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Laser-triggered ionization injection is a promising way of generating controllable high-quality electrons
in plasma-based acceleration. We show that ionization injection of electrons into a fully nonlinear plasma
wave wake using a laser pulse comprising of one or more Laguerre-Gaussian modes with combinations of
spin and orbital angular momentum can generate exotic three-dimensional spatial distributions of high-
quality relativistic electrons. The phase dependent residual momenta and initial positions of the ionized
electrons are encoded into their final phase space distributions, leading to complex spatiotemporal
structures. The structures are formed as a result of the transverse (betatron) and longitudinal (phase slippage
and energy gain) dynamics of the electrons in the wake immediately after the electrons are injected.
Theoretical analysis and three-dimensional simulations verify this mapping process leads to the generation
of these complex topological beams. These beams may trigger novel beam-plasma interactions as well as
produce coherent radiation with orbital angular momentum when sent through a resonant undulator.
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Plasma-based acceleration (PBA) [1,2] is attractive
because it can provide acceleration gradients in excess
of GV=cm. The last several decades have seen tremendous
progress in PBA [3], including the demonstration of high
gradients [4–6] and the generation of electron beams
suitable for applications, e.g., driving a compact free-
electron-laser [7] and advanced QED studies [8,9], pro-
ducing bright and collimated X-rays [10] for high energy
density science [11] and imaging applications [12]. The
production of high-quality electron beams [13–17] from
controllable injection schemes [18–27] has been instru-
mental for these advances. Recent work on plasma cath-
odes has opened the possibility of generating femtosecond
duration electron beams with peak currents as high as
hundreds of kA [28,29] and normalized emittance ϵn as low
as 10’s of nm [13,14,16,17,30–32].
Besides having the potential to achieve unprecedented

beam brightness, plasma cathodes can imprint multidi-
mensional spatial structures onto the accelerated beams.

For instance, several schemes purport to generate longitu-
dinally bunched (1D) electrons [33–37] with potential to
produce temporally coherent radiation [38]. Electron rings
have been observed in experiments from electron trapping
within wake pockets created by sheath splitting [39].
Simulations have predicted that such electron rings can
also be generated in donut shaped wakefields driven by
relativistic higher order Laguerre-Gaussian (LG) laser
pulses with normalized vector potentioal aL > 1 [40],
where aL ≡ 8.6 × 10−10λ ½μm�I1=2 ½W=cm2� > 1 and λ, I
are the wavelength and intensity of the laser pulse.
Producing electron beams with complicated topology

through self-injection in nonlinear plasma waves is both of
fundamental [41–44] and practical interest. Helically or
sinusoidally modulated beams could be used to achieve
superradiant emission of broadband X-rays in conventional
and plasma-based light sources [45]. Furthermore, relativ-
istic beams with nontrivial topologies could potentially
emit coherent radiation with orbital angular momentum
(OAM) [46,47], beyond the visible spectrum [48]. Short-
wavelength OAM (vortex) light is interesting because it can
extend the OAM laser-matter interactions to the nanometer
or even atomic scale thereby enable interesting applications
in many fields [49–54]. However, current laser plasma–
based schemes produce electron beams with spiral struc-
tures by transferring a large amount of angular momentum
to them through the twisted wakefield [44] or the twisted
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electromagnetic fields of a super-intense laser (aL ∼ 100)
with high-order LG mode [55–57]. These beams are
characterized by large emittance and almost continuous
energy spectrum, and are therefore not suitable for pro-
ducing coherent radiation.
In this paper, we show through theory and supporting

particle-in-cell (PIC) simulations that a plasma cathode
based on ionization injection into a nonlinear wakefield
from nonrelativistic lasers (aL ∼ 0.1) with combinations of
spin and orbital angular momentum can generate high-
quality electron beams with exotic three-dimensioanl (3D)
spiral spatial distributions. The intensity of the ionizing
laser needs to be only marginally above ionization thresh-
olds, ∼1017 W=cm2, thus such configuration is realizable
with standard technology. It is now well appreciated that a
circularly polarized (CP) laser carries spin angular momen-
tum while a linearly polarized LG mode carries OAM [46].

An OAM mode can be described as A⃗ ¼ −Reðσe⃗x þ
iêyÞaLcjljp ðr; θ; zÞeiðlθ−kzþωtÞ where the angular momentum
per photon is lℏ [46], and σ ¼ 1 for right-handed CP and
−1 for left-handed. The details for the complex functions

cjljp are given in the Appendix A.
In ionization injection electrons are born insider a fully

blown out plasma wake through tunnel ionization of the
electric field from one or more laser pulses. The 3D phase
information of the laser at the instant of ionization is
imprinted onto the final electron distribution when the
electrons become trapped after the laser pulse eventually
overtakes them. The 3D spatial distributions evolve spa-
tiotemporally within the wake as the electrons gain energy
and phase slip longitudinally while executing betatron
oscillations under the transverse focusing force of the
ion column in the nonlinear wake. Although ionization
injection has been extensively studied, there has been no
investigation into how the spin and OAM of the laser is
imprinted onto the angular momentum and distribution of
the self-injected electrons. Here, we show that this concept
permits designing beams with complex spatiotemporal
distributions. The electrons generated in this new scheme
are characterized by small emittance (∼100 nm), small
energy spread (∼1.5 MeV), zero net angular momentum
with a small spread (∼100 nm ·mc), and kA current that
are suitable to produce high power short wavelength
radiation with OAM, where m is the electron mass and
c is the speed of light in vacuum. By using multiple laser
pulses with different polarizations and LG modes, a beam
with an axially varying spiral structure or multiple beams
with different twisted structures can be produced.
To illustrate how this injection scheme can be used to

generate spiraling and other complex 3D structured beams,
we consider a fully blown out wake generated by an
electron beam driver. We simulate the ionization injec-
tion by an appropriately delayed but comoving ultrashort
laser using nonevolving forces characteristic of nonlinear

wakefields using the 3D PIC code OSIRIS [58,59]. The
forces for electrons with forward velocity βzc are
Fz ¼ ξ

2
mω2

p; Fr ¼ −½r
2
þ ð1 − βzÞ r

2
�mω2

p, where ξ≡ ct −
z and r are the longitudinal and transverse coordinates
and ωp is the ambient plasma frequency. This significantly
reduces the computational requirements as we only need to
follow the injected particles. This approximation is well
justified as the wake created by a highly relativistic beam
driver evolves very slowly (hundreds of plasma periods
for GeV-class drivers) on the time scales of the injection
process (several plasma periods).
A CP 800 nm laser pulse with specified LG modes

propagates through a mixture of majority hydrogen
plasma with np ¼ 1.74 × 1017 cm−3 and minority He1þ

plasma with a density of 10−4np. The injected electrons are
supplied via laser ionization of the He1þ ions [60]. The
density of He1þ is set to be low to minimize the space
charge repulsion between the ionized electrons when they
have low energies. The lasers are focused at z ¼ 2 c

ωp
with a

spot size w0 ¼ 0.22 c
ωp
ð2.8 μmÞ and start at z ¼ −2 c

ωp
with

a duration τFWHM ¼ 0.23ω−1
p ð9.8 fsÞ. The intensities of the

pulses are adjusted to ensure similar injected charge in all
cases: aL ¼ 0.085 for ðl ¼ 0; p ¼ 0Þ while aL ¼ 0.14 for
other cases. The He1þ plasma starts from z ¼ −2 c

ωp
to

ensure that ionization within a Rayleigh length is included.
Simulation results are presented in Fig. 1 (see

Appendix B and C for details on the simulation parameters
and more cases). We only consider l ≥ 0 without loss of
generality. Density isosurfaces of the trapped electrons are
shown in the first column while their density distributions
in the ðθ; ξÞ plane are shown in the second column where
θ≡ atan2ðy; xÞ [61] is the angle in the transverse plane. As
is clear, electrons with complex 3D structures are formed.
When using a right-handed CP laser (σ ¼ 1) with a
fundamental LG mode ðl ¼ 0; p ¼ 0Þ, a single spiral beam
(corkscrew) is produced; when ðl ¼ 1; p ¼ 0Þ, two spiral-
ing beamlets twist around each other; when ðl ¼ 2; p ¼ 0Þ,
three beamlets twist together to form a triple helical
structure; when a left-handed CP laser (σ ¼ −1) with ðl ¼
1; p ¼ 0Þ is used, the spiral structure is absent altogether
with the resulting beam forming a series of hollow shells. In
the first two cases, the angle θ has an approximately linear
dependence on the longitudinal position ξ while this
dependence is absent in the last case. The beams have ϵn ∼
100 nm and ∼1.5 MeV uncorrelated energy spread (see
Appendix D for their longitudinal phase space). Their
energies at this time are ∼20 MeV and can be boosted to
GeV-class in the following acceleration.
As shown in Fig. 1, column 3, we introduce a bunching

factor bðk; lbÞ ¼ 1
N j

P
N
j¼1 exp½iðlbθj − kξjÞ�j to quantify

the 3D structures, where N is the number of the electrons.
For the beam produced by the l ¼ 0 laser, the bunching
factor is maximum at ðlb ¼ 1; k ≈ 1.3kLÞ and the beam
is rich in spatial harmonics, i.e., ðlb ¼ 2; k ≈ 2.6kLÞ,
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ðlb ¼ 3; k ≈ 3.9kLÞ, and ðlb ¼ 4; k ≈ 5.2kLÞ. When a laser
with l ¼ 1 is used, the bunching factor achieves its
maximum at ðlb ¼ 2; k ≈ 1.5kLÞ and the second harmonic
appears at lb ¼ 4; k ≈ 3kL. When a laser with l ¼ 2 is used,
the bunching factor is maximum at ðlb ¼ 3; k ≈ 1.5kLÞ
while the harmonics are not distinctly present at this
propagation time. A self-consistent simulation where an
electron beam driver excites the wake and ionization of
nHe1þ ¼ 0.05np provides the injected electrons is shown by
the dashed line. The high current (2.5 kA) injected beam
with 11.3 pC charge has a similar bunching factor for
lb ¼ 3 which validates the nonevolving force model and
shows the structure is still formed even for kA currents.
In reality, a gas mixture of hydrogen and helium can be
used while the electron of hydrogen and the first electron
of helium can be ionized by the beam driver and/or a
separate low intensity ionization laser. Thus the density
of He1þ which is formed by ionization of the first helium
electron can be adjusted by controlling the density of
helium atoms while the background electron density is
controlled by the ratio of hydrogen to helium.
When the polarization direction of the l ¼ 1 laser is

reversed from right-handed to left-handed, the bunching
factor is zero for all lb ≠ 0. Interestingly, the beams at this
time are hollow which may be used to generate plasma

wakes suitable for positron acceleration [40,62] and clean
the halo from heavy ion beams in conventional particle
accelerators [63].
To understand the simulation results, we propose a

model for the dynamics of the ionized electrons. After
being tunnel-ionized, the electrons begin to move under
the influence of the laser field and the plasma wakefield.
When studying the longitudinal dynamics, the axial
oscillations inside the laser pulse can be ignored since
the energy gain from the low-intensity laser is negligible
compared to that due to the wake. There is thus a
longitudinal mapping between initial longitudinal posi-
tion ξi and the final position ξ as described in Ref. [30].
In the case of a highly relativistic wake such as that
produced by a GeV class e-bunch, the electrons ionized
inside the wake first slip back but are accelerated by the
longitudinal electric field of the wake, until they gain
sufficient energy to move nearly synchronously (phase
locked) with the wake longitudinally. This nearly locked
position can be calculated using the form of the
acceleration gradient inside the wake [30,34] as

kpξ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ðkpξiÞ2

q
. Longitudinal mixing happens,

i.e., electrons released at different time can reside in
the same final slice [30].
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FIG. 1. The structures of the injected electrons at ωpt ¼ 31. First row: Isosurface of the electron density and its projections on each
plane. Second row: Normalized density distribution of the electrons in the θ − ξ plane. The black dashed lines represent the predications
from Eq. (2). Third row: bunching factor.
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The transverse motion of the injected electrons can be
divided into two stages. In the first stage, after ionization,
the electrons respond to the oscillating laser field. Since the
field amplitude of the laser (∼10 mcωp

e ) is typically much
higher than the local value of the wakefield (∼0.1 mcωp

e ), the
electrons can be assumed to oscillate only under the
influence of the laser field. The electrons are rapidly passed
over by the ionizing laser since their longitudinal velocities
are much less than c, and they then conduct betatron
oscillations in the wakefield [64].
The transverse canonical momentum P⃗⊥ ≡ p⃗⊥ − eA⃗⊥ is

conserved if a plane wave assumption is made. In the first
stage, so long as kLw0 ≫ 1 then canonical momentum
remains approximately satisfied for LG modes. We have
verified the conservation of P⃗⊥ for the parameters used
in the simulations by carrying out test particle simula-
tions using OSIRIS (see Appendix E). Thus, the momenta
of the electrons when they leave the laser pulse are equal to
the vector potential at the instant of ionization. For a CP
laser pulse of a single LG mode, the normalized vector
potential are approximately ax ≈ −σaðrÞ cosðlθ − ξ̂Þ;
ay ≈ aðrÞ sinðlθ − ξ̂Þ, where ξ̂ ¼ kLξ. The transverse coor-
dinates are assumed to be not changed during the transit
time of the lasers [65].
In the second stage, the electrons begin to respond to

the wakefield. Assuming each electron experiences a
constant acceleration gradient Ez and its energy increases
adiabatically, the asymptotic solution of the equation of
motion is [30]

x ≈
�
1

γ

�1
4

xi cosΦþ
�
4

γ

�1
4 pxi

mckp
sinΦ and

y ≈
�
1

γ

�1
4

yi cosΦþ
�
4

γ

�1
4 pyi

mckp
sinΦ ð1Þ

where xi ¼ ri cos θi; yi ¼ ri sin θi;
pxi
mc ≈ σai cosðlθi − ξ̂iÞ;

pyi

mc ≈ −ai sinðlθi − ξ̂iÞ, and ai is the laser normalized vector

potential when the electrons are ionized, Φ ≈
ffiffiffiffi
2γ

p
−

ffiffi
2

p
eEz=ðmcωpÞ is

the betatron phase, γ ¼ 1þ eEz
mc ðz − z0Þ is the relativistic

factor. Equation (1) can be used to determine θ ¼
atan2ðy; xÞ [61].
The laser pulse transfers part of its angular momentum

(spin and orbital) to the ionized electrons as Lz ≡ xipyi −
yipxi ≈ riai sin½ðlþ σÞθi − ξ̂i� which is conserved when
the electrons move inside an axisymmetric ion column.
Since the electrons are ionized uniformly in θi by a CP
laser, each slice possesses zero net angular momentum if
lþ σ ≠ 0 with a small spread. On the other hand, when
lþ σ ¼ 0, each slice possesses a ξ-dependent angular
momentum. The net transverse momentum of each slice
is finite for l ¼ 0 and zero for l ≠ 0. Thus, the center of

each slice oscillates linearly for l ¼ 0 and stays at rest for
other cases.
To analyze the formation of these twisted structures, we

must map the initial spatial distribution of the ionized
electrons to their present distribution. For electrons released
at ri, ξi and ti, the angular distribution is gl;σðθÞ ¼
fðθiÞj dθdθi j−1 ¼ j α2þ1þ2σαcos½ðlþσÞθi−ξ̂i�

α2−σl−αðl−σÞcos½ðlþσÞθi−ξ̂i� j, where α¼
kpriffiffi
2

p
ai

1
tanΦ

and ai is assumed to have a weak dependence on ri, and
fðθiÞ ¼ 1 is assumedbecause aCP laser is used.While θðθiÞ
is known, there is no explicit expression for θi as a function of
θ. However, we can still make some useful observations.
Clearly if l ≥ 1, then if α ¼ 0 or∞, gl;σðθÞ is a constant. The
variable α evolves as the particles are accelerated and α ¼
0ð∞ÞwhenΦ ¼ nπ þ π

2
ðnπÞwhere n is an integer. We next

discuss some behaviors for a right-handedCP laser: gl≥1;1ðθÞ
achieves its maxima at θi ¼ 2nπþξ̂i

lþ1
for α ≥ l or 0 ≤ α < 1, at

θi ¼ ð2nþ1Þπþξ̂i
lþ1

for α < −l or −1 ≤ α < 0, and at a θi when
the denominator vanishes for 1 ≤ jαj < l. Figure 2(a) shows

the dependence of g2;1 on α and θi. The angles θi ¼ 2nπþξ̂i
lþ1

or
ð2nþ1Þπþξ̂i

lþ1
are mapped to θ ¼ θi when ðαþ 1Þ sinΦ > 0 and

θ ¼ θi þ π when ðαþ 1Þ sinΦ < 0. Thus at some betatron
phases, these electrons are concentrated at lþ σ equally
spaced angles which depend linearly on ξi. This concen-
tration has a quasiperiod of thebetatron phase, π

2
.More details

can be found inAppendixG. For these special angles, gl;σðθÞ
is then known.
For l ¼ 0, the dynamics is different, i.e., when

α ¼ 0ðΦ ¼ nπ þ π
2
Þ, then from Eq. (1) it can be seen that

(c) (d)

(a) (b)

FIG. 2. Theoretical analysis of the twisted structure. (a) g2;1ðθÞ
with kpξi ¼ 2.24. The value at each α is normalized by 10 when
1 ≤ jαj < 2 and its maximum for other α. (b) The bunching factor
(k ¼ 0; lb ¼ lþ σ) and the betatron phase of the electrons
ionized with kpri ¼ 0.1; ai ¼ 0.1; kpξi ¼ 2.24, and ti ¼ 0.
(c) l ¼ 0, σ ¼ 1: the distribution of the electrons and their
centers (black circles) at ωpt ¼ 31 in five different slices using
Eq. (1). (d) The evolution of the peak of the bunching factor and
the radial position of the center of the kpξ ¼ 3 slice.
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r ¼ γ1=4
ffiffi
2

p
ai

kp
and θ ¼ ξ̂iðsinΦ > 0Þ or ξ̂i þ πðsinΦ < 0Þ.

This indicates a single spiral beam is formed. Thus, the
angular distribution has a quasiperiod of the betatron phase,
π. The bunching factor of the electrons for l ¼ 0 and l ¼ 2
in Fig. 2(b) confirms the quasiperiodic behavior of the
angle distribution. The insets show the distribution at
ωpt ¼ 0, 33 and 44 for l ¼ 2.
Physically the electrons in each slice form lþ σ beam-

lets and the center of each one conducts linearly oscillations
with a ξi-dependent angle. The twisted structures do not
rotate, they only flip when the centers cross the origin.
Electrons are ionized at different ri, which complicates

how electrons are distributed in θ. However, there are always
betatron phases where electrons are concentrated at lþ σ
angles due to evolution of α ∝ 1

tanΦ. Furthermore, due to
longitudinal mixing [30], one slice contains electrons ionized
at different times ti, which leads to a spread of the phase,
which blurs the twisted structure. The betatron phase grows
slower as the electrons gain energy, thus the rms spread of the

phase decreases as σΦ ≈ kpLinjffiffiffiffi
12

p 1ffiffiffiffi
2γ

p [30], where Linj is the

distance over which ionization occurs. In the simulations
presented here kpLinj ∼ 8. As a result, the amplitude of the
oscillations of b increases monotonically during the accel-
eration as shown in Fig. 2(d). Figure 2(c) shows the
distribution of the electrons with different ri and ti at five
slices (kpξi ¼ 2.236, 2.249, 2, 262, 2.287, 2.3 which
correspond to kpξ ¼ 3, 3.01, 3.019, 3.029, 3.038, 3.048
based on the longitudinal mapping). For each kpξi, the values
of ri and ti are consistent with what is seen in simulations.
The concentration at certain angles is clearly seen. In Fig. 2
(d), the long-term behavior of both b and r of the center
shows the oscillations and the increase of b with time is seen.
When the laser polarization is left-handed CP, similar

conclusions can be obtained when l ≠ 1. However, in the
case when l ¼ 1, g1;−1ðθÞ does not depend on θ, which
indicates that the electrons are distributed uniformly in θ,
which is consistent with the third row of Fig. 1.
Based on the aforementioned longitudinal mapping [30],

the electrons are concentrated at angles that can be written
as a function of their positions ξ after injection. For
example, when α < −l and ðαþ 1Þ sinΦ > 0 (θi where
gl;σ is maximum is mapped to θ ¼ θi),

θ ≈
2nþ 1

jlþ σj π þ
ðkL=kpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkpξÞ2 − 4

q
jlþ σj ; ð2Þ

Eq. (2) indicates there are jlþ σj beamlets spiraling around
each other. The comparison between the angles at which
electrons are concentrated in the θ − ξ plane and those
predicted by Eq. (2) are shown in the second column of
Fig. 1. Good agreement is obtained.
The mapping from the phase distribution of LG-CP

lasers to the 3D structure of the injected electrons can be

extended to lasers with arbitrary phase distribution and
electrons with more complicated structures being produced.
Here, we show an example [Fig. 3(a)]: two right-handed
CP laser pulses, one with ðl ¼ 0; p ¼ 0Þ; aL ¼ 0.057;
kpξcenter ¼ 2.5 and the other with ðl ¼ 2; p ¼ 0Þ; aL ¼
0.106; kpξcenter ¼ 2.3, copropagate into the nonlinear wake
driven by an 1 GeV electron beam. The structure of the
injected electrons gradually evolves from three beamlets
at the head of the beam to 1 beamlet at the tail [Fig. 3(b)].
The bunching factor achieves the maximum at ðlb ¼ 1;
k ∼ 1.7kLÞ and their harmonics from the l ¼ 0 laser, and at
ðlb ¼ 3; k ∼ 1.3kLÞ from the l ¼ 2 laser. Additionally the
bunching factor achieves the maximum at ðlb ¼ −2; k ≈
0.12kLÞ and ðlb ¼ 4; k ≈ 2.8kLÞ which is due to the mutual
interactions (beating) between these two laser pulses. The
generated electron beam has a charge of 8 pC, a 1.2 kA
peak current, a 105 (86) nm emittance and a 1.3 MeV
uncorrelated energy spread. By using laser pulses that have
different wavelengths, modes, angles, and delays one can
produce exotic 3D structured electron beams.
We point out that in contrast to previous work [44,55–57]

our work generates electrons with topological structures
when they conduct the betatron motion in the linear fields of
an ion column. These beams acquire zero net angular
momentumwith finite spread from the laser. This is different
from other work where the beam possesses a significant
amount of angular momentum [44,55–57] and the spiral
motion of ions is needed to conserve the angular momentum.
These high-quality beams are suitable to produce high power
coherent radiation with orbital angular momentum (OAM)
from ultraviolet to X-ray if they are boosted to high energy
and propagate through a magnetic undulator [48].
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FIG. 3. The structure of the injected electrons when two right-
handed CP laser pulses with ðl ¼ 0; p ¼ 0Þ and ðl ¼ 2; p ¼ 0Þ
are used. (a) A illustration of the laser-triggered ionization
injection in a beam driven plasma wake. (b) Density isosurface
and its projections to each plane. (c) The bunching factor. The
profiles of the pulses are as same as in Fig. 1.
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We point out that in contrast to previous work [44,55–57]
we consider using a low-intensity CP laser with LG modes
to generate topologically structured electron beams with
high quality, i.e., high current, low-energy spread and low
emittance. The beams form the topological structures gradu-
ally after they leave the laser pulse and conduct the betatron
motion in the linear focusing fields inside an ion column.
They acquire zero net angular momentum with finite spread
(see Appendix F) from the laser which makes it possible to
couple them out of the plasma while preserving their
structures [66–70]. This is different from other work where
the beam possesses a significant amount of angular momen-
tum [44,55–57] and the spiral motion of ions is needed to
conserve the angular momentum. These high-quality beams
are suitable to produce high-power coherent radiation with
OAM from ultraviolet to X-ray wavelengths if they are
boosted to high energy in an acceleration section and then
propagate through a magnetic undulator [48].
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APPENDIX A: EXPRESSIONS OF THE LASERS
WITH LAGUERRE-GAUSSIAN MODES

The transverse components of the normalized vector
potential of a circularly polarized LG laser used in the
simulation is

A⃗ðr; θ; z; tÞ ¼ −Reðσe⃗x þ iêyÞaLcjljp ðr; θ; zÞeiðlθ−kzþωtÞ;

ðA1Þ
where êx;y are the unit vector along the x and y directions,
σ ¼ 1 for right-handed polarization and σ ¼ −1 for left-
handed polarization. The LG modes are defined as

cjljp ðr;θ; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p!
πðpþjljÞ!

s
w0

wðzÞ
� ffiffiffi

2
p

r
wðzÞ

�jlj
exp

�
−

r2

w2ðzÞ
�

×Ljlj
p

�
2r2

w2ðzÞ
�
exp

�
−ikL

r2

2RðzÞ
�
expðiψðzÞÞ;

ðA2Þ

whereLl
p are the generalized Laguerre polynomials, wðzÞ ¼

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð z

zR
Þ2

q
is the spot size, RðzÞ ¼ z½1þ ð z

zR
Þ2� is the

radius of curvature of thewavefront, zR ¼ πw2
0

λL
is theRayleigh

length, andψðzÞ ¼ ð2pþ jlj þ 1Þ arctanð z
zR
Þ. The amplitude

is determined through aL. These expressions can be found
easily in textbooks.

APPENDIX B: PARTICLE-IN-CELL
SIMULATION SETUP

For the simulations shown in Figs. 1, 2, and 4, we use a
moving window propagating at speed of light in vacuum c
with a box size of 1.3 × 2.4 × 2.4ðc=ωpÞ3 and 650 × 960 ×
960 cells along the z, x, and y directions, respectively. The
cell sizes correspond to 0.002c=ωp along the z direction
and 0.0025c=ωp along the x and y directions. The time step
is dt ¼ 0.0013245ω−1

p which is close to the Courant limit
and one macroparticle per cell is used to represent the He1þ
ion. The ions are immobile in the simulations. The code
uses the Ammosov-Delone-Krainov (ADK) tunneling ion-
ization model [60].
The self-consistent simulation shown in the second

row of Fig. 1 (dashed line in the bunching factor plot)
and Fig. 3 uses a moving window propagating at c with a
box size of 10 × 10 × 10ðc=ωpÞ3 and 5000 × 1000 × 1000

cells along the z, x, and y directions, respectively. The grid
size is 0.002c=ωp along the z direction and 0.01c=ωp along
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FIG. 4. The structures of the injected electrons at ωpt ¼ 31
when a CP laser pulse with ðσ ¼ −1; l ¼ 0; p ¼ 0Þ or ðσ ¼
−1; l ¼ 2; p ¼ 0Þ is used. The first column: the isosurface of the
electron density distribution and its projections on each plane.
The second column: the bunching factor of the injected electrons.
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the x and y directions. The time step is dt ¼ 0.001ω−1
p and

onemacroparticle per cell is used to represent the beamdriver
electron, the plasma electrons and the He1þ ion. The ions are
immobile in the simulations. We use the customized field
solver described in Ref. [59]. An electron beam driver with
1 GeV energy and 19 kA peak current is used to excite the
nonlinear wave wake The spot size of the bi-Gaussian beam
driver nb ∼ exp ð− r2

2σ2r
− z2

2σ2z
Þ is σr¼0.7c=ωpð8.9 μmÞ and its

duration is σz¼0.835c=ωpð10.6 μmÞ.

APPENDIX C: THE STRUCTURES OF THE
INJECTED ELECTRONS WHEN A LASER

PULSE WITH ðσ = − 1;l = 0;p = 0Þ
OR ðσ = − 1;l = 2;p = 0Þ IS USED

The density isosurface of the injected electrons and their
bunching factors in two more cases are shown in Fig. 4:
ðσ ¼ −1; l ¼ 0; p ¼ 0Þ and ðσ ¼ −1; l ¼ 2; p ¼ 0Þ. Their
structures and the maximums of the bunching factor are
consistent with the theoretical predictions: when
ðσ ¼ −1; l ¼ 0; p ¼ 0Þ, a single spiral beam is formed,
and the bunching factor achieves its maximum at ðlb ¼
−1; k ≈ 1.3kLÞ and the beam is rich in spatial harmonics;
when ðσ ¼ −1; l ¼ 2; p ¼ 0Þ, a single spiral beam is
produced and the bunching factor achieves its maximum
at ðlb ¼ 1; k ≈ 1.3kLÞ. The profile and the intensity of the
lasers are the same as that of Fig. 1.

APPENDIX D: LONGITUDINAL PHASE SPACE
OF THE INJECTED BEAMS

In Fig. 5, we show the charge distribution of the injected
beams in their longitudinal phase space ðγmc2; ξÞ for the
five cases studied in Fig. 1. The self-consistent simulation
(bottom right) has an acceleration gradient with a smaller
chirp (Fz ≈ 0.4ξmω2

p) due to a relatively weak driver. Thus,
the beam from this simulation has lower energy at the same
acceleration distance.

APPENDIX E: CONSERVATION OF P⃗⊥ FOR A
FOCUSED LASER WITH LG MODE

We confirm the conservation of P⃗⊥ when the electrons
are ionized and move inside a focused laser with LG mode
by carrying out OSIRIS simulation. The setup of the
simulation is shown in Fig. 6(a) where a laser pulse with
ðσ ¼ 1; l ¼ 2; p ¼ 0Þ is considered. Two lines of He1þ
ions at y ¼ 0 and different axial locations (at the focal
position of the laser and one Rayleigh length away from the
focal position) are initialized. There is no external field in
the simulation, thus the released electrons oscillate inside
the laser pulse and drift after the laser passes them. Their
momenta after being passed by the laser are the residual
momenta we require. As shown in Figs. 6(b) and 6(c), we
can see the plane wave (transverse invariance) approxima-
tion works well for the parameters studied here.

APPENDIX F: THE TRANSVERSE MOMENTUM
DIRECTION OF THE INJECTED BEAMS

We show the transverse momentum direction of 1000
sampled electrons in Fig. 7 for ðσ ¼ 1; l ¼ 2; p ¼ 0Þ case

FIG. 5. Longitudinal phase space of the injected beams at
ωpt ¼ 31. The charge density is normalized to its peak in each
subplot. The black lines are the energy spectrum. The blue line in
the self-consistent case (bottom right) shows the current profile.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
z [c/

p
]

-0.05 0 0.05
residual momentum p

x
 [mc]

-0.05

0

0.05

a xi

e  from focal position

e  from z
rayleigh

 away

-0.05 0 0.05
residual momentum p

y
 [mc]

-0.05

0

0.05

-a
yi

e- from focal position

e- from z
rayleigh

 away

focal plane

zRayleigh

(a)

(b) (c)

FIG. 6. Simulation study of the conservation of P⃗⊥. The profile
and intensity of the laser pulse is the same as that of Fig. 1.

FIG. 7. The direction of the transverse momentum of 1000
sampled electrons.
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at ωpt ¼ 31. The direction of the momentum is approx-
imately along the radial direction which indicate each
electron has a small angular momentum.

APPENDIX G: PROPERTIES OF gl;σðθðθiÞÞ
In this section, we discuss the properties of the function

gl;σðθðθiÞÞ. We start with

tan θ ¼ y
x

ðG1Þ

then

d tanðθðθiÞÞ
dθi

¼ d tan θ
dθ

dθ
dθi

¼
dy
dθi

x − dx
dθi

y

x2

⇒
dθi
dθ

¼
d tan θ
dθ x2

dy
dθi

x − dx
dθi

y

¼ x2 þ y2
dy
dθi

x − dx
dθi

y
ðG2Þ

where d tan θ
dθ ¼ 1

cos2 θ ¼ x2þy2

x2 is used. Substituting the expres-
sions of x and y, it is straightforward to obtain

dθi
dθ

¼ α2 þ 1þ 2σα cos½ðlþ σÞθi − ξ̂i�
α2 − σl − αðl − σÞ cos½ðlþ σÞθi − ξ̂i�

ðG3Þ

where α ¼ kpriffiffi
2

p
ai

1
tanΦ.

1. Right-handed case: σ = 1

When the laser is right-handed CP polarized, the
expression for gl;1 can be obtained as

gl;1ðθÞ ¼
���� dθidθ

���� ¼ jα2 þ 1þ 2α cos x̄j
jα2 − l − αðl − 1Þ cos x̄j ; ðG4Þ

where x̄ ¼ ðlþ 1Þθi − ξ̂i and l ¼ 0; 1; 2; 3;….

When l ¼ 0, gl;1 is simplified to g0;1 ¼ jα2þ1þ2α cos x̄j
jα2þα cos xj . It is

easy to see g0;1 reaches its maximum at x̄ ¼ 2nπ for α ≥ 1,
at x̄ ¼ � cos−1ð−αÞ þ 2nπ for −1 ≤ α < 1, and at x̄ ¼
ð2nþ 1Þπ for α < −1, where n is an integer.
For l ≥ 1, the story is more complicated. For α ≥ l, gl;1

achieves its maximumwhen x̄ ¼ 2nπ since the denominator
is minimum and the numerator is maximum. For 1 ≤ α < l,
the denominator is zero when x̄ ¼ � cos−1ð α2−l

αðl−1ÞÞ þ 2nπ,

thus gl;1 reaches its maximum, which is infinity, at these
locations. For 0 ≤ α < 1, by solving dgl;1ðx̄Þ=dx̄ ¼ 0, the
maximum value of gl;1 is found to occur at x̄ ¼ 2nπ. The
properties of gl;1 for α < 0 can be found similarly, i.e., gl;1
reaches its maximum at x̄ ¼ ð2nþ 1Þπ for −1 ≤ α < 0

or α < −l, and at x̄ ¼ � cos−1ð α2−l
αðl−1ÞÞ þ ð2nþ 1Þπ for

−l ≤ α < −1.

2. Left-handed case: σ = − 1
When the laser is left-handed CP polarized, the expres-

sion of gl;−1 is

gl;−1ðθÞ ¼
jα2 þ 1 − 2α cos x̄j

jα2 þ l − αðlþ 1Þ cos x̄j ðG5Þ

where x̄ ¼ ðl − 1Þθi − ξ̂i and l ¼ 0; 1; 2; 3;….

When l ¼ 0, gl;−1 is simplified as g0;−1 ¼ jα2þ1−2α cos xj
jα2−α cos xj . It

is easy to see gl;−1 reaches its maximum at x̄ ¼ ð2nþ 1Þπ
for α ≥ 1, at x̄ ¼ � cos−1 αþ 2nπ for −1 ≤ α < 1, and
at x ¼ 2nπ for α < −1. When l ¼ 1, it is trivial to
see g1;−1 ¼ 1.
When l > 1, we need to be more careful. For α ≥ l, by

solving dgl;−1ðx̄Þ=dx̄ ¼ 0, the maximum value of gl;−1 is
found at x̄ ¼ 2nπ. When 1 ≤ α < l, the denominator is
zero when x̄ ¼ � cos−1ð α2þl

αðlþ1ÞÞ þ 2nπ, thus gl;−1 reaches its

maximum of infinity at these locations. For 0 ≤ α < 1, gl;−1
reaches its maximum at x̄ ¼ ð2nþ 1Þπ. The properties of
gl;−1 for α < 0 can be found similarly, i.e., gl;−1 reaches its
maximum at x̄ ¼ ð2nþ 1Þπ for α < −l, at x̄ ¼
� cos−1ð α2þl

αðlþ1ÞÞ þ 2nπ for −l ≤ α < −1, and at x̄ ¼ 2nπ

for −1 ≤ α < 0. The value of gl;σðx̄Þ is shown in Fig. 8 for
5 cases.

3. Mapping between θi and θ: Right-handed case σ = 1

When the laser is right-handed polarized, the relation
between θ and θi is

θ ¼ atan2

�
kpriffiffiffi
2

p
ai
sin θi cosΦ − sinðlθi − ξ̂iÞ sinΦ;

kpriffiffiffi
2

p
ai
cos θi cosΦþ cosðlθi − ξ̂iÞ sinΦ

�
: ðG6Þ

We can note when ðlþ 1Þθi − ξ̂i ¼ 2nπ, θi is mapped to

θ ¼ θi ¼
2nπ þ ξ̂i
lþ 1

if
kpriffiffiffi
2

p
ai
cosΦþ sinΦ > 0; ðG7Þ

and to

θ ¼ π þ θi ¼
ð2nþ lþ 1Þπ þ ξ̂i

lþ 1

if
kpriffiffiffi
2

p
ai
cosΦþ sinΦ < 0: ðG8Þ

Clearly, the angle 2nπþξ̂i
lþ1

is equivalent to ð2nþlþ1Þπþξ̂i
lþ1

when l
is odd.
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When ðlþ 1Þθi − ξ̂i ¼ ð2nþ 1Þπ,

θ ¼ θi ¼
ð2nþ 1Þπ þ ξ̂i

lþ 1
if

kpriffiffiffi
2

p
ai
cosΦ − sinΦ > 0;

ðG9Þ

and to

θ ¼ π þ θi ¼
ð2nþ lþ 2Þπ þ ξ̂i

lþ 1

if
kpriffiffiffi
2

p
ai
cosΦ − sinΦ < 0: ðG10Þ

These angles are also equivalent when l is odd.

4. Mapping between θi and θ: Left-handed
case σ = − 1

When the laser is left-handed polarized, the relation
between θ and θi is

θ ¼ atan2

�
kpriffiffiffi
2

p
ai
sin θi cosΦ − sinðlθi − ξ̂iÞ sinΦ;

kpriffiffiffi
2

p
ai
cos θi cosΦ − cosðlθi − ξ̂iÞ sinΦ

�
: ðG11Þ

We can note when ðl − 1Þθi − ξ̂i ¼ 2nπ, θi is mapped to

θ ¼ θi ¼
2nπ þ ξ̂i
l − 1

if
kpriffiffiffi
2

p
ai
cosΦ − sinΦ > 0; ðG12Þ

and to

θ ¼ π þ θi ¼
ð2nþ l − 1Þπ þ ξ̂i

l − 1

if
kpriffiffiffi
2

p
ai
cosΦ − sinΦ < 0: ðG13Þ

When l is odd, these angles are equivalent.
When ðl − 1Þθi − ξ̂i ¼ ð2nþ 1Þπ,

θ ¼ θi ¼
ð2nþ 1Þπ þ ξ̂i

l − 1
if

kpriffiffiffi
2

p
ai
cosΦþ sinΦ > 0;

ðG14Þ
and to

θ¼ πþ θi ¼
ð2nþ lÞπþ ξ̂i

l− 1
if

kpriffiffiffi
2

p
ai
cosΦþ sinΦ< 0;

ðG15Þ
when l is odd, these angles are also equivalent.

5. An example of the evolution of the angles

We show the evolution of θ for particles with different θi
when ðl ¼ 2; σ ¼ 1Þ in Fig. 9. When there are three knots,
i.e., the angles concentrate at three distinct values, the
bunching factor reaches its maximum [see Fig. 2(b) in the
main text].

FIG. 8. The value of gl;σðx̄Þ. Note the value at each α is normalized by 10 when 1 ≤ jαj < l and its maximum for other α.
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FIG. 9. Left: the initial distribution of the electrons. These
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and ti ¼ 0. Right: the evolution of θ and the betatron phase Φ.
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