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In order to reduce the beam density efficiently for a safe beam abort, we analytically studied the motion
of an aborted electron beam undergoing a sinusoidal kick by a beam shaker working at a constant
frequency. Since the rf power is switched off, the betatron tune changes gradually with time due to
chromatic effects. Chromatic aberration, together with a finite energy spread, enhances the dilution effect of
the beam density, while the change in betatron tune with time causes a phase slippage that suppresses the
growth of oscillation amplitude by the beam shaker. In order to treat such a situation properly, we
formulated the motion of an aborted electron beam, taking into account nonlinear chromatic effects, under
the adiabatic condition that the change in betatron tune is much slower than the betatron oscillation. In
addition, by considering the case of a linearly varying betatron tune, it is shown that the response of
an aborted electron beam can be interpreted as a superposition of waves, i.e., diffraction of waves. Our
investigation not only provides a criteria for the determination of shaker’s frequency for a safe beam abort
but also has applications to resonance crossing phenomena.
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I. INTRODUCTION

In an electron storage ring, the stored electron beam is
usually aborted by turning off the rf power for acceleration.
The electron beam then loses its energy turn-by-turn by
synchrotron radiation and eventually hits the inside of
vacuum chambers. The energy of the electron beam is
dissipated as heat by generating electromagnetic showers.
The advantage of such an abort procedure is that it does not
require an extra beam dump in the ring, which means the
procedure is space effective and easy in ring design and in
operation.
The beam abort procedure described above is effective

only when the electron beam density is low enough not
to damage vacuum chambers. In recent diffraction-limited
light sources [1–6], where very high-density low-emittance
beams are stored in vacuum chambers with a small cross
section, the situation is expected to be much more severe,
and therefore it is important to establish a safe abort
procedure of high-density beams [5–9]. Tracking simula-
tions anticipate that an aborted beam with the rf power
turned off will strike a vacuum chamber with its density

intact, causing the temperature of the chamber surface to
rise above the melting point. As a matter of fact, even in a
third-generation light source, where the vertical emittance
already reaches the diffraction limit, there was an accident
that the aborted beam melted the vacuum chamber [10].
In order to abort such high-density beams safely and

protect vacuum chambers, we propose the following two
countermeasures, in addition to the usual beam abort
procedure. The first is to reduce the beam density in the
vertical phase space by increasing the amplitude of betatron
oscillation by a beam shaker in combination with the
dilution effect of the beam density due to chromatic effects.
Since, in the case of an usual storage ring with high super-
periodicity, the time it takes for the aborted beam to hit the
vacuum chamber is equal to or longer than the time it takes
for the beam to be diffused in the phase space due to
chromatic effects, the beam density can be sufficiently
reduced with this method before the beam getting lost. The
second is to install graphite beam absorbers with a high-
melting point and a long radiation length at dispersive
sections to absorb the vertically spread electron beam.
These countermeasures prevent high-density beams from
hitting vacuum chambers directly and ensure a safe beam
abort. In the 3 GeV light source project [11], which is
currently under construction, we adopt the above aborted
beam handling system.
The reason for spreading the electron beam in the vertical

phase space is as follows. With the rf power turned off, the
beam orbit at dispersive sections shifts inward. Thereby,
the electron beam is gradually scraped from the inside by
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the absorbers and eventually disappears. Spreading the
electron beam horizontally increases the duration time from
when the beam starts hitting the absorbers to when it
disappears. The increase of the duration time is, however,
more than one order of magnitude smaller than the thermal
diffusion rate of the absorbers, and does not make any
sense. On the other hand, spreading the electron beam
vertically increases the contact area with the absorbers and
thus reduces the beam density effectively.
During the beam abort process, the betatron tune of an

electron beam varies gradually due to chromatic effects as
the electron beam loses its energy turn-by-turn by syn-
chrotron radiation. In this case, it is not trivial which
frequency is most effective for spreading the electron beam
in the phase space, and how much the beam density can be
decreased. In order to systematically and efficiently study the
beam density control by an external sinusoidal kick with a
constant frequency, we formulated an equation of motion for
an aborted electron beam undergoing a sinusoidal force, and
solved it analytically by using a Green function method. The
derived solution is valid under the adiabatic condition that
the tune variation with time is much slower than betatron
oscillation. It can also treat nonlinear chromatic effects as
long as the adiabatic condition is satisfied.
The paper is organized as follows. In Sec. II, the motion

of an aborted electron beam undergoing an external
sinusoidal force is modeled, and an analytical expression
is derived. In Sec. III, the growth and frequency response of
the oscillation amplitude are numerically evaluated in our
model and are compared to those obtained from tracking
simulations to validate our model. In Sec. IV, we discuss the
impact of the decoherence effect of betatron motion on the
beam density. In Sec. V, we apply a linear approximation to
the chromaticity to simplify our model, and discuss
analogies between the beam motion and diffraction of
light. The paper ends with a summary in Sec. VI.

II. FORMULATION OF THE ABORTED BEAM
MOTION WITH A SINUSOIDAL FORCE

Let us consider the transverse motion of an aborted
electron undergoing a sinusoidal kick by a beam shaker.
Suppose that the beam shaker is placed at s ¼ sf and
applies a sinusoidal kick to an aborted electron beam every
turn. Then, the transverse motion of an aborted electron is
determined by the following inhomogeneous equation

d2z
ds2

þ KðsÞz ¼ FðsÞ; ð1Þ

with an external force by the shaker

FðsÞ ¼ δðs − sfÞF0 cosð2πνfs=CÞ; ð2Þ

where z stands for a transverse coordinate x or y, KðsÞ
is a periodic focusing function Kðsþ CÞ ¼ KðsÞ with a

periodC of the circumference, and νf is the frequency of the
sinusoidal force (the number of oscillation during one turn of
an electron).
The Courant-Snyder transformation [12] allows us to

transform Eq. (1) into a quite familiar form, i.e., the
equation of motion for a forced harmonic oscillator

d2u
dϕ2

þ ν2u ¼ F̄ðϕÞ: ð3Þ

Here, we introduce a normalized coordinate variable

u ¼ zffiffiffi
β

p ; ð4Þ

and a new independent variable

ϕ ¼ 1

ν

Z
s

0

ds0

βðs0Þ ; ð5Þ

where ν is the betatron tune and βðsÞ is the beta function.
The external force FðsÞ is transformed as

F̄ðϕÞ ¼ ν2β3=2 ×

���� dsdϕ
����
−1

×
X

0≤ϕf;n≤ϕ
δðϕ − ϕf;nÞF0 cosðνfϕþ ϕ0Þ

¼ ν
ffiffiffi
β

p
×

X
0≤ϕf;n≤ϕ

δðϕ − ϕf;nÞF0 cosðνfϕþ ϕ0Þ

≡ X
0≤ϕf;n≤ϕ

δðϕ − ϕf;nÞF̄0 cosðνfϕþ ϕ0Þ; ð6Þ

where ϕf;n denotes the phase function value at shaker’s
position every turn and F̄0 ≡ ν

ffiffiffi
β

p
F0 is introduced.

Now, let us take into account the chromatic effects in
Eq. (3) as a change in betatron tune with time. Then ν is an
arbitrary function of ϕ and Eq. (3) becomes

üþ ν2ðϕÞu ¼ F̄ðϕÞ: ð7Þ

Note that ν’s in Eqs. (5) and (6) can be approximately
replaced with a constant value ν0, where ν0 is the betatron
tune at which the rf power is switched off (ϕ ¼ 0 or t ¼ 0),
for the following reason. Since the linear chromaticity
for an ordinary storage ring has a small positive value,
the adiabatic condition is in general satisfied; that is, the
variation of the betatron tune due to synchrotron radiation
is very slow compared to the betatron oscillation,

j_νðϕÞj ≪ ν2ðϕÞ and jν̈ðϕÞj ≪ ν3ðϕÞ: ð8Þ

Under the adiabatic condition of Eq. (8), the equation of
motion (7) can be analytically solved with the help of the
Green function method. According to Ref. [13], the Green
function for Eq. (7) is given by
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Gðϕ;ϕ0Þ ¼ −i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νðϕÞνðϕ0Þp exp

�
i
Z

ϕ

ϕ0
νðχÞdχ

�
þ c:c: ð9Þ

With the Green function of Eq. (9), we have a particular
solution for the equation of motion (7)

uðϕÞ ¼
Z

ϕ

0

Gðϕ;ϕ0ÞF̄ðϕ0Þdϕ0

¼ iF̄0

4
ffiffiffiffiffiffiffiffiffi
νðϕÞp exp

�
−i

Z
ϕ

0

νðχÞdχ
�
× hðϕ; νfÞ þ c:c:;

ð10Þ

where hðϕ; νfÞ is an envelope function defined as

hðϕ; νfÞ ¼
X

0≤ϕf;n≤ϕ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νðϕf;nÞ

p exp

�
i
Z

ϕf;n

0

νðχÞdχ
�

× ðe−iνfϕf;n−iϕ0 þ eiνfϕf;nþiϕ0Þ

≈
X

0≤ϕf;n≤ϕ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νðϕf;nÞ

p exp

�
i
Z

ϕf;n

0

νðχÞdχ
�

× exp ½−iðνfϕf;n þ ϕ0Þ�

≈
1

2π

Z
ϕ

0

dϕ0ffiffiffiffiffiffiffiffiffiffiffi
νðϕ0Þp

× exp

�
i

�Z
ϕ0

0

νðχÞdχ − νfϕ
0 − ϕ0

��
: ð11Þ

Here, we neglect the rapidly oscillating terms (i.e., the
second term of the first line), and replace the summation
over ϕf;n with the integral. Note that the replacement of the
summation with the integral is valid because the interval of
ϕf;n (¼ 2π) is small enough compared to the oscillation
period of the integrand (i.e., jν − νfj ≪ 1).
It is worth noting that, as discussed in Ref. [13], a similar

expression to Eq. (10) can be also derived in the case where
the betatron tune is kept constant while shaker’s frequency
varies. In this case, adiabatic condition such as Eq. (8) is not
required to obtain an analytical solution.

III. COMPARISON TO PARTICLE
TRACKING SIMULATION

In Sec. II, by means of simple modeling, we derived an
analytical expression for the time evolution of betatron
oscillation excited by an external sinusoidal force with a
constant frequency. Here, we present how well the derived
expression agrees with precise three-dimensional tracking
simulations in the region where the adiabatic condition of
Eq. (8) is satisfied.
Table I shows the machine parameters of the storage ring

used for the comparison. Here we take, as an example, the
storage ring of the 3 GeV light source project [11]. For
tracking simulations, we use the tracking code, CETRA [14],

which performs a symplectic integration [15,16] based on
the Hamiltonian for the motion of a charged particle in the
six-dimensional phase space without expanding its square-
root form. The code can handle the couplings between
betatron oscillations and path length changes. The cavity
and the fringe field of magnets are treated in the thin-lens
approximation [17]. Since the effect of radiation fluctua-
tions is small, the calculations shown below use the
expected value of the radiation to simulate the energy loss
(i.e., fluctuations per radiation are averaged out).
In the ring for the 3 GeV light source project, the electron

beam will start hitting the beam absorbers around the
400th turn after the rf power is turned off. Therefore, the
electron beam density must be reduced sufficiently around
the 400th turn. Moreover, in order to ensure sufficient time
margin, the electron beam should be well spread out in the
vertical phase space within the 300th turn.
Figure 1 shows the vertical betatron tune as a function of

the number of turns after the rf power is turned off. The
betatron tune varies gradually according to the nonlinear
chromaticity with the energy loss due to synchrotron
radiation. As we see in the figure, the betatron tune varies
linearly up to the 100th turn, whereas nonlinearities show
up after that. To be able to treat properly in our model the
aborted beam motion at least up to the 300th turn after the
rf power turned off, we take into account the nonlinear
chromaticity up to the fifth order of the relative energy
deviation, and fit the CETRA calculation by a fifth-degree
polynomial function

νðδÞ ¼ ν0 þ ξ1δþ ξ2δ
2 þ ξ3δ

3 þ ξ4δ
4 þ ξ5δ

5; ð12Þ

TABLE I. Machine parameters of the storage ring for the 3 GeV
light source project [11]. The lattice is a four-bend achromat type.
The capital letters H, V, and L in the table represent horizontal,
vertical, and longitudinal, respectively.

Parameter Value

Beam energy 3 GeV
Stored current 400 mA
Circumference 348.8 m
rf frequency 508.76 MHz
rf voltage 3.6 MV
Synchrotron tune 0.00695
Harmonic number 592
Number of cells 16
Natural emittance 1.14 nmrad
Betatron tune 28.17 ðHÞ=9.23 ðVÞ
Energy spread 0.0843%
Momentum compaction

4.33e-4
Factor
Bending field 0.869 T
Radiation loss

0.62 MeV=turn
(by bending magnets)
Damping partition number 1.39ðHÞ=1.00ðVÞ=1.61ðLÞ
Damping time (ms) 8.09ðHÞ=11.24ðVÞ=6.98ðLÞ
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where δ ¼ −nΔ and Δ ¼ U=E0 are defined, E0 is the
reference beam energy, U is the radiation loss per turn, and
n is the number of turns after the rf power turned off. The fit
result by Eq. (12), as shown in Fig. 1 as a blue solid curve,
can well reproduce the CETRA calculation up to the
400th turn.
Figure 2 shows the comparison between the model

calculation using Eq. (10) and tracking simulation of
vertical betatron oscillation excited by the beam shaker
up to the 400th turn at an observation point in the ring.
Two different shaker’s frequencies, corresponding to green
dashed and magenta dash-dotted lines in Fig. 1, are
examined. Though the model calculation is in excellent
agreement with the CETRA tracking for both shaker’s
frequencies up to the 230th turn, we see some discrepancies
between them after that. There are two possible reasons
for the discrepancies. First, the CETRA tracking correctly
handles the change in path length due to radiation loss,
whereas the model calculation does not take such an effect
into account. Therefore, in our model, as the number of
turns increases, the timing of receiving a kick from the
beam shaker will deviate from the actual timing. Second, as
the number of turns increases, the rate of change in betatron
tune becomes larger (see Fig. 1), and consequently the
adiabatic approximation becomes poor.
From the analytical expression of betatron oscillation

given by Eq. (10), the oscillation amplitude is written as

Aðϕ; νfÞ ¼
F̄0

4
ffiffiffiffiffiffiffiffiffi
νðϕÞp × jhðϕ; νfÞj: ð13Þ

Thus, the envelope function jhðϕ; νfÞj can be viewed as a
frequency response of the oscillation amplitude at the nth
turn [n ¼ ϕ=ð2πÞ].
Figure 3 shows the frequency response jhðνfÞj of the

oscillation amplitude at the 400th turn with shaker’s
frequency ranging from 7.74 to 8.17 MHz, equivalently
from 9.0 to 9.5 in terms of tune. For comparison, the
oscillation amplitude at the 400th turn for several shaker’s
frequencies was calculated from single-particle tracking
by CETRA and the results are overlaid in Fig. 3(b) as red
squares. Our model well reproduces a complicated pattern
of the frequency response. Although our model is very
simple, it can predict the time evolution of the oscillation
amplitude at an arbitrary shaker frequency without any
time-consuming calculations.
For a given total number of turns, the total gain from

the beam shaker is determined by two main factors. One is
the number of times the aborted beam passes through the
resonance condition. As we see in Fig. 3(a), we have almost
no gain for νf ≲ 9.20. In this region, the aborted beam
never crosses any resonance conditions (see also Fig. 1).
On the other hand, for 9.20≲ νf ≤ 9.23, the aborted beam
crosses the resonance condition twice, and thus we have

FIG. 1. Vertical betatron tune as a function of the number of
turns after the rf is turned off. Red squares represent the CETRA

calculation, while a blue solid curve represents the fit to the
CETRA results with Eq. (12). Green dashed and magenta dash-
dotted lines correspond to shaker’s tune (frequency) νf ¼ 9.230
and νf ¼ 9.209, respectively.

FIG. 2. Vertical betatron oscillation excited by the beam shaker at
an observation point in the storage ring. (a) CETRA tracking and
(b) model calculation with shaker’s tune (frequency) νf ¼ 9.230,
and (c) CETRA tracking and (d)model calculationwith νf ¼9.209.
In both cases, the initial amplitude of betatron oscillation is set to
zero and the magnitude of shaker’s kick is set to 2 μrad.
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more than twice as large as the total gain in the other region,
where the aborted beam crosses the resonance condition
only once (νf > 9.23).
Another factor that determines the total gain is the speed

at which the aborted beam passes through the resonance
condition. As we shall see later, the time duration of
gaining energy efficiently from the beam shaker is inversely
proportional to the square root of the speed of crossing the
resonance condition. Consequently, the oscillation ampli-
tude after the resonance crossing is also proportional
inversely to it. In fact, we have the maximum total gain
at νf ≈ 9.209. In this case, the crossing speed is almost zero
(see Fig. 1).
There is another point worth mentioning. Besides the

gross structure of the frequency response discussed above,
we see a characteristic ringing pattern. In particular, the
total gain is quite low at νf ≈ 9.214, 9.221, and 9.226, even
though the aborted beam crosses the resonance condition
twice. Such a behavior can be understood by interpreting
the integration in Eq. (11) as a superposition of waves in
the frequency space, as discussed in Sec. V; that is,
“wavepackets” coming from the first and second resonance
crossings cancel each other. In fact, the difference between
the phases of the integrand in Eq. (11) at the first and

second resonance crossings, ΔΦ, can be approximately
written as ΔΦ ≈ π × ð2mþ 1Þ (m: integer).

IV. DECOHERENCE OF BETATRON MOTION

The decoherence effect of betatron motion, as well as
the growth of oscillation amplitude excited by the beam
shaker, is a key issue to reduce the beam density for a safe
beam abort. In this section, we discuss the impact of the
decoherence effect of betatron motion on the beam density.
Figure 4 shows the ðy; y0Þ phase space distributions

of 5000 particles in a single bunch excited by the beam
shaker. The aborted beam, initially concentrated at the
origin, is gradually stretched in the phase space due to the
decoherence effect while the oscillation amplitude is
increased by the beam shaker up to about the 100th turn.
After that, the beam shrinks once [Fig. 4(c)] and then starts
getting stretched again. Around the 300th turn, the phase
space distribution becomes like a ring. The radius of the
ring, i.e., the maximum oscillation amplitude of an elec-
tron, corresponds to ∼200 μm, which is almost consistent
with the result of single-particle tracking [see Fig. 2(a)].

FIG. 3. Frequency response of the oscillation amplitude at the
400th turn. (a) The scale for the y axis is logarithmic. (b) The
scale for the y axis is linear. Red squares represent the oscillation
amplitude at the 400th turn calculated from single-particle
tracking by CETRA.

FIG. 4. ðy; y0Þ phase space distribution of 5000 particles in a
single bunch (a) at the 0th, (b) 100th, (c) 200th, (d) 240th,
(e) 270th, and (f) 300th turn, respectively, simulated by CETRA. In
the simulation, the magnitude and the frequency of a sinusoidal
kick are, respectively, set to 2 μrad and νf ¼ 9.230. In addition,
the x-y coupling of 1% is introduced, assuming the actual ring
condition.
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Thanks to the decoherence effect together with the pertur-
bation by the beam shaker, the beam density can be reduced
by a factor of ∼300 in the present case.
The behavior of the phase space distribution described

above can be well explained by the energy spread and the
chromaticity. Figure 5 shows the difference of the phase
advances between high momentum (δp=p ¼ þ0.17%,
corresponding to a þ2σ deviation) and low momentum
(δp=p ¼ −0.17%, corresponding to a −2σ deviation)
particles in a single bunch, together with the chromaticity
for vertical motion. Up to the 125th turn, the phase advance
difference increases monotonically according to the linear
chromaticity. Then, it decreases due to the nonlinear
chromaticity and crosses zero around the 200th turn.
After that, as the nonlinearities of chromaticity increase,
the phase advance difference becomes larger and larger
in the negative direction, reaching −2π at around the
270th turn. It is obvious from the above discussion that
the decoherence time, i.e., the time it takes for the aborted
beam to fill the phase space in a ring, depends on the energy
spread and the nonlinearities of chromaticity. It should be
noted that the aborted beam does not undergo synchrotron
oscillation because of the rf power switched off.
Storage ring light sources usually operate in a multi-

bunch mode. In this case, the dilution effect of the beam
density is further enhanced because the initial phase of
betatron oscillation excited by a beam shaker is different for
each bunch.

V. LINEARLY VARYING TUNE AND ANALOGIES
TO LIGHT DIFFRACTION

To understand the behavior of the frequency response, as
discussed in Sec. III, in more detail, we hereafter restrict

ourselves to the simplest case; namely, the betatron tune
varies linearly as

νðδÞ ¼ ν0 þ ξ1δ ¼ ν0 − ξ1Δ
ϕ

2π
≡ νðϕÞ; ð14Þ

where ξ1Δ > 0.
As discussed in Ref. [13], a forced harmonic oscillator

with a slowly varying natural frequency is essentially
equivalent to light diffraction. Just as the intensity pattern
of light diffraction from a single slit varies with the Fresnel
number NF from a Fraunhofer pattern (NF ≪ 1) to a
Fresnel one (NF ≳ 1), the frequency response of the
oscillation amplitude changes its behavior according to
the corresponding Fresnel number N̄F. In the present case,
the Fresnel number N̄F is given by

N̄F ¼ ξ1Δ
4

�
ϕ

2π

	
2

: ð15Þ

Using the above Fresnel number, one can easily estimate
the frequency response with a quite simple calculation.
Still following the discussion in Ref. [13], let us consider

the growth of the betatron amplitude (or the envelope
function jhj), starting at νð0Þ ¼ νf (i.e., we choose
νf ¼ ν0). From Eq. (11), the amplitude growth hðϕÞ in
this case is written as

hðϕ; νf ¼ ν0Þ ≈
e−iϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν0ξ1Δ

p
�
C

� ffiffiffiffiffiffiffiffiffiffi
2ξ1Δ

p ϕ

2π

	

− iS

� ffiffiffiffiffiffiffiffiffiffi
2ξ1Δ

p ϕ

2π

	�
; ð16Þ

where two functions CðxÞ and SðxÞ are the so-called
Fresnel integrals

CðxÞ ¼
Z

x

0

cos

�
π

2
w2

	
dw and ð17Þ

SðxÞ ¼
Z

x

0

sin

�
π

2
w2

	
dw: ð18Þ

Figure 6 shows the growth of the betatron amplitude as
given by Eq. (16). We see that the growth of the betatron
amplitude behaves like an intensity pattern of knife-edge
diffraction (i.e., Fresnel diffraction from a straight edge).
As we see in Fig. 6, the betatron amplitude increases

monotonically until a certain number of turns, δϕ=ð2πÞ,
then it starts beating and asymptotically converges to a
certain value, jhj∞. These quantities can be evaluated by
using the analogies together with our knowledge of light
diffraction (see Ref. [13] for detail discussion)

FIG. 5. Difference of the phase advances between high mo-
mentum [δp=p ¼ þ0.17% (þ2σ)] and low momentum [δp=p ¼
−0.17% (−2σ)] particles (red curve, bottom and left axes) and the
chromaticity for vertical motion (blue curve, top and right axes).
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δϕ

2π
¼ 1ffiffiffiffiffiffiffiffi

ξ1Δ
p and ð19Þ

jhj∞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ν0ξ1Δ

p : ð20Þ

Our conclusion that the asymptotic amplitude is inversely
proportional to the square root of the crossing speed
ξ1Δ agrees with the previous study on integer-resonance
crossing [18].
In what follows, to see the nonlinear chromatic effects on

the frequency response, we focus on the range from the
215th to 400th turn, where the betatron tune crosses the
resonance condition once and where the nonlinear effects
are rather large (see Fig. 1), and calculate the frequency
response for the following two cases. The one is the case
where the betatron tune varies according to Eq. (12), and
the other is the case where the betatron tune varies linearly.
For comparison, the total change in betatron tune is set to
be the same in both cases (i.e., the rate of change in betatron
tune is averaged out in the linear case), as shown in Fig. 7.
The results are compared in Fig. 8.
For the linear case, the parameters used in the calculation

give the Fresnel number N̄F ≈ 16.5, so the frequency
response exhibits a Fresnel diffraction pattern. In the light
diffraction theory, a Fresnel diffraction pattern represents
just a shape of the slit aperture, and a ripple structure on the
plateau comes from constructive or destructive interference
between the incident plane wave and the diffracted wave
(i.e., the secondary spherical wave) from the aperture edge
[19]. Because of a quadratic change in optical path length
difference under the Fresnel approximation, the spatial

frequency of the ripple structure becomes higher toward the
center. Using the concept of Fresnel zones, the position of a
dip as measured from the aperture edge is approximately
written as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2m − 1Þλr0
p

(m ¼ 1; 2;…), where λ and r0 are
the wavelength and the slit-screen distance, respectively,
and m ¼ 1 represents the first dip from the edge. Thus, by
applying the correspondence relation given in Ref. [13] to
the present case, the range of resonant frequencies almost
coincides with the range in which the betatron tune varies,

FIG. 7. Tune excursion from 215 to 400 turns. A red solid curve
redraws Fig. 1, whereas a blue dashed line represents a
linearized one.

FIG. 8. Comparison of the frequency responses for the range
from the 215th to 400th turn with and without the nonlinear
chromatic effects. Red and blue curves represent the nonlinear
and linear cases, respectively. The machine parameters for the
nonlinear case are the same as those of Sec. III, whereas the
calculation for the linear case uses the averaged chromaticity
parameters (see the text for details).

FIG. 6. Amplitude growth of betatron oscillation, starting at
νð0Þ ¼ νf. The machine parameters used in the calculation are
the same as those of Sec. III, except that the chromaticity is
linearized. A red arrow indicates the number of turns
[¼ δϕ=ð2πÞ] corresponding to N̄F ¼ 1 (see the text and Ref. [13]
for details).
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and the spacing of ripple peaks is determined by the
crossing speed ξ1Δ.
Looking at the nonlinear case, on the other hand, the

frequency response exhibits a Fresnel-like but asymmetri-
cal pattern; that is, as shaker’s frequency νf increases, the
peak height decreases gradually and the width of a ripple
peak becomes wider. These deformation can be accounted
for by the nonlinear chromatic effects. For example, from
Eq. (20), the ratio of the square root of the crossing speed
ξ1Δ at νf ¼ 9.252 and 9.515, corresponding to the pro-

nounced peaks at the both edges, is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.5=4.8

p
≈ 0.56, in

good agreement with the ratio of jhj obtained from the
figure, 7.0=13.0 ≈ 0.54. The increasing width of a ripple
peak with νf can be also understood in terms of the change
of the crossing speed ξ1Δ. Note that the number of ripple
peaks is the same for both the nonlinear and linear cases,
and therefore, even in the nonlinear case, the Fresnel
number N̄F can be defined by linearizing the chromaticity
parameters.
Returning back to the discussion of the characteristic

behavior shown in Fig. 3, it can be viewed as a further
superposition of two diffraction patterns with different
Fresnel numbers N̄F—one corresponding to the range
from 0 to 125 turns and the other to the range from 126
to 400 turns (see Fig. 1).

VI. SUMMARY

In diffraction-limited light sources, it is crucial to abort
the stored electron beam safely. For this purpose, we
constructed a simple model for an aborted electron beam
undergoing an external sinusoidal kick with a constant
frequency. The model can treat nonlinear chromatic
effects as long as the betatron tune varies slowly enough
compared to betatron oscillation. It was demonstrated that
the model can predict the growth of the oscillation
amplitude at an arbitrary shaker’s frequency under the
adiabatic condition, and thus serves well for a quick
estimate of the frequency response. In addition, to under-
stand a characteristic behavior of the frequency response
obtained from the model, we simplified the model to the
case of a linearly varying tune, and showed that it can be
interpreted as a superposition of waves in the frequency
space and can be discussed in the same manner as light
diffraction. Our investigation not only facilitates the
design of a beam-abort system in a diffraction-limited
ring but may also shed light on another aspects of
resonance-crossing phenomena.

[1] SPring-8-II Conceptual Design Report (2014), http://rsc
.riken.jp/pdf/SPring-8-II.pdf.

[2] EBS Storage Ring Technical Report (2018), https://www
.esrf.fr/about/upgrade.

[3] Y. Jiao et al., The HEPS project, J. Synchrotron Radiat. 25,
1611 (2018).

[4] L. Liu et al., Sirius commissioning results and operation
status, in Proceedings of IPAC2021 (2021), p. 13.

[5] Advanced Photon Source Upgrade Project Preliminary
Design Report, Argonne National Laboratory, Report
No. aPSU-2.01-RPT-002, 2017.

[6] C. G. Schroer et al., PETRA IV: Upgrade of PETRA III to
the ultimate 3D x-ray microscope, Conceptual Design
Report, 2019, https://doi.org/10.3204/PUBDB-2019-03613.

[7] M. Borland et al., Using decoherence to prevent damage to
the swap-out dump for the APS upgrade, in Proceedings of
IPAC2018 (2018), p. 1494.

[8] M. Borland et al., Simulation of beam aborts for the
Advanced Photon Source to probe material-damage limits
for future storage rings, in Proceedings of NAPAC2019
(2019), p. 106.

[9] J. Dooling et al., Studies of beam dumps in candidate
horizontal collimator materials for the Advanced Photon
Source upgrade storage ring, in Proceedings of NA-
PAC2019 (2019), p. 128.

[10] H. Tanaka et al., Top-up operation of SPring-8 storage ring
with low-emittance optics, in Proceedings of EPAC2006
(2006), p. 3359.

[11] N. Nishimori, T. Watanabe, H. Tanaka et al., A highly
brilliant compact 3 GeV light source project in Japan, in
Proceedings of IPAC2019 (2019), p. 1478.

[12] E. Courant and H. Snyder, Theory of the alternating-
gradient synchrotron, Ann. Phys. (N.Y.) 3, 1 (1958).

[13] T. Hiraiwa, K. Soutome, and H. Tanaka, Forced harmonic
oscillator interpreted as diffraction of light, Phys. Rev. E
102, 032211 (2020).

[14] J. Schimizu et al., Development of a tracking and analysis
code for beam dynamics in SPring-8, in Proceedings of the
13th Symposium on Accelerator Science and Technology
(2001), p. 80.

[15] H. Yoshida, Construction of higher order symplectic
integrators, Phys. Lett. A 150, 262 (1990).

[16] H. Yoshida, Recent progress in the theory and application
of symplectic integrators, Celestial Mech. Dyn. Astron. 56,
27 (1993).

[17] E. Forest et al., The correct local description for tracking in
rings, Part. Accel. 45, 65 (1994).

[18] J. LeDuff, Integer resonance crossing in H. I. accumulator
ring, in Proceedings of Heavy Ion Fusion Workshop (1979),
p. 310.

[19] M. Born and E. Wolf, Principles of Optics, 7th ed.
(Cambridge University Press, Cambridge, England, 2019).

HIRAIWA, SOUTOME, and TANAKA PHYS. REV. ACCEL. BEAMS 24, 114001 (2021)

114001-8

http://rsc.riken.jp/pdf/SPring-8-II.pdf
http://rsc.riken.jp/pdf/SPring-8-II.pdf
http://rsc.riken.jp/pdf/SPring-8-II.pdf
http://rsc.riken.jp/pdf/SPring-8-II.pdf
https://www.esrf.fr/about/upgrade
https://www.esrf.fr/about/upgrade
https://www.esrf.fr/about/upgrade
https://doi.org/10.1107/S1600577518012110
https://doi.org/10.1107/S1600577518012110
https://doi.org/10.3204/PUBDB-2019-03613
https://doi.org/10.1016/0003-4916(58)90012-5
https://doi.org/10.1103/PhysRevE.102.032211
https://doi.org/10.1103/PhysRevE.102.032211
https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1007/BF00699717
https://doi.org/10.1007/BF00699717

