; L, which is moti-
vated by the Taylor’s expansion-based approach [21].

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, the proposed algorithm is used for the
design of the QPR under uncertainties. Of utmost important
objective functions in QPR optimization are the improve-
ment of the resolution of the measurement signal by, on
the one hand, maximizing eddy currents induced on the
sample and, on the other hand, through the increase of
the dissipated power at a given magnetic peak field.
Additionally, the propagation of the magnetic field into
the calorimetric chamber has to be minimized to limit the
heating up of the normal-conducting flanges. This is in
particular of crucial importance for the third mode where a

measurement bias is observed in some experiments [40].
Therefore, the optimization of the QPR design is formu-
lated in terms of the focusing factor (2b), homogeneity
factor (2c) and the dimensionless factor accounting for
losses on the flanges (2d). More precisely, the optimization
problem is expressed by (20) with the expectation
F1ðΩðpÞ;HÞ, F2ðΩðpÞ;HÞ, and F3ðΩðpÞ;HÞ, defined
by Eq. (19), respectively. To solve this problem, the
methodology described in Sec. V D is used.
In this respect, to initialize Algorithm 2, first, the one

dimensional (1D) optimization of FlðΩðpÞ;HÞ, l ¼ 1, 2, 3
with respect to parameters shown in Table I needs to be
carried out. Its results, which are included in Tables II
and III together with the VBS analysis, shown in Figs. 4, 5,
and 6, allow for reducing quantities of interest to Q ¼ 5,
p ≔ ðp1; p2; p3; p4; p5Þ⊤ ¼ ðgap; rrods; hloop; rloop;
wloopÞ⊤. Hence, to approximate the Pareto front in the 3D
objective space, the uniform random spread is applied.
That is, the initial points, N ¼ 101, have been uniformly
randomly generated using scaled and shifted randðN;QÞ
values between Ω�

1ðp̄Þ, Ω�
2ðp̄Þ and Ω�

3ðp̄Þ in RQ, listed in
Table II. In addition, the initial step size, κh0i ¼ 0.5, the
maximum number of step size and of cuts at each iteration
of the MO algorithm is set bymaxCut¼10,maxIter¼10,
while precision ¼ 1 × 10−5. Next, the backtracking
method [67] has been used to approximate the length of
the steepest gradient in every iteration, i.e, κhkþ1i¼κhki=2.0,
for k ¼ 1;…; maxCut.
In the corresponding UQ model setup, these controllable

geometrical parameters p are modeled with the PC.
Here, the geometrical imperfections related to the manu-
facturing of the QPR of order 50–100 ½μm� are mimicked
by the Gaussian distribution as follows

TABLE II. Results for the 1D constrained optimization—
parameter domain.

Name [mm] Ω�
1ðp̄Þ Ω�

2ðp̄Þ Ω�
3ðp̄Þ

p1 (gap) 0.50 1.49 0.51
p2 (rrods) 9.00 11.68 9.09
p3 (hloop) 7.00 11.98 10.81
p4 (rloop) 6.00 5.99 4.00
p5 (wloop) 43.92 43.98 36.08
p6 (dloop) 4.00 4.00 4.05
p7 (rcoil) 25.0 24.97 24.98
p8 (rsample) 35.0 35.00 35.03

Algorithm 2. MO descent direction under uncertainties.

Require: Π ¼ ðp1;…; pQÞ, Eq. (5); ρðpÞ,
Eq. (4); PCtype, PCorder, w;pðkÞ, Eq. (15)

▹ due to
Algorithm 1

1: Set: initial point Ωðph0iÞ,
2: : precision, κ<0>,
3: : maxIters, maxCut, out
4: for k ¼ 1;…, maxIters do
5: set ncut ¼ 0
6: conduct UQ according to Algorithm 1
7: evaluate gradients JFðΩðphkiÞÞ using (23)
8: compute a direction dhki using either (A1)

or (A2)
9: repeat
10: out ← false
11: for l ¼ 1;…; L do
12: if flðp̄hki þ κhkidhkiÞ ≤ flðp̄hkiÞ then
13: κhki ← κhki=2
14: ncut ← ncutþ 1
15: out ← true
16: break
17: else
18: continue
19: if out then
20: break
21: p̄hkþ1i ← p̄hki þ κhkidhki
22: for l ¼ 1…; L do
23: flðp̄hkþ1iÞ ← flðp̄hki þ κhkidhkiÞ
24:
25: κhkþ1i ← min½2κhki; κh0i� ▹ to restore

step-size
26: break
27: until ncut ≤ maxCut
28: if kp̄hkþ1i − p̄hkik2 ≤ precision then
29: stop

TABLE III. Results for the 1D constrained optimization—
objective space.

Name Ω�
1ðp̄Þ Ω�

2ðp̄Þ Ω�
3ðp̄Þ

F1ðΩ�ðp̄Þ;HÞ [A2=J] 9.56 × 107 3.05 × 107 6.44 × 107

F2ðΩ�ðp̄Þ;HÞ [1=1] 0.174 0.23 0.12
F3ðΩ�ðp̄Þ;HÞ [1=1] 2.47 × 106 1.54 × 106 5.20 × 106
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pqðξÞ ¼ p̄qð1þ δq · ξqÞ; q ¼ 1;…; Q;

where ξq denotes the normally distributed variables
and δq allows for controlling the magnitude of the pertur-
bation regarding the production tolerance such that
σq ≔ δq · p̄q ¼ 0.05 ½mm�.
Furthermore, according to Algorithm 1 the appropriate

polynomial type is chosen based on the Wiener-Askey
scheme [15]. It corresponds to the input distribution, that
is, the polynomials of the Hermite type. Moreover, the
Stroud-3 formula is used to determine the Hermite poly-
nomial coefficients, defined in Eq. (14). Hence, exploiting
the two-fold symmetry of the QPR, it requires K ≔ 2Q ¼
10 deterministic simulations of one quarter of the FE model
expressed by Eq. (3) with Et ¼ 0 on the symmetry plane
using CST STUDIO SUITE® for around 1 million tetra-
hedral mesh cells.
The analysis discussed so far has to be performed for

every initial configuration of the QPR. Hence, we have
applied the MO steepest descent method with the
enhancement gradient, defined by Eq. (23), for all the
initially generated design points to be considered in the
optimization problem. In particular, in Fig. 8, the con-
vergence of the MO steepest descent method to certain
Pareto-stationary points is shown. Additionally, the pre-
ferred configurations, the so-called solutions A and B,
denoted by Ω�

Aðp̄Þ and Ω�
Bðp̄Þ, have been listed in

Table IV. Moreover, for the comparison purpose, the
configurations of the HZB-QPR Ω�

HZBðp̄Þ, the old
CERN-QPR design Ω�

CERNold
ðp̄Þ, and the redesigned

CERN-QPR Ω�
CERNðp̄Þ are also included [1,35].

The optimized geometries together with the HZB and
CERN designs are depicted in Fig. 9 and additionally
summarized in Table IV. The optimization results for the
three operating modes in terms of objective functions
including F0ðΩ�ðp̄Þ;HÞ, F4ðΩ�ðp̄Þ;HÞ and F5ðΩ�ðp̄Þ;HÞ,
are compared in Tables V, VI, and VII, respectively, for all
analyzed designs. As can be seen, though, the optimization
of the QPR has been conducted on the third mode, the
objectives F1ðΩ�ðp̄Þ;HÞ, F2ðΩ�ðp̄Þ;HÞ and F3ðΩ�ðp̄Þ;HÞ

have been significantly improved for all (first/second/third)
operating modes by 11–15=28–33=49–55½%�, 40–49=
37–44=35–42½%�, and 136–165=156–189=217–260½%�,
respectively. This improvement in the first and second
operating modes should be treated as a side effect of
optimizing the geometry with respect to the third mode.
The inspection of these tables revealed also that some

serious issues with the new CERN-QPR design might be
caused by the new pole shoes, for which the field within
the coaxial gap becomes relatively large. This, in turn,
can lead to the increase of the unwanted heating of the
normal-conducting flange [cf. F3ðΩ�ðp̄Þ; ·Þ for the QPR
designs, listed in Tables V, VI, and VII]. It can be noticed
that for the proposed design (solutions A and B) the
dimensionless factor F3ðΩ�ðp̄Þ; ·Þ takes averagely 2.5
times larger values than in the case of the HZB design
and more than 5 times bigger compared to the CERN-
QPR configuration. Another explanation for the larger
measurement bias of the surface resistance is that the
CERN-QPR modes and the neighboring dipole modes are
close to each other for a perfectly aligned QPR design.
Thus, even the relatively small input deviations of
geometrical variables related to the manufacturing toler-
ances can yield the excitation of the neighboring modes.
The difference in frequency of the closest neighboring
mode to the third operating mode is 9.2 MHz for the
CERN-QPR and 17.2 MHz for the HZB-QPR while it is
20.9 MHz and 19.9 MHz for solutions A and B,
respectively [cf. Fig. 15]. In our case, the found QPR
configurations (A and B) have larger separation between
the third mode and its neighboring mode.

FIG. 8. Convergence to the Pareto front using the VBS-based
approach (23) for several initial points N ¼ 101.

TABLE IV. Results for the MO optimization—parameter
domaina.

Name [mm] Ω�
HZBðp̄Þ Ω�

CERNðp̄Þ Ω�
CERNold

ðp̄Þ Ω�
Aðp̄Þ Ω�

Bðp̄Þ
p1 (gap) 0.50 0.70 1.00 0.58 0.55
p2 (rrods) 13.00 15.00 8.10 9.76 9.14
p3 (hloop) 10.00 10.00 10.00 9.72 9.64
p4 (rloop) 5.00 8.00 5.00 5.92 5.56
p5 (wloop) 44.00 40.93 37.08 43.79 43.53

p6 (dloop) 6.00 5.00 4.80 4.00 4.00
p7 (rcoil) 22.408 23.00 20.00 25.00 25.00
p8 (rsample) 37.50 37.50 37.50 35.00 35.00

aFor practical reasons, the resulting optimized parameters are
given with the required accuracy (the second decimal point). In
addition to the pole-shoe, the resonator body of CERN-QPR,
CERNold-QPR, and HZB-QPR have different shapes. The most
important differences are the radius and the length of the
cylindrical resonator body which are, respectively, 105 mm and
354 mm for the CERN-QPR, 105 mm and 361 mm for the
CERNold-QPR, and 120 mm and 304.75 mm for the HZB-QPR.
Additionally, the coaxial gap considered for the CERN-QPR,
CERNold-QPR, and HZB-QPR are 2, 2, and 1.5 mm, respectively.
The dimensions of the coaxial gap and the resonator body for the
obtained solutions A and B are similar to those of HZB-QPR.
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One can also notice that F4ðΩ�ðp̄Þ;HÞ and
F5ðΩ�ðp̄Þ;HÞ have been reduced for the solutions A and
B by 0.6–1.0=1.2–1.7=0.8–1.9½%�, 37–39=26–28=6–7½%�
compared to the HZB structure. In the case of the CERN
design, the corresponding functionals have been changed

by −0.4= − 0.9=0.3½%�, −33= − 29=7½%� with respect to
the HZB design. However, it should be noticed that these
objectives, that is, F4ðΩ�ðp̄Þ;HÞ and F5ðΩ�ðp̄Þ;HÞ have
not been a subject of the MO optimization. In fact, the
QPR is supposed to be operated at low field values

TABLE V. Results of the MO optimization for the first mode—objective spacea.

Means/configurations Ω�
HZBðp̄Þ Ω�

CERNðp̄Þ [%] Ω�
CERNold

ðp̄Þ [%] Ω�
Aðp̄Þ [%] Ω�

Bðp̄Þ [%]

F1ðΩ�ðp̄Þ; ·Þ [MA2=J] 50.07 32.15 −36.55 23.59 −52.88 56.31 11.13 58.47 15.39
F2ðΩ�ðp̄Þ; ·Þ [1=1] 0.155 0.218 41.15 0.158 2.19 0.227 48.84 0.216 39.70
F3ðΩ�ðp̄Þ; ·Þ [M 1=1] 1.668 0.890 −46.64 1.842 10.40 3.941 136.3 4.421 165.1

F4ðΩ�ðp̄Þ; ·Þ [1=1] 0.910 0.906 −0.43 0.857 −5.84 0.901 −1.01 0.905 −0.62
F5ðΩ�ðp̄Þ; ·Þ [mT=ðMV=mÞ] 7.888 5.250 −32.93 3.923 −50.19 4.824 −38.84 4.940 −37.38
F0ðΩ�ðp̄Þ; ·Þ [GHz] 0.429 0.398 −7.21 0.399 −6.85 0.439 2.21 0.439 2.23

aThe columns with percentage [%] indicate a ratio (increase þ/decrease −) of optimized configurations to Ω�
HZBðp̄Þ.

TABLE VI. Results of the MO optimization for the second mode—objective spacea.

Means/configurations Ω�
HZBðp̄Þ Ω�

CERNðp̄Þ [%] Ω�
CERNold

ðp̄Þ [%] Ω�
Aðp̄Þ [%] Ω�

Bðp̄Þ [%]

F1ðΩ�ðp̄Þ; ·Þ [MA2=J] 48.36 29.36 −39.28 22.99 −52.45 61.86 27.93 64.30 32.97
F2ðΩ�ðp̄Þ; ·Þ [1=1] 0.146 0.207 42.05 0.152 4.02 0.211 44.44 0.200 36.93
F3ðΩ�ðp̄Þ; ·Þ [M 1=1] 1.293 0.705 −45.47 1.478 14.33 3.322 156.8 3.742 189.3

F4ðΩ�ðp̄Þ; ·Þ [1=1] 0.920 0.911 −0.94 0.859 −6.6 0.904 −1.71 0.909 −1.24
F5ðΩ�ðp̄Þ; ·Þ [mT=ðMV=mÞ] 7.289 5.13 −29.61 3.936 −46.0 5.251 −27.95 5.368 −26.35
F0ðΩ�ðp̄Þ; ·Þ [GHz] 0.867 0.807 −6.95 0.803 −7.38 0.879 1.39 0.879 1.4

aThe columns with percentage [%] indicate a ratio (increase þ/decrease −) of optimized configurations to Ω�
HZBðp̄Þ.

TABLE VII. Results of the MO optimization for the third mode—objective spacea.

Means/configurations Ω�
HZBðp̄Þ Ω�

CERNðp̄Þ [%] Ω�
CERNold

ðp̄Þ [%] Ω�
Aðp̄Þ [%] Ω�

Bðp̄Þ [%]

F1ðΩ�ðp̄Þ; ·Þ [MA2=J] 52.28 30.63 −42.05 24.02 −54.06 78.98 49.43 82.04 55.21
F2ðΩ�ðp̄Þ; ·Þ [1=1] 0.132 0.19 44.00 0.142 7.57 0.187 42.09 0.178 35.0
F3ðΩ�ðp̄Þ; ·Þ [M 1=1] 0.791 0.467 −40.89 0.995 25.79 2.501 217.4 2.846 259.9

F4ðΩ�ðp̄Þ; ·Þ [1=1] 0.914 0.917 0.3 0.858 −6.13 0.907 −0.81 0.897 −1.94
F5ðΩ�ðp̄Þ; ·Þ [mT=ðMV=mÞ] 5.048 5.411 7.19 4.134 −18.11 4.736 −6.18 4.685 −7.19
F0ðΩ�ðp̄Þ; ·Þ [GHz] 1.312 1.225 −6.67 1.211 −7.70 1.317 0.41 1.317 0.41

aThe columns with percentage [%] indicate a ratio (increase þ/decrease −) of optimized configurations to Ω�
HZBðp̄Þ.

solution A solution B

FIG. 9. Comparison between the shape of the HZB design, CERN designs, and the obtained solutions.
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solution A

solution B

FIG. 10. Probabilistic density function for the focusing factor.

solution A

solution B

FIG. 11. Probabilistic density function for the homogeneity
factor.

solution A

solution B

FIG. 12. Probabilistic density function for the dimensionless
factor representing the losses on the normal-conducting flange.

solution A

solution B

FIG. 13. Probabilistic density function for the ratio of the
magnetic peak values.

solution A

solution B

FIG. 14. Probabilistic density function for the ratio of the
magnetic peak by the electric peak values.

solution A

solution B

FIG. 15. Probabilistic density function for the frequency of the
third operating mode. The dashed vertical lines show the location
of the next two closest neighboring modes calculated for the
mean values given in Table IV.
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(in comparison with accelerating cavities) and, therefore,
the field emission problem, i.e, F5ðΩ�ðp̄Þ;HÞ is not a very
critical issue [[1] p. 70]. In the end, the small deviation
of the operating modes about 2.2=1.4=0.4½%�, which is
observed, can be compensated by changing the length of
the rods and/or lrans1 and ltrans2 parameters [1],
depicted in Fig. 3. Finally, the PDF’s analysis of the shapes
associated with the final configurations is depicted in
Figs. 10–15, respectively. They are obtained by evaluating
1 × 104 times the corresponding truncated response surface
models, defined by Eq. (10).

VII. CONCLUSION

In our work, we applied the PC and the VBS analysis to
find a robust design of the QPR. The expected value of the
figures of merit has been chosen as a robust measure.
Following the VBS decomposition, on the one hand, the
set of quantities of interest has been reduced. On the other
hand, the coefficients of the VBS have been used to
construct the enhancement gradient. This way, the scheme
of the MO steepest descent method has been modified in
order to take into account the manufacturing tolerance
related to the geometrical parameters.
Furthermore, based on the technical specification of the

QPR, the preferred solutions have been chosen as A, B to
find the optimized QPR configuration. As can be seen in
Tables V, VI, and VII, the robust designs of the QPR
(solutions A and B) allow for increasing the focusing
factor of the third mode by 50–57% and 158–168% in
comparison with the HZB and CERN designs, respectively.
The focusing factor of the first and second modes are
also improved in parallel as a side effect by 12–17% and
29–35%, respectively. This gives rise to a better resolution
in the determination of the surface resistance in different
frequencies. Additionally, the dimensionless factor of the
third mode, which takes into account the propagation of the
magnetic field into the coaxial gap around the sample,
is more than twice bigger than for the HZB and CERN
configuration. This improvement helps to decrease the
measurement bias observed for the third mode in HZB
and CERN designs. These results can be further improved
using both the Pareto technique and the robust or reliability
based frameworks, where either the expectations and
standard deviations or the probability of failure of objective
functionals are considered. It is seen as a promising
direction for future investigations.

ACKNOWLEDGMENTS

First of all, the authors would like to express their
sincere gratitude to Dr. S. Keckert and Dr. O. Kugeler
(Helmholtz-Zentrum Berlin, Germany) for the fruitful
QPR-related discussions. This work has been supported
by the German Federal Ministry for Research and
Education BMBF under Contract No. 05H18HRRB1.

Furthermore, the authors would like to thank Walter
Venturini Delsolaro (CERN, Switzerland), Marco Arzeo
(prev. CERN, Switzerland), and Veronica del Pozo Romano
(prev. CERN, Switzerland) for providing the information
about the CERN-QPRs structure.

APPENDIX: METHODS FOR MO
DESCENT DIRECTION

As in Refs. [59,64] the problem of computing a steepest
descent direction can be formulated as a convex quadratic
problem with linear inequality constraints

min
α∈Aadd

				
XL
l¼1

αlJFlðΩðpÞÞ
				
2

; ðA1Þ

where Aadd ⊂ RL is a set of the admissible vectors α with
non-negative components and α⊤ · α ¼ 1 such that

Aadd ¼
�
α ∈ RLjαl ≥ 0; ∀ l ¼ 1;…; L; ;

XL
l¼1

αl ¼ 1



:

Then, d is defined by Eq. (25).
The solution of (20a) can be also derived analytically

using the Theorem 2 in Ref. [66]. Please note that for
simplicity, the dependence of ðΩðpÞÞ has been suppressed
in the following equations and ∇fl ≔ JFlðΩðpÞÞ. Let us
define [66,69]

Dt;i1;i2;…;t ¼
Xt−1
j¼1

yjð−∇fijÞ −∇fit ;

such that

dt;i1;i2;…;t ¼
Dt;i1;i2;…;t

kDt;i1;i2;…;tk
; ðA2Þ

which satisfies

∇f⊤i1dt;i1;i2;…;t ¼ ∇f⊤i2dt;i1;i2;…;t ¼ … ¼ ∇f⊤it dt;i1;i2;…;t:

Then, if f∇f1;…;∇fng is a linearly independent set and d
is the analytic solution to (20a), there exists a positive
integer p with 1 ≤ r ≤ n such that d ¼ dr;i1;i2;…;r is defined
by (A2), where fi1;…; irg ⊂ f1;…; ng. In addition, d ¼
dr;i1;i2;…;r is also the r objective steepest descent direction
for fi1 ;…; fir.
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