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Beginning with a critical examination of the Lorentz-Abraham (LA) classical equation of motion for an
extended charge and the closely related Lorentz-Abraham-Dirac (LAD) equation of motion for a mass-
renormalized point-charge, the Landau-Lifshitz (LL) approximate solution to the LAD equation of motion
is determined for an electron subject to a counterpropagating linearly or circularly polarized plane-wave
pulse with an arbitrarily shaped envelope. A convenient three-vector formulation of the LL equation is used
to derive closed-form expressions for the velocities and associated powers of the electron directly in terms
of the time in the laboratory frame. The three-vector formulation also reveals definitive criteria for the LL
solution to be an accurate approximation to the LAD equation of motion and for the LL solution to reduce
to the solution of the Lorentz force equation of motion that ignores radiation reaction. Semiclassical
analyses are used to obtain simple conditions for determining the regimes where the quantum effects of
either Compton electron scattering by the incident photons or electron recoil produced by the emitted
photons is significant. It is proven that the LL approximation becomes an inaccurate solution to the LAD
equation of motion only for large enough electron velocities and plane-wave intensities that quantum recoil
effects on the electron can greatly alter the classical solution. Comparisons are made with previously
published analytical and numerical solutions to the LL equation of motion for the velocity of an electron in
a counterpropagating plane wave.
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I. INTRODUCTION

The deceleration of relativistic electrons by intense
counterpropagating optical laser beams has produced
X-rays and, more recently, γ-rays in the laboratory
[1–9]. Although the detailed theoretical determination of
X-ray and γ-ray production by the interaction of high-
energy electrons with intense optical lasers may require
the inclusion of quantum effects, a hybrid approach that
incorporates quantum corrections into a classical solution
can predict reasonable results [10,11]. Because the classical
Lorentz-Abraham-Dirac (LAD) equation of motion does
not have a closed-form solution to the problem of an
electron in a plane wave, nor is it amenable to a numerical
solution, especially when many charges are involved [12],
the more readily solvable Landau-Lifshitz (LL) approxi-
mation to the LAD equation of motion has become the
classical equation of choice for this problem within much
of the physics community [11–14].

Remarkably, Di Piazza [15,16] and later Hadad et al.
[17] have derived a closed-form solution to the LL
approximate equation of motion for the problem of a
plane-wave pulse scattered by a moving electron. These
authors use a four-vector formulation of the LL equation of
motion to determine the solution for the velocity compo-
nents of the electron in terms of the retarded time parameter
ξ ¼ ωðtþ z=cÞ, where ω is the angular frequency of the
plane wave, t is the time, c is the speed of light, and z is the
time-dependent longitudinal coordinate of the electron
(opposite the direction of propagation of a counterpropagat-
ing plane wave). The four-vector solution has also been
rederived by Ruijter et al. [18] for an electron that is initially
at rest. To obtain numerical results for the velocity compo-
nents as functions of time t, expressions for the proper time τ
in terms of ξ are found in Ref. [17] and then the time t is
found in terms of τðξÞ by numerically integrating the
relativistic factor γðτÞ with respect to the proper time τ.
In the present paper, the problem of the moving electron

illuminated by linearly and circularly polarized counter-
propagating plane-wave laser-beam pulses is revisited and
solved directly with the three-vector electromagnetic field
formulation of the LL approximate equation of motion. This
approach has the advantage of maintaining transparency of
the three-vector electromagnetic fields and velocities as well
as the envelope function of the plane-wave pulse throughout
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the solution. In addition, the three-vector formulation
reveals an explicit closed-form expression for the time t
in terms of the retarded time parameter ξ without having to
dealwith the proper time τ. It also facilitates the derivation of
a simple useful formula for the error in the radiated power
introduced by the LL approximation.
The explicit closed-form expressions for the velocity

components and relativistic factor as well as the radiated,
kinetic, Schott, and total-supplied power are evaluated
numerically for linearly and circularly polarized, uniform
and sinusoidal-envelope plane-wave pulses with a laser-
strength parameter a0 ¼ 100 and an initial electron rela-
tivistic factor γ0 ¼ 1000 in order to compare with the
numerical results given in Ref. [17] for the velocity
components and relativistic factor. These large laser inten-
sities and electron energies can produce measurable γ-ray
radiation [7,8]. For this high-speed, high-intensity problem,
it is found that the LL approximate solution predicts a
radiated power that agrees very closely with the exact LAD
expression for the radiated power evaluated with the
approximate LL velocity and acceleration components—
a result also predicted by the formula derived for the error
in the LL radiated power. Despite the erroneous irrevers-
ibility of the Schott power introduced by the LL approxi-
mate solution, this irreversible Schott power is found
nonetheless to be nearly equal to the reversible Schott
power in the LAD equation of motion. These close
agreements in radiated and Schott powers in the LL and
LAD solutions strongly confirm the high accuracy of the
LL approximation to the LAD solution for these particular
high-speed-electron and high-intensity-laser results.
Interestingly, the radius of the computed scattering cross

section of the high-speed electron in the counterpropagat-
ing high-intensity laser is much closer to the Compton
wavelength than the classical electron radius, which is on
the order of the radius of the Klein-Nishina scattering cross
section for Compton scattering of photons from the
electron. Also, as one might expect, the observed rapid
changes in the power radiated and relativistic factor near the
beginning of the uniform (rectangular-envelope) laser-
beam pulse are greatly reduced by the sinusoidal-envelope
pulse that begins continuously from a value of zero fields.
For relativistic electrons in high-intensity optical laser

fields, quantum effects may appreciably alter the classical
results [11,19–24]. Therefore, a concise semiclassical
determination is provided for the conditions on laser
intensity and electron energies for deciding the importance
of the three quantum effects that can significantly change
the motion and radiation of the electron, namely quantum-
vacuum electron-positron pair production, Compton scat-
tering of the incident photons, and electron quantum recoil
from photon emission (“inverse Compton scattering”) [1].
In addition, the a0-γ-ω region of validity for the LL solution
to be an accurate approximation to the LAD solution is
determined by substituting the LL approximate solution
into the exact expressions for the radiation power and

momentum in the LAD equation of motion. Taken together,
these conditions conclusively show that the LL approxi-
mation is an accurate solution to the LAD equation of
motion except in the region of high enough values of the
product a0γ that quantum recoil effects of the electron can
dominate the solution. Nevertheless, in the region where
the LAD equation is accurate but the LL equation is not, the
LAD equation, if solvable, could prove useful as an initial
classical solution for incorporating quantum effects. Two
conditions are also found for this LL solution to be
approximately equal to the Lorentz force (LF) solution
(no radiation reaction). One of these two conditions reveals
that the LF solution is never adequate and radiation reaction
is always required if the electron has been subject to the
plane-wave LF for a long enough time.
Though it has been more than a century since Lorentz

and Abraham derived the classical equation of motion for
an extended charged sphere, there continues to be con-
siderable discussion and uncertainty in the literature
concerning some of the more subtle aspects of the
equation of motion and its derivation, specifically, the
4=3 factor in the inertial mass term of the self force,
the discrepancy between the kinetic power obtained from
the self-force integral and from the self-power integral (as
well as the relationship of this discrepancy to Poincaré
stresses), the renormalization of the infinite mass of the
classical extended charged sphere to a finite value as its
radius is allowed to approach zero (to obtain the LAD
equation of motion), and the noncausality (preacceleration
and predeceleration) that arises in an otherwise well-
behaved solution to the LAD equation of motion.
Consequently, the paper begins with a critical review of

the derivation of the LA equation of motion, explaining the
root cause and remedy for the noncausality, the 4=3 factor
and Poincaré stresses, and the one remaining inconsistency
introduced by renormalizing the mass of the charge as its
radius approaches zero. The LL approximate solution is
then derived simply and straightforwardly from a conven-
ient three-vector form of the LAD equation of motion. The
derivation manifestly separates the LL approximate radi-
ation momentum-energy from the LL approximate Schott
acceleration momentum-energy, the latter of which is no
longer perfectly reversible in the LL approximate solution.

II. THE LA AND LAD EQUATIONS OF MOTION

An updated version of the LA equation of motion for an
extended moving charge [[25–26] app. 7], [27] can be
derived by evaluating the electromagnetic self-force on a
relativistically contracting, nonrotating spherical insulator
with a uniform surface charge (the Lorentz model),
separating the radiation reaction force from the force
needed to change the electromagnetic momentum of the
accelerating charged sphere, then adding this radiation
reaction force to the externally applied force in the
relativistic version of Newton’s second law of motion
[28,29]. The resulting equation of motion in rationalized
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mksA (SI) units can be written in three-vector form as [[28]
Eq. 7.12(a)]

FextðtÞ ¼ ðmes þminsÞ
d
dt

ðγuÞ

−
e2

6πϵ0c3

�
d
dt

�
γ2 _uþ γ4

c2
ðu · _uÞu

�

−
γ4

c2

�
j _uj2 þ γ2

c2
ðu · _uÞ2

�
u

�
þOðaÞ ð1Þ

where FextðtÞ is the externally applied force (usually the
LF), uðtÞ is the velocity of the center of the sphere, and
the overdots indicate time derivatives of the velocity
( _u ¼ du=dt). The Lorentz relativistic factor is given by
γ ¼ ð1 − u2=c2Þ−1

2, where u ¼ juj. The electrostatic mass
of the spherical shell with total charge e and radius a is

mes ¼
e2

8πϵ0ac2
; ð2Þ

with c the free-space speed of light, ϵ0 the permittivity of
free space, and mins is the mass of the uncharged insulator.
The electrostatic mass is obtained by combining the
electrostatic energy of formation, Wes ¼ e2=ð8πϵ0aÞ, of
the spherical shell of charge with the Einstein mass-energy
relation, Wes ¼ mesc2. Lorentz first derived the rest-frame
equation of motion, Fext ¼ mem _u − e2=ð6πϵ0c3ÞüþOðaÞ,
with mem ¼ 4mes=3 in his 1892 paper [25].1 For a charged
sphere moving with arbitrary velocity, Abraham was the
first to derive the radiation-reaction parts of the force and
power equations of motion in Eqs. (1) and (10b) below,
respectively, as seen in his 1905 book [[27] Sec. 15]. The
OðaÞ terms in the LA equation of motion in Eq. (1) are
negligible under the rest-frame conditions [28,29]

2c
3a

����
X∞
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�
−2a
c

�
n 1

n!
dnuβðtÞ
dtn

���� ≪
���� du

β

dt

���� ≪ c2

a
ð3aÞ

a
c

���� d
2uβ

dt2

���� ≪
���� du

β

dt

����; ð3bÞ

whereuβ is a rectangular component of thevelocity vectoru.
The first term on the right-hand side of Eq. (1) is the

reversible kinetic acceleration (time rate of change of the
kinetic momentum). The second d=dt term in Eq. (1) is
the reversible radiation-reaction acceleration often referred
to as the Schott acceleration [32]. The remaining radiation-
reaction term on the right-hand side of Eq. (1) is the
irreversible momentum radiated by the charge per unit time.
Two problems impede the solution to the LA equation

of motion in Eq. (1). The first problem is the unknown
contribution from the OðaÞ terms in Eq. (1) and the second
problem is that the solutions to Eq. (1) that have zero
velocities in the remote past and accelerations going to zero
after the external force is turned off exhibit a noncausality
near points in time where the external force is not an
analytic function of time, such as when the external force is
first applied (preacceleration) and when the external force
is turned off (predeceleration). It can be shown that this
noncausality occurs even if the OðaÞ terms are taken into
account [[28] Chap. 8].
The root cause of the noncausality in the LA equation of

motion is traced in Refs. [28] and [29] to the assumption in
the derivation of Eq. (1) that the velocities at the retarded
times t0 ¼ t − Δta, where Δta ≈ 2a=c, can be expanded in
a Taylor series about the present time t. This assumption
requires that the externally applied force FextðtÞ be an
analytic function of time in a complex Δta-radius neigh-
borhood about each time t on the real t axis, an assumption
that cannot be satisfied for a timeΔta following the point in
time that the externally applied force is first applied or
turned off. More generally, for externally applied forces
that are complex functions of time about the real t axis
except for a finite number N of nonanalytic points of time,
the LA equation of motion in (1) is valid for all time except
during the transition time intervals of duration Δta follow-
ing the nonanalytic points in time.2

1The electromagnetic mass found from the electromagnetic
momentum of the spherical shell of charge is 4=3 times the
electrostatic mass. This 4=3 factor has been the subject of much
discussion since the time of Lorentz andAbraham that continues to
the present day [30]. Contrary to what is often stated in the
literature, not only were Lorentz and Abraham unconcerned with
this 4=3 factor in their original work because it was done before
Einstein’s 1905 papers on special relativity and the mass-energy
relation, but also this factor was not removed by Poincare in his
analysis that determined there must be an extra term in the power
equation ofmotion of theLorentz contractingmodel of the charged
sphere to account for the work done during contraction by the
internal stresses that hold the charge onto the sphere [28].
Schwinger, in a paper devoted to the 80th birthday of Dirac,
showed that there was no need for the electromagnetic and
electrostatic masses to be equal because in the presence of
charge-current the electromagnetic stress-momentum-energy ten-
sor is not divergenceless [31].

2Abraham noted that “Because the internal force is determined
by the velocity and acceleration existing in a finite interval
preceding the affected point in time, such a progression [power
series] is always possiblewhen themovement is continuous and its
velocity is less than the speed of light. … [The series in the
equation of motion] will converge more poorly the closer the
movement approaches a discontinuousmovement and the velocity
approaches the speed of light. … It fails completely for discon-
tinuousmovements” [[27] Sec. 23]. Schott also concludes that “the
approximation [used to obtain the LA equation of motion] fails
during an interval of time, which is comparable with the time
required by an electromagnetic wave to pass across the electron
and includes the instant at which the discontinuity occurs” [[33,34]
p. 283]. More recently, Valentini [35] noted this problem with the
derivation of the LA equation of motion near nonanalytic points of
time of the applied force, but his proposed solution to the problem
did not allow changes in velocity across the transition intervals and
thus violated conservation of energy [36].
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A. LA equation of motion modified
with transition forces

During (and only during) these small Δta transition time
intervals following the nonanalytic points in time of the
external force, there have to be effective “transition forces”,
faðtÞ ¼

P
N
n¼1 fanðtÞ, that remove the preacceleration (or

predeceleration) from the original equation of motion and
that modify the LA equation of motion in Eq. (1) to give

FextðtÞþ faðtÞ¼ ðmesþminsÞ
d
dt
ðγuÞ

−
e2

6πϵ0c3

�
d
dt

�
γ2 _uþ γ4

c2
ðu · _uÞu

�

−
γ4

c2

�
j _uj2þ γ2

c2
ðu · _uÞ2

�
u

�
þOðaÞ: ð4Þ

It was shown in Refs. [28] and [29] that, remarkably, the
transition forces in this relativistically covariant modified
LA equation of motion in Eq. (4) can be chosen to eliminate
the preacceleration/deceleration while maintaining momen-
tum-energy conservation, provided the following rest-
frame inequality is satisfied for the radius a small enough
that jminsj=mes ≪ 1

ajΔFn
extj

mesc2
≪ 1; ð5Þ

where, for an externally applied force that changes slowly
on either side of the transition interval in a time duration on
the order of a=c, the value of ΔFn

ext is approximately equal
to the difference in the rest frame of the externally applied
force across the nth transition interval.3 The modification
by these uncoupled transition forces also requires that the
transition intervals be separated in time by an amount on
the order of a=c or greater.
In addition to the inequality in Eq. (5), it is shown in

Refs. [28,29] that relativistic (Born) rigidity of the sphere
requires a condition on the rest-frame jumps in velocity
across the transition intervals, namely

jΔu0
nj

c
≪ 1; ð6Þ

which remains a required condition across the transition
intervals even as a → 0 and the mass is renormalized to a
finite value m.
For the unrenormalized electrostatic mass mes, the

inequality in Eq. (5) is implied by the rest-frame equation
of motion and the second inequality in Eq. (3a) required for

the OðaÞ terms to be negligible. Thus, the modified LA
equation of motion in Eq. (4) is a causal equation of motion
that satisfies momentum-energy conservation with the
OðaÞ terms negligible under the conditions in Eqs. (3)
and (6). This is an especially noteworthy result because all
the conditions in Eq. (3) are perfectly satisfied as a → 0,
that is, as the radius of the charged sphere is allowed to
approach the radius of a fundamental point-like particle
(such as the electron).

B. LAD equation of motion modified
with transition forces

There is, however, a problem with letting the radius a of
the charged sphere approach zero, namely the electrostatic
mass mes in Eq. (4) increases without bound as a → 0;
see (2). A fairly obvious way around this undesirable
unbounded electrostatic mass is to assume, as Dirac did
[37], that a fundamental particle like the electron is more
complicated than the classical model of a charged insulator
and simply renormalize the mass mes to a fixed finite value
m equal to the measured rest mass of the fundamental
particle (such as the electron) as a is allowed to approach
zero. Then the OðaÞ terms in Eq. (4) vanish and this
modified LA equation of motion becomes equal to the
modified LAD equation of motion

FextðtÞ þ faðtÞ ¼ m
d
dt

ðγuÞ

−
e2

6πϵ0c3

�
d
dt

�
γ2 _uþ γ4

c2
ðu · _uÞu

�

−
γ4

c2

�
j _uj2 þ γ2

c2
ðu · _uÞ2

�
u

�
; ð7Þ

with renormalized finite mass m.
This modified LAD equation of motion in Eq. (7) is

relativistically covariant, has the correct measured rest mass
m of the charged particle, contains no OðaÞ terms, and
satisfies all the inequalities in Eq. (3) since a has been
allowed to approach zero. The transition forces faðtÞ ¼P

N
n¼1 fanðtÞ that eliminate the noncausality from the

unmodified LAD equation of motion contain the delta
function and the derivative of the delta function as a → 0
[28,29]. The coefficients of these delta functions and their
derivatives can be made unique by choosing the jumps
in velocity across the transition intervals such that the
momentum-energy radiated during each transition interval
is equal to zero. These jumps in velocity are physically
reasonable because they imply that the point charge moves
across the transition interval to both minimize the radiated
momentum-energy and keep its motion reversible across
the transition interval where the externally applied force
does no work on the charge as a → 0. Also, these velocity
jumps across the transition intervals are compatible
with the inequalities in Eqs. (6) and (9) below, and are

3More generally, ΔFn
ext is approximately equal to the rest-frame

difference (of the externally applied force across the nonanalytic
transition point in time τn) averaged over the proper time from τn
to τn þ τe [[28] Eq. 8.73(a)]. τe is defined in Eq. (8).
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approximately equal to the changes in velocity produced by
the preacceleration or predeceleration in the equation of
motion unmodified by the transition forces.
Despite the attractive features of the causal modified

LAD equation of motion in Eq. (7), it still requires one
restrictive condition for its validity, namely the inequality
corresponding to Eq. (5) that ensures a non-negative
radiated energy across each transition interval so that the
equation of motion conserves momentum energy. It can be
shown [28,29] that this inequality remains a required
condition because with the renormalized mass m of the
particle in Eq. (7) as a → 0, the factor a=c in Eq. (5) is
replaced by the finite time constant

τe ¼
e2

6πϵ0mc3
¼ 6.27 × 10−24 s; ð8Þ

for an electron and mes in Eq. (5) is replaced with the finite
value of the measured rest mass m. Specifically, we have

τejΔFn
extj

mc
≪ 1; ð9Þ

in the rest frame as the one remaining condition required to
ensure the validity of the causal modified LAD equation of
motion in Eq. (7) (besides the transition intervals being
separated in time by an amount on the order of τe or
greater). Also, Eq. (9) ensures that Eq. (6) is satisfied for the
rest-frame velocity jumps across transition intervals chosen
to minimize the momentum energy radiated across the
transition intervals.
There is some justification, even in classical physics, for

renormalizing the mass mes þmins to a finite value m as
a → 0 (mes → ∞) to obtain the equation of motion of a
point charge because mins can include gravitational and
other attractive formation energies. Thus, as a → 0 it is
conceivable, even classically, that mins → −∞ and that
lima→0ðmes þminsÞ ¼ m, the measured rest mass of the
charged particle. It is, therefore, disconcerting that for
the causal modified LAD equation of motion in Eq. (7), the
restriction in Eq. (9) on the magnitude of the change in
the externally applied force across a transition interval is
needed to ensure that the causal modified LAD equation of
motion satisfies conservation of momentum energy (by
keeping the value of the energy radiated during the
transition intervals non-negative).
For the extended charged sphere, the corresponding

condition in Eq. (5) is inconsequential because it is implied
by the condition in the second inequality of (3a) needed to
make negligible the OðaÞ terms in the proper-frame
equation of motion. This condition in (3a) merely says
that theOðaÞ terms may not be negligible if the speed of the
charged sphere changes by an appreciable fraction of the
speed of light in the time it takes light to cross the sphere.

As a → 0 and the mass is renormalized to a finite value
m, the conditions in Eq. (3) are all satisfied and one might
expect that the resulting causal modified LAD equation of
motion (7) would remain valid regardless of the magnitude
of the changes in the externally applied force. This is not
always the case, however, if the change in external force is
large enough across a transition interval to disobey (9)
because then it has been shown in Refs. [28,29] that the
value of the energy radiated during the transition intervals
can become negative and the momentum energy of the
mass-renormalized charged particle is not conserved.
Renormalization of the causal modified LA classical
equation of motion of the extended charge in Eq. (4), an
equation consistent with momentum-energy conservation,
changes the scale factor between the Newtonian acceler-
ation term and the radiation reaction term such that the
renormalized causal modified LAD equation of motion in
Eq. (7) does not always satisfy momentum-energy con-
servation if the change in the externally applied force is
large enough across a transition interval.
For an electron encountering an abrupt change ΔE in the

external rest-frame electric field, the inequality in Eq. (9)
is satisfied unless ΔE≪mc=ðeτeÞ¼ 6πϵ0m2c4=e3 ¼
2.7×1020 V=m, an enormously high-electric field that is
about 200 times larger than the Schwinger critical electric
field (see Eq. (87)) that can produce electron-positron pairs
from the quantum vacuum.4 Thus Eq. (9) is an academic
restriction that is violated only if the externally applied
LF is so large that quantum effects could dominate and
the classical equation of motion may no longer apply.
Nonetheless, a classical equation of motion of a mass-
renormalized point charge that is both causal and conserves
momentum-energy no matter how large the change in the
external force across a transition interval does not result by
simply equating the sum of the point-charge radiation
reaction force and the externally applied force to the
relativistic Newtonian acceleration force (measured rest
mass times relativistic acceleration) and inserting the
necessary delta-function transition forces at the nonanalytic

4If a magnetic field B is also present, the Schwinger critical
field required for electron-positron pair production depends on
the Maxwellian field invariants E2 − c2B2 and cE ·B. In a plane
wave, both these invariants are zero and there is no pair
production [38]. However, it is interesting that renormalization
of a fully causal classical equation of motion has revealed a
limitation on the magnitude of the allowed change in the
externally applied fields across transition intervals that is con-
sistent with the limitation on the magnitude of the fields that
avoids quantum vacuum effects. Moreover, the rest-frame in-
equality in (9) is satisfied whenever the rest-frame inequality in
(102) is satisfied for quantum recoil effects to be negligible for an
electron in a counterpropagating laser beam, for which (9) can be
rewritten as ω0τea0 ≪ 1 say≲ 1=10 with jΔFn

extj ¼ eE0 (assum-
ing a rectangular-envelope plane-wave pulse with an amplitude
that increases abruptly from zero to E0 and decreases abruptly
from E0 to zero) and a0 defined in (28b).
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points in time of the external force to obtain (7). A causal
classical equation of motion of a mass-renormalized point
charge that also conserves momentum-energy with a non-
negative radiated energy during the transition intervals for
arbitrarily large changes in the external force across the
transition intervals, if it exists, must involve a more
complicated combining of the Newtonian and radiation
reaction forces with the externally applied force than just a
simple summation. A fully satisfactory classical equation
of motion of a point charge with finite mass (as opposed to
an extended charge with unrenormalized mass) does not
presently exist.
It seems prudent, therefore, to simply accept Eq. (7)

as the classical causal equation of motion of a mass-
renormalized point charge under the restriction in Eq. (9)
on the magnitude of the change in the externally applied
force across the transition intervals, or to tolerate the slight
noncausality in the original LAD equation of motion given
by Eq. (7) without the transition forces faðtÞ. Practically,
the preacceleration/deceleration of the LAD equation of
motion unmodified by the transition forces is generally too
small to have a significant bearing on the solution. Also,
power series solutions like the LL approximate solution to
the LAD equation of motion do not display the preaccel-
eration/deceleration that exists in the exact solution to the
unmodified LAD equation of motion.

C. Unmodified LAD equation of motion

For most practical problems, including the problem of a
laser beam incident upon a relativistic electron, the non-
causal preaccelerations and predecelerations in the exact
solution of the unmodified LAD equation of motion have a
negligible effect on the solution except during insignifi-
cantly short time intervals on the order of τe when the
external force is first applied andwhen it is terminated. Thus,
for practical purposes, we need not retain the transition
forces in Eq. (7) nor the restriction in Eq. (9) on the change in
the externally applied force across the transition intervals.
We need consider only the LAD equation of motion
unmodified by the transition forces, namely

FextðtÞ ¼ m
d
dt

ðγuÞ −mτe

�
d
dt

�
γ2 _uþ γ4

c2
ðu · _uÞu

�

−
γ4

c2

�
j _uj2 þ γ2

c2
ðu · _uÞ2

�
u

�
: ð10aÞ

The dot product with this force equation gives the
corresponding power equation of motion

Fext ·u¼mc2
dγ
dt

−mτe

�
d
dt
ðγ4u · _uÞ− γ4

�
j _uj2þ γ2

c2
ðu · _uÞ2

��

ð10bÞ

with its reversible kinetic power, reversible Schott radia-
tion-reaction power, and the irreversible radiated power.
It is noteworthy that when the method of successive

substitutions is applied to obtain a solution to the LAD
equation of motion in Eq. (10a), such as the LL approxi-
mate solution given in the Landau-Lifshitz approximate
solution section, this approximate solution is causal and,
depending on the value of the externally applied force at the
nonanalytic points of time, may exhibit delta-function
transition forces when it is substituted back into the
LAD equation (10a), thus recovering the form of the
modified causal LAD equation of motion in Ref. (7). Of
course, this LL approximate solution with the recovered
transition forces, although causal, will not in general satisfy
the differential equation in Eqs. (7) or (10a), nor will the
recovered transition forces equal the correct transition
forces in Ref. (7).

III. THE LANDAU-LIFSHITZ APPROXIMATE
SOLUTION

Few exact solutions have been found to the LAD
nonlinear differential equation of motion in Eq. (10a)
[39]. Thus, a common approach to obtain a solution to
the equation of motion is to assume the radiation-reaction
terms on the right-hand side of (10a) are small compared to
the first term (the relativistic momentum term) and derive
an approximate solution for dðγuÞ=dt by means of the
method of successive substitutions. This was originally
done by Landau and Lifshitz [[40] Secs. 75–76] to obtain
an approximate solution with the first-order substitution of
the LF Fext ¼ eðEþ u ×BÞ.
An easy way to derive the LL approximate solution from

the equations in Eq. (10) is to first substitute
γ4½j _uj2 þ γ2ðu · _uÞ2=c2� from (10b) into (10a) to recast
this equation in the form [[28] Chap. 7]

γ _u ¼ 1

m

�
Fext − ðFext · uÞ

u
c2

�
þ τe

γ

d
dt

ðγ3 _uÞ: ð11Þ

Assuming the radiation-reaction term in Eq. (11) is small
compared to the external force terms, substitute

γ _u ¼ 1

m

�
Fext − ðFext · uÞ

u
c2

�
ð12Þ

into the right-hand side of Eq. (10a) and use the corre-
sponding approximation dγ=dt ≈ ðFext · uÞ=ðmc2Þ gleaned
from (10b) to obtain the first-order successive-substitution
solution to Eq. (10a) as

m
dðγuÞ
dt

≈ Fext þ τe

�ðu · FextÞFext

mc2
þ γ

dFext

dt

−
γ2

mc2

�
jFextj2 −

ðu · FextÞ2
c2

�
u

�
: ð13Þ
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With Fext ¼ eðEþ u ×BÞ such that dFext=dt¼eðdE=dtþ
u×dB=dtþ _u×BÞ, and _u inserted from Eq. (12), one
obtains the LL approximate solution as [[28] Eq. (8.132a)]

m
dðγuÞ
dt

≈ eðEþ u ×BÞ þ eτeγ

�
dE
dt

þ u ×
dB
dt

�

þ e2τe
mc

�ðu ·EÞ
c

Eþ cðEþ u × BÞ ×B

�

þ e2τeγ2

mc2

�ðu · EÞ2
c2

− jEþ u × Bj2
�
u: ð14aÞ

Taking the dot product of u with Eq. (14a)
produces the corresponding power equation of motion
[[28] Eq. (8.132b)]

mc2
dγ
dt

≈ eu ·Eþ eτeγu ·
dE
dt

þ e2τe
m

½jEj2 þ ðu ×BÞ · E�

þ e2τeγ2

m

�ðu · EÞ2
c2

− jEþ u ×Bj2
�
: ð14bÞ

We note that dE=dt denotes the total time derivative, so that

dEðr; tÞ
dt

¼ ∂Eðr; tÞ
∂t þ uðtÞ · ∇Eðr; tÞ: ð15Þ

The first term on the right-hand side of Eqs. (14a) and
(14b) is the Lorentz force and power, respectively, the last
term (multiplied by γ2) on the right-hand side of Eqs. (14a)
and (14b) is the negative of the approximate radiation force
and power, and the middle terms on the right-hand side
of Eqs. (14a) and (14b) are the negative of the Schott force
and power. The radiated power (negative of last term) in
Eq. (14b) is manifestly non-negative and irreversible. The
Schott force and power (negative of middle terms) in
Eqs. (14a) and (14b) are not perfect differentials and thus
not manifestly reversible. This imperfect reversibility of the
LL Schott force-power is a shortcoming of the LL
approximate solution.

A. Accuracy of the LL approximation obtained from
the small-velocity LAD and LL solutions

For u=c ≪ 1, the LAD solution in Eq. (10a) reduces to

m _u ¼ eðEþ u ×BÞ þmτeðü − uj _uj2=c2Þ; ð16aÞ

or as u=c → 0

m _u ¼ eEþmτeü: ð16bÞ

Similarly, for u=c ≪ 1, the LL approximate solution in
Eq. (14a) reduces to

m _u ≈ eðEþ u ×BÞ þ eτeð _Eþ u × _BÞ

þ e2τe
mc2

½u · ðEEþ c2BBÞ − uðjEj2 þ c2jBj2Þ
þ c2E × B�: ð17Þ

For plane waves with frequency ω0 in the rest frame of the
charge, the time derivatives produce a factor of ω0 and (17)
further reduces to

m _u≈eðEþu×BÞ

þe2τe
mc2

½u · ðEEþc2BBÞ−2ujEj2þc2E×B�; ð18Þ

under the condition

ω0τe ≪ 1: ð19Þ

With u=c → 0, the LL approximation for m _u in Eq. (18)
becomes

m _u ≈ eEþ e2τe
m

E ×B: ð20Þ

Taking the time derivative of Eq. (18) and letting u=c → 0
gives the corresponding LL approximation for ü

ü ≈
e
m
ð _Eþ _u ×BÞ þ e2τe

m2c2

�
_u · ðEEþ c2BBÞ

− 2 _ujEj2 þ c2
d
dt

ðE × BÞ
�
; ð21Þ

which becomes after substituting _u from Eqs. (20) into (21)
and noting that dðE ×BÞ=dt ∼ ω0E × B so that the con-
dition in Eq. (19) eliminates this term

ü ≈
e
m

_Eþ e2

m2
E × B

−
e2τe
m2c2

�
2
e
m
jEj2Eþ 2

e2τe
m2

jEj2E ×B

�
: ð22Þ

Note that to get this correct LL rest-frame expression for ü,
the small-velocity terms containing u had to be initially
included in the LL equation (18) for _u.
With this LL approximation for ü in Eq. (22) inserted

into the LAD equation of motion (16b), the LAD equation
for m _u becomes [upon noting that _E ∼ ω0E and omitting
this term because of Eq. (19)]

m _u ¼ eEþ e2τe
m

E × B

−
e2τ2e
mc2

�
2
e
m
jEj2Eþ 2

e2τe
m2

jEj2E ×B

�
ð23Þ
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or

m _u ¼
�
eEþ e2τe

m
E ×B

�
ð1 − 2ω2

0τ
2
ea20Þ ð24Þ

where a0 is the dimensionless laser-strength parameter
defined below in Eq. (28b).
A comparison of Eqs. (20) and (24) reveals that for

plane-wave excitations the LL approximation is an accurate
solution to the LAD equation of motion if and only if, in
addition to the inequality in Eq. (19)

ω0τea0 ≪ 1; ð25Þ

in the rest frame of the charge. The two rest-frame accuracy
conditions, (19) and (25), for the validity of the LL
approximation with plane-wave excitations can also be
obtained using the simplified heuristic argument of Landau
and Lifshitz [[40] Eqs. (75.11) and (75.12)]. The accuracy
conditions in Eqs. (19) and (25), generalized to the
laboratory frame of an electron in a counterpropagating
plane wave, are given as Eqs. (80) and (83)–(84) in
Sec. V below.

IV. RELATIVISTIC ELECTRON IN A
COUNTERPROPAGATING PLANE WAVE

The solution to the LL equation of motion will be
obtained for an electron with an arbitrary initial velocity
illuminated by a counterpropagating plane-wave pulse with
an arbitrary intensity. A closed-form solution for the
subsequent velocity of the electron can be found explicitly
as a function of time for a general polarization of the
plane wave (any combination of two orthogonal
linear polarizations with an arbitrary phase difference).
However, because the explicit expressions for the general-
polarization solution are quite lengthy, attention will be
confined to the two most interesting and topical polar-
izations, namely linear and circular polarization. Since the
LL equation, like the LAD equation, is nonlinear in
velocity, two polarization solutions cannot be added
together to get a third polarization solution. In particular,
the solution for the circularly polarized plane wave is not
equal to the sum of the solutions to two linearly polarized
plane waves ninety degrees out of phase.

A. Linearly polarized plane wave

Consider an electron with initial speed u0 (at t ¼ 0 and
z ¼ 0) moving in the þz direction oppositely to the
direction of propagation −z of a pulsed, linearly polarized
plane wave having an electric-field E in the þx direction
and a magnetic-fieldB in the −y direction. The fields of the
linearly polarized incident plane wave can be written as

E ¼ Eðωtþ kzÞ cosðωtþ kzÞx̂ ¼ EðξÞ cos ξx̂ ð26aÞ

B ¼ −
1

c
Eðωtþ kzÞ cosðωtþ kzÞŷ ¼ −

1

c
EðξÞ cos ξŷ;

ð26bÞ

where B ¼ E=c, ω ¼ 2πf is the angular frequency (f > 0
is the frequency), and k ¼ ω=c ¼ 2π=λ is the propagation
constant with c the free-space speed of light. The envelope
of the pulse is given by Eðωtþ kzÞ. Following the notation
in [17], we have let

ξ ¼ ωtþ kz; ð26cÞ

so that

dξ
dt

¼ ωð1þ uz=cÞ: ð26dÞ

Because the derivative in Eq. (26d) is greater than or equal
to zero, the retarded time parameter ξ is a monotonically
increasing function of the real time t and, vice versa, the
real time t is a monotonically increasing function of the
retarded time parameter ξ. If a phase ξ0 is added to
the ωtþ kz in Eqs. (26a) and (26b), then ξ ¼ ωtþ kzþ
ξ0 in Eq. (26c). Since this generalization adds little to the
physics, ξ0 has been chosen equal to zero. The force exerted
on the electron by the fields of the linearly polarized plane
wave produces velocity changes in both the x and z
directions, but not in the y direction. Since the electron
is moving through the plane wave, the longitudinal coor-
dinate in Eq. (26) at the position of the moving electron is a
function of time, that is, z ¼ zðtÞ with uz ¼ dz=dt. The
plane-wave fields given in Eq. (26) constitute an exact
solution to Maxwell’s equations because there is no
variation in the fields with x and y, that is, no field
variation transverse to the direction of propagation.
The x and z components of the force-momentum

equation of the LL approximate solution (14a) to the
LAD equation of motion can be written for the electron as

dðγux=cÞ
dξ

¼ −a0½E cos ξþ ωτeγð1þ uz=cÞdðE cos ξÞ=dξ�

− ωτea20γð1þ uz=cÞðγux=cÞE2cos2ξ ð27aÞ

dðγuz=cÞ
dξ

¼a0½Ecosξ=ð1þuz=cÞþωτeγdðEcosξÞ=dξ�

·ðux=cÞ−ωτea20½1þð1þuz=cÞγ2ðuz=cÞ�E2cos2ξ;

ð27bÞ

where

EðξÞ ¼ E0EðξÞ ð28aÞ

with E0 equal to the maximum magnitude of the envelope
of the pulse and
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a0 ¼
eE0

mcω
ð28bÞ

is the dimensionless laser-strength parameter. Here and
throughout the rest of the paper e denotes the positive
magnitude of the charge of the electron,m is the mass of the
electron, τe is given in Eq. (8), and u2 ¼ u2x þ u2z . Taking the
dot product of the velocity vector u with the time rate of
change ofmomentum to get uxdðγuxÞ=dξþ uzdðγuzÞ=dξ ¼
c2dγ=dξ, we find from Eq. (27) that

dγ
dξ

¼ −a0½E cos ξ=ð1þ uz=cÞ þ ωτeγdðE cos ξÞ=dξ�ðux=cÞ

þ ωτea20½1 − ð1þ uz=cÞγ2�E2cos2ξ; ð29Þ

which can also be obtained directly from the powerEq. (14b)
of the LL approximate solution to the LAD equation of
motion. The cos ξ terms on the right-hand sides of Eqs. (27)
and (29) are theLorentz force-power delivered directly to the
electron and the other terms are the LL approximation to the
time rate of change of momentum energy caused by the
radiation reaction. We want to solve the differential equa-
tions in Eqs. (27)–(29) for ux, uz, and γ as functions of ξ and
then find t as a function of ξ in order to obtain explicit closed-
form expressions for ux, uz, and γ as functions of time t.

1. Solution for γð1+uz=cÞ
A differential equation that is immediately solvable

results by adding the two Eqs. (27b) and (29) to get

d½γð1þ uz=cÞ�
dξ

¼ −ωτea20γ2ð1þ uz=cÞ2E2cos2ξ: ð30Þ

Dividing through by ð1þ uz=cÞ2 and integrating from 0 to
ξ, one readily determines the solution as

γð1þ uz=cÞ ¼
γz0

1þ a20γz0ωτeF ðξÞ ; ð31Þ

where γz0 ¼ γ0ð1þ uz0=cÞ with the initial values of γ and
uz given by γ0 ¼ γð0Þ and uz0 ¼ uzð0Þ. The integral
function F ðξÞ is found from Eq. (30) as

F ðξÞ ¼
Z

ξ

0

E2ðξ0Þ cos2 ξ0 dξ0: ð32Þ

If the longitudinal velocity uz in Eq. (31) is approxi-
mated by c so that γz0 ¼ 2γ0 and F ðξÞ is approximated
by ξ=2 ≈ ωt for E ¼ 1, then the solution for γðtÞ equals the
one obtained previously by Vranic et al. [13] and Thomas
et al. [41]

γðtÞ ¼ γ0
1þ 2a20γ0ω

2τet
; ð33Þ

which, besides its approximate nature, has the problem that
γðtÞ → 0 as t → ∞.
The longitudinal velocity function γuz=c is obtained

directly from Eq. (31) as

γuz
c

¼ γz0
GðξÞ − γ; ð34Þ

with

GðξÞ ¼ 1þ a20γz0ωτeF ðξÞ: ð35Þ

Next, it is shown that the closed-form expression for
γð1þ uz=cÞ in Eq. (31) enables one to find a closed-form
expression for γux=c.

2. Solution for γux=c

Insertion of γð1þ uz=cÞ from Eqs. (31) into (27a) yields
a first-order linear differential equation for γux=c

dðγux=cÞ
dξ

þ ωτea20γz0
E2cos2ξ

G
ðγux=cÞ

¼ −a0
�
E cos ξþ ωτeγz0

dðE cos ξÞ=dξ
G

�
: ð36aÞ

Rewriting this equation in the more compact form

dðγux=cÞ
dξ

þ PðξÞðγux=cÞ ¼ QðξÞ ð36bÞ

allows the standard linear first-order differential-
equation solution in terms of an integrating factor to be
expressed as [42]

dðγux=cÞ
dξ

¼ 1

eIðξÞ

Z
ξ

0

Qðξ0ÞeIðξ0Þdξ0; ð37aÞ

with

IðξÞ ¼
Z

ξ

0

Pðξ0Þdξ0: ð37bÞ

Substitution of PðξÞ and QðξÞ from Eqs. (36) into (37)
yields

γux
c

¼ −a0
HðξÞ
GðξÞ ð38Þ

where

HðξÞ¼SðξÞþωτeγz0½EðξÞcosξ−Eð0Þþa20CðξÞ�; ð39aÞ

SðξÞ ¼
Z

ξ

0

Eðξ0Þ cos ξ0dξ0; ð39bÞ
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CðξÞ ¼
Z

ξ

0

Eðξ0ÞF ðξ0Þ cos ξ0dξ0: ð39cÞ

Of course, one still needs γ to evaluate ux=c in Eq. (38).

3. Solution for the relativistic factor γ, the longitudinal
velocity uz=c, and the transverse velocity ux=c

To find an explicit expression for the relativistic factor γ
and longitudinal velocity uz=c, given γuz=c in Eq. (34) and
γux=c in Eq. (38), we use the following form of the
definition of γ in terms of the velocities

γ2 ¼ 1þ ðγux=cÞ2 þ ðγuz=cÞ2; ð40Þ

which yields γ from Refs. (34) and (38) as

γGðξÞ ¼ 1

2γz0
½γ2z0 þ G2ðξÞ þ a20H

2ðξÞ�: ð41Þ

Having obtained γGðξÞ (and thus γ), we can write the
longitudinal velocity uz=c from Eq. (34) as

uz
c
¼ γz0

γGðξÞ − 1; ð42Þ

and the transverse velocity ux=c from Eq. (38) as

ux
c
¼ −a0

HðξÞ
γGðξÞ : ð43Þ

For envelope functions EðξÞ equal to the sum of trigono-
metric and polynomial functions of ξ and their products, the
integrals in Eqs. (32) and (39) needed to determine GðξÞ
andHðξÞ in Eqs. (41)–(43) can be evaluated in closed form.

4. Determination of the time t in terms of ξ

The solutions for γ, uz=c, and ux=c in Eqs. (41), (42), and
(43), respectively, are given in terms of the parameter
ξ ¼ ωðtþ z=cÞ and, because zðtÞ ¼ R

t
0 uzðt0Þdt0, it would

appear well-nigh impossible to solve the equation ξ ¼
ω½tþ zðtÞ=c� explicitly for t in terms of ξ. Fortunately, this
is not the case. If z can be found explicitly as a function of
ξ, that is, if one can determine z½tðξÞ� explicitly, then t is
given as

t ¼ ξ=ω − z½tðξÞ�=c: ð44Þ

To find z½tðξÞ�=c in terms of ξ, note that it can be
expressed as

z½tðξÞ�
c

¼ 1

c

Z
ξ

0

dz½tðξ0Þ�
dξ0

dξ0 ¼ 1

c

Z
ξ

0

dzðtÞ
dt

dt
dξ0

dξ0

¼
Z

ξ

0

uz½tðξ0Þ�=c
ωð1þ uz½tðξ0Þ�=cÞ

dξ0 ð45Þ

and, thus, from Eq. (44)

t ¼ 1

ω

Z
ξ

0

�
1 −

uz½tðξ0Þ�=c
ð1þ uz½tðξ0Þ�=cÞ

�
dξ0

¼ 1

ω

Z
ξ

0

dξ0

ð1þ uz½tðξ0Þ�=cÞ
: ð46Þ

Insertion of ð1þ uz½tðξ0Þ�=cÞ from Eq. (42) produces the
convenient expression for t in terms of ξ as

t ¼ 1

ωγz0

Z
ξ

0

γðξ0ÞGðξ0Þdξ0 ð47Þ

where γðξÞGðξÞ is given in Eq. (41). For envelope functions
EðξÞ equal to the sum of trigonometric and polynomial
functions of ξ and their products, the integral in Eq. (47)
can be evaluated in closed form. Alternatively, t can be
found from a straightforward computer summation of Δt ¼
γðξ0ÞGðξ0ÞΔξ0 from ξ0 ¼ 0 to ξ for the chosen differential
increments Δξ0.

5. Uniform plane wave

For a uniform plane wave, the envelope function EðξÞ ¼
1 and the integrals for F ðξÞ, SðξÞ, and CðξÞ in Eqs. (32),
(39b), and (39c) evaluate to

F ðξÞ ¼ 1

2

�
ξþ 1

2
sin 2ξ

�
; ð48aÞ

SðξÞ ¼ sin ξ; ð48bÞ

CðξÞ ¼ 1

2
ξ sin ξ −

1

6
cos3ξþ 1

2
cos ξ −

1

3
: ð48cÞ

When these expressions are substituted into Eqs. (35)
and (39a) to obtain GðξÞ and HðξÞ, the relativistic factor
and velocities in Eqs. (41)–(43) agree with those derived by
Hadad et al. [[17] Eq. (A1)] (if the typographical errors
are corrected in equation (A1) of Ref. [17] as personally
communicated by Y. Hadad). Also, the directions of ux
and uz in Ref. [17] are opposite those herein because the
initial longitudinal velocity of the electron in Ref. [17] is
chosen in the −z direction. Although it is not necessary to
evaluate the integral for the time t in Eq. (47) explicitly
(since it can be computed as a simple summation),
for the sake of completeness or if faster computational
speed is desired, the explicit closed-form expression for t in
terms of ξ is
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ω γz0t ¼
�
γ0 þ

a20
4γz0

�
ξ −

a20
8γz0

sin 2ξþ ωτe

�
a20

�
1

4
ξ2 −

3

8
cos 2ξþ cos ξ −

5

8

�

þ a40

�
1

8
ξ2 −

1

8
ξ sin 2ξþ 1

24
cos4ξ −

3

16
cos 2ξþ 1

3
cos ξ −

3

16

��

þ ω2τ2eγz0a20

��
3

4
ξþ 1

8
sin 2ξ − sin ξþ a20

�
1

24
ξ3 þ 103

192
ξ −

3

16
ξ cos 2ξþ 1

2
ξ cos ξ −

1

18
sin3ξ −

7

768
sin 4ξ

þ 17

96
sin 2ξ −

7

6
sin ξ

��
þ a40

2

�
1

24
ξ3 þ 1

6
ξ −

1

16
ξ2 sin 2ξ −

3

16
ξ cos 2ξþ 1

24
ξ cos4 ξþ 1

3
ξ cos ξ

þ 1

216
sin ξ cos3 ξ

�
cos2ξþ 5

4

�
−

1

27
sin3 ξ −

5

768
sin 4ξþ 125

1152
sin 2ξ −

5

9
sin ξ

��
: ð49Þ

It should be noted that in Ref. [17], the time t is not found as
a function of ξ, as is done in Eqs. (47) or (49). Instead, the
proper time τ is found as a function of ξ so that γ, ux=c, and
uz=c can be expressed numerically as functions of τ. Then t
is apparently determined as a function of τ by numerically
evaluating the integral t ¼ R

τ
0 γðτ0Þdτ0.

Since γ, ux=c, and uz=c are plotted vs time t in Ref. [17],
these plots will not be repeated here. The power supplied
by the externally applied force to the electron, the power
radiated, the kinetic power, and the Schott power are not
plotted in Ref. [17]; thus these powers, normalized to mc2

and given in units of s−1, are shown in Figs. 1–3. These
powers, found from Eq. (29) with dξ inserted from
Eq. (26d), can be expressed respectively as

Pext ¼ −ωa0ðux=cÞE cos ξ; ð50aÞ

Prad ¼ ω2τea20ð1þ uz=cÞ2γ2E2cos2ξ; ð50bÞ

Pkin ¼
dγ
dt

¼ ωð1þ uz=cÞ
dγ
dξ

; ð50cÞ

and

PSch ¼ ω2τea0ð1þ uz=cÞ
�
γðux=cÞ

d
dξ

ðE cos ξÞ

− a0E2 cos2 ξ

�
: ð50dÞ

The laser-strength parameter a0 is chosen equal to 100, the
initial relativistic factor γ0 is chosen equal to 1000 and
the angular frequency ω of the laser equals 2 × 1015 s−1 in
order to conform to the choices for these parameters in
Ref. [17]. For the uniform plane wave, we have E ¼ 1. The
plots cover the time interval from 0 to 26.8 fs (several

FIG. 1. Pext, Prad, and Pkin plotted vs time t for a uniform
linearly polarized laser with angular frequency ω ¼ 2 × 1015 s−1

and strength a0 ¼ 100 (E ¼ 1), and an electron with initial
relativistic factor γ0 ¼ 1000.

FIG. 2. Comparison of PradðtÞ and PLAD
rad ðtÞ for the uniform

linearly polarized plane wave with parameters given in Fig. 1.

FIG. 3. Comparison of PSchðtÞ and PLAD
Sch ðtÞ for the uniform

linearly polarized plane wave with parameters given in Fig. 1.
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periods of the laser beam), again to conform to the time
interval chosen in Ref. [17].
One can see in Fig. 1 that the power (Pext) supplied by

the external electric-field force of the laser beam is practi-
cally equal to the sum of the kinetic power (Pkin) and the
radiated power (Prad) because the Schott power shown in
Fig. 3 is more than five orders of magnitude smaller than
the sum of these other powers. The radiated power can also
be computed by substituting the values of u=c and _u=c
determined from the LL solution into the radiated power in
the LAD power equation of motion (10b) (normalized to
mc2), that is

PLAD
rad ¼ τeγ

4

����� _uc
����
2

þ γ2

c2

�
u · _u
c2

�
2
�
: ð51Þ

As Fig. 2 shows, the difference between Prad and PLAD
rad is

not detectable within the linewidth of the curves, thereby
indicating the high accuracy of the LL solution for the
given frequency and strength of the laser beam, and for
the initial velocity (relativistic factor) of the electron.
Equations (81) and (82) below show that the fractional
error ηrad in the LL approximate radiated power for uniform
linear polarization is given by

ηrad ¼
PLAD
rad − Prad

Prad
¼ ω2τ2ea20ð1þ uz=cÞ2γ2 cos2 ξ ð52Þ

which, for the present case depicted in Fig. 2, has a
maximum value of about 6 × 10−6 at γ ¼ γ0 ¼ 1000.
The error expression for uniform circular polarization is
identical to that given in Eq. (52) but without the cos2 ξ
factor.
The Schott power can also be computed by substituting

the values of u=c and _u=c determined from the LL solution
into the Schott power in the power LAD equation of motion
(10b). Rewriting γ4u · _u=c2 as γdγ=dt and approximating
dγ=dt by Fext · u=ðmc2Þ, we have

PLAD
Sch ¼ ωτea0

d
dt

½γðux=cÞE cos ξ�

¼ ω2τea0ð1þ uz=cÞ
d
dξ

½γðux=cÞE cos ξ�: ð53Þ

The plots of PSchðtÞ and PLAD
Sch ðtÞ in Fig. 3 reveal that there

is no noticeable difference between the two evaluations of
the Schott power. This is especially noteworthy because
not only is the Schott power several orders of magnitude
below the other powers but the LL Schott power (PSch) is
not perfectly reversible (as pointed out in Sec. III), whereas
the LAD Schott power (PLAD

Sch ) is a reversible perfect time
differential. This implies that for this example of the
relativistic electron in a counterpropagating high-intensity
laser beam, the approximate LL irreversible Schott power is
closely approximated by the LAD reversible Schott power.

6. Sinusoidal envelope

A more realistic laser-beam pulse begins continuously
from a value of zero and ends continuously with a value of
zero, such as the envelope function

EðξÞ ¼ sinðαξÞ; 0 ≤ ξ ≤ π=α; ð54Þ

where α is a constant. For α ≪ 1, the envelope contains
many cycles of the laser-beam frequency. With this
sinusoidal envelope function in Eq. (54), the integrals
for F ðξÞ, SðξÞ, and CðξÞ in Eqs. (32), (39b), and (39c)
evaluate to

F ðξÞ ¼ 1

2
sin2

�
αξÞ

�
ξþ 1

2
sin 2ξ

�

þ 1

4

�
ξ cosð2αξÞ − sinð2αξÞ

2α

�

−
α

16

�
sinð2ð1 − αÞξÞ

1 − α
−
sinð2ð1þ αÞξÞ

1þ α

�
; ð55aÞ

SðξÞ ¼ 1

2

�
1 − cosðð1þ αÞξÞ

1þ α
−
1 − cosðð1 − αÞξÞ

1 − α

�
; ð55bÞ

CðξÞ ¼ S0ðξÞF ðξÞ

−
1

1 − α2

�
α

2
ðCα − C3αÞ −

1

3
sin3ðαξÞcos3ξ

�
; ð55cÞ

where

S0ðξÞ ¼ SðξÞ þ α

1 − α2
; ð56aÞ

CαðξÞ ¼
1

3þ α

�
cos3 ξ sinðαξÞ

−
3

1þ α

�
cos2 ξ sinðð1 − αÞξÞ − sinðð3 − αÞξÞ

3 − α

−
sinðð1 − αÞξÞ

1 − α

��
: ð56bÞ

The integral for time in Eq. (47) can be evaluated in closed
form but the expressions are even more tedious than those
given in Eq. (49) for the uniform plane wave and they are
not necessary since the integral in Eq. (47) can be
accurately and rapidly evaluated by a simple summation
in computational software such as MATLAB.
The relativistic factor γ, the longitudinal velocity uz=c,

and the transverse velocity ux=c are plotted vs time t in
Figs. 4, 5, and 6 for the sinusoidal envelope E ¼ sinðαξÞ
with α ¼ 0.029715. This value of α is chosen to give an
envelope pulse width of 26.8 fs, the length of the uniform-
plane-wave pulse chosen above and in Ref. [17]. A
comparison of these plots with the corresponding plots
given in Ref. [17] for the uniform plane wave (rectangular
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pulse) reveals that the sinusoidal envelope, which begins
and ends continuously with a value of zero, produces
significant changes in γ, uz=c, and ux=c. The relativistic
factor γ in Fig. 4 has a zero slope at t ¼ 0 and decreases
much more slowly with time than the corresponding
uniform-plane-wave γ plotted in Ref. [17]. Over the
26.8 fs time interval, γ remains much greater than unity
(u=c ≈ 1) for both uniform and sinusoidal linearly

polarized plane waves. The envelope of the transverse
velocity ux=c in Fig. 6 for the sinusoidal laser-pulse
envelope not only begins at a value of zero but also ends
by decreasing slowly to a value close to zero. During the
same time, the envelope of the longitudinal velocity uz=c in
Fig. 5 ends by increasing slowly from appreciably less than
the speed of light to very close to the speed of light
(uz=c ≈ 0.99988131 at t ¼ 26.8 fs).
The power supplied by the externally applied force to the

electron, the power radiated, the kinetic power, and the
Schott power for the sinusoidal envelope are plotted in
Figs. 7–9. As with the uniform plane wave (rectangular

FIG. 4. Relativistic factor γ plotted vs time t for a sinusoidal-
envelope linearly polarized laser pulse with angular frequency
ω ¼ 2 × 1015 s−1, maximum strength a0 ¼ 100, and a pulse-
width equal to 26.8 fs. The electron has an initial relativistic
factor γ0 ¼ 1000.

FIG. 5. Longitudinal velocity uz=c plotted vs time t for a
sinusoidal-envelope linearly polarized laser pulse with parame-
ters given in Fig. 4.

FIG. 6. Transverse velocity ux=c plotted vs time t for a
sinusoidal-envelope linearly polarized laser pulse with parame-
ters given in Fig. 4.

FIG. 7. Pext, Prad, and Pkin plotted vs time t for a sinusoidal-
envelope linearly polarized laser with parameters given in Fig. 4.

FIG. 8. Comparison of PradðtÞ and PLAD
rad ðtÞ for the sinusoidal-

envelope linearly polarized plane wave with parameters given in
Fig. 4.

FIG. 9. Comparison of PSchðtÞ and PLAD
Sch ðtÞ for the sinusoidal-

envelope linearly polarized plane wave with parameters given in
Fig. 4.
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pulse), Fig. 7 shows that the power (Pext) supplied by the
external electric-field force of the laser beam is practically
equal to the sum of the kinetic power (Pkin) and the radiated
power (Prad) because the Schott power shown in Fig. 9 is so
much smaller than the sum of these other powers. Also, as
Fig. 8 shows, the difference between Prad and PLAD

rad is not
detectable within the linewidth of the curves, again indicat-
ing the high accuracy of the LL solution; see Eq. (52). The
curves for PSchðtÞ and PLAD

Sch ðtÞ in Fig. 9 again exhibit no
noticeable difference between these two evaluations of the
Schott power. The most obvious difference between the
power curves for the uniform and sinusoidal-envelope
pulses is the vanishing of the large radiated power near
the beginning of the sinusoidal-envelope pulse.
Surprisingly, the total energy radiated (time integral of

power radiated over the pulse) in the case of the sinusoidal-
envelope pulse is notmuch less than the total energy radiated
in the case of the uniform plane wave (rectangular-envelope
pulse); specifically the total radiated energy normalized to
mc2 is found to be Wrad ≃WLAD

rad ≈ 938 ðuniform pulseÞ;
872 ðsinusoidal pulseÞ. The total energy supplied by the
plane-wave fields of the laser beam is about twelve
times higher for the uniform rectangular pulse than
for the sinusoidal-envelope pulse; specifically the total
supplied energy normalized to mc2 is found to be
Wext≈36.5ðuniformpulseÞ;3.1ðsinusoidalpulseÞ. In either
case, most of the radiated energy is taken from the change in
kinetic energy of the electron rather than the energy supplied
by the plane-wave fields.
The total scattering cross section of the electron as

determined by the total radiated energy during the 26.8 fs
divided by the total incident energy per unit area in the plane
wave illuminating the electron during the 26.8 fs is equal to
1.85×10−23m2 and 3.45×10−23m2 for the uniform and
sinusoidal-envelope pulses, respectively. Interestingly,
these total scattering cross sections are much closer
to πλ2c ¼ 1.85 × 10−23 m2, the area of a circle with a
radius equal to the Compton wavelength λc, than to
πr2e ¼ 2.5 × 10−29 m2, the area of a circle with a radius
equal to the classical radius re of the electron.

B. Circularly polarized plane wave

Next consider the case of a circularly polarized laser
beam [43], that is, an electron with initial speed u0 (at t ¼ 0
and z ¼ 0) moving in the þz direction oppositely to the
direction of propagation−z of a pulsed, circularly polarized
plane wave. The fields of the circularly polarized incident
plane wave can be written as

E ¼ E0EðξÞ½sin ξx̂þ cos ξŷ�; ð57aÞ

B ¼ −
E0

c
EðξÞ½sin ξŷ − cos ξx̂�; B0 ¼ E0=c; ð57bÞ

where for this circular polarization there is a y component
of the velocity as well as x and z components.
The x, y, and z components of the force-momentum

equation of the LL approximate solution (14a) to the LAD
equation of motion can be written for the electron as

dðγux=cÞ
dξ

¼ −a0½E sin ξþ ωτeγð1þ uz=cÞdðE sin ξÞ=dξ�

− ωτea20γð1þ uz=cÞðγux=cÞE2; ð58aÞ

dðγuy=cÞ
dξ

¼ −a0½E cos ξþ ωτeγð1þ uz=cÞdðE cos ξÞ=dξ�

− ωτea20γð1þ uz=cÞðγuy=cÞE2; ð58bÞ

dðγuz=cÞ
dξ

¼ a0

�
E
�
ux
c
sinξþuy

c
cosξ

�
=ð1þuz=cÞ

þωτeγ

�
ux
c
dðE sinξÞ=dξþuy

c
dðE cosξÞ=dξ

��

−ωτea20½1þð1þuz=cÞγ2ðuz=cÞ�E2: ð58cÞ

Taking the dot product of the velocity vector u
with the time rate of change of momentum to get
uxdðγuxÞ=dξþ uydðγuyÞ=dξþ uzdðγuzÞ=dξ ¼ c2dγ=dξ,
we find from Eq. (58) that

dγ
dξ

¼ −a0
�
E
�
ux
c
sin ξþ uy

c
cos ξ

�
=ð1þ uz=cÞ

þ ωτeγ

�
ux
c
dðE sin ξÞ=dξþ uy

c
dðE cos ξÞ=dξ

��

þ ωτea20½1 − ð1þ uz=cÞγ2�E2; ð59Þ

which can also be obtained directly from the power
equation (14b) of the LL approximate solution to the
LAD equation of motion. We want to solve the differential
equations in Eqs. (58)–(59) for ux, uy, uz, and γ as functions
of ξ and then find t as a function of ξ in order to obtain
explicit closed-form expressions for ux, uy, uz, and γ as
functions of time t.

1. Solution for γð1+uz=cÞ: Circular polarization
A differential equation that is immediately solvable

results by adding the two Eqs. (58c) and (59) to get

d½γð1þ uz=cÞ�
dξ

¼ −ωτea20γ2ð1þ uz=cÞ2E2: ð60Þ

Dividing through by ð1þ uz=cÞ2 and integrating from 0 to
ξ, one readily determines the solution as

γð1þ uz=cÞ ¼
γz0

1þ a20γz0ωτeF cðξÞ
; ð61Þ
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where γz0 ¼ γ0ð1þ uz0=cÞ with the initial values of γ and
uz given by γ0 ¼ γð0Þ and uz0 ¼ uzð0Þ. The integral
function F cðξÞ is found from Eq. (60) as

F cðξÞ ¼
Z

ξ

0

E2ðξ0Þdξ0: ð62Þ

The longitudinal velocity function γuz=c is obtained
directly from Eq. (61) as

γuz
c

¼ γz0
GcðξÞ

− γ; ð63Þ

with

GcðξÞ ¼ 1þ a20γz0ωτeF cðξÞ: ð64Þ

The closed-form expression for γð1þ uz=cÞ in Eq. (61)
enables one to find closed-form expressions for γux=c
and γuy=c.

2. Solution for γux=c and γuy=c: Circular polarization

Insertion of γð1þ uz=cÞ from Eqs. (61) into (58a) yields
a first-order linear differential equation for γux=c

dðγux=cÞ
dξ

þ ωτea20γz0
E2

Gc
ðγux=cÞ

¼ −a0
�
E sin ξþ ωτeγz0

dðE sin ξÞ=dξ
Gc

�
: ð65aÞ

Rewriting this equation in the more compact form

dðγux=cÞ
dξ

þ PcðξÞðγux=cÞ ¼ QcðξÞ ð65bÞ

allows the solution to this standard linear first-order differ-
ential equation to be expressed as [42]

γux
c

¼ −a0
HxðξÞ
GcðξÞ

ð66Þ

where

HxðξÞ ¼ SxðξÞ þ ωτeγz0½EðξÞ sin ξþ a20CxðξÞ�; ð67aÞ

SxðξÞ ¼
Z

ξ

0

Eðξ0Þ sin ξ0 dξ0; and ð67bÞ

CxðξÞ ¼
Z

ξ

0

Eðξ0ÞF cðξ0Þ sin ξ0dξ0: ð67cÞ

Similarly, insertion of γð1þ uz=cÞ from Eqs. (61) into
(58b) yields a first-order linear differential equation for
γuy=c, which solves to give

γuy
c

¼ −a0
HyðξÞ
GcðξÞ

; ð68Þ

where

HyðξÞ ¼ SyðξÞ þ ωτeγz0½EðξÞ cos ξ − Eð0Þ þ a20CyðξÞ�;
ð69aÞ

SyðξÞ ¼
Z

ξ

0

Eðξ0Þ cos ξ0dξ0; and ð69bÞ

CyðξÞ ¼
Z

ξ

0

Eðξ0ÞF cðξ0Þ cos ξ0dξ0: ð69cÞ

Of course, one still needs γ to evaluate ux=c and uy=c in
Eqs. (66) and (68).

3. Solution for the relativistic factor γ, the longitudinal
velocity uz=c, and the transverse velocities ux=c

and uy=c: Circular polarization

To find an explicit expression for the relativistic factor γ
and longitudinal velocity uz=c, given γuz=c in Eq. (63)
and γux=c and γuy=c in Eqs. (66) and (68), we use the
following form of the definition of γ in terms of the
velocities

γ2 ¼ 1þ ðγux=cÞ2 þ ðγux=cÞ2 þ ðγuz=cÞ2; ð70Þ

which yields γ from Eqs. (63), (66), and (68) as

γGcðξÞ ¼
1

2γz0
½γ2z0 þ G2

cðξÞ þ a20ðH2
xðξÞ þH2

yðξÞÞ�: ð71Þ

Having obtained γGcðξÞ (and thus γ), we can write the
longitudinal velocity uz=c from Eq. (63) as

uz
c
¼ γz0

γGcðξÞ
− 1; ð72Þ

and the transverse velocities ux=c and uy=c from Eqs. (66)
and (68) as

ux
c
¼ −a0

HxðξÞ
γGcðξÞ

and ð73aÞ

uy
c
¼ −a0

HyðξÞ
γGcðξÞ

: ð73bÞ

For envelope functions EðξÞ equal to the sum of
trigonometric and polynomial functions of ξ and their
products, the integrals in Eqs. (62), (67) and (69) needed to
determine GcðξÞ, HxðξÞ, and HyðξÞ in Eqs. (71)–(73) can
be evaluated in closed form.
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The time t can also be determined similarly in closed
form in terms of ξ from the relationship derived in Eq. (47),
which becomes for the circularly polarized plane wave

t ¼ 1

ωγz0

Z
ξ

0

γðξ0ÞGcðξ0Þdξ0; ð74Þ

where γðξÞGcðξÞ is given in Eq. (71). Alternatively, t can be
found from a straightforward computer summation of Δt ¼
γðξ0ÞGcðξ0ÞΔξ0 from ξ0 ¼ 0 to ξ for the chosen differential
increments Δξ0.

4. Uniform plane wave: Circular polarization

For a uniform circularly polarized plane wave, the
envelope function EðξÞ ¼ 1 and the integrals for F cðξÞ,
SxðξÞ, CxðξÞ, SyðξÞ, and CyðξÞ in Eqs. (62), (67b), (67c),
(69b), and (69c) evaluate to

F cðξÞ ¼ ξ; ð75aÞ

SxðξÞ ¼ 1 − cos ξ; ð75bÞ

CxðξÞ ¼ −ξ cos ξþ sin ξ; ð75cÞ

SyðξÞ ¼ sin ξ; and ð75dÞ

CyðξÞ ¼ ξ sin ξþ cos ξ − 1: ð75eÞ

When these expressions are substituted into Eqs. (64),
(67a), and (69a) to obtain GcðξÞ, HxðξÞ, and HyðξÞ, the
relativistic factor and velocities in Eqs. (71)–(73) agree
with those derived by Hadad et al. [[17] Eq. (A2)], except
that the directions of uy and uz in Ref. [17] are opposite
those herein. Although it is not necessary to evaluate the
integral for the time t in Eq. (74) explicitly (since it can be
computed as a simple summation), for the sake of com-
pleteness or if faster computational speed is desired, the
explicit closed-form expression for t in terms of ξ is

ωγz0t¼ γ0ξþa20ðξ− sinξÞ=γz0þωτea20½ξ2=2
þa20ðξ2=2−ξsinξ− cosξþ1Þ�
þω2τ2eγz0½a20ðξ− sinξÞþa40ð2ξ−3sinξþξcosξ

þξ3=6Þþa60ðξ−2 sin ξþξ cos ξþξ3=6Þ�: ð76Þ

Again it is noted that in Ref. [17] the proper time τ
rather than the actual time t is found as a function of ξ
so that γ, ux=c, uy=c, and uz=c can be expressed numeri-
cally as functions of τ. Then t is apparently determined as a
function of τ by numerically evaluating the inte-
gral t ¼ R

τ
0 γðτ0Þdτ0.

Since γ, ux=c, and uz=c are plotted vs time t in Ref. [17],
and the variation of uy=c is similar to that of ux=c, these
plots will not be repeated here. The power supplied by the

externally applied force to the electron, the power radiated,
the kinetic power, and the Schott power are not plotted in
Ref. [17]; thus these powers, normalized to mc2 and given
in units of s−1, are plotted in Figs. 10 and 11. These powers,
found from Eq. (59) with dξ inserted from (26d), can be
expressed respectively as

Pext ¼ −ωa0
�
ux
c
sin ξþ uy

c
cos ξ

�
E; ð77aÞ

Prad ¼ ω2τea20ð1þ uz=cÞ2γ2E2; ð77bÞ

Pkin ¼
dγ
dt

¼ ωð1þ uz=cÞ
dγ
dξ

; ð77cÞ

and

PSch ¼ ω2τea0ð1þ uz=cÞ
�
γ

�
ux
c
dðE sin ξÞ=dξ

þ uy
c
dðE cos ξÞ=dξ

�
− a0E2

�
: ð77dÞ

The laser-strength parameter a0 is chosen equal to 100, the
initial relativistic factor γ0 is chosen equal to 1000 and the
angular frequency ω of the laser equals 2 × 1015 s−1 in

FIG. 10. Pext, Prad, and Pkin plotted vs time t for a uniform
circularly polarized laser with angular frequency ω ¼
2 × 1015 s−1 and strength a0 ¼ 100 (E ¼ 1), and an electron
with initial relativistic factor γ0 ¼ 1000.

FIG. 11. PSchðtÞ and PLAD
Sch ðtÞ for the uniform circularly

polarized plane wave with parameters given in Fig. 10.
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order to conform to the choices for these parameters for
the linearly polarized case above and in Ref. [17]. For the
uniform plane wave, we have E ¼ 1. The plots cover the
time interval from 0 to 26.8 fs (several periods of the laser
beam), again to conform to the time interval chosen above
and in Ref. [17].
One can see in Fig. 10 that the power (Pext) supplied by

the external electric-field force of the laser beam is practi-
cally equal to the sum of the kinetic power (Pkin) and the
radiated power (Prad) because the Schott power shown in
Fig. 11 is more than five orders of magnitude smaller than
the sum of these other powers. The radiated power can also
be computed by substituting the values of u=c and _u=c
determined from the LL solution into the radiated power in
the LAD power equation of motion (10b); see Eq. (51). As
in the linearly polarized case, the difference betweenPradðtÞ
and PLAD

rad ðtÞ (not shown) is smaller than the linewidth of
the PradðtÞ curve in Fig. 10, thereby again indicating the
high accuracy of the LL solution for the given frequency
and strength of the laser beam, and for the initial velocity
(relativistic factor) of the electron; see Eq. (52). Also,
Fig. 11 shows that the Schott power PLAD

Sch ðtÞ computed by
substituting the values of u=c and _u=c determined from
the LL solution into the Schott power in the power LAD
equation of motion (10b) (Eq. (53) with ux sin ξþ
uy cos ξ replacing ux cos ξ) is very close to PSchðtÞ.

5. Sinusoidal envelope: Circular polarization

With the sinusoidal envelope function in Eq. (54) for the
circular polarization, the integrals for F cðξÞ, SxðξÞ, CxðξÞ,
SyðξÞ, and CyðξÞ in Eqs. (62), (67b), (67c), (69b), and (69c)
evaluate to

F cðξÞ ¼
1

2

�
ξ −

sinð2αξ
2α

�
; ð78aÞ

SxðξÞ ¼
1

2

�
sin½ð1 − αÞξ�

1 − α
−
sin½ð1þ αÞξ�

1þ α

�
; ð78bÞ

CxðξÞ¼
1

4

�
ξ

�
sin½ð1−αÞξ�

1−α
−
sin½ð1þαÞξ�

1þα

�

þcos½ð1−αÞξ�−1

ð1−αÞ2 −
cos½ð1þαÞξ�−1

ð1þαÞ2
�
−

1

2αð1þ3αÞ

·

�
sin3ðαξÞ sinξ− 1

1þα

�
sin2ðαξÞcos½ð1−αÞξ�

þα

�
cos½ð1−αÞξ�−1

1−α
−
cos½ð1−3αÞξ�−1

1−3α

���
;

ð78cÞ

SyðξÞ¼
1

2

�
cos½ð1−αÞξ�−1

1−α
−
cos½ð1þαÞξ�−1

1þα

�
; ð78dÞ

CyðξÞ ¼
1

4

�
ξ

�
cos½ð1 − αÞξ�

1 − α
−
cos½ð1þ αÞξ�

1þ α

�

−
sin½ð1 − αÞξ�
ð1 − αÞ2 þ sin½ð1þ αÞξ�

ð1þ αÞ2
�
−

1

2αð1þ 3αÞ

·

�
sin3ðαξÞ cos ξþ 1

1þ α

�
sin2ðαξÞ sin½ð1 − αÞξ�

þ α

�
sin½ð1 − αÞξ�

1 − α
−
sin½ð1 − 3αÞξ�

1 − 3α

���
: ð78eÞ

The integral for time in Eq. (74) can be evaluated in closed
form (not given here) or by computing the simple summa-
tion approximating the integral.
With these expressions substituted into Eqs. (64), (67a),

and (69a) to obtain GcðξÞ,HxðξÞ, andHyðξÞ, the relativistic
factor γ and velocities uz=c and ux=c in Eqs. (71)–(73) are
plotted in Figs. 12, 13, and 14 for the sinusoidal envelope
E ¼ sinðαξÞ with α ¼ 0.03169. This value of α is chosen
to give an envelope pulse width of 26.8 fs, the length of
the uniform-plane-wave pulse chosen in Ref. [17] and the
foregoing figures of the present paper. A comparison of
these plots in Figs. 12, 13, and 14 with the corresponding
plots in Figs. 4, 5, and 6 for the sinusoidal-envelope linearly

FIG. 12. Relativistic factor γ plotted vs time t for a sinusoidal-
envelope circularly polarized laser pulse with angular frequency
ω ¼ 2 × 1015 s−1, maximum strength a0 ¼ 100, and a pulse-
width equal to 26.8 fs. The electron has an initial relativistic
factor γ0 ¼ 1000.

FIG. 13. Longitudinal velocity uz=c plotted vs time t for a
sinusoidal-envelope circularly polarized laser pulse with param-
eters given in Fig. 12.
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polarized plane wave shows that the biggest difference is
the smooth variation of uz=c vs time for the circularly
polarized sinusoidal-envelope in Fig. 13. Over the 26.8 fs
time interval, γ remains much greater than unity (u=c ≈ 1)
for both uniform and sinusoidal circularly polarized
plane waves.
The power supplied by the externally applied force to the

electron, the power radiated, the kinetic power, and the
Schott power, all normalized to mc2 and given in units of
s−1, for the sinusoidal-envelope circular polarization are
plotted in Figs. 15 and 16. Again the difference between
PradðtÞ and PLAD

rad ðtÞ (not shown) is smaller than the
linewidth of the PradðtÞ curve in Fig. 15, thereby again
indicating the high accuracy of the LL solution for the
given frequency and strength of the laser beam, and for the
initial velocity (relativistic factor) of the electron; see
Eq. (52). In addition to all the powers gradually increasing
from a value of zero at t ¼ 0 for the sinusoidal-envelope
circular polarization, the main other difference between the
powers plotted in Figs. 10 and 11 for the uniform circular
polarization and the powers plotted in Figs. 15 and 16
for the sinusoidal-envelope circular polarization is the
much smaller value of the Schott power in Fig. 16 for
the sinusoidal envelope. Also, the agreement between
PSchðtÞ and PLAD

Sch ðtÞ is not quite as close as in the previous
cases of linear polarization and uniform circular polariza-
tion, thereby indicating that indeed PSchðtÞ determined by

the LL approximate solution to the LAD equation of
motion is not a perfect differential (as the computed
integrations over time of both Schott powers confirm).

V. CONDITIONS FOR THE ACCURACY OF THE
LL APPROXIMATE SOLUTION TO THE LAD

EQUATION OF MOTION

The LL solution for the LAD equation of motion is given
by the first order successive-substitution approximation
derived in Sec. III. Thus, the LL solution is an accurate
approximation to the exact solution of the LAD equation of
motion if the second and higher-order successive substi-
tution terms are negligible compared to the first term [44].
One way to determine the conditions under which the LL
solution is an accurate approximation to the LAD equation
of motion is to see if the radiated power in the LAD
equation is nearly equal to the radiated power in the LL
equation when the LL solution is inserted into the LAD
expression for the radiated power in Eq. (51). A convenient
way to do this for the problem of the moving electron in a
counterpropagating laser beam is to first show that PLAD

rad in
Eq. (51) can be reexpressed as

PLAD
rad ¼ τeγ

2

����� dðγu=cÞdt

����
2

−
�
dγ
dt

�
2
�
: ð79Þ

Then substituting dðγu=cÞ=dt from Eq. (27) and dγ=dt
from Eqs. (29) into (79) for the uniform linearly polarized
plane wave, and assuming that

ωτeγð1þ uz=cÞ ≪ 1 say≲ 1

10
; ð80Þ

one finds

PLAD
rad ¼ ω2τea20ð1þ uz=cÞ2γ2 cos2 ξ

· ½1þ ω2τ2ea20ð1þ uz=cÞ2γ2 cos2 ξ�: ð81Þ

For ω ¼ 2 × 1015 s−1, the inequality in Eq. (80) becomes
γð1þ uz=cÞ ≪ 8 × 107, which is satisfied by electron
energies attainable in present-day accelerators.

FIG. 14. Transverse velocity ux=c plotted vs time t for a
sinusoidal-envelope circularly polarized laser pulse with param-
eters given in Fig. 12.

FIG. 15. Pext, Prad, and Pkin plotted vs time t for a sinusoidal-
envelope circularly polarized laser with parameters given in
Fig. 12.

FIG. 16. PSchðtÞ and PLAD
Sch ðtÞ for the sinusoidal-envelope

circularly polarized plane wave with parameters given in Fig. 12.
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The corresponding radiated power given by the LL
approximation can be found directly from Eq. (29) to
get Eq. (50b), which for the uniform (E ¼ 1) linearly
polarized plane wave evaluates to

Prad ¼ ω2τea20ð1þ uz=cÞ2γ2 cos2 ξ: ð82Þ

Comparing Eqs. (81) and (82) reveals that the LL approxi-
mation to the LAD equation of motion is accurate if and
only if

ω2τ2ea20ð1þ uz=cÞ2γ2 ≪ 1 say≲ 1

10
ð83Þ

or

a0 ≲ 1

3ωτeγð1þ uz=cÞ
: ð84Þ

This inequality is the most restrictive when uz=c ≈ 1, for
which it simplifies to

a0 ≲ 1

6ωτeγ
≈
1.3 × 107

γ
for ω ¼ 2 × 1015 s−1: ð85Þ

However, it should be noted that as uz=c gets close to the
value of −1 (which occurs more rapidly the larger the value
of a0), the inequality in Eq. (84) becomes much less
restrictive so that the right-hand sides of Eqs. (84)–(85) are
multiplied by the large values of 1=ð1þ uz=cÞ.
We have obtained the conditions in Eqs. (84) and (85) for

the accuracy of the LL approximation by comparing the
LL and LAD power equations of motion for the uniform
linearly polarized plane wave. Although the proof will not
be given here, it can be shown that these same conditions
result by comparing the LL and LAD force equations of
motion for the uniform linearly polarized plane wave. Also
these same conditions derive from the LL and LAD power
or force equation of motion for the uniform circularly
polarized plane wave. In the rest frame of the electron, the
accuracy conditions in Eqs. (80) and (83) reduce to those in
Eqs. (19) and (25) derived in Sec. III A for the rest-frame
LAD and LL plane-wave equations. The border of the
inequality in Eq. (85) is plotted with the dashed blue line in
Fig. 17 for ω ¼ 2 × 1015 s−1.
The condition in Eq. (84) for the LL approximation to be

an accurate solution to the LAD equation of motion has the
same inverse relationship between a0 and γ as the condition
in Eq. (101b) for the quantum recoil effects of the electron
to be significant, except that the constant in Eq. (84) is three
orders of magnitude larger than the constant in Eq. (101b).
This means that, for the problem of the electron in a
counterpropagating laser beam, the LL solution is a highly
accurate approximation to the LAD equation of motion
unless the value of the product a0γ is so large that quantum
effects can dominate and neither the LL or LAD equation of

motion are adequate, at least without modification for
quantum effects (see Fig. 17).

VI. THE LF EQUATION OF MOTION

The LF equation of motion refers to the equation of
motion without any of the radiation-reaction terms. It is
obtained from either the LAD equation of motion in
Eq. (10) or the LL equation of motion in Eq. (14) by
setting τe ¼ 0. One can see from Eqs. (31) and (38) with a
uniform plane wave (E ¼ 1) that, because jCðξÞj is no larger
in value than about F ðξÞ, the LL solution becomes
approximately equal to the LF solution if the following
two conditions are satisfied in the LL solution

ωτeγz0 ≪ 1 and ð86aÞ

ωτeγz0a20F ðξÞ ≪ 1: ð86bÞ

Since F ðξÞ can be approximated by ξ=2 ¼ ωðtþ z=cÞ=
2, the second condition can be rewritten as

ω2τeγz0a20ðtþ z=cÞ ≪ 1: ð86cÞ

If one writes ωðtþ z=cÞ ¼ 2πðtþ z=cÞ=T ¼ 2πNc, where
T is the period of the plane wave and Nc is the number of
plane-wave cycles encountered by the moving electron,
then Eq. (86c) can be recast as ωτeγz0a20Nc ≪ 1 [18].
The condition in Eq. (86c) reveals that after the laser

beam is applied to the electron for a long enough time, the
LL solution is never well approximated by the LF solution;
that is, the radiation reaction terms always become impor-
tant after a sufficiently long time t. In fact, because F → ∞
as t → ∞, Eq. (31) shows that for the LL solution γð1þ
uz=cÞ → 0 and thus uz=c → −1 (implying γ → ∞ and
ux=c → 0) as t → ∞, whereas for the LF solution
(τe ¼ 0), Eq. (31) shows that γð1þ uz=cÞ ¼ γz0 for all
time. This implies, for example, that the linear Thomson
solution, which has a ux=c that oscillates with a constant
magnitude, always becomes invalid after the electron has
been subject to the plane wave for a long enough time.
These conclusions hold as well for the circularly polarized
plane wave with F cðξÞ replacing F ðξÞ in Eq. (86b).
The inequality in Eq. (86a) can be rewritten for ω ¼
2 × 1015 s−1 as γz0 ≪ 8 × 107, which is satisfied by elec-
tron energies attainable in present-day accelerators.

VII. QUANTUM EFFECTS

Except for the ad hoc renormalization of the mass of the
charged particle as its radius is allowed to approach zero,
the LAD equation of motion (10) with its approximate LL
solution in Eq. (14) is derived entirely from the classical
Maxwell equations and the classical relativistically gener-
alized Newtonian equations of momentum and energy of a
mass subject to a force. However, depending on the laser

LORENTZ-ABRAHAM-DIRAC AND … PHYS. REV. ACCEL. BEAMS 24, 114002 (2021)

114002-19



intensity and frequency, and the energy of the electron,
three different quantum effects can significantly alter the
motion and radiation from the charged particle (electron):
quantum vacuum electron-positron pair production,
Compton scattering of the incident photons, and electron
quantum recoil from photon emission (“inverse Compton
scattering”) [1,45,46].

A. Quantum vacuum electron-positron pair production

One of the quantum effects involves electron-positron
pair production from the quantum vacuum (mentioned in
Sec. II), that can occur when the magnitude of the electric
field (in the absence of a magnetic field) approaches the
Schwinger critical electric field given by

Es ¼
m2c3

eℏ
¼ 1.32 × 1018 V=m; ð87Þ

where ℏ ¼ 1.05 × 10−34 J · s is the reduced Planck’s con-
stant (Planck’s constant divided by 2π). As pointed out in
footnote 3, when both magnetic and electric fields are
present, electron-positron pair production depends on
electromagnetic field invariants that are zero in plane
waves (like those in the laser beam). Thus, direct quan-
tum-vacuum pair-production is not possible for a single
laser beam regardless of its intensity [1].

B. Compton scattering

The other two quantum effects depend upon the size of
the laser-strength parameter a0. To explain these effects,
consider the average photon density nph in the plane wave
of the laser beam as seen in the rest frame of the electron.
Specifically, equating the average energy density of the
photons to the average energy density in the classical plane-
wave fields, we have

nphℏω0 ¼
1

4
ðϵ0E2

0 þ B2
0=μ0Þ ¼

1

2
ϵ0E2

0; ð88Þ

so that

nph ¼
ϵ0E2

0

2ℏω0

: ð89Þ

The average distance between the photons is
dph ¼ 1=ðnphÞ13. If this average photon separation distance
is too large, then classical electromagnetic field analysis of
the electron in a plane wave (linear and nonlinear Thomson
scattering) will not suffice and a quantum approach taking
into account the Compton scattering between individual
photons and the electron is required. The critical separation
distance, beyond which classical field theory may fail and
quantum theory may be required, can be determined from
the classical estimate of the effective size of a photon as the
smallest possible quasimonochromatic electromagnetic

wave packet that can propagate in free space. The dimen-
sions of this minimum-size free-space classical quasimo-
nochromatic wave packet with frequency ω0 in the rest
frame of the electron are approximately λ0 in the propa-
gation direction and λ0=2 in the transverse direction [47].
Thus, these classical photons will create a uniform classical
electromagnetic field in free space as seen by the electron if
dph ≪ λ0, say dph ≲ λ0=4, where λ0 is the wavelength of
the laser in the rest frame of the electron.5 Consequently, it
seems reasonable to assume that the inequality dph ≳ λ0=4
gives the criterion for the rest-frame point charge (electron)
to leave the homogeneous continuum regime of the
classical Maxwellian electromagnetic fields and to encoun-
ter significant quantum Compton scattering effects pro-
duced by the individual incident photons. This inequality
can be expressed in terms of the laser strength a0 and the
ratio of the energy of the photon to the rest energy of the
electron, ρ ¼ ℏω0=ðmc2Þ with ω0 ¼ 2πc=λ0, by rewriting
dph in terms of nph in (89) so that the inequality dph ≳ λ0=4
becomes

nph ≲ 64

λ30
; ð90Þ

which can be reexpressed as

a0 ≲ ð8αÞ12ρ ≈ ρ

4
; ð91Þ

where a0 is given in Eq. (28b) and α is the dimensionless
fine-structure constant

α ¼ e2

4πϵ0ℏc
≈

1

137
: ð92Þ

For a0 ≳ ð8αÞ12ρ, the individual photons coalesce to exhibit
a classical Maxwellian field. Since the longitudinal
Doppler shift of the plane-wave frequency with respect
to the counterpropagating relativistic electron gives
ω0 ≈ γð1þ uz=cÞω, the normalized rest-frame photon
energy ρ can be rewritten in terms of the laboratory-frame
laser-beam plane-wave frequency ω as [11,45]

ρ ¼ γð1þ uz=cÞℏω
mc2

¼ 2.6 × 10−6γð1þ uz=cÞ; ð93Þ

5The inequality dph ≪ λ0 is identical to the condition (in SI
units) obtained from quantum electrodynamics by Berestetskii,
Lifshitz, and Pitaevskii for the “averaged [quantum electrody-
namic] field to be quasi-classical” [[48] Eq. (5.2)]. Note that this
condition for the plane-wave fields to behave classically depends
only on the average energy density in the classical fields, the
frequency in the rest frame of the electron, and Planck’s constant.
The charged particle (electron) comes into play only through its
relativistic factor needed to obtain the rest-frame frequency in
terms of the laboratory-frame frequency.
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for ω ¼ 2 × 1015 s−1, so that ρ is never larger than order 1
for the largest relativistic factors of about 105 obtainable by
the largest present-day accelerators. The criterion in
Eq. (91) for requiring Compton scattering can be written as

a0≲1

4

�
ℏω
mc2

�
γð1þuz=cÞ≈6.4×10−7γð1þuz=cÞ; ð94Þ

for ω ¼ 2 × 1015 s−1. Even if γ were as large as 105, this
implies that quantum Compton effects would not be
significant until a0 were less than about 0.1. The inequality
in Eq. (94) can be rewritten as

ρ≳ 4a0; ð95Þ

which indicates that for a given value of a0 the Compton
quantum effects increase with the parameter ρ, that is,
increase with the rest-frame frequency [45]. As an aside, it
is noted that the Compton scattering formulas show that for
ρ ≪ 1, the fractional change in the rest-frame electron
energy produced by a collision with a photon is propor-
tional to ρ2 [[49] Chap. 23, Sec. 1].
Classical linear Thomson scattering [[50] Sec. 14.8]

requires a0 ≪ 1 to keep the velocity and acceleration of the
electron low enough that the magnetic-field and radiation-
reaction forces are negligible; see qualifications in Sec. VI.
(Nonlinear Thomson scattering does not require the con-
dition a0 ≪ 1.) However, the criterion in Eq. (91) shows
that, depending on the value of ρ (that is, rest-frame
frequency), there is a small-value threshold for a0, below
which the scattering of the incident field by the electron
cannot be treated classically. In other words, classical linear
Thomson scattering applies to plane-wave incident fields
with a0 in the range

ρ

4
≲ a0 ≪ 1; ð96Þ

which also implies that ρ ≪ 1 for linear Thomson scatter-
ing. This is confirmed by the fact that for a fixed nonzero
value of ρ, the Klein-Nishina cross section for Compton
scattering is not equal to the linear Thomson scattering
cross section regardless of how small the value of a0 (both
cross sections are independent of a0), and that the
differences are larger for larger values of ρ. Only for ρ ≪
1 does the value of the Klein-Nishina cross section
approximately equal the value of the linear Thomson cross
section [[51,49] Chap. 23, Sec. 2].

C. Electron quantum recoil from photon emission

If the photon density is large enough that the fields
behave classically, specifically from (91)

a0 ≳ ð8αÞ12ρ ≈ ρ

4
ð97Þ

then the plane-wave fields incident on the electron can be
considered to be classical Maxwellian electromagnetic
fields E and B such as those given in Eqs. (26a) and
(26b). Under this condition in Eq. (97), the maximum
magnitude of the force on the electron in its rest frame is
simply eErf, where Erf is the amplitude of the plane-wave
electric field in the rest frame of the electron.
As the classical rest-frame field exerts a force of

magnitude eErf on the electron, the accelerating electron
emits radiation and experiences a radiation-reaction force.
If the energy of the emitted photons is a sizable fraction of
the rest energy of the electron, then the quantum recoil
effects of the electron produced by the photons may be
substantial and an entirely classical solution may not be
adequate [52]. The quantum energy of each photon or
bundle of photons emitted by the accelerating electron in its
rest frame would be expected to occur over the character-
istic quantum interaction distance of the rest-frame elec-
tron, namely a distance equal to about the Compton
wavelength λc of the electron. In that quantum distance,
the electric field imparts an energy to the electron equal to

eErfλc ¼
eErfℏ
mc

¼ ℏω0a0 and a0 ¼
eErf

mcω0

: ð98Þ

Thus, the quantum recoil effects of the electron will be
insignificant and a classical nonlinear Thomson solution
will suffice if this quantum bundle of photon energy is less
than a small fraction of the rest energy of the electron, that
is, if ℏω0a0=ðmc2Þ ≪ 1. This dimensionless parameter is
commonly denoted by χ, so that

χ ¼ ℏω0a0
mc2

¼ ρa0 ¼
Erf

Es
≪ 1 ð99Þ

where Es is the Schwinger critical electric field given in
Eq. (87). Conversely, if the amplitude of the plane-wave
electric field Erf applied to the electron in its rest frame is a
significant fraction of the Schwinger critical electric field,
then quantum recoil effects will generally be significant.
The value of this dimensionless ratio χ is thus a measure of
the importance of the quantum recoil effects of the emitted
photons on the electron (and the inadequacy of a purely
classical solution). It can be rigorously derived from
quantum electrodynamics as the parameter that determines
the importance of quantum nonlinear effects [46].
Again, from the Doppler shift for a counterpropagating

relativistic electron, ω0 ≈ γð1þ uz=cÞω and since a0 is a
Lorentz invariant, one can write χ from Eq. (99) in
laboratory-frame parameters as

χ ¼ γð1þ uz=cÞℏωa0
mc2

¼ ρa0: ð100Þ

If one chooses (somewhat arbitrarily) χ ≳ 1=10 as the
inequality for determining significant electron quantum
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recoil effects of the emitted photons, Eq. (100) provides the
criterion for the need to include these quantum effects as

a0 ≳ mc2

10γð1þ uz=cÞℏω
¼ 1

10ρ
: ð101aÞ

Since the reduced Planck’s constant can be expressed in
terms of the fine-structure constant α in Eq. (92) and the
time constant τe in Eq. (8) as ℏ ¼ 3mc2τe=ð2αÞ, the
criterion in Eq. (101a) for requiring quantum emission
recoil effects can be reexpressed as

a0 ≳ α

15γð1þ uz=cÞωτe
≈

4 × 104

γð1þ uz=cÞ
; ð101bÞ

for ω ¼ 2 × 1015 s−1. The rest-frame condition (99) for
negligible quantum recoil effects can be reexpressed as

ω0τea0 ≲ α

15
≈ 5 × 10−4 ð102Þ

a condition that also implies the inequality in Eq. (25) is
satisfied for the LL approximation to be an accurate
solution to the LAD equation of motion.

D. Regions of validity of the different solutions

The borders of the criteria in Eqs. (101) and (94) for
quantum recoil effects of the emitted photons and quantum
Compton scattering of the incident photons are plotted by
the solid red and dotted black lines, respectively, in Fig. 17
for a laser beam with a frequency ω ¼ 2 × 1015 s−1 and
uz=c ≈ 1. Above the solid red line and dotted black line, the
LAD equation of motion and its LL approximation may not
adequately represent an accurate solution for the electron in

a counterpropagating laser beam without incorporating
quantum effects. Note that the vertical axis in Fig. 17 is
log10½γðtÞ� not log10ðγ0Þ, where γ0 ¼ γð0Þ is the initial
value of γ. Thus, quantum effects may be substantial at γ0
when the electron first encounters the laser pulse but
become negligible when γ falls well below γ0. Martins
et al. [11] find substantial quantum corrections for γ0 ¼
1030 and a0 ≳ 10, values that lie reasonably close to the red
line in Fig. 17.
The border of the criterion in Eq. (85) for the LL

approximation in Eq. (14) to be an accurate solution to
the LAD equation of motion in Eq. (10) for a relativistic
electron (uz=c ≈ 1) in a counterpropagating laser beam is
given by the dashed blue line in Fig. 17. Above this dashed
blue line, the LL solution may not agree well with the LAD
solution. The numerical examples in the present paper for
a0 ¼ 100 and initial γ0 ¼ 1000 lie well below the dashed
blue line, even though this high value of a0γ produces
measurable γ-ray frequencies in the radiation emitted by the
decelerating electron [7,8].
The solid red line and the dashed blue line are parallel

but separated by a large space. This means that the LL
approximate solution to the LAD equation of motion
becomes inaccurate only well into the region where
quantum recoil effects can dominate the solution. This
result confirms the commonly held idea that wherever the
LL solution fails, the quantum effects will be so strong that
the LAD solution will also fail [53–55]. It also justifies the
use of the LL approximate solution to the LAD equation of
motion as a starting solution for incorporating quantum
effects perturbatively [11], as long as the solution lies
below the dashed blue line in Fig. 17. Above the dashed
blue line where the LL approximation fails, it is conceiv-
able that the LAD equation of motion, if numerically
solvable, could provide the starting solution for incorpo-
rating quantum effects.

VIII. SUMMARY AND CONCLUSIONS

The root cause of the noncausality (preacceleration/
deceleration) in the LA equation of motion for an extended
charge is determined and eliminated by including transi-
tion-force contributions at the points in time where the
external force is a nonanalytic function of time, such as
when the external force is first applied and when it is
terminated. If the radius of the extended charge is allowed
to approach zero and the associated unbounded mass is
renormalized to a finite value (typically the mass of the
electron), all the unwanted higher order terms in this causal
LA equation of motion vanish, resulting in a causal LAD
equation of motion. However, this causal LAD equation of
motion is not entirely satisfactory since it turns out that the
renormalization of the mass introduces a possible violation
of momentum-energy conservation if (and only if) the
change in the externally applied force across a transition
interval is enormously large (two orders of magnitude

FIG. 17. The log10ðγÞ vs log10ða0Þ plot of the regions of
validity for the relativistic electron in a counterpropagating laser
beam with ω ¼ 2 × 1015 s−1 and uz=c ≈ 1. Above the solid red
line, quantum recoil effects of the emitted photons may be
significant. Above the dotted black line, quantum Compton
scattering of the individual incident photons may be significant.
Above the dashed blue line, the LL solution may not be an
accurate approximation to the LAD solution.
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larger than the force that would be exerted on the charge by
the Schwinger electric field needed to produce quantum-
vacuum electron-positron pairs). Renormalization of the
mass in the classical equation of motion is not an entirely
innocuous, seamless procedure.
Consequently, since it is also true that the transition

forces required for causality have a negligible effect on the
LAD solution except for the very short time equal to about
τe ¼ 6.27 × 10−24 s (for an electron) near the transition
points, one can ignore the transition forces with impunity
and use the traditional noncausal LAD equation of motion
that predicts preacceleration/deceleration. Moreover, the
LL approximate solution to the LAD equation of motion
does not exhibit noncausal preacceleration/deceleration
because the LL solution is nothing more than the first-
order term of a successive-substitution power-series sol-
ution to the LAD equation of motion.
A transparent, convenient three-vector formulation of the

LL approximation is used to obtain its exact closed-form
solution for an electron moving in an arbitrarily shaped
counterpropagating plane-wave laser pulse. Numerical
results are plotted for the velocity of the electron and for
its various powers (radiated, kinetic, externally applied, and
Schott) as functions of time for linearly and circularly
polarized, rectangular-envelope and sinusoidal-envelope
plane-wave pulses with a laser-strength parameter a0 ¼
100 and an initial electron relativistic factor γ0 ¼ 1000.
Explicit expressions are found for the time t in terms of the
retarded time parameter ξ. The sinusoidal envelopes are
shown to strongly reduce the rapid changes in velocity and
power that occur near the beginning of the rectangular-
envelope pulses. Analytical and numerical agreement is
found with previously published results for the velocity.
General conditions are obtained for the LL approxima-

tion to be an accurate solution to the LAD equation of
motion, and for the LL solution to reduce to the LF solution
that contains no explicit radiation reaction. It is proven that
the LF solution is never adequate if the external force is
applied for a long enough time.
Simple semiclassical derivations are used to obtain the

parameters and conditions for deciding the importance of
both quantum Compton scattering of the electron by the
incident photons and the electron quantum recoil effects
produced by the emitted photons (“inverse Compton
scattering”). These parameters and conditions are shown
to be identical to those obtained from quantum electrody-
namics by Landau and Lifshitz and by Ritus. It is proven
conclusively that the LL approximation becomes an inac-
curate solution to the LAD equation of motion only where
the product a0γ is large enough that quantum recoil effects
on the electron can dominate over the classical solution.
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