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As the next generation of light sources is pushing toward high-brightness storage rings with ultralow
emittance, the control of the beam nonlinear dynamics becomes increasingly challenging. Nonlinear
perturbations, arising from sextupole cross talks, set the limit to the achievable dynamic performance of the
machine. Octupoles can be an efficient mean to tackle the remaining resonant driving terms generated to the
second order by the lattice sextupoles. However, they have been used sparingly in light sources because of a
lack of control on higher order effects. In this paper, we discuss the optimal positioning of octupoles, with
respect to the sextupoles present in the lattice, for a local and simultaneous compensation of all fourth order
on-momentum phase and amplitude dependent driving terms, using only three families of octupoles. In
addition, higher order geometrical terms are also minimized, including among others, second-order tune
shift with amplitude. This study is a continuation of past research made on the optimal use of octupoles for
the operation of future light sources. The correction method was built on observations made on a simple
model, then applied to a realistic low-emittance lattice, designed in the framework of the upgrade of the
National Synchrotron Light Source II, to demonstrate its potential.

DOI: 10.1103/PhysRevAccelBeams.24.114801

I. INTRODUCTION

Finding the right balance between low-emittance lattices
and the control of the stronger nonlinear effects, is one of
the most challenging task faced by new generations of light
sources. The required strong focusing quadrupoles come
with the rise of the lattice natural chromaticity. This implies
larger sextupole excitations in nonzero dispersion regions
to compensate for the negative chromaticity. A technique
for simultaneous correction of the chromatic and energy-
independent, or geometrical, third-order resonant driving
terms (RDTs) generated to the first order by the sextupoles,
have been extensively studied and applied in high-energy
colliders but also in several upgrades to fourth generation
light sources [1–5]. The correction is achieved by con-
straining the horizontal and vertical betatron phase-
advancesΔμx;y and βx;y amplitudes to form a minus identity
−I transformation between the sextupole families as
detailed in Refs. [6–8].
However, the correction of third-order driving terms is

often not sufficient to provide enough dynamic aperture
(DA). Large DA, defining the area in the phase space within

which the particle motion stays stable, is essential for
efficient beam injection. The cross talks between the first-
order sextupole RDTs generate amplitude dependent tune
shift (ADTS), fourth (see the Appendix) and higher order
phase-dependent terms affecting the overall efficiency of
the machine. The remaining higher order RDTs and
especially the ADTS, are usually minimized via additional
sextupoles in zero-dispersion region, called harmonic
sextupoles [9]. Due to the complex mechanism governing
second-order perturbation on the beam dynamics, the
harmonic sextupoles are optimized by means of numerical
tools and high-performance computers to explore and
optimize the parameter space [10–13]. A different way
of correcting second-order effects of the sextupoles is to use
octupole magnets. Octupoles have been studied for their
efficient cancellation of linear amplitude detuning terms
[14–16]. However, while correcting the linear ADTS,
octupoles generate additional nonlinear perturbations that
can rapidly limit the machine performance. Notably, phase-
dependent octupole-like resonances can add up with the
ones produced to the second order by the sextupoles
[17–19]. The latter are detailed in Appendix. In addition,
cross talks among octupole RDTs, produce important
higher order terms, contributing to the more chaotic
behavior of the particles. These additional unfavorable
effects from octupoles have been discussed in past studies
in Refs. [15,16]. Simultaneous compensation of those
additional high-order effects with octupoles is the main
goal of this paper.
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Our nonlinear scheme uses three families of octupoles,
powered to control the linear ADTS and for which their
location is optimized with respect to the lattice sextupoles, to
produce octupole-like RDTs that systematically counteract
the ones generated to the second order by the sextupoles with
similar amplitudes. In a domino effect, the resulting higher
order geometrical RDTs, simulated here up to the sixth
order (dodecapole), are also systematically minimized.
Dodecapole terms drive second-order ADTS that dominate
the tune shift at large excursion and thus the DA. The
effectiveness of the scheme has been demonstrated on a
simple symmetric and periodic lattice model, alternating
focusing and defocusing quadrupoles (FODO), detailed in
Sec. II and on a realistic lattice option for the National
Synchrotron Light Source II (NSLS-II) upgrade, for which
good agreement with themodel predictions is observed. This
nonlinear correction configuration consistently increase the
on-momentum DA by acting on the entire spectrum of the
geometrical RDTs, by design andwithout the intervention of
numerical optimization tools (see Sec. III). The impact on
chromatic effects and possible use of this scheme features on
future light source designs are discussed as well.

II. FINDING OPTIMAL LOCATION OF
OCTUPOLES FOR ON-MOMENTUM

CORRECTION

At injection the beam experience large horizontal
deviation from the ideal orbit. The resulting betatron tune
shift can bring the particle onto potentially unfavorable
resonance conditions. To the first order, the change in
transverse tune νx;y depends on the amplitude of the particle
action Jx;y, as in Eq. (1):

νx ¼ νx0 þ αxxJx þ αxyJy and ð1Þ

νy ¼ νy0 þ αyyJy þ αxyJx: ð2Þ

The linear anharmonicities αxx, αxy, and αyy, are
generated to the second order by the sextupoles as

αxx ¼
1
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where u, w are the index of the position of the sextupoles,
ϕx;y is the phase advance, b3 is the integrated strength of the

sextupoles, and the second-order Hamiltonians H̃ð2Þ
2200,

H̃ð2Þ
1111, and H̃ð2Þ

0022 are derived as in Appendix and in
Ref. [17]. In the case of low-emittance lattices, where
the sextupole strengths are typically strong, the linear tune
shift with amplitude can become significant even for small
beam transverse offset. At first, we take the same approach
for the correction of linear ADTS as studied in
Refs. [6,15,16] where three octupole families will act to
the first order to cancel them. Their strengths are calculated
analytically, by solving the linear system as in Eq. (6):

⃗koct ¼ U−1
oct:α⃗; ð6Þ

where ⃗koct is the vector strength of the three octupoles, α⃗
contains the three direct and cross terms of the linear ADTS
as calculated in Eqs. (3), (5), and (4), and Uoct is the 3 × 3
matrix, containing the first-order contribution of the three
octupoles, defined as

Uoct ¼
1

8π
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In order to built a correction method applicable to most
modern light source designs, a toy model was developed,
simulating the −Ix;y sextupole pairs configuration. A
FODO lattice is created and two pairs of sextupoles are
inserted at the peaks of βx;y and are separated by a
horizontal and vertical phase advances ΔμSx;y ¼
ð2nþ 1Þπ. The betatron amplitude, phases, and magnet
strength conditions, form an exact −Ix;y transformation
between the sextupole pairs. Three octupoles are then
placed close to each other at locations of high βx

βy
, high

βy
βx
, and βx

βy
≈ 1, in order to correct, with minimal strength, for

αxx, αyy, and αxy, respectively.
The impact of the octupole triplet location is observed

for various different positions in the model, illustrated in
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Fig. 1, with the same β-function conditions and thus with
the same strength ⃗koct for an exact cancellation of α⃗. For
each location, all RDTs are recalculated at the end of the
optics sequence. This scan shows the impact of octupole
triplet positions, when powered for the same correction of

linear ADTS, on the amplitude of the RDTs. The scan has
been applied for various conditions of ΔμSx;y, e.g., (π,π),
(3π,3π), and (3π,π). The results in Fig. 2 show the sum of
all geometrical s-dependent Hamiltonian RDTs of order
n ¼ 4 and all dodecapole geometrical RDTs (n ¼ 6),
computed at each position of the octupole triplet along
the FODO lattice using MADX-PTC [20] tracking code. It is
clear from the different scans performed, that particular
positions of the triplet, with respect to the sextupoles,
present significant compensation of these terms. Figure 2
also shows that the level of dodecapole RDTs, that include
second-order ADTS, is only reduced at the optimal octu-
pole positions. Similar compensation are observed for
decapole RDTs (n ¼ 5). The pattern that emerges for every
FODO model simulated, and only if ΔμSx;y ¼ ð2nþ 1Þπ, is
that the compensation appears when the octupole triplet is
located at

FIG. 1. Schematic of the octupole triplet position scan. ΔμO−Sx;y
is the phase advance between the octupole triplet and the first
sextupole. ΔμSx;y is the phase advance between the sextupoles and
is equal to ð2nþ 1Þπ.

FIG. 2. Top plot: Sum of all fourth order geometrical RDTs (order n ¼ 4) as function of the position of the octupole triplet with respect
to the sextupoles. The three RDTs contributing to linear ADTS are not included in the sum as they are fully cancelled at each position;
Bottom plot: Sum of all sixth order geometrical RDTs (n ¼ 6), including the amplitude dependent terms driving the second order
ADTS, as function of the position of the octupole triplet with respect to the sextupoles. From left to right, the scan has been applied for
ΔμSx;y ¼ ðπ; πÞ, (3π; 3π), and (3π; π). The value of the RDT sum drops drastically at the sextupole location (m ¼ 0) and at
ΔμO−Sx;y ¼ m × ΔμSx;y. The black dashed lines show the sum value of the sextupole contribution only.
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ΔμO−Sx;y ¼ m × ΔμSx;y; ð8Þ

where m is an integer. When these conditions are met, all
the fourth-order geometrical RDTs generated to the first

order by the octupoles (H̃ð1Þ
jklmjOct) and to the second order

by the sextupoles (H̃ð2Þ
jklmjSext) always counteract each other

with similar amplitudes. This ensure a systematic compen-
sation of all the phase-dependent terms of order n ¼ 4,
simultaneously with the cancellation of the linear ADTS
coefficients. In addition, the scheme ensure minimal
strength of higher order terms, providing the conditions
for a quasi full high order geometrical correction of the
system, within one cell.

III. APPLICATION OF THE CORRECTION
SCHEME ON A LOW-EMITTANCE LATTICE

The design of a light source is often optimized under a
large number a constraints, from the storage ring geometry,
electro-magnet strengths, optical functions in key regions
of the lattice and sometimes phase-advance between sextu-
poles. Therefore, adding phase constraints between octu-
poles and sextupoles during the lattice optimization
process, as suggested previously, can be troublesome in
practice. A simple optimal location for the octupole triplet,
in order to meet the high-order geometrical correction
discussed in Section II, is in phase with the chromatic
sextupoles (m ¼ 0). However, the octupoles will be inevi-
tably placed in dispersion region and thus generate addi-
tional nonlinear chromatic effects, that need to be
restrained. As a proof-of-principle, the octupole scheme
has been tested on one of the ultralow emittance lattice
options optimized for the upgrade of the NSLS-II. The cell
design and optical functions are shown in Fig. 3. This
preliminary option provides an equilibrium horizontal
emittance of ϵx ¼ 25.3 pm at a beam energy of 3 GeV,
while fitting the tunnel with a circumference of 792 m and
the insertion devices (IDs) source points of the existing

NSLS-II ring. The ring has a periodicity of 15, with short
and long straight sections for the insertion devices of 7.6
and 6.4 m, respectively. The low emittance is achieved
primarily thanks to the use of the novel complex bend (CB)
magnet, which consists of a single element with conven-
tional electromagnet dipoles of same field polarity, super-
posed with strong focusing and defocusing quadrupole
field generated by permanent magnets. A detailed technical
description of this CB solution is given in Refs. [21,22].
There are two families of chromatic sextupoles powered to
correct the natural chromaticity to ðþ2;þ2Þ units. The
three pairs of sextupole (one focusing, two defocusings) are
separated by a phase advance of ðΔνx;ΔνyÞ ¼ ð3π; πÞ. The
−Ix;y between each sextupole pair, cancels all third order
geometrical RDTs (n ¼ 3) within one cell.
The three families of octupoles, referred to as octC, are

placed in phase with the sextupoles (m ¼ 0) for optimal
correction. In order to compare the effect of the octupoles
location on the nonlinear dynamics, another triplet (octH) is
also installed at the edge of the long straight sections, where
the phase differences to the sextupoles ΔμO−Sx;y do not meet
the conditions for the simultaneous correction of geomet-
rical high-order effects. Figure 4 shows the location of both
triplet location options in the cell. Their integrated strengths
are calculated analytically from Eq. (6), to fully cancel
the three linear ADTS terms. The obtained vector of
strength for the phased triplet octC is ⃗koct;C ¼ ð−2.88 ×
103;−8.50 × 103; 3.95 × 103Þ ½m−3� and ⃗koct;H ¼
ð−3.45 × 103; 2.17 × 102; 4.37 × 102Þ ½m−3� for the octH
triplet.

A. Nonlinear on-momentum correction

For each case, the on-momentum phase-dependent
fourth-order terms driven to the second order by sextupoles
and to the first order by the octupoles within one cell, are
computed from the hamiltonian definitions given in
Appendix. The sextupole and octupole contributions can
be represented individually by a vector in the complex
plane. In Fig. 5, their contributions are compared for the
two triplet positions. For the unconstrained triplet case
octH, the strength of most geometrical fourth-order terms is
increased due to the presence of the octupoles. On the

FIG. 3. Twiss functions along one cell of a lattice option for
the upgrade of NSLS-II, based on Complex Bend technology.
The CB magnet is colored in yellow, the sextupoles in green,
and the octupoles in pink.

FIG. 4. Left: Position of the octupoles (magenta) in zero
dispersion with no phase constraint with respect to the sextu-
poles; Right: Octupoles location in phase with the chromatic
sextupoles.
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contrary, with the triplet octC, installed at the optimal
location, their first-order contributions always counteract
the ones generated to the second order by the sextupoles
with similar amplitudes. This leads to the compensation,
within one cell, of all geometrical fourth-order driving
terms simultaneously with the full cancellation of the linear
ADTS, with only three octupole families for which their
strengths are calculated analytically. Table I shows the
phase and amplitude dependent RDT values, computed
with MADX-PTC after one cell, solely by the lattice
chromatic sextupoles and by the octupole triplet octC.
The sum of these two contributions leads to almost zeroed
the amplitude of all fourth-order terms.
The correction of linear ADTS terms can be controlled

by applying a weight factor woct to the vector strength ⃗koct
as woct: ⃗koct. The sum contributions of fourth and higher
order on-momentum RDTs as function of woct are shown in

Fig. 6. The RDTs amplitude were computed up to the sixth
order using MADX-PTC after one turn, for both triplet
position options. As the linear ADTS are gradually zeroed,
the overall contribution of the octupole-like RDTs
increases by 20% in the case of the octH triplet.
Furthermore, the sum of second-order amplitude tune shift
contributions, driven by the terms h3300, h1122, h2211, and
h0033, increases by more than a factor 2. As simulated by
the FODO model studied in Sec. II, the octupole triplet
octC, systematically compensates for all high-order geo-
metrical terms, simultaneously. The sum of the fourth order
driving terms and the second order ADTS are decreased by
≈90% and ≈50%, respectively. In turns, the on-momentum
DA area is gradually enlarged with woct;C, up to a factor 7.
These results show the importance of the localization of

octupoles with respect to the lattice sextupoles. The
performance limitations of using octupoles dedicated to
the correction of linear ADTS, have been pointed out in
Refs. [15] and [16]. Notably, the rise of second-order
ADTS, while correcting linear tune shift, set a strong
limitation on the DA improvement. Here, we addressed
these issues by showing that at the optimal location, three
octupoles will act positively on the entire spectrum of on-
momentum resonances. The relevance of reducing non-
linear tune shift is particularly high for light sources using
the top-off injection system, like NSLS-II and its upgrade,
where the beam must remain stable beyond 5 mm offset in
the horizontal plane. Figure 7 shows the tune shift with
horizontal amplitude for three cases: without any octupoles
woct ¼ 0%, using only octH triplet and using octC. The tune
shift generated solely by higher order sextupole perturba-
tions, rapidly move the tune toward half or integer
resonances with Δx ≤ �2.5 mm. When fully correcting
linear ADTS with octH triplet, the nonlinear effects will
dominate the tune shift at larger amplitudes and here the
integer resonances is crossed for Δx ≥ �4 mm. Now, for
the optimal octupole position octC, the linear and nonlinear

FIG. 5. Vector representation of the 8 fourth-order on-momen-
tum RDTs, calculated from Eqs. (A5), (A6), (A7), (A8), (A9),
(A10), (A11), and (A12), generated to second order by the
sextupole cross talks (black contoured arrows) and to the first
order by the octupoles when powered to fully cancel the linear
ADTS. The left plot shows the case of the unphased octupole
triplet octH. The right plot shows the case of the optimal octupoles
location, where all fourth RDTs are simultaneously corrected by
the octC triplet.

TABLE I. Table of the fourth-order RDTs generated to the second order by the chromatic sextupoles and to the
first order by the octupole triplet OctC only, after one cell. With OctC, phase and amplitude resonances are
simultaneously and systematically compensated.

RDTs n ¼ 4 From sextupoles (Second order) From triplet OctC (First order)

αxx 45772 −45816
αyy 6516 −6518
αxy −34334 34326
H̃4000 ¼ H̃�

0400
−10784þ i 260 10441 − i 289

H̃3100 ¼ H̃�
1300

128þ i 11553 −156 − i 11225
H̃2011 ¼ H̃�

0211
−117 − i 10423 82þ i 12603

H̃1120 ¼ H̃�
1102

1329þ i 54095 −628 − i 51242
H̃2002 ¼ H̃�

0220
−14293þ i 184 13247 − i 71

H̃2020 ¼ H̃�
0202

−1940þ i 75 1146 − i 31
H̃0031 ¼ H̃�

0013
−98 − i 4102 45þ i 6200

H̃0040 ¼ H̃�
0004

−216þ i 12 152 − i 22
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tune shift are minimized together, leading to a very weak
tune shift even at large transverse offset. The half or integer
resonances are crossed only for Δx beyond �12 mm. The
nonlinear effects are minimized in both the horizontal and
vertical planes. Figure 8 shows how the optimal octupole
triplet octC progressively shrink the tune footprint, allowing
for a much larger DA in the horizontal and vertical
directions. This tune confinement approach, together with
the strength reduction of most geometrical RDTs, enlarge
the DA while making the lattice more robust to machine
imperfections.
The effect of simultaneous high-order correction has

been observed consistently for many different types of low
emittance lattices optimized with chromatic sextupole pairs
separated by a −Ix;y matrix. This nonlinear correction
method offers multiple advantages. While the sextupole
scheme ensures the self-compensation of third order
geometrical RDTs, the octupole triplet will extend the
local on-momentum correction to higher order, by-design,
with only three families of octupoles. There is no blind
optimization, the compensated nonlinear driving terms
correlated to the DA improvement are known and can
be tuned accordingly with one knob woct;C. The systematic
tune footprint confinement, even at large excursions, allows
to obtain sufficient DA improvement almost independently
of the tune working point (WP). Consequently, this gives
more degree of freedom on the choice of WP for tailoring
the lattice off-momentum dynamics. The latter is of prime
importance as the triplet is located near the chromatic
sextupoles, in nonzero dispersion region, and will inevi-
tably impact the machine momentum acceptance.

B. Nonlinear chromatic considerations

Touschek effect can drive particles to large momentum
offset δp, shifting their tunes onto potentially harmful
resonances, and ultimately reduce the beam lifetime.
Nonlinear chromatic effects set a limit to the achievable
momentum aperture of the lattice. The contribution of
octupoles to second-order chromaticity can be calculated as

∂2νx;y
∂δ2p ¼ � 1

8π

I
βx;yðsÞkoctðsÞη2xðsÞds; ð9Þ

where koct is the normalized octupole strength and ηx is the
horizontal dispersion function. In most cases, powering
the octupole triplet in nonzero dispersion region, with the
intent to fully correct high-order geometrical effects, as
proposed by our scheme, comes at the expense of increas-
ing second order chromatic tune shift. Hence, one needs to
balance between those competing effects to provide both
good injection efficiency and beam lifetime. In the present
lattice study case, the nonlinear chromaticity was mini-
mized by design during linear optimization. The impact of
the octC triplet, with woct;C ¼ 100%, on the lattice chro-
matic tune shift is shown in Fig. 9. In this situation, the

FIG. 7. Tune shift with horizontal amplitude in the case with
only sextupoles (woct ¼ 0%), with octH arbitrarily positioned
with respect to sextupoles, powered to cancel linear tune shift
(woct;H ¼ 100%) and in the case with the triplet at the optimal
position octC with woct;C ¼ 100%.

FIG. 6. Sum of the geometrical RDT amplitudes computed with
MADX-PTC [20] after one turn for each the fourth-, fifth-, and
sixth-order contributions, as function of the weight factor woct.
The values are normalized to the sum contributions of the
sextupoles only. The phase and amplitude dependent terms are
summed separately in order to distinguish the contribution of the
linear and second-order ADTS. The on-momentum DA area is
computed after 1024 turns using the ELEGANT [23] tracking code.
The top plot shows the case using octH triplet. The bottom plots
shows the case using octC triplet where the contribution of all
phase and amplitude dependent terms simultaneously decrease
with woct.
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reduction of momentum acceptance (MA) is too large for
viable machine operation. The MA can be improved by
optimizing the peak of βx;y and ηx functions at the
dispersion bumps in order to reduce the chromatic impact
of the octupoles. There is more flexibility to reduce the
dispersion level at the sextupoles, within their strength
limit, as the octupole triplet will suppress by design most of
the on-momentum perturbations. One can also optimize
the WP in order to move further away from half-integer and
integer resonances. Ideally, the design would have the
octupole triplet located at a phase separation, with respect
to the sextupoles, as given in Eq. (8) with m ≠ 0, in
nondispersion region. In this case, high-order geometrical
correction could be achieved without acting on the lattice

nonlinear chromaticity. However, the constraints imposed
on the NSLS-II upgrade design prevent from efficiently set
these phase condition between the sextupoles and the
octupoles. Another option, applied here, was to use both
octC and octH triplets to limit the increase of second-order
chromaticity from octC while keeping full control of the
linear ADTS. The use of the two knobs woct;C and woct;H

allows a straightforward trade-off between the correction of
geometrical and chromatic effects. By simply distributing
the weights as ðwoct;C; woct;HÞ ¼ ð70%; 30%Þ, the on-
momentum DA is still well improved while keeping the
MAwithin the desired range. The resulting DA and the MA
are shown in Figs. 10 and 11, respectively. The momentum

FIG. 8. On-momentum dynamic aperture increase with woct;C, tracked at the injection point for 1024 turns. As the strength of the
optimal triplet octC increase, the tune footprint is confined into a smaller area in the tune space, making the particles less likely to cross
potentially harmful resonances during injection.

FIG. 9. Comparison of the horizontal and vertical chromatic
tune shift, without octupoles and with the octC triplet fully
powered.

FIG. 10. On-momentum DA using both triplets octC and octH
to cancel linear amplitude detuning with ðwoct;C; woct;HÞ ¼
ð70%; 30%Þ, in order to relax their impact on nonlinear
chromaticity.
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aperture was searched by tracking particles for 2048 turns.
An rf cavity was turned on with harmonic number of 1320
and rf bucket height of 2.73% (rf voltage of 0.543 MV;
automatically determined from the nonlinear chromaticity
aperture data based on integer/half-integer resonance cross-
ing) at the beam energy of 3 GeV. Radiation loss was
included. The beam lifetime calculated at full coupling, is
around 2 h. The large on-momentum DA margin, which is
twice the �5 mm horizontal DA target, gives room to
further increase the beam lifetime. The optimal position of
the octupole triplet, handling at once the geometrical
effects, gives a powerful leverage to the designer to easily
optimize the machine performance up to an operational
level, even for ultralow emittance lattices. While the impact
of realistic beamline imperfections has not been included in
the performance evaluation, the tune confinement approach
adopted here, ensure the robustness of the machine in
operational conditions.

IV. CONCLUSIONS

This study gives a recipe for the location of octupole
families for the overall compensation of nonlinear geomet-
rical effects. Combining the technique of correcting linear
ADTS with three octupoles, together with their optimal
positioning with respect to the sextupoles, will provide a
simultaneous correction of phase and amplitude-dependent
fourth and higher order resonances. Under the appropriate
conditions, the fourth-order RDTs generated to the first
order by the octupoles systematically counteract the ones
generated to the second order by the sextupoles with similar
amplitudes. Consequently, higher order perturbations are
simultaneously minimized, including second-order ADTS,
leading to a considerable increase of on-momentum DA.

This is achieved with only three octupole families, con-
trolling most of the on-momentum RDT spectrum.
This nonlinear correction method has been demonstrated

on a simplified FODO model and on a realistic low
emittance design, optimized in the framework of the
NSLS-II upgrade. It has been tested on a variety of types
of multibend achromat light source lattices, featuring the
−Ix;y transformer between the sextupole pairs, with excel-
lent consistency. This octupole scheme is a high-order
complement to the−Ix;y transformation between chromatic
sextupoles. Despite that the octupole triplet does not target
the correction of nonlinear off-momentum effects, it was
shown that it gives enough flexibility for balancing
between geometrical and chromatic corrections in order
to reach the required performance. Future lattices could be
designed, based on this nonlinear scheme, with the octu-
pole triplet installed in nondispersion region and therefore
without degrading the chromatic condition. Finally, this
method offers a fast and simple way for the nonlinear
optimization of future high-brightness light sources, by
acting on a known set of parameters.
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APPENDIX: GEOMETRICAL FIRST- AND
SECOND-ORDER DRIVING TERMS FROM

OCTUPOLES AND SEXTUPOLES

This section provides the explicit expressions of the first-
order geometrical driving terms generated by the octupoles
and the second-order terms arising from the cross talks of
thin sextupoles, that were used for the analytical calculation
of fourth-order RDTs discussed in Sec. II. The following
expressions are a revision of the explicit formulas given in
Ref. [19]. These second-order Hamiltonians do not include
skew sextupole field components.
The Hamiltonian operators in the Courant-Snyder coor-

dinates are noted H̃ ¼ H̃ðJx; Jy;Φx;ΦyÞ with Jx;y;Φx;y the
linear invariant and betatron phases, respectively. The
operator can be decomposed in first- and second-order
terms as

H̃ ¼ H̃ð1Þ þ H̃ð2Þ ¼
XW
w¼1

H̃w þ
1

2

XW
w¼1

Xw−1
u¼1

½H̃u; H̃w�; ðA1Þ

where w and u are the indices of the multipole locations.
By deriving each term from the general definition given in
Appendix A of Ref. [24], one obtain the explicit expression
for the 11 amplitude and phase-dependent octupole-like
driving terms, and their corresponding complex conjugate,

FIG. 11. 6D Momentum acceptance for the octupole setup
ðwoct;C; woct;HÞ ¼ ð70%; 30%Þ, tracked along one super-cell for
2048 turns. An rf cavity was turned on with harmonic number of
1320 and rf bucket height of 2.73%. Radiation loss was included.
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driving the three linear ADTS as well as the 4νx, 2νx, 4νy, 2νy, 2νx þ 2νy, and 2νx − 2νy resonances. The following

equations compute the sum of the driving terms generated to the first order by the octupoles H̃ð1Þ
jklm and to the second order

by the sextupoles H̃ð2Þ
jklm:

H̃ð1Þ
2200 þ H̃ð2Þ

2200 ¼
XW
w¼1

−
b4;w
64

β2x;wh2x;þh2x;− þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
256

β
3
2
x;wβ

3
2
x;uð−3ei½Δϕx;u−Δϕx;w� þ 3ei½−Δϕx;uþΔϕx;w�

− ei½3Δϕx;u−3Δϕx;w� þ ei½−3Δϕx;uþ3Δϕx;w�Þ
�
h2x;þh2x;−; ðA2Þ

H̃ð1Þ
1111 þ H̃ð2Þ

1111 ¼
XW
w¼1

−
b4;w
16

βx;wβy;whx;þhx;−hy;þhy;− þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u

64
½ ffiffiffiffiffiffiffiffi

βx;w
p

β
3
2
x;uβy;wðei½Δϕx;u−Δϕx;w� − ei½−Δϕx;uþΔϕx;w�

�

þ β
3
2
x;w

ffiffiffiffiffiffiffiffi
βx;u

p
βy;uðei½Δϕx;u−Δϕx;w� − ei½−Δϕx;uþΔϕx;w�Þ

þ ffiffiffiffiffiffiffiffi
βx;w

p ffiffiffiffiffiffiffiffi
βx;u

p
βy;wβy;uð−ei½Δϕx;u−Δϕx;wþ2Δϕy;u−2Δϕy;w� − ei½−Δϕx;uþΔϕx;wþ2Δϕy;u−2Δϕy;w�

þ ei½Δϕx;u−Δϕx;w−2Δϕy;uþ2Δϕy;w� þ ei½−Δϕx;uþΔϕx;w−2Δϕy;uþ2Δϕy;w�Þ�ghx;þhx;−hy;þhy;−; ðA3Þ

H̃ð1Þ
0022 þ H̃ð2Þ

0022 ¼
XW
w¼1

−
b4;w
64

β2y;wh2y;þh2y;− þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
256

ffiffiffiffiffiffiffiffi
βx;w

p ffiffiffiffiffiffiffiffi
βx;u

p
βy;wβy;uð−4ei½Δϕx;u−Δϕx;w�

þ 4ei½−Δϕx;uþΔϕx;w� − ei½Δϕx;u−Δϕx;wþ2Δϕy;u−2Δϕy;w� þ ei½−Δϕx;uþΔϕx;wþ2Δϕy;u−2Δϕy;w�

− ei½Δϕx;u−Δϕx;w−2Δϕy;uþ2Δϕy;w� þ ei½−Δϕx;uþΔϕx;w−2Δϕy;uþ2Δϕy;w�Þh2y;þh2y;−; ðA4Þ

H̃ð1Þ
4000 þ H̃ð2Þ

4000 ¼
XW
w¼1

−
b4;w
384

β2x;wei½4ϕx;w�h4x;þ þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
256

β
3
2
x;wβ

3
2
x;u × ðei½ϕx;uþ3ϕx;w� − ei½3ϕx;uþϕx;w�Þ

�
h4x;þ; ðA5Þ

H̃ð1Þ
3100 þ H̃ð2Þ

3100 ¼
XW
w¼1

−
b4;w
96

β2x;wei½2ϕx;w�h3x;þhx;− þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
128

β
3
2
x;wβ

3
2
x;u × ðei½−ϕx;uþ3ϕx;w� − ei½3ϕx;u−ϕx;w�Þ

�
h3x;þhx;−;

ðA6Þ

H̃ð1Þ
2011 þ H̃ð2Þ

2011 ¼
XW
w¼1

−
b4;w
32

βx;wβy;wei½2ϕx;w�h2x;þhy;þhy;− þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
128

½ ffiffiffiffiffiffiffiffi
βx;w

p
β

3
2
x;uβy;w × ðei½3ϕx;u−ϕx;w�−ei½ϕx;uþϕx;w�Þ

þ β
3
2
x;w

ffiffiffiffiffiffiffiffi
βx;u

p
βy;uðei½ϕx;uþϕx;w� − ei½−ϕx;uþ3ϕx;w�Þ þ 2

ffiffiffiffiffiffiffiffi
βx;w

p ffiffiffiffiffiffiffiffi
βx;u

p
βy;wβy;u

× ðei½ϕx;uþϕx;w−2ϕy;uþ2ϕy;w� − ei½ϕx;uþϕx;wþ2ϕy;u−2ϕy;w�Þ�
�
h2x;þhy;þhy;−; ðA7Þ

H̃ð1Þ
1120 þ H̃ð2Þ

1120 ¼
XW
w¼1

−
b4;w
32

βx;wβy;wei½2ϕy;w�hx;þhx;−h2y;þ þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
128

½ ffiffiffiffiffiffiffiffi
βx;w

p
β

3
2
x;uβy;w

× ðei½ϕx;u−ϕx;wþ2ϕy;w� − ei½−ϕx;uþϕx;wþ2ϕy;w�Þ þ β
3
2
x;w

ffiffiffiffiffiffiffiffi
βx;u

p
βy;uðei½ϕx;u−ϕx;wþ2ϕy;u� − ei½−ϕx;uþϕx;wþ2ϕy;u�Þ

þ 2
ffiffiffiffiffiffiffiffi
βx;w

p ffiffiffiffiffiffiffiffi
βx;u

p
βy;wβy;uð−ei½ϕx;u−ϕx;wþ2ϕy;u� − ei½−ϕx;uþϕx;wþ2ϕy;u� þ ei½ϕx;u−ϕx;wþ2ϕy;w�

þ ei½−ϕx;uþϕx;wþ2ϕy;w�Þ�
�
hx;þhx;−h2y;þ; ðA8Þ
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H̃ð1Þ
2002 þ H̃ð2Þ

2002 ¼
XW
w¼1

−
b4;w
64

βx;wβy;wei½2ϕx;w−2ϕy;w�h2x;þh2y;−

þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
256

½ ffiffiffiffiffiffiffiffi
βx;w

p
β

3
2
x;uβy;wðei½3ϕx;u−ϕx;w−2ϕy;w� − ei½ϕx;uþϕx;w−2ϕy;w�Þ

þ β
3
2
x;w

ffiffiffiffiffiffiffiffi
βx;u

p
βy;uðei½ϕx;uþϕx;w−2ϕy;u� − ei½−ϕx;uþ3ϕx;w−2ϕy;u�Þ

þ 4
ffiffiffiffiffiffiffiffi
βx;w

p ffiffiffiffiffiffiffiffi
βx;u

p
βy;wβy;uðei½ϕx;uþϕx;w−2ϕy;u� − ei½ϕx;uþϕx;w−2ϕy;w�Þ�

�
h2x;þh2y;−; ðA9Þ

H̃ð1Þ
2020 þ H̃ð2Þ

2020 ¼
XW
w¼1

−
b4;w
64

βx;wβy;wei½2ϕx;wþ2ϕy;w�h2x;þh2y;þ

þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
256

½ ffiffiffiffiffiffiffiffi
βx;w

p
β

3
2
x;uβy;wðei½3ϕx;u−ϕx;wþ2ϕy;w� − ei½ϕx;uþϕx;wþ2ϕy;w�Þ

þ β
3
2
x;w

ffiffiffiffiffiffiffiffi
βx;u

p
βy;uðei½ϕx;uþϕx;wþ2ϕy;u� − ei½−ϕx;uþ3ϕx;wþ2ϕy;u�Þ

þ 4
ffiffiffiffiffiffiffiffi
βx;w

p ffiffiffiffiffiffiffiffi
βx;u

p
βy;wβy;uð−ei½ϕx;uþϕx;wþ2ϕy;u� þ ei½ϕx;uþϕx;wþ2ϕy;w�Þ�

�
h2x;þh2y;þ; ðA10Þ

H̃ð1Þ
0031 þ H̃ð2Þ

0031 ¼
XW
w¼1

−
b4;w
96

β2y;wei½2ϕy;w�h3y;þhy;− þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
128

½ ffiffiffiffiffiffiffiffi
βx;w

p ffiffiffiffiffiffiffiffi
βx;u

p
βy;wβy;uð−ei½ϕx;u−ϕx;wþ2ϕy;u�

þ ei½−ϕx;uþϕx;wþ2ϕy;u� − ei½ϕx;u−ϕx;wþ2ϕy;w� þ ei½−ϕx;uþϕx;wþ2ϕy;w�Þ
��

h3y;þhy;−; ðA11Þ

H̃ð2Þ
0040 ¼

XW
w¼1

−
b4;w
384

β2y;wei½4ϕy;w�h4y;þ þ i
XW
w¼1

Xw−1
u¼1

�
b3;wb3;u
256

½ ffiffiffiffiffiffiffiffi
βx;w

p ffiffiffiffiffiffiffiffi
βx;u

p
βy;wβy;uð−ei½ϕx;u−ϕx;wþ2ϕy;uþ2ϕy;w�

þ ei½−ϕx;uþϕx;wþ2ϕy;uþ2ϕy;w�Þ�
�
h4y;þ; ðA12Þ

where the resonance basis hq;� relates to the action-angle variables as hx;� ¼ ffiffiffiffiffiffiffi
2Jx

p
e�iΦx and hy;� ¼ ffiffiffiffiffiffiffi

2Jy
p

e�iΦy , ϕx;y is the
phase-advance at the multipole location, b3 and b4 are the integrated sextupole and octupole strengths, respectively.
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