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A framework for integrating transfer matrices with particle-in-cell simulations is developed for TeV
staging of plasma wakefield accelerators. Using nonlinear transfer matrices in terms up to ninth order in
normalized energy spread

ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
and deriving a compact expression for the chromatic emittance growth in

terms of the nonlinear matrix, plasma wakefield accelerating stages simulated using the three-dimensional
particle-in-cell framework OSIRIS 4.0 were combined to model acceleration of an electron beam from
10 GeV to 1 TeV in 85 plasma stages of meter scale length with long density ramps and connected by
simple focusing lenses. In this calculation, we find that for initial relative energy spreads below 10−3,
energy-spread growth below 10−5 of the energy gain per stage and normalized emittance below mm-mrad,
the chromatic emittance growth can be minimal. The technique developed here may be useful for plasma
collider design, and potentially could be expanded to encompass nonlinear wake structures and include
other degrees of freedom such as lepton spin.
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I. INTRODUCTION

Laser- and beam-driven plasma wakefield acceleration
are promising approaches for accelerating leptons to high
energy [1] and plans for a plasma-based accelerator facility
are at a mature stage [2]. For collider applications, energies
in excess of 100 GeV will be required and it is likely that
multiple plasma stages will be needed [3]. There has been a
lot of work in understanding transport between stages,
through experiments [4] and simulations/theory [5–8]. In
particular, significant attention has been paid to chromatic
emittance growth through mismatched beams [9] and
misalignment [10–12]. To improve the matching, adiabatic
matching using density ramps has been studied [13–17] as
well as other beam transport components based on plasma
elements [18–21].
In conventional accelerators beam transport is a mature

subject [22,23], in particular the use of transfer matrices to
describe the particle dynamics. There is interest in finding

fast particle tracing methods for plasma accelerators [24].
Analytic solutions for wakefields have been used as the
basis for developing transfer matrices for studying staging
of plasma accelerators [10,11]. In this paper, we show how
transfer matrices for plasma accelerators can be constructed
from the fields calculated in self-consistent particle-in-cell
simulations. Having such a framework allows integration of
plasma elements simulated with particle-in-cell codes with
conventional accelerator design codes/techniques. This
method is not a replacement for full-scale simulations,
as feedback of the beam on the wakefields cannot be
included. But full-scale particle-in-cell simulations of a
multistage plasma accelerator are computationally expen-
sive, so having an approach that may allow rapid design of
complex lattices involving plasma accelerating stages and
other elements, such as plasma optics, should prove useful.
Analytic solutions can also be used to model the particle

transport, i.e., Wentzel-Kramers-Brillouin (WKB) solu-
tions for the betatron oscillations, but there are limitations.
First, the density ramps at the beginning and end of the
accelerator have been determined to be crucial for staging
[7,8] but, especially at high energies, the ramp length can
become comparable to the betatron wavelength and so the
WKB approximation breaks down at the plasma-vacuum
interface. Further, particularly in laser-driven wakefields,
the evolution of the pulse and wakefield could be complex
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for efficient acceleration in the nonlinear regime and hard to
capture without resorting to full-scale simulation. With the
approach described here, a full-scale simulation is required,
but once performed, the same simulation may be used to
study different beam phase spaces rapidly and combined
with different elements to build an accelerating lattice.
The paper proceeds in the following manner. Section II

lays out the framework for transfer matrices M that are
nonlinear in the beam energy (spread). Section III derives
the chromatic emittance growth from the nonlinear transfer
matrix by defining an extended beam matrix Σ, such that
the emittance growth can be calculated using the expression

ϵN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðPTMΣMTPÞ

q
; ð1Þ

where P is a projector. Section IV calculates the nonlinear
transfer matrices for other simple elements, i.e., drift space
and simple focusing lens, for demonstration of combining
the plasma accelerator simulations with other elements.
Section V describes a three-dimensional (3D) particle-in-
cell simulation of a meter-scale beam-driven plasma wake-
field accelerator and the construction of a set of transfer
matrices through the stages. Finally, Sec. VI outlines a
design for a simple lattice comprising “cells” of a plasma
accelerating stage, two drift spaces, and a simple (thin) lens
accelerating a beam of particles from 10 GeV to 1 TeV—as
shown in the schematic in Fig. 1—and calculates the
resulting chromatic emittance growth as a function of
initial transverse emittance and beam energy spread.

II. LINEAR TRANSFER MATRICES
FOR PLASMA ACCELERATORS

Assuming a coordinate system x, y, z, we can build
transfer matrices from particle-in-cell simulations per-
formed in a window moving at the speed of light in the
z direction, as is typical, by assuming that the beam is
ultrarelativistic, 1 − βz ⋘ 1, where its normalized velocity
is βz ¼ vz=c. This assumption means that the beam remains
at approximately constant phase, z − ct, and therefore
experiences fields at a fixed grid position in the simulation
box, i.e., time-dependent fields only. By making use of a
paraxial approximation, the field gradients on the axis at
that fixed grid position integrated over time are the only

information required to build the matrix describing the
transport of a beam with a given energy (the “design
energy”) through the full plasma accelerator.

A. Basic transfer matrix

We start with the equations of motion for a charged
particle with charge q and mass m in external fields E⃗
and B⃗,

dx
dt

¼ ux
γ
;

dy
dt

¼ uy
γ
; ð2Þ

dux
dt

≃
q
m
ðEx − cByÞ;

duy
dt

≃
q
m
ðEy þ cBxÞ; ð3Þ

and

dγ
dt

¼ qEz

mc
; ð4Þ

where ul ¼ γvl is the proper velocity, with l a Cartesian
component (l ¼ x, y).
Under the paraxial approximation, we may expand the

Ex, Ey, Bx, and By fields as a Taylor series in x and y about
the axis;

Flðx;y;zÞ¼Flð0;0;zÞþx
∂Fl

∂x ð0;0;zÞþy
∂Fl

∂y ð0;0;zÞþ…

ð5Þ

Where F is a field (F ¼ E, B). Hence, Eq. (3) can be
expressed as

dux
dt

≃ −α2xxx − α2xyy;
duy
dt

≃ −α2yxx − α2yyy; ð6Þ

where

α2kl ¼ −
q
m

∂
∂k ðEl − εlpcBpÞj

x¼0;y¼0
; ð7Þ

with εlp the Levi-Civita symbol and using Einstein sum-
mation convention.

FIG. 1. Schematic showing N stage plasma accelerator, with (chromatic) focusing lenses between plasma accelerating stages with 2f
focusing throughout. fs is the plasma stage focal length and fLs is the beam focusing optic focal length (at the design energy) of the sth
accelerating stage. FPPs and SPPs are the primary and secondary principal planes of the accelerating stage, respectively.
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We want to solve the equation of motion piece-wise in
the form of a series of matrix solutions for each time step in
the simulation that may be combined to form a single
matrix for propagation of a charged particle beam through a
whole simulated plasma component (accelerating stage,
lens, etc.). The matrices will need to be sufficiently accurate
in betatron phase to consider a large number of oscillations
and it should be symplectic to conserve beam emittance, for
a beam with all particles having the same energy.
We further make the following assumptions/approxima-

tions; (1) The beam energy γmc2 slowly varies compared to
the time step size. This means that in the transverse
equation of motion, it is assumed constant over a time
step, but the beam energy is increased each step by
qEzΔt=mc, i.e.,

γn ≃ γ0 þ
Xn
n0¼0

qEz
n0Δt

mc
;

where the superscript n denotes the time step. (2) The time
step is small compared to the plasma (laser) period, and is
therefore extremely small compared to the betatron fre-
quency. It is therefore not necessary to use the usual
accelerator physics, e.g., Cx ¼ cosðαxxΔt= ffiffiffi

γ
p Þ and Sx ¼

sinðαxxΔt= ffiffiffi
γ

p Þ=αxx ffiffiffi
γ

p
, solutions to the harmonic oscillator

equation. This simplifies expanding the transfer matrix to
arbitrarily higher order perturbations. (3) The force is curl
free, i.e., conservative. This means that α2xy ¼ α2yx.
We can write the equations of motion in matrix form as

dw
dt

¼ Anw;

where, as before, the superscript n denotes the time step,

An ¼

2
666664

0 1
γn 0 0

−½α2xx�n 0 −½α2xy�n 0

0 0 0 1
γn

−½α2yx�n 0 −½α2yy�n 0

3
777775 and w ¼

2
6664
xn

unx
yn

uny

3
7775:

The solution to this equation over a time step Δt is

wnþ1 ¼ eA
nΔtwn:

If we truncate the series representing the matrix exponential
at e.g. second order, the solution is not symplectic. We
solve this issue by splitting the matrix An into two matrices
such that An ¼ An

1 þ An
2 [25], where

An
1 ¼

2
6664
0 1

γn 0 0

0 0 0 0

0 0 0 1
γn

0 0 0 0

3
7775; An

2 ¼

2
6664

0 0 0 0

−½α2xx�n 0 −½α2xy�n 0

0 0 0 0

−½α2yx�n 0 −½α2yy�n 0

3
7775:

From the Baker–Campbell–Hausdorff relation,
eA

n
1
ΔteA

n
2
Δt ¼ eðAn

1
þAn

2
ÞΔtþ1

2
Δt2½An

1
;An

2
�þ…, i.e., eA

n
1
ΔteA

n
2
Δt is an

approximation of the exact solution to (at least) second-
order accuracy in Δt.
For a nonsingular, skew-symmetric matrix Ω, it can be

shown that for X ∈ feAn
1
Δt; eA

n
2
Δtg, XTΩX ¼ Ω and hence X

is symplectic, provided that ½α2xy�n ¼ ½α2yx�n, which is the case
for a conservative force, ∇ × F⃗ ¼ 0. As An

i are nilpotent,
their matrix exponentials can be calculated exactly and
combined to give a symplectic, second order accurate
solution to the equations of motion over a time step
wnþ1 ¼ Mnwn, using the matrix Mn ¼ eA

n
1
ΔteA

n
2
Δt ¼

eA
nΔtþOðΔt2Þ, i.e.,

2
6664
xnþ1

unþ1
x

ynþ1

unþ1
y

3
7775 ¼

2
6666664

1 − ½α2xx�nΔt2
γn

Δt
γn − ½α2xy�nΔt2

γn 0

−½α2xx�nΔt 1 −½α2xy�nΔt 0

− ½α2yx�nΔt2
γn 0 1 − ½α2yy�nΔt2

γn
Δt
γn

−½α2yx�nΔt 0 −½α2yy�nΔt 1

3
7777775

2
6664
xn

unx
yn

uny

3
7775;

ð8Þ

where, in particular, detMn ¼ 1. We form the full transfer
matrix by calculating each matrix corresponding to the
transformation of the coordinates over a time step and then
combining these to form a single matrix describing the
propagation through the plasma element. To obtain
∂Ex=∂xjx¼0;y¼0 etc., from a simulation, the numerical
gradient can be taken near the axis. We introduce another
index j to the matrix, because the equation of motion is
solved at a particular phase ξj ¼ zj − ct corresponding to the
position at grid point j, so that wnþ1

j ¼ Mn
jw

n
j . We can write

down the transfer matrix through the whole system at a
particular phase Mj using the time ordered product

Mjðγ0Þ ¼
YNt

n¼0

Mn
j ðγnj Þ; ð9Þ

where the dependence on the particle initial energy is
explicitly shown, so that the particle coordinates are trans-
formed through the full plasma element as

w ¼ Mjðγ0Þw0: ð10Þ

The set of matrices Mj are functions of the initial particle
energy, and hence need recalculating for each energy of

MODELING CHROMATIC EMITTANCE GROWTH IN … PHYS. REV. ACCEL. BEAMS 24, 104602 (2021)

104602-3



particle passing through the plasma. The transfer matrix is
therefore calculated for a “design energy” for particles
passing through each plasma element, and then arbitrary
transverse distributions may be then studied using the
resulting matrix. The relative phase error is second order,
as shown in the Appendix A, and therefore negligible when
using the high-resolution fields from particle-in-cell
simulations.

B. Energy spread considerations

For plasma accelerators, one consideration of interest is
the effect of the beam energy spread. Because of the
requirement to include the beam energy in the calculation
of the transfer matrix, we need to find a different way to
approach the effect of particles having different energies
without resorting to brute force calculation of Mj for every
value of initial beam energy γ0.
To do this, we consider a perturbation to the initial

particle energy, γ ¼ γ0 þ δγ. The usual approach in stan-
dard accelerator theory [22], similar to that developed in
Ref. [26], is to consider the perturbed solution using a
Green’s function approach to the homogeneous equation

Gðτ; τ0Þ ¼ SðτÞCðτ0Þ − Sðτ0ÞCðτÞ;

and then adding in the resulting terms into a new nonlinear
matrix. However, for the transfer matrix given in Eq. (8),
derivatives of M are proportional to successive powers of
1=γ, which simplifies the approach and allows us to easily
expand to arbitrary order in the perturbation δγ.
For compactness of notation in this section, we drop the j

and n indices on the quantitiesMn
j , etc., in this section. For

a particle with energy δγ from the design energy, its transfer
matrix is

Mðγ þ δγÞ ¼ e
γ

γþδγA1ΔteA2Δt:

Using γ
γþδγ ¼ 1 − δγ

γþδγ, we can express

Mðγ þ δγÞ ¼ MðγÞ − δγ

γ þ δγ
MDðγÞ ð11Þ

where

MD ¼ A1ΔteA2Δt:

For the specific case of the 4 × 4 transfer matrix given in
Eq. (8),

MD ¼

2
666664
− α2xxΔt2

γ
Δt
γ − α2xyΔt2

γ 0

0 0 0 0

− α2yxΔt2

γ 0 − α2yyΔt2

γ
Δt
γ

0 0 0 0

3
777775: ð12Þ

The second term on the right-hand-side of Eq. (11) can
be expanded as a Taylor series in δγ=γ;

Mðγ þ δγÞ ¼ MðγÞ þ
X∞
p¼1

�
−
δγ

γ

�
p
MDðγÞ: ð13Þ

We may use series to expand the transfer matrix into a
nonlinear transfer matrix that includes perturbation terms in
δγx, δγ2x,…, δγux, δγ2ux,…, δγy, δγ2y, etc., resulting in a
matrix equation of the form

wδ ¼ Mwδ0;

where M is the nonlinear transfer matrix and

wδ ¼

2
6666666666666664

1

δγ

δγ2

δγ3

δγ4

δγ5

δγ6

..

.

3
7777777777777775

⊗ w; ð14Þ

where⊗ denotes the Kronecker matrix product. The matrix
can be expanded to arbitrarily high terms in δγ (Note that
we expand in powers of δγ rather than δ ¼ δγ=γ because
even though the equations would be more compact, δ is not
a constant as the particle is in general accelerated in
energy.) For staged plasma accelerators, we may wish to
go to a high number of orders because of the relatively large
energy spread and acceleration over many betatron periods
(see Appendix B). We may generate the elements in the
expanded matrix using Eq. (13) through the relation

δγpw ¼ Mðγ þ δγÞδγpw0: ð15Þ

Including up tom terms in the expansion, each row p of the
resulting nðmþ 1Þ × nðmþ 1Þ transfer matrix (where n ¼
2 or n ¼ 4 depending on whether w is the 2 × 1 or 4 × 1
vector describing the x; ux or x; ux; y; uy phase-space
coordinates for the particle, respectively) corresponding
to the transformation of δγpw will comprise the series of
terms in the expansion of Mðγ þ δγÞ up to m0 ¼ m − p.
The resulting matrix can be expressed as
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M ¼ Imþ1 ⊗ M þ Γ ⊗ MD; ð16Þ

where Imþ1 is the ðmþ 1Þ × ðmþ 1Þ identity matrix and Γ
is the ðmþ 1Þ × ðmþ 1Þ strictly upper triangular matrix
with elements at row a and column b, (where
a; b ¼ 0; 1;…; m) defined as

Γa;b ¼
( �

− 1
γ

�
b−a

b > a

0 otherwise:
ð17Þ

Explicit forms of this matrix and verification of this
approach are given in Appendix B. As shown in
Appendix B, the number of terms required for an accurate
solution may be estimated from the requirement that���� δγ2

Z
ψ0

0

dψ
γ

����m ≪ m! ð18Þ

for the highest order m in the expansion, where dψ ¼
αkldt=

ffiffiffi
γ

p
is the differential (betatron) phase.

As before, we may compose the transfer matrix for
propagation through the whole plasma accelerator section
at a particular wake phase Mj using the time ordered
product

Mjðγ0Þ ¼
YNt

n¼0

Mn
j ðγnj Þ: ð19Þ

III. CHROMATIC EMITTANCE GROWTH

As is customary in accelerator physics [22], we may
consider the n-dimensional phase-space ellipse defined in
terms of a n × n dimensional beam matrix σ that obeys

wTσ−1w ¼ 1; ð20Þ

with the volume of the n-dimensional phase-space ellipse
being proportional to the product of the beam transverse
normalized emittances. Assuming that at each phase ξj, the
beam matrix is initially given by σ0j, the beam matrix
transforms through the plasma element according to

σj ¼ Mjσ0jðMjÞT: ð21Þ

The transformation of phase-space ellipse can therefore be
easily calculated from the transfer matrix Mj. It is well
known that one of the challenges with plasma accelerators
is that energy spread can lead to normalized emittance
growth through betatron phase mixing [9]. For illustrative
purposes, in Fig. 2, the normalized emittance growth due to
this phase mixing is shown for propagation of a large
number of particles through a (nonlinear) matrix. The
figure shows the phase-space coordinates of 100 000

particles sampled from an initial beam matrix

σ0 ¼
h
0.01 0

0 5

i
, shown in blue. Red indicates particle

coordinates having propagated through a transfer matrix

M ¼
h
1.1225 0.0680
19.9648 2.1000

i
(which is the matrix corre-

sponding to the first accelerating stage calculated in the
later section) and green shows the tracks for the corre-
sponding nonlinear matrix (not explicitly given for brevity),
with energy displacements δγ randomly sampled from a
normal distribution with width

ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
¼ 1560. The nor-

malized emittances calculated from the particle distribu-
tion, using the expression

ϵN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihu2i − hxui2

q
; ð22Þ

(in contrast to the often used ϵN ¼ γβϵ, where ϵ is the trace-
space emittance, which are equivalent for certain distribu-
tions [27]) are initially ϵN ¼ 0.22315 and then after passing
through the matrix, ϵN ¼ 0.22315 for the distribution
represented by the red dots corresponding to no energy
spread, and ϵN ¼ 0.59663 for the distribution represented
by the green dots, corresponding to a distribution with
energy spread

ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
¼ 1560.

We now derive the chromatic emittance growth from the
nonlinear matrixM. For brevity, we drop the j index in the
following, but note that this growth is calculated for a
distribution at a given (discretized) wake phase ξj with
finite (slice) energy spread. From Eq. (21), after passing
through transfer matrix M, the beam matrix σ for a particle
with energy γ þ δγ will transform as

FIG. 2. Phase-space coordinates of 100 000 particles for an
initial beam matrix are shown in blue. Red indicates particle
coordinates having propagated through a transfer matrix and
green shows the coordinates for the corresponding nonlinear
matrix with randomly sampled δγ.
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σ ¼ Mðγ þ δγÞσ0ðγ þ δγÞ½Mðγ þ δγÞ�T: ð23Þ

We can calculate this transformation using the perturbative
method by noting that the first two rows of the matrix M
multiplied by successive powers of δγ is equivalent to the
expansion given in Eq. (13)—up to the highest order term
included in the matrix—and so we may express

Mðγ þ δγÞ ≃ PTMG; ð24Þ

where

P ¼

2
666666664

1

0

0

0

..

.

3
777777775
⊗ In

is a projector from the wδ to the w subspace, i.e., it can be
used to extract the first n columns (or rows if transposed) of
the matrix M,

G ¼

2
666666664

1

δγ

δγ2

δγ3

..

.

3
777777775
⊗ In; ð25Þ

and In is the n × n (i.e., 2 × 2 or 4 × 4) identity matrix.
Using the definition in Eq. (25), we can express wδ ¼ Gw.
Hence, definingMδ ≡Mðγ þ δγÞ≡ PTMG, for a beam of
energy γ þ δγ, the beam matrix σ transforms as

σðδγÞ ¼ Mδσ0½Mδ�T; ð26Þ

assuming that the initial beam matrix is identical for all
particle energies, σ0.
The emittance growth due to the energy spread δγ can

therefore be calculated from the chromatic variation in the
beam matrix. Assuming the beam energy distribution about
the mean energy γ, ρðδγÞ, is described by a normal
distribution with energy spread

ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
defined as

ρðδγÞ ¼ C exp

�
−

δγ2

2hδγ2i
�
; ð27Þ

where C is a normalizing constant, then the beam matrix
averaged over δγ is

hσi ¼
Z

∞

−∞
ρðδγÞσðδγÞdðδγÞ ¼

Z
∞

−∞
ρðδγÞMδσ0½Mδ�TdðδγÞ:

ð28Þ

Technically, the distribution in energy cannot be Gaussian
since γ � δγ ≥ 1, hence the lower limit in the δγ integral
cannot be −∞. However, the corresponding longitudinal
momentum distribution can be defined in the range
ð−∞;∞Þ with a Gaussian distribution. To within the
paraxial approximation and provided

ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
=γ0 ≪ 1,

these distributions are equivalent.
σðδγÞ can be expressed as a power series in δγ up to order

2m (sinceMδ is applied left and right to σ0), wherem is the
maximum order in the expansion Mδ,

σðδγÞ ¼
X2m
p¼0

apδγp;

where ap is the pth term in the power series. For example,

a1 ¼ −
1

γ
ðMDσ0MT þMσ0MT

DÞ:

In this case, Eq. (28) becomes

hσi ¼
Xp¼2m

p¼0

ap

Z
∞

−∞
ρðδγÞδγpdðδγÞ: ð29Þ

For the normal distribution given in Eq. (27) the odd terms
in ðδγÞp integrate to zero and the even terms yield

hσi ¼
Xp¼2m

p¼0;even

2p=2ffiffiffi
π

p Γ
�
pþ 1

2

�
hδγ2ip=2ap; ð30Þ

where ΓðzÞ is the gamma function, which can be
simplified to

hσi ¼
Xm
p¼0

ð2p − 1Þ!!hδγ2ipa2p; ð31Þ

where x!! indicates the double factorial of x.
To calculate hσi in a convenientway, we return to Eq. (26),

which may be written in terms of the nonlinear matrixM as
σ ¼ PTMGσ0GTMTP so that

hσi ¼ PTM
�Z

∞

−∞
fðδγÞðGσ0GTÞdðδγÞ

	
MTP ð32Þ

since δγ only appears in the G matrix. ðGσ0GTÞ is a
nðmþ 1Þ × nðmþ 1Þ matrix comprising an ðmþ 1Þ ×
ðmþ 1Þ block matrix of n × n submatrices that are each
σ0δγ

q, where q ¼ iþ j, with i the row and j the column
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indices (starting at 0) of the ðmþ 1Þ × ðmþ 1Þ blockmatrix,
i.e., for m ¼ 3,

ðGσ0GTÞ ¼

2
6664

σ0 σ0δγ σ0δγ
2 σ0δγ

3

σ0δγ σ0δγ
2 σ0δγ

3 σ0δγ
4

σ0δγ
2 σ0δγ

3 σ0δγ
4 σ0δγ

5

σ0δγ
3 σ0δγ

4 σ0δγ
5 σ0δγ

6

3
7775: ð33Þ

When integrated over δγ for the normal distribution
given in Eq. (27), we can express the elements of the
resulting block matrix, Σ as

Σij ¼

 hδγ2iiþj

2 σ0ðiþ j − 1Þ!! iþ j even

0 iþ j odd
; ð34Þ

i.e., for m ¼ 3,

Σ¼

2
6664

σ0 0 σ0hδγ2i 0

0 σ0hδγ2i 0 3σ0hδγ2i2
σ0hδγ2i 0 3σ0hδγ2i2 0

0 3σ0hδγ2i2 0 15σ0hδγ2i3

3
7775: ð35Þ

The new beam normalized emittance, defined as ϵN ¼ffiffiffiffiffiffiffiffiffiffi
det σ

p
is, therefore,

ϵN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðPTMΣMTPÞ

q
: ð36Þ

To verify this expression, Fig. 3 shows the change in
normalized emittance (i.e., subtracting the initial emittance)
for a beam of particles with a mean energy γ0 ¼ 19 500 for
a range of values in the gaussian width of the energy

distribution,
ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
. The red curve shows the calculation

of Eq. (36) using the nonlinear transfer matrix expanded to
m ¼ 9 orders (the matrix is that of first accelerating stage
calculated in Sec. IV) M. This agrees with the data
indicated by the blue curve, which shows the normalized
emittance calculated using Eq. (22) for 100 000 individual
particles with energy offsets δγ randomly sampled from a
normal distribution. The small fluctuations in the blue
curve are due to particle statistics.
Equation (36) represents the growth in transverse emit-

tance of a beam slice of widthΔξ at a particular wake phase
ξj. The chromatic emittance growth of a whole beam with
longitudinal density profile bðξÞ, discretized as bj will be

ϵN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
PT

�X
j

wjMjΣjMT
j

�
P
	s
: ð37Þ

where the weightswj are the terms in the discrete integral of
the beam profile, e.g., for Riemann summation wj ¼ bjΔξ.

IV. OTHER TRANSPORT ELEMENTS

The main advantage of using a transfer matrix approach
for the plasma elements is to be able to combine it with
other elements. For a drift space of length L, the vector w is
transformed by the matrix

d ¼ expðA1L=cÞ ¼ In þ A1

L
c
:

For the nonlinear vector wδ, the corresponding drift
space matrix can be found using the same process as before,
by expanding d in a Taylor series up to highest termm in δγ
around design energy γ. As d only contains terms in 1=γ
and constant with respect to γ, as with the plasma
accelerator transfer matrix, the nonlinear transfer matrix
for a drift space is

D ¼ Imþ1 ⊗ dþ Γ ⊗ A1

L
c
: ð38Þ

For introducing focusing optics to the system, in the
context of plasma accelerators these may be conventional
optics, i.e., quadrupole triplets or plasma optics. Given a
transfer matrix through the optic, a nonlinear matrix up to
orderm can always be derived through the process outlined
previously. For simplicity, here we consider a general optic
using the thin lens approximation, which is valid provided
the effective focal length is very large compared to the
beam size. Whether the optic is a quadrupole triplet or some
sort of plasma lens, however, it will be chromatic. We
assume that the lens focal length f has a f ∝ γ relationship.
Therefore, given the transfer matrix

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

Calculated from particle data
Calculated from nonlinear matrix

FIG. 3. Normalized emittance growth through a nonlinear
matrix calculated by summing over a large number of particle
tracks (blue) compared the calculation using Eq. (36) (red), as a
function of

ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
.
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F ¼ In=2 ⊗
�

1 0

− c
f⋆ 1

	
; ð39Þ

where f⋆ ¼ fðγÞ=γ is the focal length divided by γ and is
therefore a constant, the nonlinear focusing matrix is trivial,
as it has no explicit γ dependence,

F ¼ Imþ1 ⊗ F: ð40Þ

Note that using the coordinates we choose here, ðx; uxÞ
instead of ðx; x0Þ, the chromatic effects of focusing manifest
themselves in the drift-space matrix rather than the lens
matrix.

V. PARTICLE-IN-CELL SIMULATION
OF A 10 GeV STAGE

For demonstrating the nonlinear transfer matrix
approach outlined in this paper, we use the 3D relativistic
particle-in-cell framework OSIRIS 4.0 [28] to simulate a
beam-driven plasma wakefield accelerator. A beam-driven
plasma wakefield was chosen for clarity in this paper, but
this technique would be more interesting for a laser-driven
wakefield, in which the wake evolves as the laser pulse
propagates due to self-phase modulation, etc. There is no
limitation on the complexity of the laser evolution, as the
particle beam is at fixed phase relative to the moving box,
so the laser may fall back due to dispersion or modulate in a
complex way, but the fields at the particle position will be
accurately captured (provided the particle beam is ultra-
relatistic, γ > 1000 from the beginning, which means that
an injection stage of a plasma accelerator cannot be
modeled accurately using this technique).

A. Simulation description

A simulation was run on an z × x × y mesh of 128 ×
150 × 150 grid points with spatial limits from −10c=ωp0 to
10c=ωp0 in the transverse dimensions and −14c=ωp0 to
2c=ωp0 in the z direction with a time step ωp0Δt ¼ 0.06.
Standard 5-pass smoothing algorithms were applied to the
electromagnetic fields and currents.A second order dual type
electromagnetic solver [29] and open (perfectly matched
layer and open particle bounds) boundary conditions were
used. Two species were included; a driver beam species of
electrons with four particles-per-cell and γ ¼ 80 000 with a
Gaussian shape in all directions having a peak density of 150
n0 and widths σz ¼ 0.7c=ωp0 and σx; σy ¼ 0.2c=ωp0, and a
plasma species of electrons with four particles-per-cell, a
peak density of n0, and a profile given by the function
nðzÞ ¼ expð−½ðz − 8000c=ωp0Þ2=ð7000c=ωp0Þ2�10Þ. For a
density n0 ¼ 1016 cm−3, this corresponds to an 80 cm long
plasma channel with approximately 8 cm long ramps in
density from vacuum. Long ramps have been shown to help
with adiabaticmatching of the beam [7]. The drive beamwas
started in vacuumwith zero charge and momentum, and was

both accelerated in z and ramped up in charge at the start of
the simulation, with the equations of motion otherwise fixed,
to establish the correct vacuum fields before entering the
plasma.
Figure 4 shows the electric fields taken from the 3D

simulation at ωp0t ¼ 9000 in the z − x plane at y ¼ 0. (left)
the accelerating (Ez) field and (right) the focusing (Ex)
field. The cyan and yellow colors are because the colormap
is saturated, due to the strong fields where the drive beam is
located.
Line diagnostics extracted the Ez, Ex, and By fields along

z direction on the mesh points either side of the beam center
to obtain the field gradients. These were extracted every 10
time steps, i.e., 0.6=ωp0. The Ex and By fields were used to
calculate the field gradient along the axis in the x direction
by subtracting the values either side of the center line and
dividing by 2Δx, i.e., the center differenced finite difference
gradient

½α2xx�nj ¼ −
∂
∂x ðEx − cByÞj

n

x¼0;j

≃ −
ðEx − cByÞnj;kþ1;l − ðEx − cByÞnj;k−1;l

2Δx
; ð41Þ

where the indices j, k, l are the grid indices expressed
relative to the center line and n is the time step. The
accelerating field Ez and focusing force gradient as a
function of time throughout the whole simulation are
shown in Fig. 5. These can be used to generate nonlinear
matrix M for propagation of a beam with initial beam
energy γ0mc2 through the whole simulation by using the
methods described in Sec. IV. In principle this could be
performed for every wake phase. Here, we choose only the
wake phase indicated by the black dashed line in Fig. 5.

B. Transport through 10 GeV stages

Using the transverse field gradient and longitudinal field
time histories obtained from the particle-in-cell simulation,
we can construct the matrixMnðγnÞ, at every time step and
then calculate the composite matrix Mðγ0Þ comprising
transport through an entire plasma accelerating stage for a

FIG. 4. Fields taken from the 3D simulation at ωp0t ¼ 9000 in
the z − x plane at y ¼ 0. (left) Accelerating (Ez) field and (right)
focusing (Ex) field.
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given initial energy γ0. Figure 6 shows a representative
trajectory through the fields. The red and black lines show
repeated application of MnðγnÞ to initial extended coor-
dinates wδ0, for either δγ ¼ 0 or δγ ¼ 1950 for an initial
beam energy γ ¼ 19 500, i.e., δγ=γ ¼ 0.1. The blue curve
shows the particle energy as a function of propagation time,
up to γ ¼ 42 891, i.e., just over 10 GeV acceleration in the
stage. Although it is obvious has to be the case, we also

explicitly show the result of Mðγ0Þwδ0 as a red and black
circles, showing the transformation of the particle coor-
dinates using the single Mðγ0Þ.
We may now proceed to designing an accelerating lattice

by using the final energy γi for each stage and using it as the
initial energy for the next stage. Through this iterative
process, we end up with a set of nonlinear matrices Ms,
where s is the stage index, i.e., stage 0 is M0 ¼ Mðγ0Þ,
etc. This matrix set can then be used to integrate with other
transport elements.

VI. DESIGN OF A SIMPLE 1 TEV LATTICE

To illustrate the use of these plasma accelerator transfer
matrices, we introduce a simple lattice design, as illustrated
in Fig. 1. Each accelerator stage has a focusing optic after it.
A thin lens is assumed for this focusing optic, with focal
length at the sth stage given by fLs ¼ 1=ðksLsÞ where Ls is
the lens thickness and ks represents the lens strength. Since
for the thin lens to be valid, Ls ≪ fLs, we must have
Ls ¼ ϵfLs, where ϵ is a small number. Therefore, we scale
the focal length using fLs ¼ 1=ðksϵfLsÞ. Assuming a fixed
field gradient, the lens strength is inversely proportional to γ,
ks ∝ 1=γ, and so the focal length should scale as fLs ∝

ffiffiffi
γ

p
to

maintain the thin lens approximation for all stages. We start
with a first stage focal length at the design energy of
fL1 ¼ 8000c=ωp0, corresponding to approximately 40 cm
for a plasma density of 1016 cm−3. The focal lengths of the
optics in subsequent stages scale as fLs ¼ fL1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γfs=γf1

p
,

where γfs is the energy after the sth stage.
Each plasma accelerating stage has its own focusing

characteristics, and may act as either a positive or negative
lens, depending on the betatron phase. It would be possible
to tune the betatron phase through each acceleration by
adjusting the plasma length, but here we simply use an
adjustable drift distance between lenses/accelerating stages
to have “2f” re-imaging of the beam to each stage. The
focal length of the thin lenses is sufficiently long that the
distance between the lens and accelerating stage remains
positive even if the accelerating stage acts as a negative lens
(i.e., having a negative drift to the virtual focus).
The distances between each accelerating stage and lens

are calculated in the following way:
The accelerating stage acts like a thick lens, so the

distances to the primary (FPP) and secondary (SPP)
principal planes are calculated through

dFPPs ¼
1 −Ms

2;2

Ms
2;1

γs−1

and

dSPPs ¼
1 −Ms

1;1

Ms
2;1

γs;
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FIG. 6. Representative particle track through fields taken from
the 3D simulation. The design (normalized) energy is initially
γ ¼ 19 500, and it is accelerated to γ ¼ 42 891, as indicated by
the blue curve. The particle undergoes betatron oscillations
indicated by the red and black dashed curves. The red curve
shows the track for a beam δγ from the design energy, with
δγ ¼ 1950. The black and red circled dots at the end show the
result of a calculation from the initial coordinates using the
combined matrix M. Colorscale is the accelerating field
(see Fig. 5).

FIG. 5. (left) The axial accelerating field Ez and (right) focusing
gradient on an ultrarelativistic particle propagating in the z
direction, ðe=mcωp0Þ∂ðEx − cByÞ=∂xjx¼0 both extracted as a
lineout in the z direction along the axis and plotted as a time
series. The black dashed line indicates the wake phase chosen for
the beam transport.
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where γs is the final beam energy after acceleration through
the sth stage. This allows correction of Ms to act as a thin
lens through

M⋆s ¼ DSPPsM
sDFPPs ;

where DFPPs is the nonlinear matrix for the drift space for
distance dFPPs and similar for SPP. The effective focal
length of the accelerating stage is fs ¼ −γs=Ms

2;1. We
express the drift space with length 2fs as D2fs . The thin
lens focusing optic with focal length fL has a matrix F s

L,
and we express the drift space with length 2fL as Ds

2fL
.

These need an s index because they depend on the beam
energy γs. The matrix describing a “cell” of the lattice,
comprising the sth accelerating stage and focusing optic
separated by “2f” distances is therefore

Cs ¼ Ds
2fL

F s
LD

s
2fL

D2fsM
⋆sD2fs−1 :

The Cs matrices can then be combined to form

C ¼
YNstages

s¼0

Cs; ð42Þ

which is the matrix that describes transport through the full
accelerating structure.

VII. CHROMATIC EMITTANCE GROWTH
THROUGH 85 STAGE PLASMA
ACCELERATING LATTICE

The matrix C was calculated for the plasma accelerating
stage simulated in Sec. V for 85 stages/focusing lenses in
the arrangement described in Sec. VI, each accelerating the
beam by 11.95 GeV to a maximum energy of 1.03 TeV. The
particle distribution is initialized using a beam matrix

σ0 ¼ ½ ϵN0
2 0

0 1
�, which corresponds to an input beam with

θ ∼ 1=γ convergence angle focused at 2f0 before the start
of the first accelerating section.

A. Chromatic slice-emittance growth

Figure 7 shows the relative (slice) emittance growth
ΔϵN=ϵN0 through this lattice at the phase indicated in Fig. 5
as a function of initial relative energy spread

ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
=γ0

and initial normalized emittance ϵN0, calculated using
Eq. (36). The colormap/contours show the base-10 loga-
rithm of ϵN=ϵN0 − 1 ¼ ΔϵN=ϵN0. The normalized emit-
tance ϵN is normalized to the length unit c=ωp0, which
means that for a baseline plasma density of 1016 cm−3, a
normalized emittance of ϵN ∼ mm −mrad (μm) corre-
sponds to ϵNωp0=c ¼ 0.019. This parameter search indi-
cates that for initial relative energy spread belowffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
=γ0 ≲ 10−3 and initial normalized emittance below

ϵNωp0=c≲ 10−2 (i.e., ϵN ≲ mm-mrad), the chromatic
emittance growth is relatively small (ΔϵN=ϵN0 ≲ ϵN0).

B. Energy spread growth of a finite length beam

The example before calculated the evolution of the
transverse phase space for an ensemble of particles at a
particular wake phase, which therefore experiences no
energy-spread growth as the particles all interact with an
identical longitudinal electric field. The effect of a finite
duration beam, which experiences different accelerating
fields at different phases in general, can be taken into
account by calculating the transport for different phases ξ
and combining the resulting beam matrices, as in Eq. (37).
One very important consideration is loading of the wake
[30,31], which requires a specially shaped bunch. The
effect is to flatten the electric field experienced by the
witness bunch such that in the ideal case all particles
experience the same acceleration and therefore no energy-
spread growth as in the previous example. This effect can
be included using our method by the addition of an
ultrarelativistic witness beam in the simulation, as in the
ultrarelativistic limit its fields do not depend on the
beam energy and the forces cancel for co-propagating
particles.
In practice, however, perfect loading will not be possible

and, in general, some energy-spread growth will be
expected. We leave detailed studies of beam loading, beam
shape, and duration using calculations of the beam matrix
over a range of phases for future work, but it is instructive
to redo the calculation from Sec. VI to include energy-
spread growth effects and estimate how good the

FIG. 7. Relative emittance growth ΔϵN=ϵN0 through 85 accel-
erating stages as a function of initial relative energy spreadffiffiffiffiffiffiffiffiffiffi

hδγ2i
p

=γ0 and initial normalized emittance ϵN0. The colormap/
contours show the base-10 logarithm of ΔϵN=ϵN0.
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beam-loading must be. We do this using the following
simple model:
Assuming a finite-duration beam, with width

ffiffiffiffiffiffiffiffiffiffi
hδξ2i

p
in

ξ, that has initially zero slice energy-spread (in practice, it
just needs to be much smaller than the overall beam energy
spread) and gains energy spread at each time step because
particles at different phases experience different accelerat-
ing fields. The normalized charge-density profile of the
beam is bðδξÞ, where δξ ¼ ξ − ξ0 and ξ0 is the phase of
the beam having reference energy γ0. We assume that the
energy of the beam at (relative) phase δξ is given by an
arbitrary function gðδξÞ. Hence, the δγ − δξ phase-space
distribution of the beam is described by the distribution

fðδγ; δξÞ ¼ bðδξÞδðδγ − gðδξÞÞ; ð43Þ

where δðxÞ is the Dirac delta distribution. The energy
distribution of the full beam is ρðδγÞ ¼ R

∞
−∞ fdðδξÞ, which

can be written as

ρðδγÞ ¼
Z

∞

−∞

bðδξÞ
jg0ðg−1Þj δðδξ − g−1ÞdðδξÞ; ð44Þ

where g−1ðδγÞ is the inverse of the function gðδξÞ, i.e.,
g−1ðδγÞ ¼ δξ and the prime 0 indicates the derivative with
respect to δξ. Hence,

ρðδγÞ ¼ bðg−1ðδγÞÞ
jg0ðg−1ðδγÞÞj : ð45Þ

In the blowout regime, the transverse fields are uniform in ξ
and the longitudinal field is linear in the interior. We
therefore assume that over a time step, the function is given
by gðδξÞ ¼ αδξ, where α is a constant, i.e., a linear chirp,
and the bunch shape is Gaussian, i.e.,

bðδξÞ ¼ B exp

�
−

δξ2

2hδξ2i
�
; ð46Þ

where B is a normalizing constant and
ffiffiffiffiffiffiffiffiffiffi
hδξ2i

p
is the bunch

longitudinal width. The energy distribution of the whole
beam is therefore

ρðδγÞ ¼ B
jαj exp

�
−

δγ2

2α2hδξ2i
�
: ð47Þ

This distribution is identical to that used in Eq. (27), with an
energy spread

ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
¼ α

ffiffiffiffiffiffiffiffiffiffi
hδξ2i

p
and therefore the same

expanded beam matrix can be used, under the assumption
that the transverse fields do not vary over the beam (i.e.,
either it is ultrashort or in the fully blown out regime). The
important difference is, however, that the beam energy-
spread changes every time step, because of the variation in
accelerating field throughout the beam.

Under the assumption that the field is linear, the increase
(or decrease [32]) in the beam energy spread at each time
step will be because of a change in the beam chirp, i.e.,

ffiffiffiffiffiffiffiffiffiffi
hδγ2i

q
ðtÞ ¼ q

ffiffiffiffiffiffiffiffiffiffi
hδξ2i

q Z
t

0

∂Ez

∂ξ
����
ξ¼ξ0

ðt0Þdt0: ð48Þ

The gradient in Ez does not in general have to follow the
same temporal evolution as Ez. Here, for simplicity, we
assume that the gradient of the longitudinal field evolves
identically to the field, i.e., ∂Ez=∂ξ ∝ Ez, which implies
that the ratio of the beam energy-spread to the beam energy,ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p
=γ0, is a constant.

By removing the γ factors in Γ, Eq. (17), and replacing the
δγ factors in Σ, Eq. (34), and the extended system vector wδ,
Eq. (14), etc., with δγ=γ, the transfermatrix approachwith an
expansion in (constant) δγ=γ instead of (constant) δγ can be
used to calculate the chromatic emittance growth of a finite
duration Gaussian beam on a field gradient that results in
energy spread growth through the development of a linear
chirp in the beam. For the same 85 stage lattice used in the
previous example, the parameter space of the emittance
growth is shown in Fig. 8. These data indicate that for a
growth in the energy spread owing to beam chirp below 10−5

of the energygain per stage, i.e.,
ffiffiffiffiffiffiffiffiffiffi
hδγ2i

p ≲ 10−5γ0 and initial
normalized emittance below ϵNωp0=c≲ 10−2, i.e.,
ϵN ≲ mm-mrad, the chromatic emittance growth is rela-
tively small (ΔϵN=ϵN0 ≲ ϵN0). This requires either a short
beam or flattened fields through beam loading such that the
variation in the accelerating field over the bunch is of order
10−5 of the field strength.

FIG. 8. Relative emittance growth ΔϵN=ϵN0 through 85 accel-
erating stages as a function of constant relative energy spreadffiffiffiffiffiffiffiffiffiffi

hδγ2i
p

=γ0 and initial normalized emittance ϵN0. The colormap/
contours show the base-10 logarithm of ΔϵN=ϵN0.
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VIII. CONCLUSIONS

In this work, we have calculated the transport of an
electron beam through an 85 stage beam-driven plasma
accelerator using simple lenses for beam transport. No
effort was made to optimize this (by, for example, paying
attention to the betatron phase at the exit of each stage by
tuning the plasma accelerator length), but nevertheless
negligible chromatic emittance growth can be achieved
for likely collider parameters even for this simple design. In
particular, we have shown that limiting the energy spread
growth due to beam chirp from nonuniform fields is an
important consideration, and beamloading to flatten the
fields alone may be challenging. The use of a plasma
dechirper [20,32] is one way to meet this challenge, by
correcting for energy spread growth as the bunch is
accelerated. As has been previously shown, the effects
of beam misalignment need consideration [12], which
could be studied through a realistic design using the linear
transfer matrix approach outlined here and a large number
of particles. The choice not to model e.g., real quadrupoles
was because it is not clear what the optics will be for a
plasma collider design. If they are plasma optics, then these
could be simulated and modeled using the approach
described here with the nonlinear matrices.
Note that a beam-driven accelerator was chosen here, as

it is a clearer example for demonstration purposes, but the
real usefulness of this technique will be for laser-pulse-
driven wakes where the laser can have a complex inter-
action with the plasma leading to a relatively highly
dynamically evolving wakefield. This is no problem for
the transfer matrices here as the full evolution will be
captured. Indeed, for lepton beams sufficiently energetic
that their phase slippage would be small compared to the
wavelength of the drive beam—e.g., for 1 μm lasers, over a
meter length stage this is already a reasonable approxima-
tion for only a 1 GeV electron beam—then even the
interaction of the particle with the oscillating laser fields
themselves would be correctly modeled.
It is worth briefly reviewing the approximations of this

transfer matrix approach compared with a full-scale sim-
ulation to understand its limitations. The main approxima-
tions can be summarized as follows: (1) The constant speed
of light phase approximation—This is generally a good
approximation. For particles with energies exceeding a
GeV, the phase advance owing to this approximation over a
meter propagation (a typical plasma stage length) is a
fraction of a tenth of a micron, and at 10 GeV it is already at
the nanometer range. This means that even interaction with
the fast oscillating laser fields should be accurate in most
cases. (2) The paraxial approximation—This is also gen-
erally a good approximation for scenarios of interest. This
means that the beam is primarily traveling in the forward
direction and also that the transverse forces are linear.
While the fields in a plasma accelerator can be nonlinear in
general, they will be linear near the axis. The beam will be

required to be small compared to the wake diameter for any
reasonable staged design to work. If nonlinearities were
necessary to consider, they could be included as a pertur-
bation using a nonlinear matrix approach similar to the one
we address earlier in this paper for energy spread (i.e., by
including terms in x2, y2, etc. in the matrix). (3) The
external fields approximation—This is a limitation of the
model in addressing problems such as instabilities like
hosing [33], since the particle’s currents do not feedback
onto the wake fields. Another prominent issue to address is
that of beam loading [31], i.e., that the particle bunch in a
plasma wakefield may be designed to flatten the longi-
tudinal field so that particles at different phases experience
the same accelerating gradient. However, this approxima-
tion does avoid fictitious numerical feedback between the
beam and the fields [34].
For properly modeling instabilities involving the inter-

action of the beamwith thewake, the only solution is to run a
full self-consistent simulation. In the case of beam loading,
the transfer matrix approach is still useful because first, the
leading particle sheet of the bunch can be modeled accu-
rately, and understanding its behavior should still be useful in
design before running a full-scale simulation. Second, the
fields of an ultrarelativistic beam don’t change much with γ,
and the beam loading affects the longitudinal field. The
transverse force due to the bunch itself is effectively canceled
for comoving particles. Moreover, for an ultrarelativistic
beam, the lack of dispersion means the bunch shapewill stay
the same as it is accelerated. This means a single simulation
could be run with a witness beam of a given energy (for
γ ⋙ 1), and then the fields used to understand the beam
transport for stages with different energies/beam profiles
under the assumption that the witness beam is injected into
the same phase in each stage. Nevertheless, the external field
approximation is themost significant limitation of themodel.
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APPENDIX A: BETATRON PHASE ERROR

To estimate the phase error from the symplectic second
order scheme for betatron oscillations, we consider the 2 × 2
submatrix representing motion in the x direction only:

Mx ¼
�
1 − α2xxΔt2

γ
Δt
γ

−α2xxΔt 1

	
; ðA1Þ

where we have dropped indices for time step, etc., for
clarity. This can be compared with the usual transfer matrix
solution [22];
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M̃x ¼ exp½AΔt�≡
�
Cx Sx
C0
x S0x

	
ðA2Þ

where

Cx ¼ cos

�
αxxΔtffiffiffi

γ
p

�
;

Sx ¼
1

αxx
ffiffiffi
γ

p sin

�
αxxΔtffiffiffi

γ
p

�
;

and the prime 0 denotes the derivative with proper time τ,
since M̃x represents solutions to the oscillator equation

d2x
dτ2

¼ −γα2xxx: ðA3Þ

Asbothmatrices have a determinant of 1, the eigenvalues λ of
Y ∈ fMx; M̃xg are given by

λ ¼ Tr Y
2

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
TrY
2

�
2

s
:

Hence, the exact solution has eigenvalues λ� ¼
expð�iαxxΔt=

ffiffiffi
γ

p Þ with phase angle θ ¼ αxxΔt=
ffiffiffi
γ

p
, as

expected, whereas the second order solution has eigenvalues

λ� ¼ 1 −
α2xxΔt2

2γ
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −

α2xxΔt2

2γ

�
2

s

with phase angle

θ ¼ arctan

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − α2xxΔt2

2γ Þ2
q

1 − α2xxΔt2
2γ

1
CA:

Expanded for small αxxΔt=
ffiffiffi
γ

p
, this can be expressed as

θ ¼ αxxΔtffiffiffi
γ

p þ 1

24

�
αxxΔtffiffiffi

γ
p

�
3

þ…

Hence, the betatron frequency is larger by a factor of 1þ
α2xxΔt2=ð24γÞ using the symplectic second order scheme
compared with the analytic solution. Since in numerical
simulations to resolve the plasma dynamics α2xxΔt2 ≲ 1, i.e.,
α2xxΔt2=ð24γÞ ⋘ 1, this is generally a negligible error.

APPENDIX B: NONLINEAR TRANSFER
MATRIX: EXPLICIT FORMS, VALIDATION,

AND ACCURACY OF SOLUTIONS

In thisAppendix,wegive explicitly formsof thematrixM
for the purposes of clarity. For the simpler system in phase-
space coordinates x; ux only, the transfer matrices are

M ¼
�
1 − α2xxΔt2

γ
Δt
γ

−α2xxΔt 1

	
; MD ¼

�
− α2xxΔt2

γ
Δt
γ

0 0

	
; ðB1Þ

but it is straightforward to extend this analysis to the 4 × 4
transfer matrix. First, we expand to first order in δγ only. The
particle coordinates including the nonlinear terms are

wδ ¼
�
1

δγ

	
⊗ w ¼

2
6664

x

ux
δγx

δγux

3
7775 ðB2Þ

and the corresponding transfer matrix is, in block matrix and
explicit forms, respectively,

M¼
�
M − 1

γMD

0 M

	
¼

2
666664

1− α2xxΔt2
γ

Δt
γ

α2xxΔt2
γ2

−Δt
γ2

−α2xxΔt 1 0 0

0 0 1− α2xxΔt
γ

Δt
γ

0 0 −α2xxΔt 1

3
777775:

ðB3Þ
We may extend this process to any order in δγ, for

example, for expansion in a series beyond sixth order, the
matrix in block matrix form is

M ¼

2
6666666666666666664

M − 1
γ MD

1
γ2
MD − 1

γ3
MD

1
γ4
MD − 1

γ5
MD

1
γ6
MD …

0 M − 1
γ MD

1
γ2
MD − 1

γ3
MD

1
γ4
MD − 1

γ5
MD …

0 0 M − 1
γ MD

1
γ2
MD − 1

γ3
MD

1
γ4
MD …

0 0 0 M − 1
γ MD

1
γ2
MD − 1

γ3
MD

0 0 0 0 M − 1
γ MD

1
γ2
MD …

0 0 0 0 0 M − 1
γ MD …

0 0 0 0 0 0 M …

..

. ..
. ..

. ..
. ..

. ..
. ..

.

3
7777777777777777775

: ðB4Þ
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The reason for expanding to high order is to allow a large
phase difference due to energy spread to accumulate
without error. The expansion means that the transfer matrix
is no longer symplectic. We need a way of calculating how
many terms are needed in this expansion for a given
situation. Although there may be in general a complicated
field variation, we can estimate the betatron phase accu-
mulated for a given situation and use this to estimate the
number of terms needed in the expansion.
For the nonlinear matrix expanded in δγm described

above, the maximum term required in δγm can be estimated
through expansion of the eigenmodes. Assuming the time
step is small, Δt → 0, the eigenvalues of M approach

exp

�
�i

Z
t

0

αxxðt0Þdt0ffiffiffiffiffiffiffiffiffi
γðt0Þp �

(for discussion on the finite difference phase error, refer to
AppendixA). For a particlewith (normalized) energy γ þ δγ,
the eigenvalues will be expð�i

R
t
0 αxxðt0Þdt0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðt0Þ þ δγ

p Þ.
Writing the phase for δγ ¼ 0 as ψ0 ¼

R
t
0 αxxðt0Þdt0=

ffiffiffiffiffiffiffiffiffi
γðt0Þp

, consider first that the phase for a particle with an
energy deviating by δγ can be expanded as

exp
�
�iψ0 � i

Z
ψ0

0

dψ
�
−
1

2

δγ

γ
þ 3

4

δγ2

γ2
þ…

�	
;

where dψ ≡ αxxðt0Þdt0=
ffiffiffiffiffiffiffiffiffi
γðt0Þp

. After factoring out
expðiψ0Þ, expanding the remaining exponential term will
result in many terms in higher powers of δγ=γ. Since we are
interested in considering large phase ψ0 (i.e., many betatron
oscillations), however, the magnitude of the largest term at
any order m in δγ=γ will in general be j R ψ0

0 dψδγ=γjm=2m!

and hence, to determine how many orders are needed for an
accurate solution, we require

���� δγ2
Z

ψ0

0

dψ
γ

����m ≪ m! ðB5Þ

for the highest order m in the expansion.
Figure 9 shows betatron oscillations modeled using the

expanded nonlinear transfer matrix in Eq. (B4). Figure 9(a)

(a)

(b)

FIG. 9. Betatron oscillations modeled using the expanded nonlinear transfer matrix in Eq. (B4). (a) Oscillations with an increasing γ
factor from γ0 ¼ 100 to γ0 ¼ 500 corresponding to linear acceleration. The dashed lines correspond to analytic (WKB) solutions for
betatron oscillations for the design γ ¼ γ0 (blue) and γ ¼ γ0 þ δγ (black), for a energy deviation δγ ¼ 10. The colored solid lines
indicate solutions using the nonlinear matrix with different orders in δ ¼ δγ=γ up to the δ9th term, i.e., m ¼ 9. (b) The error in the
solution for oscillations with fixed γ ¼ 100, defined as jxnδm − xj2, where x is the analytic solution and xnδm is the matrix solution
including terms up to m. The black dashed lines show the thresholds j ψ0

2
δγ
γ jm=m! ¼ 1 corresponding to Eq. (B5).
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shows oscillations with an increasing γ factor from γ0 ¼
100 to γ0 ¼ 500 corresponding to linear acceleration.
The dashed lines correspond to analytic (WKB) solutions
for betatron oscillations for the design γ ¼ γ0 (blue)
and γ ¼ γ0 þ δγ (black), for a energy deviation δγ ¼ 10.
This corresponds to δγ=γ ¼ 0.1 initially, which is far larger
than any real design, but is chosen to stretch the limits of
the approximation. The colored solid lines indicate sol-
utions using the nonlinear matrix with different orders in
δ ¼ δγ=γ up to the δ9th term, i.e., m ¼ 9. (b) The error in
the solution for oscillations with fixed γ ¼ 100, defined as
jxnδm − xj2, where x is the analytic solution and xnδm is the
matrix solution including terms up to m. The black dashed
lines show the thresholds j ψ0

2
δγ
γ jm=m! ¼ 1 corresponding to

Eq. (B5). These indicate that for betatron phases less than
the threshold phase given by this condition, the error in the
matrix solution remains small.
Figure 10 shows betatron oscillations for particle linearly

accelerated with a design energy from γ ¼ 1000 to 2 × 106

over a total time of ωt ¼ 107, where the betatron frequency
is ω=

ffiffiffi
γ

p
and ω is a constant. The particle has a deviation

from the design energy of δγ ¼ 20. These parameters
roughly correspond to a particle being accelerated from
500MeV to 1 TeV in a 100 m long plasma accelerator, for a
particle with normalized energy γ þ δγ in a beam that has
an initial relative energy spread δγ=γ ¼ 2%. The main
panel shows the (unresolvable) oscillations for a WKB
solution compared with the nonlinear matrix solution
including terms up to m ¼ 9 over the full range. The inset
panels show expanded regions at the beginning, middle,

and end. These show that the methods described in this
manuscript of the nonlinear matrix expanded to nine orders
in δγ=γ can accurately capture the betatron oscillations with
negligible phase and zero amplitude error over the full
range of acceleration.

APPENDIX C: SCALING IN THE NUMBER OF
OPERATIONS FOR THE DIFFERENT METHODS

DISCUSSED

Here, we discuss the number of operations required in
the linear and nonlinear transfer matrix methods compared
with an imagined generic second-order particle tracking
code. M is the basic transfer matrix and w is the system
vector. An imagined tracking code would involve a
numerical scheme that would be equivalent to the repeated
application ofM to w. ForM being represented by an n × n
matrix, at most n2 multiplication and addition operations
would be needed per time step, equivalent to the matrix
multiplication Mw. For a calculation of Nt time steps, the
number of operations required to calculate the particle
trajectory in a tracking code would scale asOðNtn2Þ. Using
the linear transfer matrix for a single particle, the number of
operations would scale as, at most,OðNtn3Þ, with the extra
factor of n because it involves repeated matrix multiplica-
tion MM rather than Mw.
For a large number of particles, Np, being tracked

through the same field structure and with the same energy,
the number of operations needed for calculating the end
state of the particles scales as OðNpNtn2Þ for a tracking
code, but OðNmaxðt;pÞn3Þ, where Nmaxðt;pÞ ¼ maxðNp;NtÞ,
for the transfer matrix method as the full transfer matrix
only needs calculating once. Hence, OðNp=nÞ more
operations are required for a particle tracing code to
calculate the final phase-space positions of Np particles.
For Np ≫ n, this is evidently a substantial computational
saving (n is either 2 or 4, but Np may be 104 or more for
good statistics). Moreover, the matrix method can be used
to transform the beam phase space rather than individual
particle tracks.
For the ðmþ 1Þn × ðmþ 1Þn nonlinear matrix, M, the

number of operations in the calculation MM scales as (at
most) Oðm3n3Þ, which means that the method is (at most)
Oðm3nÞ times more expensive than using a simple particle
tracing code for a single trajectory. This appears to be
undesirable as form ¼ 9, there areOð103Þmore operations
required, which even for a very large number of particle
tracks is not a favorable scaling. However, if the phase
spaces of particles with a number of different energies, Nγ ,
are of interest, as in the study in this manuscript, then even
the linear matrix method would need to be calculated for
each energy, so the number of operations would be
OðNγNmaxðt;pÞn3Þ. Whereas, for the nonlinear matrix, the
number of operations required would be OðNmaxðt;pÞm3n3Þ
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FIG. 10. Demonstration of method accuracy; Betatron oscil-
lations for particle linearly accelerated with design energy γ ¼
1000 to 2 × 106 over a total time of ωt ¼ 107, where the betatron
frequency is ω=

ffiffiffi
γ

p
, with a deviation from the design energy of

δγ ¼ 20, i.e., corresponding to an initial relative energy spread
δγ=γ ¼ 2%. The main panel shows the (unresolvable) oscillations
for a WKB solution compared with the nonlinear matrix solution
including terms up to m ¼ 9 over the full range. The inset panels
show expanded regions at the beginning, middle and end.
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(as Nγ ≤ Np). This means that the linear matrix method
would require OðNγ=m3Þ more operations than the non-
linear method. For random sampling of energies to generate
a gaussian distribution, Nγ ¼ Np, as each particle requires
a randomly sampled energy. Therefore, this can be a
significant saving if Np ≫ m3, as in our study
(Np ¼ 105, m3 ∼ 103).
For the N ¼ 200 × 200 point parameter space of particle

phase spaces we investigated in Figs. 7 and 8, the number
of operations required for a generic tracking code would
scale as OðNNpNtn2Þ compared with OðNtm3n3Þ for the
nonlinear matrix method (Nt ≫ Np in our studies), i.e., the
full calculation of Np particles needs repeating N times for
the tracing code, but once the nonlinear matrix for the
lattice is generated, the parameter space is investigated with
N operations of size m3n3 only (this assumes that
N < Nmaxðt;pÞ). Hence, the ratio of the number of oper-
ations required for a generic tracking code compared to the
nonlinear matrix method for the parameter space inves-
tigated here scales as OðNNp=m3nÞ. With N ¼ 4 × 104,
Np ¼ 105, n ¼ 2, and m ¼ 9, this ratio is Oð106Þ, which
would have made the total calculation for this paper that ran
in 143 s (on a 4 GHz Intel Core i7 Macintosh computer, not
including the particle-in-cell calculation of the field struc-
ture, vectorized code written in MATLAB 2020a) unfeasible
without making use of a large computing cluster.
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