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Recent studies have shown a novel coherent head-tail instability induced by beam-beam interaction with
a large Piwinski angle. The instability has become an important issue during the designs of CEPC and
FCC-ee. Simulations have further revealed that the longitudinal impedance has a strong impact on the beam
stability, squeezing the horizontal stable tune area seriously. The cross-wake force has been introduced to
represent beam-beam interaction. A mode coupling theory based on the localized wake (impedance) force
has been developed to explain the instability. However, the theory did not consider the effects of
longitudinal impedance. In this paper, we develop a new transverse mode coupling analysis method that
could be used to study the beam-beam instability with and without longitudinal impedance. The result
shows that the distortion of longitudinal phase space trajectory and the incoherent synchrotron tune shift
induced by longitudinal impedance would reduce the stable tune area.
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I. INTRODUCTION

Beam-beam interaction with a crossing angle has been
studied for many years. It has been noticed that increasing
the Piwinski angle (θP ¼ σz

σx
θc) may help to achieve a

higher luminosity [1]. However, only with a large Piwinski
angle, there exists very strong transverse nonlinear reso-
nance [2] coming from beam-beam interaction. The crab
waist collision scheme was proposed to suppress the
resonance by placing sextupoles before and after interac-
tion point (IP) with proper phase advances, which also
helps increase the beam-beam parameter [3]. This crab
waist scheme has been successfully tested to achieve a high
luminosity [4]. Several future colliders would adopt this
kind of collision scheme. With a large Piwinski angle, the
horizontal beam-beam parameter is normally very low
(ξx < 0.01). Usually, it is believed that the horizontal
oscillation of colliding bunch would be very stable.
However, during the study of FCC-ee, the simulations
[5,6] showed that there exists a coherent head-tail insta-
bility (X-Z instability) in collision with a large Piwinski
angle. The instability is observed when the strong-strong
model is used. The cross-wake force induced by beam-

beam interaction has been introduced to successfully
explain this newfound instability [7,8].
The stability of horizontal motion is sensitive to the

longitudinal dynamics. The longitudinal impedance would
modify the beam distribution, distort the longitudinal phase
space trajectory, and produce incoherent synchrotron tune
shift. Strong-strong simulation [9] showed that the stable
tune area would be shifted, and the width would be
squeezed when the longitudinal impedance is included in
the simulation. It is interesting to study how the longi-
tudinal impedance influences the X-Z instability.
The ordinary transverse mode coupling instability

(TMCI) theory [10] is derived as a perturbed Vlasov
equation. In this theory, the transverse impedance, a
perturbation source, represents the averaged wake force
around the circumference of the ring. If one employs this
ordinary approach to study beam-beam interaction, the
localized property of cross-wake force would not be taken
into account, which would not exhibit instability [8].
Moreover, since the TMCI is based on the solution of
Sacherer’s integral equation, only a few analytic solutions
are known for some specific beam distributions so far.
Some transverse mode coupling analytical methods have
been developed to treat the localized wake force [7,8,11].
However, the distortion of longitudinal phase space
trajectory and the incoherent synchrotron tune shift were
not considered in these papers. Other methods that could
consider these facts, such as the discretization method
proposed by Oide [12] and the Laguerre polynomial
expansion method proposed by Cai [13], just apply to
longitudinal instability problems. In short, the above-
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mentioned methods cannot be applied directly to analyze
the horizontal beam-beam instability with longitudinal
impedance.
In this paper, we will develop a new transverse mode

coupling analysis method where the effects of longitudinal
phase space trajectory distortion and incoherent synchrotron
tune shift induced by longitudinal impedance could be
considered.
This paper is organized as follows. The longitudinal

motion with wakefield is discussed in Sec. II. In Sec. III, we
introduce our transverse mode coupling analysis method;
and then, in Sec. IV, we apply our approach to cases with
and without longitudinal impedance. Some discussions and
conclusions are given in the end.

II. LONGITUDINAL MOTION WITH WAKEFIELD

A. Hamiltonian with potential-well distortion

We use s ¼ zþ v0t with s the longitudinal Serret-Frenet
coordinate, representing the arc length measured along the
closed orbit from an initial point, v0 ≈ c the synchronous
velocity and t clock time. z is the longitudinal distance from
the synchronous particle and z > 0 is the bunch head. In the
following, we will use s as the timelike variable and z as the
longitudinal coordinate.
As the particle moves along the beamline, the head of the

bunch will act as a source of an electromagnetic field that
kicks the tail. In one revolution, the relative longitudinal
momentum kick ΔδðzÞ received by a particle at z can be
expressed by a wake function [10],

ΔδðzÞ ¼ −
N0re
γ

Z
∞

−∞
Wzðz − z0Þρðz0Þdz0: ð1Þ

WzðzÞ is the ordinary longitudinal wake function with the
propertyWzðzÞ ¼ 0ðz > 0Þ. N0 represents the single bunch
population, re is the classical radius of the electron, γ is the
relativistic factor and ρðzÞ is normalized line density.
Without the longitudinal wakefield WzðzÞ, the

Hamiltonian of a single particle is described by a simple
harmonic oscillator

H0 ¼ −
ηp
2
δ2 −

μ2z
2ηpL2

z2; σz ¼
ηpL

μz
σδ ≡ βzσδ: ð2Þ

L represents the circumference of the ring, νs is the
synchrotron tune, μz ¼ 2πνs, ηp is the slippage factor, σz
is the rms bunch length, and σδ is relative rms energy
spread, respectively. Including the longitudinal wakefield,
the Hamiltonian of the particle then reads,

−H ¼ ηp
2
δ2 þ μ2z

2ηpL2
z2 −

1

L
N0re
γ

Z
z

0

dz00

×
Z

∞

−∞
dz0Wzðz00 − z0Þρðz0Þ

≡ ηp
2
δ2 þ μ2z

2ηpL2
z2 −

1

L
VðzÞ; ð3Þ

or in normalized form,

−
H

ηpσ
2
δ

¼ δ2

2σ2δ
þ
�
z2

2σ2z
−

1

ηpLσ2δ
VðzÞ

�
≡ δ2

2σ2δ
þ VPWðzÞ;

ð4Þ

where we define the potential-well VPWðzÞ as follows,

VPWðzÞ ¼
z2

2σ2z|{z}
byRF

−
1

μzσzσδ
VðzÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

byWz

: ð5Þ

In the following, we will use a parallel RLC resonator
model to describe the longitudinal wakefield,

WzðzÞ ¼ αRSeαz=c
�
cos

ω̄z
c

þ α

ω̄
sin

ω̄z
c

�
; z < 0: ð6Þ

where α ¼ ωR=2Q, ω̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − α2

p
. ωR is the resonant

frequency. Although we use the resonator model, our analysis
is applicable for any form of wakefield. The resonator
parameters are chosen by fitting the momentum kick
ΔδðzÞ which is obtained by CEPC impedance [14]. Here
we choose ωR ¼ 2π × 56 × 109 rad=s, Rs ¼ 891898Ω,
Q ¼ 10. Figure 1 shows each potential term of Eq. (5)
where σz ¼ 7.35 mm, σδ ¼ 1.055 × 10−3. Some parameters
[15] used in the paper are listed in Table I.

FIG. 1. Each term of the potential VPWðzÞ. The green line is the
potential generated by rf cavity ðrfÞ, the blue is wake potential
ðWzÞ, and the red is the total potential ðrf þWzÞ, where
σz ¼ 7.35 mm, σδ ¼ 1.055 × 10−3.
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The Vlasov equation describes the evolution of the
bunch distribution ψðz; δÞ under the influence of wakefield.
The stationary solution [10] to the Vlasov equation must be
a function of H,

ψðz; δÞ ¼ ψðHÞ: ð7Þ

For electron machine, due to the synchrotron radiation, the
stationary distribution should have a Gaussian distribution
with the rms value σδ in δ,

ψðz; δÞ ¼ 1ffiffiffiffiffiffi
2π

p
σδ

exp

�
−

δ2

2σ2δ

�
ρðzÞ: ð8Þ

This exponential, when combined with the Hamiltonian H
in Eq. (3) and stationary solution in Eq. (7), gives

ψðz; δÞ ∝ exp

�
H

ηpσ
2
δ

�
: ð9Þ

H can be regarded as a function of action J, H ¼ HðJÞ,
meaning that the stationary phase space distribution only
depends on J. Integrating both sides of Eq. (9) over δ, we
finally arrive at a self-consistent equation, the Haissinski
equation [16], for the linear density

ρðzÞ ¼ ρ0 exp
�
−
1

2

�
μzz

ηpLσδ

�
2

þ Nbre
ηpσ

2
δLγ

Z
z

0

dz00

×
Z

∞

z00
dz0ρðz0ÞW0

zðz00 − z0Þ
�
; ð10Þ

where the constant ρ0 is obtained by normalizing ρðzÞ
to unity.
We use the wake function in Eq. (6) to numerically solve

this integral equation. Figure 2 shows the comparison
of Gaussian distribution and equilibrium Haissinski dis-
tribution. When the longitudinal wakefield is included,
the bunch length is lengthened from σz ¼ 7.35 mm
to σz ¼ 8.03 mm.

B. Action-angle variables and Synchrotron tune

Particles move along closed δ − z orbits in longitudinal
phase space. Each closed orbit corresponds to a particular
action J and an energy E (E is the value of HamiltonianH).
The Hamiltonian of a particle is one-dimensional and time-
independent, thus, we expect to solve its motion numeri-
cally. For each specific orbit, using the Hamiltonian in
Eq. (4), we could derive the action J [17],

JðEÞ ¼ 1

2π

I
δdz

¼ 1

π

Z
zmax

zmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ2δ

�
VPWðzÞ þ

E
ηpσ

2
δ

�s
dz; ð11Þ

where zmin, zmax are the turning points in the longitudinal
phase space as shown in Fig. 3.
After determining J, we now use the second type of

generating function F2ðz; JÞ [17] to get its conjugate
coordinate ϕ. Note that J is a function of E, J ¼ JðEÞ,
thus, we have F2ðz; JÞ≡ F̃2½z; EðJÞ�. Using the properties
of generating function, we have the relation,

TABLE I. CEPC-Z half ring parameters.

Parameters

Circumference LðkmÞ 50
Synchrotron tune νs 0.014
Beta function at IP β�xðmÞ 0.15
Beam energy EðGeVÞ 45.5
Horizontal emittance ϵxðnmÞ 0.18
Half crossing angle θcðmradÞ 16.5
rms bunch length σzðmmÞ 7.35
Energy spread σδð10−3Þ 1.055
Bunch population N0ð1010Þ 8

FIG. 2. Comparison of Haissinski distribution of the design
population in the CEPC-Z to a Gaussian distribution.

FIG. 3. Distorted particle’s trajectory in longitudinal phase
space. Each circular set of points corresponds to a specific value
of Hamiltonian.
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δ ¼ ∂F2=∂z: ð12Þ

Substituting δ in Eq. (4) into Eq. (12) and integrating both
sides over z, we obtain

F̃2½z; EðJÞ� ¼
Z

z

zmin

dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ2δ

�
VPWðz0Þ þ

E
ηpσ

2
δ

�s
; ð13Þ

For a general potential well VPWðz0Þ, the integral may not
be analytically calculated but can be numerically
computed.
After the generating function F̃2½z; EðJÞ� is obtained by

numerical method, we can compute the conjugate angular
variable ϕ. According to the property of generating
function, we have

ϕ ¼ ∂F2ðz; JÞ
∂J ¼ ∂F̃2½z; EðJÞ�

∂J : ð14Þ

The discrete phase space points shown in Fig. 3 can be used
in the numerical integration of Eq. (11). For a specific point
ðz; δÞ, J is obtained. Then, ϕ is easily calculated by
Eq. (14). The map from ðz; δÞ to ðJ;ϕÞ is finally deter-
mined. The techniques for sampling (z, δ) points are not
unique. Here the sampling is taken as follows,

zi ¼
� zp þ ðzmax − zpÞ cos iπ

Nϕ
0 ≤ i ≤ Nϕ

2

zp þ ðzp − zminÞ cos iπ
Nϕ

Nϕ

2
< i ≤ Nϕ

; ð15Þ

where zp is the zero point of potential-well satisfying
VPWðzpÞ ¼ 0, and Nϕ ¼ 100.
We now calculate the synchrotron tune νsðJÞ as a

function of J from the Hamiltonian equation.
Considering E as the new Hamiltonian function, J as the
new momentum and its conjugate angle coordinate ϕ as the
new position, we have Hamilton’s equation of motion [17]

dϕ
ds

¼ dE
dJ

: ð16Þ

The synchrotron tune is, therefore, expressed as

νsðJÞ ¼
L
2π

dE
dJ

: ð17Þ

This can be calculated numerically using Eq. (11).
Another way to obtain νsðJÞ is that according to Eq. (4),

Hamilton’s equation is

dz
ds

¼ ∂H
∂δ ¼ −ηpδ: ð18Þ

After rearrangement, we have

ds ¼ −
dz
ηpδ

: ð19Þ

When aparticlemoves one circle in phase space, the distance
of the particle traveling along the accelerator ring is

ΔsðEÞ ¼
Z

s2

s1

ds ¼ 2

Z
zmax

zmin

1

−ηpδðEÞ
dz: ð20Þ

Therefore, the synchrotron tune νs can be expressed as,

νsðEÞ ¼
L

ΔsðEÞ : ð21Þ

Figure 4 shows the nominal synchrotron tune and inco-
herent synchrotron tune shift calculated by the above-
mentioned two methods. As one can see from the figure,
the tune shift mostly occurs at small amplitude Δνs≈
0.00225, and it asymptotically vanishes at large amplitude.

III. EIGENVALUE PROBLEM FOR LOCALIZED
SINGLE-BEAM WAKE FORCE WITH

LONGITUDINAL IMPEDANCE

A. Cross-wake force induced by beam-beam force

Here we briefly review the definition of cross-wake
force. Considering electron ðe−Þ and positron ðeþÞ bunches

FIG. 4. Synchrotron tune νsðJÞ as a function of J at the design
population. The red and blue dots are the calculated synchrotron
tune using two different methods: Eq. (17) and Eq. (21), respec-
tively. The green line is nominal synchrotron tune νs ¼ 0.014.

FIG. 5. Beam-beam interaction with a crossing angle in Lorentz
boost frame.
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colliding with half crossing angle θc in the x-z plane, the
two bunches head on each other tilted horizontally by θc in
the Lorentz boost frame [18] shown in Fig. 5. As the
collision proceeds from the head of the bunch to the tail, the
perturbed momentum kick due to horizontal betatron
oscillation experienced by a e∓ particle at z is expressed
as follows [8],

Δpð∓Þ
x ðzÞ ¼ −

Z
∞

−∞
Wð∓Þ

x ðz − z0Þρð�Þ
x ðz0Þdz0

þ
Z

∞

−∞
Wð∓Þ

x ðz − z0Þρð�Þðz0Þdz0xð∓ÞðzÞ: ð22Þ

where ρxðzÞ ¼ ρðzÞ · xðzÞ is the dipole moment of bunch,

and Wð∓Þ
x ðzÞ is the cross-wake function [7,8] for e∓

beams induced by beam-beam interaction, and can be
expressed for a flat beam as,

Wð∓Þ
x ðzÞ ¼ Nð�Þ

0 re
γð∓Þσ̄2x

WNðζÞ; ð23Þ

where ζ ¼ θPz=σz, θP is the Piwinski angle, σ̄x ¼ ðσþx þ
σ−x Þ=2 is the average horizontal rms beam size of
two bunches and WNðζÞ is normalized cross wake force
defined by,

WNðζÞ ¼ −1þ ζe−ζ
2=4

Z
ζ=2

0

eu
2

du: ð24Þ

Figure 6 shows the normalized cross wake force WNðζÞ.
Unlike the ordinary wake force, the cross wake WxðzÞ has
no causal property and is symmetric for the argument z.
The first term of the momentum kick in Eq. (22) is

related to the dipole moment of the opposite beam. While
the second term is proportional to its own horizontal
displacement xð∓ÞðzÞ, this term gives a horizontal tune
shift. In the following, we first study the effects of the first
term, and in Sec. IV C the second tune-shift term would
also be considered.

The transparency condition is assumed where the elec-
tron and positron bunches have the same parameters:
Nþ

0 γ
þ ¼ N−

0 γ
−, σþxz ¼ σ−xz, νþxz ¼ ν−xz. The stability of

colliding bunches is studied separately for the σ

mode ρðþÞ
x ðzÞ ¼ ρð−Þx ðzÞ and π mode ρðþÞ

x ðzÞ ¼ −ρð−Þx ðzÞ.
Representing the dipole moment distribution of two collid-
ing bunches as one same function, the momentum kick is
reduced to a normal wake force for a single bunch

ΔpxðzÞ ¼∓
Z

∞

−∞
Wxðz − z0Þρxðz0Þdz: ð25Þ

where the − and þ signs represent σ and π modes,
respectively.

B. Transverse mode coupling
theory with longitudinal impedance

We use the normalized coordinates, where x and px are
normalized by

x=
ffiffiffiffiffi
βx

p
→ x; px

ffiffiffiffiffi
βx

p
→ px: ð26Þ

Since the dipole amplitudes xðJ;ϕÞ; pxðJ;ϕÞ are periodic
functions of ϕ with period 2π in the longitudinal phase
space, we expand them as Fourier series,

xðJ;ϕÞ ¼
X∞
l¼−∞

xlðJÞeilϕ; pxðJ;ϕÞ ¼
X∞
l¼−∞

plðJÞeilϕ:

ð27Þ

In the arc section, the synchro-betatron motion for the
vector ½xlðJÞ; plðJÞ� is described by the matrix,

M0 ¼ e−2πilνsðJÞ
�

cos μx sin μx
− sin μx cos μx

�
: ð28Þ

Note that the synchrotron tune νsðJÞ is a function of J.
At IP, the change of dipole moment, which is induced by

cross-wake force, can be expressed as:

ΔpxðJ;ϕÞ ¼∓ βx

Z
Wxðz − z0ÞxðJ0;ϕ0Þρðz0Þdz0: ð29Þ

Using ρðz0Þ ¼ R
ψðJ0;ϕ0Þdδ0, we can rewrite the

equation

ΔpxðJ;ϕÞ ¼∓ βx

Z
Wxðz − z0ÞxðJ0;ϕ0ÞψðJ0ÞdJ0dϕ0; ð30Þ

where we have used the fact that the stationary phase-space
distribution ψðJ;ϕÞ in Eq. (9) is only a function of J,
ψðJ;ϕÞ ¼ ψðJÞ, and z is regarded as a function of
longitudinal phase space coordinates, z ¼ zðJ;ϕÞ,
z0 ¼ zðJ0;ϕ0Þ. It is worth pointing out that ψðJÞ is the

FIG. 6. Normalized cross wake force WNðζÞ, where
ζ ¼ θPz=σz

COUPLING EFFECTS OF BEAM-BEAM … PHYS. REV. ACCEL. BEAMS 25, 011001 (2022)

011001-5



distorted beam distribution. Substituting the expansions in
Eq. (27) into Eq. (30), we obtain the momentum change for
each azimuthal mode

ΔplðJÞ ¼∓ βx
2π

X
l0

Z
dJ0Wll0 ðJ; J0ÞψðJ0Þxl0 ðJ0Þ; ð31Þ

where

Wll0 ðJ; J0Þ ¼
ZZ

dϕdϕ0e−ilϕþil0ϕ0
Wxðz − z0Þ: ð32Þ

The mode index l is infinite, and the argument J is
continuous in Eq. (31). To obtain a matrix form, we
truncate l at �lmax, and discretize J at J1; J2;…; JnJ .
The Fourier expansions in Eq. (27) becomes

xðJi;ϕÞ ¼
Xlmax

l¼−lmax

xlðJiÞeilϕ; i ¼ 1; 2;…; nJ: ð33Þ

Here, nJ; lmax should be investigated carefully such that the
dominant head-tail mode could not be ignored. px is
truncated and discretized in the same way. In the arc
section, the transformation of vector ðxlðJiÞ; plðJiÞÞ in
Eq. (28) becomes

M0 ¼ e−2πilνsðJiÞ
�

cos μx sin μx
− sin μx cos μx

�
: ð34Þ

where the dimension of the matrix M0 is ð2ð2lmax þ 1Þ×
nJÞ2. The momentum kick of Eq. (31) is also converted to

ΔplðJiÞ ¼∓ βx
2π

X
l0

X
i0

ΔJi0Wll0 ðJi; Ji0 ÞψðJi0 Þxl0 ðJi0 Þ

≡ βxMlil0i0xl0 ðJi0 Þ: ð35Þ

The transformation at IP, therefore, can be written in a
condensed matrix form,

MW ¼
�

1 0

βxMlil0i0 1

�
: ð36Þ

We have obtained the one-to-one correspondence between
ðz; δÞ and ðJ;ϕÞ in Sec. II B. The integration for ϕ and ϕ0 in
Eq. (32) could be rewritten as a summation, therefore,

Wll0 ðJi; Ji0 Þ ¼
X
j

X
j0

e−ilϕjþil0ϕj0WxðzðJi;ϕjÞ

− zðJi0 ;ϕj0 ÞÞΔϕjΔϕj0 : ð37Þ

Finally, the stability of the colliding beams is determined
by the eigenvalues ðλ0sÞ of the revolution matrix M0MW .

IV. ANALYSIS OF COUPLING EFFECTS

In this section, our action discretization method and the
conventional radial mode expansion method will be used to
study the beam-beam instability without the influence of
longitudinal impedance. This could be a cross-check for
our formalism. Next, we consider the effects of impedance
based on our formalism. Finally, we present the results
where the beam-beam tune shift term is also included.

A. Eigensystem without longitudinal impedance:
Cross-check for the formalism

In Sec. III we have introduced our method. To check our
formalism, we neglect the influence of impedance. Without
the impedance, the solution to the Vlasov equation in
Eq. (8) is

ψðJÞ ¼ 1

2πεz
exp ð−J=εzÞ; ð38Þ

where J can be expressed as J ¼ ðz2=βz þ βzδ
2Þ=2,

ϵz ¼ σzσδ. The radial mode expansion method and action
discretization method are both used to study the stability of
colliding bunches.
First, we follow the approach [8] to consider the radial

mode expansion for the Eq. (27). Using the orthogonality
of Laguerre polynomials, each azimuthal mode is splitting
into a family of radial modes,

xlðJÞ ¼
X∞
k¼0

xkl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k!

ðjlj þ kÞ!

s
Ĵjlj=2LðjljÞ

k ðĴÞ; ð39Þ

where Ĵ ¼ J=ϵz. Similar to Eq. (33), we truncate k at kmax.
plðJÞ is also expanded in the same manner. Since the
longitudinal phase space is elliptical,Wll0 ðJ; J0Þ in Eq. (32)
can be converted into an impedance form,

Wll0 ðJ; J0Þ ¼
ZZ

dϕdϕ0e−ilϕþil0ϕ0
Wxðz − z0Þ

≈ 2πil−l
0−1

Z
∞

−∞
dωZ⊥ðωÞJl

�
ωrz
c

�
Jl0
�
ωr0z
c

�
;

ð40Þ

where rz ¼
ffiffiffiffiffiffiffiffiffiffi
2βzJ

p
, z ¼ rz cosϕ. The property of the

Bessel function has been used

1

2π

Z
2π

0

dϕeilϕ−ix cosϕ ¼ i−lJlðxÞ: ð41Þ

Z⊥ðωÞ is the Fourier transform of the cross-wake WxðzÞ,

Z⊥ðωÞ ¼ i
Z

∞

−∞
WxðzÞe−iωz=c

dz
c
: ð42Þ
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Since WxðzÞ is symmetric for the argument z, Z⊥ðωÞ is a
purely inductive even function of ω. Substituting Eq. (39)
into Eq. (31), and using the impedance expression of
Wll0 ðJ; J0Þ in Eq. (40), the momentum kick for each mode
Δpkl then becomes [8]

Δpkl ¼ −βx
X
k0l0

il−l
0−1

Z
dωZ⊥ðωÞgklðωÞgk0l0 ðωÞxk0l0

≡ −
X
k0l0

Mklk0l0xk0l0 ; ð43Þ

where

gkl ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πk!ðjlj þ kÞ!p �
ωσzffiffiffi
2

p
c

�jljþ2k
e−ω

2σ2z=2c2 : ð44Þ

Second, the discretization of J in our formalism is taken
as follows. We consider particles within �3σz regions
which corresponds J from 0 to Jmax ≈ 4.5ϵz. J is discretized
as

ffiffiffiffi
Ji

p ¼ iΔJ; i ¼ 1.::nJ. ΔJ is the spacing of the grid. In
this paper, we take nJ ¼ 40, lmax ¼ 8 in the discretization
method, and kmax ¼ 80, lmax ¼ 8 in the radial mode
expansion method.

Figure 7 shows the comparison of the two methods. The
growth rate is defined as the largest log jλj. One can see that
the growth rates computed by the two methods are not too
much different from each other. Actually, if we reduce the
spacing ΔJ (increase nJ) and increase the truncation order
lmax, kmax, the difference can be reduced. For example, in
action discretization method, the growth rate almost con-
verges when nJ ¼ 80. When nJ increases from 40 to 80, the
value of growth rate at νx ¼ 0.574 increases by about 5%.
This increment slightly reduces the difference between the
two method, but the computing time becomes four times.
Its a balance between efficiency and accuracy. One can see
that the peaks do not coincide with the synchro-betatron
resonance lines. This could be explained by the absence of
the tune-shift term in Eq. (22). The unstable regions are
above/below the resonance lines for σ=π mode, respec-
tively. This indicates that the tune shift induced by the
cross-wake force is negative for the σ mode and positive for
the π mode since it is generally the most unstable near the
resonance lines.
We refer to ν ¼ tan−1ðIm λ=Re λÞ=ð2πÞ as the eigentune.

The eigentune as a function of bunch population N=N0 is
shown in Fig. 8 where νx ¼ 0.546, νs ¼ 0.014. For
ν < 0.5, it is wrapped and ν̄ ¼ 1 − ν is shown in the plot.
The lines start from ν ¼ νx þ lνs for l > −4 and ν̄ ¼ 1 −
ðνx þ lνsÞ for l ≤ −4 at N ¼ 0. One can see that the
eigentunes shift downward for σ mode and upward for π
mode. The ν ¼ 0.504 mode (l ¼ −3) shifts downward,
approaching 0.5 and an instability occurs at N ≈ 0.6N0,

FIG. 7. Growth rate vs horizontal tune without longitudinal
impedance (ZL). The upper and lower plots show the results of
σ mode and π mode, respectively. The vertical lines are synchro-
betatron sidebands νx ¼ 0.5þ nνs, νs ¼ 0.014.

FIG. 8. Eigenvalues of σ and π modes as a function of bunch
population without longitudinal impedance, where νx ¼ 0.546.
The red and blue points represent the σ and π modes, respectively.
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which causes the half-integer resonance. This mode has the
fastest growth rate. We note that mode coupling occurs
between only modes with the same parity. For example, the
l ¼ −2, −4, and l ¼ −1, −5 modes merge and an imagi-
nary part of eigentune appears at N > 0.6N0.
Using the eigenvector, we can reconstruct the dipole

amplitude xðJ;ϕÞ in Eq. (27). Figure 9 presents the real part
of dipole amplitude xðz; δÞ of the most unstable mode as a
function of z and δ at the design population N ¼ N0. There
are three peaks along the azimuthal whichmeans the l ¼ �3
modes dominate. This is consistent with the result shown in
Fig. 8where the l ¼ −3mode is dominant and has the fastest
growth rate.
Figure 10 presents the real part of eigenvector xlðJÞ of

the most unstable mode as a function of J at the design
population N ¼ N0. As one can see from the figure that the
excited modes exist only for l ¼ �1;�3;�5…: and no for
l ¼ 0;�2;�4…. That is to say, the most unstable

eigenmode is induced by the coupling of modes with
the same parity, and there is no mode mixing with different
parity modes when the longitudinal impedance is not
considered. The following two mechanisms could explain:
(1) the cross-wake impedance Z⊥ðωÞ is a purely inductive
even function of ω, and (2) the longitudinal phase space
trajectory is elliptical, so we have the impedance form of
Eq. (40). The interaction between two modes is given by
the overlap integral of the two-mode spectra with imped-
ance. Therefore, the matrix elementMklk0l0 in Eq. (43) are 0
for l, l0 with different parities and retained for the exchange
of l ↔ l0; k ↔ k0 for l, l0 with same parity. That is, the
interaction occurs only in modes with the same parity. We
will see that these coupling features are quite different
when the longitudinal impedance is considered.

B. Eigensystem with longitudinal impedance

When we consider the longitudinal impedance, the
longitudinal phase space trajectory is distorted.
Equation (40) (43) are not valid, and we have to resort
to the discrete expansions of Eq. (33) (35) and numerical
evaluation of Eq. (37). In the following parts, we study the
coupling effects of beam-beam interaction and longitudinal
impedance based on our new formalism.

FIG. 9. Real part of dipole amplitude xðz; δÞ as a function of
z and δ associated to the mode with fastest growth rate for σ
mode, where νx ¼ 0.546. The z and δ axes are in units of σz and
σδ, respectively. x is in arbitrary unit.

FIG. 10. Real part of eigenvector xlðJÞ of the most unstable
mode as a function of J for σ mode, where νx ¼ 0.546, N ¼ N0.
xlðJÞ is calculated with linear interpolation. The J axes is in the
unit of

ffiffiffiffiffiffiffiffiffiffiffiffi
2J=ϵz

p
.

FIG. 11. Growth rate vs horizontal tune with longitudinal
impedance (ZL). The red and blue points represent the σ and
π modes, respectively.
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Figure 11 shows the growth rate for various horizontal
tunes where the longitudinal impedance is included.
Comparing to the results without impedance shown in
Fig. 7, the gap Δν between two neighboring peaks is
reduced from 0.014 to 0.011. Note that νsðJÞ ≈ 0.011 is the
synchrotron tune of small amplitude particle. It indicates
that the instability mainly comes from small amplitude
particle. This is understandable since the momentum
change of each mode in Eq. (35) is proportional to the
particle density ψðJÞ. Besides the change of gap Δν, the
once-stable working tune has turned unstable for both σ and
π modes when we consider the influence of impedance. We
will see that these changes result from the destruction of
symmetry of the longitudinal phase space trajectory and the
incoherent synchrotron tune shift, which are shown in
Fig. 3 and Fig. 4, respectively.
The eigentune spectrum as a function of bunch pop-

ulation for σ=π modes is shown in Fig. 12, where
νx ¼ 0.546. In the plots, the lines start from
ν ¼ νx þ lνs. Since the incoherent synchrotron tune shift
shown in Fig. 4 is negative, the induced shift of each
eigentune is positive for l < 0. Remember that the tune shift
of the π mode induced by cross wake is also positive; thus,
the total tune shift would be strengthened comparing to that
of π mode shown in Fig. 8. As a consequence, the modes
with different parities are merged at around N ¼ 0.25N0.
According to Eq. (32), due to the distortion of longitudinal
phase space trajectory, different parity modes can interact,
and instability starts to appear. By the way, if the trajectory
is not distorted, the instability would not appear. More
details will be shown and discussed later. As one continues
increasing the bunch intensity, modes with the same parity
would also couple. A similar analysis has also been done

for σ mode in Fig. 12. But in this σ mode, the tune shift
induced by cross wake is negative. Note that the tune shift
caused by incoherent synchrotron shift is positive for l < 0.
Therefore, the total tune shift of σ mode is smaller than that
of π mode, which explains that there is only one instability
threshold in the σ plot.
The following two simplification cases are studied to

investigate the effects of the incoherent synchrotron tune
shift and the distortion of longitudinal phase space trajectory,
separately: 1. The trajectory is elliptical and we consider the
synchrotron tune shift; 2. we consider the distortion of
elliptical trajectory but keep the synchrotron tune constantly
νsðJÞ ¼ 0.014. These assumptions may not be physical, but
they help us understand the mechanism of the instability.
Figure 13 shows the comparison of growth rate between

case 1 and case without longitudinal impedance for σ=π
modes. As one can see from the figure, the gap between two
neighboring peaks is reduced to Δν ≈ 0.011. There are no
structures between the peaks, and the width of stable area is
squeezed seriously both for σ and π modes, especially at
large νx. Figure 14 shows the variation in the eigentune and
growth rate of σ=π modes, where νx ¼ 0.546. One can see
from the figure that although different parity modes are
merged at around N ¼ 0.25N0, the instability does not
occur. We can conclude that if the longitudinal phase
trajectory is not distorted, different parity modes would not
be coupled to induce instability.
Figure 15 shows the comparison of growth rate between

case 2 and case without longitudinal impedance for σ=π
modes. Since we have assumed a constant synchrotron tune
νsðJÞ ¼ 0.014, the gap between two neighboring peaks is
unchanged Δν ¼ 0.014. As one can see from the figure,
new unstable tune areas appear in the regions where are

FIG. 12. Eigenvalues of the σ mode (left) and π mode (right) as a function of bunch population with longitudinal impedance (ZL),
where νx ¼ 0.546.
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FIG. 14. Eigenvalues of σ mode (left) and π mode (right) as a function of bunch population, where νx ¼ 0.546. In this case, we assume
no distortion of elliptical trajectory but keep the incoherent synchrotron tune shift.

FIG. 13. Comparison of growth rate between case 1 and case
without longitudinal impedance for σ=π modes. In case 1, the
trajectory is elliptical and we consider the incoherent synchrotron
tune shift.

FIG. 15. Comparison of growth rate between case 2 and case
without longitudinal impedance for σ=π modes. In case 2, we
consider the distortion of elliptical trajectory but keep the
synchrotron tune constantly νsðJÞ ¼ 0.014.
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stable in the case without impedance. These new unstable
tunes can be explained by the breaking of longitudinal
phase space symmetry. Since the cross-wake WxðzÞ is
symmetric for the argument z, Wll0 ðJ; J0Þ in Eq. (32)
vanishes for l, l0 with different parities if the phase space
is elliptical. However,Wll0 ðJ; J0Þ is finite if the phase space
is not symmetric. It indicates from Eq. (31) that the
azimuthal modes would couple with each other. As shown
in Fig. 10, without considering the effects of impedance,
only the same parity modes would couple with each other.
However, with the distortion of trajectory, as shown in
Fig. 16, all parity modes l ¼ 0;�1;�2;�3… are excited
and could be mixing.
To sum up, when the longitudinal impedance is included,

the longitudinal phase space trajectory would be distorted.
The distortion is the condition that different parity modes
couple to instability. By the way, the instability growth rate
is slightly reduced compared to the case without longi-
tudinal impedance.

C. Eigensystem with beam-beam tune shift

In the previous sections, we only study the first term of
cross wake force given in Eq. (22). In this subsection, we
would also consider the effects of the second term. We will
see that the second term only gives rise to a shift of
horizontal working tune.
Just like what we’ve done for Eq. (31), the dipole

moment kick is expanded into azimuthal modes

ΔplðJÞ¼∓ 1

2π

X
l0

Z
Wll0 ðJ;J0ÞψðJ0Þxl0 ðJ0ÞdJ0

þ 1

2π

X
l0

�Z
W̄ll0 ðJ;J0ÞψðJ0ÞdJ0

	
·xl0 ðJÞ; ð45Þ

where

Wll0 ðJ; J0Þ ¼
ZZ

dϕdϕ0e−ilϕþil0ϕ0
Wðz − z0Þ

Wll0 ðJ; J0Þ ¼
ZZ

dϕdϕ0e−iðl−l0ÞϕWðz − z0Þ: ð46Þ

The second tune-shift term, proportional to each azimuthal
amplitude xl0 ðJÞ, is the same both in σ and π modes.
Following the procedure laid out in Sec. III B, we can
obtain the eigenvalues of the revolution matrix M0MW .
Figure 17 shows the growth rate for various horizontal

tunes where we consider the second tune-shift term but
ignore the longitudinal impedance. As one can see from the
figure, when νx ¼ 0.5þ nνs, the collision is most unstable
for the σ mode. This may be explained as follows: We have
shown before that the tune shift induced by the cross-wake
force (first term) is negative for σ mode (Δνcw∶σ < 0); For
an eþe− collider, the coherent beam-beam tune shift
(second term) is positive (Δνbb > 0). Thus, the tune shift
induced by the two terms cancel each other out in the σ
mode. As for the π mode, since the tune shift induced by the
two terms are both positive, the total tune shift would be
strengthened.
Figure 18 shows the growth rate for various horizontal

tunes where we consider both the second tune-shift term

FIG. 16. Real part of eigenvector xlðJÞ of the most unstable
mode as a function of J for σ mode, where νx ¼ 0.546, N ¼ N0.
xlðJÞ is calculated with linear interpolation. In this case we
consider the distortion of longitudinal phase space trajectory but
keep the synchrotron tune constantly.

FIG. 17. Growth rate vs horizontal tune, where we also consider
the second tune-shift term of Eq. (22) but without the longitudinal
impedance (ZL). The red and blue points represent the σ and π
modes, respectively.
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and the longitudinal impedance. Comparing to Fig. 11, it is
clear that the second term gives rise to a horizontal tune
shift. Due to the incoherent synchrotron tune shift induced
by impedance, the amount of the tune shift is different from
the case without impedance.
In short, the second tune-shift term has little effect on the

growth rate and mainly gives rise to the shift of horizon-
tal tune.

V. CONCLUSIONS

The beam-beam coherent head-tail instability in collision
with a large crossing angle is strongly dependent on the
longitudinal beam dynamics. The longitudinal impedance
would distort the longitudinal phase space trajectory and
introduce an incoherent synchrotron tune shift. Moreover,
the beam-beam cross wake force is very localized.
In this paper, we have developed a transverse mode

coupling analysis method to study the coherent beam-beam
instability under the influence of longitudinal impedance.
The new approach has been cross-checked with the conven-
tional radial mode expansion method in the case without
longitudinal impedance. This method could be used to
study transverse instability induced by general wakefields
in presence of potential well distortion.

There exist stable horizontal working tune areas sepa-
rated by νs when the longitudinal impedance is not
considered. Mode coupling occurs only between azimuthal
modes with same parity. The eigenmode is a linear mixture
of unperturbed modes of same parity. This coupling feature
is derived from the symmetry of the cross-wake function
WxðzÞ and the elliptical trajectory of the particle in
longitudinal phase space.
The longitudinal impedance would distort the trajectory

and produce the incoherent tune shift. It is found that the
stable working tune area is almost squeezed out when we
consider the impedance. The distance between two
neighboring most unstable horizontal tunes is reduced
from 0.014 (unperturbed νs) to 0.011. It agrees with the
incoherent synchrotron tune shift for low synchrotron
amplitude particle. Mode coupling behavior is quite
different from that of without impedance. Modes with
different parities could be coupled with each other. The
eigenmode now is a linear mixture of unperturbed modes
of odd and even parities, which is the consequence of
symmetry breaking of the longitudinal phase space
trajectory.
Several aspects of this work can be studied in the future.

The strong-strong simulation shows that in future high
energy eþe− collider, the beamstrahlung effect plays a vital
role in beam-beam interaction [9]. It is interesting to
develop an analytical method for the combined effects of
beamstrahlung and longitudinal impedance. It is also
natural to study the mode coupling theory for beam-beam
interaction under the effects of both transverse and longi-
tudinal impedance.
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