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This paper continues the work of two previous treatments of bunch lengthening by a passive harmonic
cavity in an electron storage ring. Such cavities, intended to reduce the effect of Touschek scattering, are a
feature of fourth generation synchrotron light sources. The charge densities in the equilibrium state are
given by solutions of coupled Haïssinski equations, which are nonlinear integral equations. If the only wake
fields are from cavity resonators, the unknowns can be the Fourier transforms of bunch densities at the
resonator frequencies. The solution scheme based on this choice of unknowns proved to be deficient at the
design current when multiple resonators were included. Here we return to the conventional formulation of
Haïssinski equations in coordinate space, the unknowns being charge densities at mesh points on a fine
grid. This system would be awkward to solve by the Newton method used previously, because the Jacobian
matrix is very large. Here a new solution is described, which is both Jacobian-free and much simpler. It is
based on an elementary fixed point iteration, accelerated by Anderson’s method. The scheme is notably fast
and robust, accommodating even the case of extreme overstretching at current far beyond the design value.
The Anderson method is promising for many problems in accelerator theory and beyond, since it is quite
simple and can be used to attack all kinds of nonlinear and linear integral and differential equations. Results
are presented for ALS-U with updated design parameters. The model includes harmonic and main rf
cavities, compensation of beam loading of the main cavity by adjustment of the generator voltage, and a
realistic short range wake field (rather than the broadband resonator wake invoked previously).
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I. INTRODUCTION

The problem is to determine the longitudinal charge
distributions of an arbitrary bunch train in an electron
storage ring, in the state of equilibrium. This equilibrium
could exist theoretically but be unstable in practice. Any
coupling to transverse degrees of freedom is ignored. The
train is arbitrary in the sense that there can be any
distribution of gaps (unfilled buckets), and any distribution
of bunch charge along the train.
Assuming that the collective motion is governed by

coupled Vlasov-Fokker-Planck equations, the equilibrium
state is determined by coupled Haïssinski equations [1].
The coupling arises from the long-range wake fields of
high-Q cavity resonators. Every bunch in the train con-
tributes to the excitation of these wakes, and thereby

influences all other bunches and even itself (by a very
small amount). There is also the short range wake field (SR)
from geometric aberrations in the vacuum chamber, affect-
ing only the bunch that excites it. An achievement of the
present work is to include this effect accurately, which has
not been done before in a multibunch framework.
In Ref. [1], the problem was solved for the simplest

model, in which the only wake field comes from a single
passive higher harmonic cavity (HHC). In Ref. [2], the
model was extended to include the wake field (beam
loading) of the main accelerating cavity (MC), and also
the SR, roughly approximated by a broadband resonator
model. The rf generator voltage was adjusted by a least-
squares algorithm so that the sum of the generator voltage
and the induced voltage of the main cavity closely
approximated the desired accelerating voltage, in amplitude
and phase. Contrary to the supposition of Ref. [1], the main
cavity compensated in this way played a substantial role,
spoiling to some extent the desired effect of HHC. Also,
the consequence of SR was not negligible.
Both Refs. [1] and [2] were based on a formulation of the

Haïssinski equations in which the unknowns are the Fourier
transforms of the bunch densities at the frequencies of the
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cavity resonators. Of course, this is only possible if the
entire wake field is due to resonators, narrow- or broad-
band. Then, the number of real unknowns is nu ¼ 2nbnr,
where nb is the number of bunches and nr is the number of
resonators. For ALS-U, we have nb ¼ 284 and nr ¼ 3
for the model with HHCþMCþ SR, thus nu ¼ 1704.
Newton’s method is readily feasible for solution of a system
of this size or even much larger. In fact, the method worked
beautifully in Ref. [1], where nu ¼ 656, but failed to
converge for the full range of parameters desired in Ref. [2],
with nu ¼ 1704 or larger.
A possible way to avoid the divergence might be to

return to the conventional formulation of the Haïssinski
equations in coordinate space (z-space). The single-bunch
equation in z-space, discretized on a mesh, is solved
very robustly by Newton’s method, even at currents far
beyond realistic values [3]. Hoping for a similar success in
the multibunch case, one encounters the problem of a
very large Jacobian matrix. With a mesh of 100 cells
and 284 bunches, the dimension of the matrix is
28684 × 28684, which is uncomfortable if not impossible
on a standard personal computer. Moreover, other light
source designs have more than 1000 bunches. Instead of a
full Newton method, one could consider more economical
quasi-Newton procedures such as Broyden’s method [4,5].
Fortunately, a very simple and effective z-space solution

turned up in the guise of a relaxed fixed point iteration,
suggested by He, Li, Bai, and Wang [6]. This is Jacobian-
free and involves little calculation beyond repeated eval-
uations of the potential function that appears in the
exponent of the Haïssinski operator. This was successfully
applied with parameters for ALS-U and other rings in
Ref. [6], and I have verified the success for ALS-U. Many
of the problems posed in Ref. [2] were solved in a simpler
way by this method, but there were still some failures of
convergence in cases of interest. Convergence of the
method is slow, the number of iterations required being
of order 100, but the total computation time is nevertheless
modest.
This development turned my attention away from

Newton-type methods and toward Jacobian-free fixed point
iterations. There is a long history of efforts to accelerate
iterative sequences [7]. One of particular interest is
Anderson’s proposal of 1965 [8–10]. It has the potential
both to cure divergence and to promote fast convergence.
Remarkably, it does both in our problem, providing a very
fast and robust solution throughout the parameter domain
of interest.
Section II describes the relaxed fixed point iteration. The

discussion leads naturally to the continuation method,
which is a more standard approach to nonlinear equations
and a technique that can be related to Anderson accel-
eration. Section III introduces Anderson acceleration.
Section IV presents results for ALS-U, with parameters
from the latest design report, somewhat different from those

of our previous papers. Section V treats the relation of
Anderson acceleration to Broyden’s quasi-Newton method.
Section VI presents conclusions and the outlook for
future work.

II. RELAXED FIXED POINT ITERATION AND
THE CONTINUATION METHOD

We wish to solve n equations in n unknowns, written
compactly as

x ¼ gðxÞ; g∶ Rn → Rn; ð1Þ

where g may be linear but is nonlinear in general. To relate
to later discussions, we suppose that g has continuous
first derivatives, as is true in our examples, although no
derivatives appear in the numerical work. The function g
will be called the basic map. The elementary fixed point
iteration, or method of successive substitutions, tries to
construct a solution by starting with some guess x0 and
forming a sequence fxkg as

xkþ1 ¼ gðxkÞ; k ¼ 0; 1;…; ð2Þ

hoping that the sequence will converge to a solution x. If g
maps a ball Br ¼ fxjkxk < rg into itself, and reduces the
distance between any two points in the ball,

kgðx1Þ−gðx2k< βkx1−x2k; all x1;x2 ∈Br; 0< β< 1;

ð3Þ

then the contraction mapping theorem ensures that the
sequence converges to a solution, the only solution in Br,
for any x0 ∈ Br. Here k · k can be any norm but for analytic
estimates of β, a convenient choice is the maximum
absolute value of components of x: kxk ¼ maxijxij.
The discretized Haïssinski system has the contractive

property for sufficiently small beam current, so we have the
assurance of a unique solution at low current. Numerical
calculations show that the sequence diverges for the larger
currents of interest, so we seek a better algorithm.
We look for a better map hðxÞ, which ought to generate a

sequence that will converge, at least for some appropriate
x0. The relaxed or damped fixed point iteration makes hðxÞ
from gðxÞ in the simplest imaginable way,

hðxÞ ¼ αgðxÞ þ ð1 − αÞx; 0 < α < 1: ð4Þ

That is, if g produces too much change in x, reduce its
contribution and use the current x itself for the rest of the
iterate. It could be said that damping rather than relaxation
is more descriptive of the process.
He et al. in Ref. [6] adopted this procedure to solve the

coupled Haïssinski equations in the z-space formulation
and found it to be remarkably effective. They called it a
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“relaxation iteration.” The damping parameter α was
chosen by experiment. At high values of current a relatively
small value is required for convergence, say α ¼ 0.1.
It looks as though He et al. generalized freely from the

linear case, since their bibliography on the source of the
method refers only to that case. When g is linear, relaxation
is widely used in the SOR algorithm, successive over-
relaxation, a variant of the Gauss-Seidel method intended to
accelerate convergence. I have not seen much notice of the
nonlinear application in the literature of numerical analysis,
although one can find it in the context of particular
problems. See for instance Sec. III of Ref. [11] where it
is called “simple mixing”.
A bit more insight into Eq. (4) accrues if we invoke a

differential equation. Define fðxÞ ¼ gðxÞ − x and consider
the system of ordinary differential equations,

dx
dt

¼ fðxÞ; xð0Þ ¼ x0: ð5Þ

One might hope to find a solution of fðxÞ ¼ 0 as the limit
of an asymptotically constant trajectory xðtÞ as t → ∞.
Euler’s method applied to Eq. (5) gives a sequence fxkg
defined by

xkþ1 − xk
Δt

¼ fðxkÞ; xkþ1 ¼ΔtgðxkÞþ ð1−ΔtÞxk: ð6Þ

Thus an attempt to find a constant asymptote by Euler’s
method is the same as trying to find a solution by the
relaxed fixed point iteration, with α ¼ Δt.
There is no proof that a solution of fðxÞ ¼ 0 is really to

be found as the constant asymptote of a solution of Eq. (5).
A more certain relation to a differential equation, explored
in the literature, is obtained by considering a homotopy
connecting an equation with known solution x0 to the
equation of interest [12], § 7.5. Suppose that H∶Rn ×
R1 → Rn is a smooth function of both variables such that

Hðx0; t0Þ ¼ 0; Hðx; t1Þ ¼ fðxÞ: ð7Þ

Then consider the trajectory xðtÞ defined byHðxðtÞ; tÞ ¼ 0.
Differentiating we find

Hxðx; tÞ
dx
dt

þHtðx; tÞ ¼ 0: ð8Þ

As long as the inverse of the Jacobian Hx exists, we have
the differential equation in explicit form,

dx
dt

¼ −H−1
x ðx; tÞHðx; tÞ; xðt0Þ ¼ x0: ð9Þ

If this equation has a solution extending from t0 to t1, we
have achieved a solution of fðxÞ ¼ 0 as x ¼ xðt1Þ, accord-
ing to Eq. (7). A procedure along these lines is called a
continuation method.

There are of course myriad ways to choose H.
An especially useful choice is

Hðx; tÞ ¼ fðxÞ − e−tfðx0Þ; t0 ¼ 0; t1 ¼ ∞;

Hxðx; tÞ ¼ fxðxÞ; and Htðx; tÞ ¼ e−tfðx0Þ: ð10Þ

Since on the trajectory e−tfðx0Þ ¼ fðxÞ, the Eq. (9)
becomes

dx
dt

¼ −f−1x ðxÞfðxÞ: ð11Þ

When Euler’s method is applied to Eq. (11), we get

xkþ1 ¼ xk − Δtf−1x ðxkÞfðxkÞ; ð12Þ

which is the damped Newton method with damping factor
Δt. It becomes the full Newton method for Δt ¼ 1. If
FðxÞ ¼ −fxðxÞ−1fðxÞ obeys a Lipschitz condition, the
differential Eq. (11) is subject to standard existence
theorems. Boggs [13] has explored the use of more
sophisticated integrators of Eq. (11), with the goal of
approaching the asymptote more quickly.
Broyden’s method gives a way to approximate f−1x ðxkÞ,

starting with a value for f−1x ðx0Þ [5]. The update from step k
to step kþ 1 is obtained by adding a rank-1 matrix. With
the definition Gk ≈ f−1x ðxkÞ, the update takes the form

Gkþ1 ¼ Gk þ ðΔxk −GkΔfkÞ
ΔfTk

ΔfTkΔfk
;

Δvk ¼ vkþ1 − vk; ð13Þ

where the row vector vT is the transpose of a column vector
v. This is called Broyden’s second method. His first method
approximates the Jacobian itself in a similar way.
Sometimes it is adequate to take fxðx0Þ ¼ −I where I is

the unit matrix, which is equivalent to using the relaxed
iteration of Eq. (6) for the first step. With this reasonable
choice and Eq. (13), one can carry out an approximate
version of the Newton iteration (12), often to good effect.
The undamped iteration would be preferred but damping
could be needed for convergence.

III. ANDERSON ACCELERATION

Again we wish to solve x ¼ gðxÞ. Step k of Anderson’s
iteration makes use of the current and previous evaluations
of the map, gðxjÞ; j ¼ k; k − 1;…. These evaluations con-
tain valuable information. The update xkþ1 is formed from a
favorable linear combination of gðxjÞ.
With a given start x0, we employ the following notations

for k ¼ 0; 1;…:
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gk ¼ gðxkÞ; fk ¼ gk − xk;

kuk2 ¼
Xn
i¼1

ðuiÞ2; u ¼ ðu1;…; unÞ: ð14Þ

Also choose an integer m ≥ 1 and define

mk ¼ minðk;mÞ; ð15Þ
which will be the number of previous map evaluations used
at the k-th step, not more than m.
To find a good linear combination of the gj, Anderson

finds the coefficients in a minimal linear combination of the
fj. That is, he solves the constrained linear least-squares
problem

ðαk0; αk1;…; αkmk
Þ ¼ argmin k

Xmk

j¼0

αkjfk−mkþjk2;

Xmk

j¼0

αkj ¼ 1: ð16Þ

Then, the next iterate is taken to be

xkþ1 ¼
Xmk

j¼0

αkjgk−mkþj: ð17Þ

For k ¼ 0, the constraint alone determines the minimum, so
that α00 ¼ 1 and x1 ¼ gðx0Þ.
Anderson allowed extra flexibility by introducing a

relaxation parameter βk, with a corresponding update

xkþ1 ¼ βk
Xmk

j¼0

αkjgk−mkþj þ ð1 − βkÞ
Xmk

j¼0

αkjxk−mkþj: ð18Þ

In this scheme x1 ¼ β0gðx0Þ þ ð1 − β0Þx0, which is to say
that the iteration starts with simple mixing. In view of the
partial success of simple mixing, this would seem to be a
good choice, at least for the first step. At later iterations one
might put βk ¼ 1.
It is convenient, both for the calculation and for some

steps in analysis, to recast the minimization problem
without constraints. That is accomplished merely by a
linear change of variables; see Ref. [9], Eq. (3.1) and
following remarks. Define new constants γki such that

αk0 ¼ γk0; αkj ¼ γkj − γkj−1;

1 ≤ j ≤ mk − 1; αkmk
¼ 1 − γkmk−1: ð19Þ

Now the sum of the αkj is 1 for any choice of the γ
k
j , and the

unconstrained minimization takes the form

ðγk0;γk1;…;γkmk
Þ¼ arg minkfk

þ
Xmk−1

j¼0

γkjðfk−mkþj−fk−mkþjþ1Þk2: ð20Þ

Correspondingly, the next iterate is

xkþ1 ¼ gk þ
Xmk−1

j¼0

γkjðgk−mkþj − gk−mkþjþ1Þ: ð21Þ

Of course, with relaxation this becomes

xkþ1 ¼ βk

�
gk þ

Xmk−1

j¼0

γkjðgk−mkþj − gk−mkþjþ1Þ
�

þ ð1 − βkÞ
�
xk þ

Xmk−1

j¼0

γkjðxk−mkþj − xk−mkþjþ1Þ
�
:

ð22Þ
In the following work βk ¼ 1 is a satisfactory choice,
whereas in more difficult cases under investigation a value
as small as 0.025 is required for convergence.
The relation of Anderson’s method to Broyden’s algo-

rithm is discussed in Sec. V.

IV. RESULTS WITH ALS-U PARAMETERS

Parameters considered in the preliminary design report
for the Advanced Light Source Upgrade (ALS-U) [14] of

TABLE I. Parameters from preliminary design report for
ALS-U.

Ring circumference C 196.5 m
Beam energy E0 2 GeV
Average bunch current Iavg 500 mA
Momentum compaction α 2.025 × 10−4

Natural energy spread σδ 1.02 × 10−3

Natural rms bunch length σz0 3.9 mm
Energy loss per turn (with
insertion devices)

U0 315–330 keV

Harmonic number h 328
Main cavity frequency f1 500.390 MHz
Main cavity voltage V1 600 kV
Harmonic cavity harmonic
number

3

Harmonic cavity shunt
impedance

Rs (high R=Q) 1.9 MΩ

Harmonic cavity quality factor Q (high R=Q) 2.4 × 104

Harmonic cavity detuning fr − 3f1 (high
R=Q)

317.80 kHz

Harmonic cavity shunt
impedance

Rs (low R=Q) 1.4 MΩ

Harmonic cavity quality factor Q (low R=Q) 3.4 × 104

Harmonic cavity detuning fr − 3f1 (low
R=Q)

164.74 kHz

Main cavity shunt impedance
(sum of two)

Rs (unloaded) 9.8 MΩ

Main cavity quality factor Q (unloaded) 3.6 × 104

Main cavity detuning fr − f1 −94.729 kHz
Main cavity coupling
parameter

β (optimum) 9.983

Main cavity coupling
parameter

β (ALS
heritage)

3.1
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October 2020 are listed in Table I. These parameters differ
considerably from those adopted in Refs. [1,2], and [6], so
part of the motivation for this report is to bring the study up
to date. Two choices for the harmonic cavity parameters are
contemplated, called the high-R=Q and low-R=Q options,
which are alleged to have different implications for stability
issues. The stability is of course important but does not
concern us here.
At last notice the coupling coefficient β for the main rf

cavity was still an undetermined feature of the design. The
present ALS cavities might be used if their coupling could
be increased enough to control the dc Robinson instability.
For consistency with the calculations of Ref. [14], we take
the “optimum” value of Table 1, β ¼ 9.983. Appropriate
values of impedance and quality factor for the calcu-
lation are the loaded values, RsL ¼ Rs=ð1þ βÞ and

QL ¼ Q=ð1þ βÞ. We use the main cavity detuning from
the table, which realizes the “compensated condition”
given by Eqs. (3.79) and (3.80) in Ref. [14].
The table in Ref. [14] gives U0 ¼ 330 keV with inser-

tion devices, but the reported calculations to be compared
to ours have U0 ¼ 315 keV, so we choose the latter.
The object is to solve the discretized coupled Haïssinski

system, written compactly as

fðρÞ ¼ 0; f∶ Rn → Rn: ð23Þ

Supposing that the mesh for discretization of each bunch
density has nm points, the vector ρ with n ¼ nmnb
components consists of nb densities evaluated at the mesh
points:

ρ ¼ ½ρ1ðz1Þ; ρ1ðz2Þ;…; ρ1ðznmÞ;…; ρnbðz1Þ; ρnbðz2Þ;…; ρnbðznmÞ�: ð24Þ

Similarly,

f ¼ ½f1ðz1Þ; f1ðz2Þ;…; f1ðznmÞ;…; fnbðz1Þ; fnbðz2Þ;…; fnbðznmÞ�; ð25Þ

where

fiðzjÞ ¼
1

Ai
exp

�
−μUiðzj; ρÞ

�
− ρiðzjÞ: ð26Þ

The denominator Ai is a normalization factor, the discre-
tized integral of the numerator. In the exponent, Uiðzj; ρÞ is
the potential well seen by the ith bunch and μ is the
constant of Eq. (49) in Ref. [1]. In the following, Ui
consists of the expression defined in Eqs. (51), (57), and
(60) of Ref. [1], plus the integral of the short range wake
potential convolved with ρi, as follows:

Usr
i ðzÞ ¼

1

f1

Z
Σ

−Σ
Sðz − ζÞρiðζÞdζ; SðzÞ ¼

Z
z

ζ0

WðζÞdζ:

ð27Þ

The wake potential WðzÞ, from detailed modeling by Dan
Wang [15], is plotted in Fig. 13 of Ref. [2]. It is zero for
z < ζ0, where ζ0 is a small fraction of the bunch length,
arising from the nonzero length of the drive bunch in the
wake field simulation.
The solution vector x of the previous section is identified

with ρ and the map vector g is from the first term in
Eq. (26); that is g ¼ f þ ρ.
The least-squares step in the Anderson algorithm is done

with the code “dgels” from the Intel Math Kernel Library.
This solves the normal equation using the QR decom-
position which is recommended in Ref. [9]. We take mk ¼
minðk;∞Þ ¼ k so that at the kth iterate, the current

evaluation and all previous evaluations of the map g are
employed. About the same results are obtained with a
sufficiently large limit on the number used, say with
mk ¼ minðk; 8Þ, but this is bothersome to verify and gives
no appreciable saving in computation time. The time for the
least-squares step is negligible.
All results and CPU times are for a serial code in Fortran,

running on a laptop. The code is arranged so that the result
of any run can be taken as an initial guess for the next run.
A result for a complete fill can then be used to initiate a run
with a partial fill, or with a smaller detuning, or with a new
wake component included, or with smaller error toleran-
ces, etc.
In contrast to the algorithms used in Refs. [1] and [2], no

continuation in current from small initial values is needed
to achieve convergence. In spite of strong nonlinearities
convergence is found immediately at the design current and
even at much higher values.

A. The case of high R=Q

The first step is to consider the complete fill, with all 328
buckets filled with the same charge and the entire wake
coming from the HHC. Then every bunch comes out to
have the same profile, even though that is not put in as a
constraint. In Fig. 1, we show that profile for a decreasing
sequence of detunings. The legend gives the detuning δf in
kHz and σ=σ0, the ratio of the rms bunch length to the
natural bunch length of 3.9 mm. This plot agrees with
Fig. (3.255) in Ref. [14]. With 201 mesh points per bunch,
the CPU time is 6 s for each curve.
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The next step, again for a complete fill, is to see the effect
of the main cavity beam loading, which is to be compen-
sated by adjustment of the generator voltage. As expected,
the compensation is essentially perfect and the bunch
profile is the same to graphical accuracy. It is given by
the blue curve in Fig. 2 for the nominal detuning of
317.8 kHz from Table I. Here, the increase in bunch length
is σ=σ0 ¼ 3.79.
The compensation algorithm of Ref. [2] did not converge

with the desired energy loss of U0 ¼ 315 keV. Noticing
that, it did converge in the work of Ref. [1] which had a
smaller value of U0, we reduced the value and then
increased it in steps: U0 ¼ 260, 280, 300, and 315 keV.
This procedure took 5 min. All subsequent calculations

were started with the result of a previous calculation and
required less than one minute of additional time each.
The compensation algorithm is the standard Gauss-

Newton method for nonlinear least squares, although it
was not recognized as such in Ref. [2]. There are other
algorithms, such as the Levenberg-Marquardt method,
which can be more robust concerning the starting guess.
Perhaps such a method could give a least squares solution
directly for the desired U0 but not necessarily in a shorter
time.
Turning on the short range wake we get the red curve in

Fig. 2. The short range force reduces the asymmetry of the
bunch and increases its rms length by 3%. This is different
from the effect of the short range wake in the broadband
resonator model [2] and perhaps more reasonable.

FIG. 2. Complete fill, high R=Q, δf ¼ 317.8 kHz, σ=σ0 ¼
3.80 (blue), 3.92 (red).

FIG. 3. Complete fill, high R=Q, with HHCþMCþ SR. Two
lower detunings.

FIG. 4. Fill with distributed gaps, high R=Q, HHCþMCþSR,
δf ¼ 317.8 kHz.

FIG. 1. Complete fill, HHC only, high R=Q. The legend gives
the detuning δf ¼ fr − 3f1 in kHz, and the ratio σ=σ0 of rms
bunch length to the natural bunch length.
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Additional bunch lengthening through a decrease
in detuning is a possibility for the machine, discussed in
Ref. [14]. The results of two smaller values are shown in
Fig. 3. The transition to overstretching, when two peaks
appear, occurs between the two.
The partial fill anticipated for the machine, which has

been called Fill C2 in Ref. [16], has distributed gaps of four
buckets each, with a total of 284 bunches. There are 11
subtrains, 9 with 27 bunches and 2 with 26, the latter two
on opposite sides of the ring. All bunches have the same
charge chosen to give the desired average current of
500 mA. Taking this case with the nominal detuning δf ¼
317.8 kHz of Table 1, and including HHC, MC, and SR,
we get the densities shown in Fig. 4. There are six bunches
in the plot out of a typical subtrain of 27 bunches. The one

with maximum farthest to the right is nearest the front of the
subtrain.
As was discovered in Ref. [2], the main cavity has a large

influence when there are gaps in the train. The bunches near
the front of the subtrain resemble that of the complete fill,
whereas those at the middle and back are broader and
flatter. The distributions of bunch length increase and
centroid displacement along the full train are shown in
Figs. 5 and 6. The bunch length increase and the centroid
displacement are both largest at the back of a subtrain.
The most interesting figure of merit is the increase in the

Touscheck lifetime over the case without a harmonic cavity.
This is plotted for a typical subtrain in Fig. 7. The factor of
increase, τ=τ0, is not far from the length increase σ=σ0.
The strong variation along the subtrain should be an issue

FIG. 5. Case of Fig. 4, ratio of bunch length to natural length, vs
bunch number.

FIG. 6. Case of Fig. 4, bunch centroid vs bunch number.

FIG. 7. Case of Fig. 4, increase of Touschek lifetime.

FIG. 8. Fill with distributed gaps, HHCþMCþ SR,
δf ¼ 330 kHz. This result resembles Fig. (3.256) in Ref. [14].
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in determining the average beam lifetime, but that matter is
beyond the scope of this work.
Fig. 4 is to be compared with Fig. (3.256) in

Ref. [14] generated from a macroparticle simulation with
rather severe noise. This plot is for a case different
from ours in that it does not include the short range
wake and most probably has a different account of the
main cavity beam loading, which is mentioned but not
described. Also, the detuning is not specified exactly
but is said to be “right below the onset of the over-
stretching instability”. Our Fig. 4 has more broadening
especially at the back of the train. For whatever reason, to
get a result with a fair resemblance to Fig. (3.256), we have
to increase the detuning to 330 kHz, getting the
result in Fig. 8. Here, the results for bunch lengthening,
centroid position, and lifetime increase are consistent with

the results in Fig. (3.256) of Ref. [14] but a bit more
favorable.

B. High R=Q with overstretching

What is the effect of overstretching with the partial fill, as
compared to the result of Fig. 4 for the complete fill? It
turns out that the threshold for overstretching is at larger δf
than Fig. 3 would indicate for bunches at the back of a
subtrain, but similar to Fig. 3 for bunches at the front.
Figs. 9 and 10 show the densities for the same detunings as
in Fig. 4. Figs. 11 and 12 show the corresponding bunch
length increases.
This shows that there is no profit in overstretching

beyond a certain point. Fig. 10 displays more undesirable

FIG. 9. Fill with distributed gaps, HHCþMCþ SR,
δf ¼ 290 kHz.

FIG. 10. Fill with distributed gaps, HHCþMCþ SR,
δf ¼ 270 kHz.

FIG. 11. Fill with distributed gaps, HHCþMCþ SR,
δf ¼ 290 kHz.

FIG. 12. Fill with distributed gaps, HHCþMCþ SR,
δf ¼ 270 kHz.
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bunch distortion than Fig. 9 without much increase in the
average bunch length.
It took only 40 s to produce Fig. 9 starting with the

solution of Fig. 4, and another 40 s to make Fig. 10 starting
with Fig. 9. Through Anderson acceleration, we have
gained a remarkable advance in technique compared to
Ref. [2] in which these solutions could not be produced
at all.

C. The case of low R=Q

For low R=Q, the results for a complete fill are given in
Fig. 13. Passing from this solution to the case of a partial
fill, we find the pattern of Fig. 14.

The preliminary design report [14] expresses an interest
in running this case with 20% overstretching which is
illustrated with a macroparticle simulation in Fig. (3.257).
We obtain the closely similar result of Fig. 15 with a
detuning of 140 kHz, reduced from 164.7 kHz. The
corresponding outcomes for bunch lengthening, centroid
distribution, and Touschek lifetime increase are plotted in
Figs. 16, 17, and 18.

V. THE RELATION OF ANDERSON
ACCELERATION TO BROYDEN’S METHOD

By an argument of Eyert [17], revisited by Fang and
Saad [10], Anderson’s method is equivalent to a general-
ized form of Broyden’s second method for updating an
approximation to the inverse Jacobian as in Eq. (13). The
usual Broyden method imposes the secant condition,

FIG. 13. Complete fill, low R=Q, HHCþMC in the blue curve,
HHCþMCþ SR in the red curve. Detuning 164.7 kHz from
Table 1.σ=σ0 ¼ 3.96 (blue), 4.07 (red).

FIG. 14. Fill with distributed gaps, low R=Q, HHCþMCþSR,
δf ¼ 164.7 kHz.

FIG. 15. Fill with distributed gaps, low R=Q, HHCþMCþSR,
δf ¼ 140 kHz.

FIG. 16. Case of Fig. 14, ratio of bunch length to natural length
vs bunch number.
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Gkþ1Δfk ¼ Δxk; ð28Þ

which is motivated by the linear approximation to f. A
second condition requires that the Frobenius squared norm
kGkþ1 −Gkk2F be minimum with respect to Gkþ1, subject
to condition (28). These two conditions lead uniquely to
Eq. (13).
A generalized Broyden method imposes multisecant

conditions,

GkΔfp ¼ Δxp; p ¼ k −mk;…; k − 1; ð29Þ

thus taking account of previous iterates in the spirit of
Anderson. Again imposing a minimum change of Gk, and

taking G0 ¼ −I, the updates xkþ1 ¼ xk −Gkfk are found
to coincide with Anderson’s. The matrix F k having the
vectors Δfp as columns is assumed to have full rank.

VI. CONCLUSIONS AND OUTLOOK

I have described a new method to compute the equilib-
rium charge densities of an arbitrary bunch train with gaps,
under the influence of an HHC, MC, and a realistic SR.
It succeeds under more difficult conditions than previous
methods, in fact for all conditions that arise in examples
studied to date. Realized by a serial code on a laptop
computer, the method takes only a few minutes for a
thorough survey of the parameter space.
As an example, the parameter set for ALS-U in the

preliminary design report was adopted. Results similar to
those obtained by macroparticle simulations in the report
could be obtained with a reasonable choice of detuning
parameters. The report does not specify detuning exactly,
and the physical model is different in not including the
short range wake, and may have a different treatment of the
MC beam loading.
This paper introduces the Anderson iterative method that

is probably new to accelerator physics, and which seems
very promising for further applications in the field. It is
especially interesting for problems falling under rubrics
such as “self consistency” or “phase space matching”, often
formulated in terms of nonlinear integral or differential
equations.
There are large-scale applications of Anderson’s method

and related ideas in the literature of ab initio quantum
mechanical calculations of material and molecular proper-
ties [10,11,17–19]. These are based on the Kohn-Sham
density functional formalism [20], which is similar in
spirit if not in specifics to systems arising from the
nonlinear Vlasov equation. It may be profitable to keep
an eye on this work to see if there are any lessons to
be learned for accelerator physics. Also, ongoing efforts
by numerical analysts are interesting, specifically for
Anderson acceleration [21].
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