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In circular accelerators, crossing the linear coupling resonance induces the exchange of the transverse
emittances, provided the process is adiabatic. This has been considered in some previous works, where the
description of the phenomenon has been laid down, and more recently, where a possible explanation of
the numerical results has been proposed. In this paper, we introduce a theoretical framework to analyze the
crossing process, based on the theory of adiabatic invariance of Hamiltonian mechanics, which explains in
detail various features of the emittance exchange process.
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I. INTRODUCTION

The impact of linear coupling on transverse betatron
motion has been extensively studied, as it has a peculiar
impact already on the linear dynamics. In 2001, the
phenomenon of emittance exchange due to dynamic cross-
ing of the difference coupling resonance was studied [1],
with further results reported in 2007 [2], in which it is
mentioned that the full emittance exchange happens if the
resonance crossing is adiabatic and an adiabatic condition
is given. This research has opened a new domain of
investigations and a recent paper addressed the same topic
with the goal to develop a complete theory to describe the
emittance exchange process [3].
In recent years, there have been intense theoretical efforts

to study in detail the phenomenon of resonance crossing in
one degree-of-freedom (1 d.o.f) Hamiltonian systems in
view of devising novel beam manipulations [4–9]. This
culminated with the proposal and final implementation of
the CERN PS multiturn extraction (MTE) as an operational
means to provide an optimized extraction technique based
on nonlinear beam dynamics [10–16].
A natural extension of what was done with MTE is the

analysis of a 2 d.o.f nonlinear system that crosses a 2D
nonlinear resonance. Inspired by Ref. [17], some very
promising results have been obtained [18], which indicate
that the adiabatic crossing of resonances can be an efficient

means to manipulate the invariants of a Hamiltonian
system. This effect gives the possibility of redistributing
the transverse emittances between the transverse degrees of
freedom. It is worth stressing that the mathematical
framework for these studies is the theory of adiabatic
invariance for Hamiltonian systems [19,20].
This framework provides also a natural way of addressing

the analysis of the resonance crossing in the presence of linear
coupling. In this paper, we show how all observations
reported in previous works, such as Refs. [2,3], find a clear
explanation using the results of adiabatic theory. Further-
more, we extend the analysis to the case in which nonlinear
amplitude detuning is present in the considered system.
The plan of the paper is the following: in Sec. II, the

coupling Hamiltonian model is introduced and discussed in
detail (Sec. II A), including an original view of the phase
space on a sphere (Sec. II B). In Sec. III, the same
Hamiltonian system is analyzed using the normal modes
and the main results on the properties of the dynamics are
derived, whereas in Sec. IV, the analysis of the effect of
amplitude detuning on the original Hamiltonian is carried
out. A digression is made in Sec. V, where the problem of
two-way crossing of the coupling resonance is considered.
In Sec. VI, the map model is introduced and, in Sec. VII,
the results of the numerical simulations are presented and
discussed in detail. Finally, conclusions are drawn in
Sec. VIII, while some mathematical details are reported
in Appendices A, B, C, and D.

II. THE HAMILTONIAN MODEL
AND ITS DYNAMICS

Following the treatment used in Refs. [17,21,22], we
consider a Hamiltonian written in physical coordinates in
the following form
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Hðpx; py; x; y; sÞ ¼
p2
x þ p2

y

2
þ KxðsÞx2 þ KyðsÞy2 − qxy;

ð1Þ

which represents the transverse dynamics in a focusing
channel with properties that are s-dependent. The momenta
are in fact normalized with respect to the total momentum,
and the coefficient q̂ is defined as

q ¼ 1

2Bρ

�∂By

∂y −
∂Bx

∂x
�

ð2Þ

and represents the effect of a skew quadrupole on the
betatron dynamics of a beam with magnetic rigidity Bρ. In
the following, the notation z will be used to denote x or y.
The Hamiltonian (1) is periodic with period L, the

accelerator’s circumference, and its dynamics can be
studied after transforming it by means of the standard
Floquet transformation [22]

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βzðsÞJz

p
cos Φz;

pz ¼ −

ffiffiffiffiffiffiffiffiffiffi
2Jz
βzðsÞ

s
sin Φz;

Φz ¼ ϕz þ χzðsÞ − ωzs with χzðsÞ ¼
Z

s

0

dŝ
βzðŝÞ

; ð3Þ

and

ωz ¼
Z

L

0

ds
βzðsÞ

: ð4Þ

By introducing the corresponding Cartesian coordinates
defined as

Jz ¼
1

2

�
ωzẑ2 þ

p̂2
z

ωz

�
and

Φz ¼ atan
ωzẑ
p̂z

; ð5Þ

we obtain the new Hamiltonian

Hðp̂x; p̂y; x̂; ŷÞ¼
p̂2
xþ p̂2

y

2
þ1

2
ðω2

xx̂2þω2
yŷ2þ2q̂ x̂ ŷÞ; ð6Þ

where q̂ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxβyωxωy

p
q. This Hamiltonian will be

studied in detail in the following, where the hats will be
removed from all variables and symbols for simplifying the
notation.

A. Analysis of the dynamics in the presence
of a skew quadrupole

We consider the adiabatic crossing of the linear coupling
resonance, namely ωx − ωy ¼ 0, when the frequencies are
slowly modulated, and we define

δðλÞ ¼ ωxðλÞ − ωyðλÞ ð7Þ

with λ ¼ ϵt, ϵ ≪ 1, and ϵ is the adiabatic parameter that
describes the resonance-crossing process. Without loss of
generality, δðλÞ is defined by a linear function that varies
from positive to negative values (or vice versa) crossing
zero.
The eigenvalues ω2

1;2ðλÞ of the matrix associated with the
quadratic potential matrix are given by

ω2
1;2ðλÞ ¼

ω2
xðλÞ þ ω2

yðλÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ω2

xðλÞ − ω2
yðλÞ�2 þ 4q2

q
2

ð8Þ

and it is convenient to define

δ2ðλÞ ¼ ω2
xðλÞ − ω2

yðλÞ ¼ δðλÞðωxðλÞ þ ωyðλÞÞ ð9Þ

so that

ω2
1ðλÞ ¼ ω2

xðλÞ −
δ2ðλÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ22ðλÞ þ 4q2

p
2

;

ω2
2ðλÞ ¼ ω2

yðλÞ þ
δ2ðλÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ22ðλÞ þ 4q2

p
2

: ð10Þ

The corresponding eigenvectors are

v1ðλÞ ¼ c1

�
δ2ðλÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ22ðλÞ þ 4q2

p
2

; q

�
and

v2ðλÞ ¼ c2

�
−q;

δ2ðλÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ22ðλÞ þ 4q2

p
2

�
; ð11Þ

where ci are the normalizing constants. Note that for q ≪ 1
and δ2ðλÞ > 0, one has v1 → ex and v2 → ey, where ex and
ey are the unit vectors defining the horizontal and vertical
planes. When δ2ðλÞ ¼ 0, i.e. ωxðλÞ ¼ ωyðλÞ, then v1 and v2
define the two bisectors of the two angles defined by the
horizontal axis and the positive vertical axis, whereas when
jqj ≪ 1 and δ2ðλÞ < 0, then v1 → ey and v2 → −ex.
Therefore, the passage through the resonance ωx − ωy

implies an exchange of the direction of the eigenvectors.
The value of q is constrained by the conditions that ω1;2

are both real, i.e.

jqj ≤ ωxωy; ð12Þ

otherwise, the closed orbit corresponding to the fixed point
at the origin becomes unstable.
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It is also worth noting that the following relations hold

ω2
1 þ ω2

2 ¼ ω2
x þ ω2

y;

ω2
1 − ω2

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

x − ω2
yÞ2 þ 4q2

q
; and

ω1ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
xω

2
y − q2

q
ð13Þ

from which one remarks that the eigenvalues ω1;2 do not
cross the linear resonance as their difference cannot get
closer than ðω2

1 − ω2
2Þmin ¼ 2jqj as it is well known (see,

e.g. Refs. [2,3] and references therein). This observation
leads to an essential conclusion: in the physical coordi-
nates, the coupling resonance can be crossed, but the tunes
are not the eigenvalues of the system. On the other hand, in
the coordinate system of eigenvalues, the resonance cannot
be crossed, although the eigenvalues are the proper quan-
tities to describe the dynamics. For this reason, the term
pseudoresonance crossing will be also used in the
following.
We introduce the linear normal form for the Hamiltonian

(6) and the dependence of the symplectic transformation on
time (via the parameter λ) introduces a further term in the
original Hamiltonian. If we indicate with GðλÞ, the matrix
of the transformation Z ¼ z

ffiffiffiffiffiffiffiffiffiffiffi
ωzðλÞ

p
, it induces the

transformation

x ¼ GðλÞX; ð14Þ

where X are the new coordinates. A generating function
F2ðx;P; λÞ for the symplectic transformation can be written
in the form

F2ðx;P; λÞ ¼ PG−1ðλÞx; ð15Þ

and the new Hamiltonian reads

HðX;P; λÞ ¼ ωxðλÞ
X2 þ P2

x

2
þ ωyðλÞ

Y2 þ P2
y

2

þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωxðλÞωyðλÞ

p XY þ ϵP
∂G−1

∂λ GX; ð16Þ

where the last term is the time derivative of the generating
function. The final form of the Hamiltonian reads

HðX;P; λÞ ¼ ωxðλÞ
X2 þ P2

x

2
þ ωyðλÞ

Y2 þ P2
y

2

þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωxðλÞωyðλÞ

p XY

þ ϵ

2

�
ω0
xðλÞ

ωxðλÞ
XPx þ

ω0
yðλÞ

ωyðλÞ
YPy

�
; ð17Þ

where ω0 ¼ dω=dλ. The linear action-angle variables ðθ; IÞ
can be used to recast the Hamiltonian (17) in the form

Hðθ; I; λÞ

¼ ωxðλÞIx þ ωyðλÞIy þ
2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωxðλÞωyðλÞ
p

×
ffiffiffiffiffiffiffiffi
IxIy

p
sin θx sin θy

þ ϵ

�
ω0
xðλÞ

ωxðλÞ
Ix sin θx cos θx þ

ω0
yðλÞ

ωyðλÞ
Iy sin θy cos θy

�
:

ð18Þ

We remark that the Hamiltonian dynamics is singular
[23] at Ix ¼ Iy ¼ 0 and the frequencies ωx;y are not the
linear frequencies around the elliptic fixed point due to the
presence of the linear coupling term. Hence, the condition
ωxðλÞ ¼ ωyðλÞ is not a true dynamical resonance condition.
The Hamiltonian contains two small parameters, namely

ϵ that tends to zero in the adiabatic limit and q that
measures the strength of the linear coupling: the main issue
is how to determine and control the interplay between the
two small parameters in the limit ϵ → 0.
The introduction of a slow phase ϕa ¼ θx − θy in the

generating function

F2ðθ; JÞ ¼ ð Ja; Jb Þ
�
1 −1
0 1

��
θx

θy

�
ð19Þ

transforms the Hamiltonian to the form

Hðϕ; J; λÞ ¼ δðλÞJa þ ωyJb þ
2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωxðλÞωyðλÞ
p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JaðJb − JaÞ

p
sinðϕa þ ϕbÞ sin ϕb

þ ϵ

�
ω0
xðλÞ

ωxðλÞ
Ja sinðϕa þ ϕbÞ cosðϕa þ ϕbÞ

þ ω0
yðλÞ

ωyðλÞ
ðJb − JaÞ sin ϕb cosϕb

�
ð20Þ

and since we focus on the analysis when δðλÞ → 0, it is
possible to apply a perturbative approach averaging over
the fast-evolving angle ϕb to obtain the Hamiltonian

Hðϕ; J; λÞ ¼ δðλÞJa þ ωyJb þ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωxðλÞωyðλÞ
p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JaðJb − JaÞ

p
cos ϕa þOðϵ2Þ þOðq2Þ:

ð21Þ

As ϕb is not present in the Hamiltonian, it follows that Jb
is constant up to an error Oðq2Þ þOðϵ2Þ for a time interval
of orderOðϵ−1Þ. The perturbative approach is possible only
if this error is small, so that Jb can be considered constant
during the resonance-crossing process. We remark that the
term ωyJb can be dropped as it affects only the dynamics of
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ϕb, which is irrelevant in the case under consideration. In
such a case, the action of the 1 d.o.f Hamiltonian

Hðϕ;J;λÞ¼δðλÞJaþ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωxðλÞωyðλÞ
p ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JaðJb−JaÞ

p
cosϕa

ð22Þ

can be considered an adiabatic invariant upto an error
Oðq2ϵ−1Þ for a time interval Oðϵ−1Þ, and we can study the
change of Ja when δðλÞ passes through zero. In the end, it is
possible to restrict the problem of studying the resonance-
crossing process for the original Hamiltonian (6) by
considering the dynamics generated by H in Eq. (22) that
can be recast in the following form

Hðϕ; J; λÞ ¼ δðλÞJ þ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − JÞJ

p
sin ϕ; ð23Þ

where, without loss of generality, we have rescaled the action
according to J ¼ Ja=Jb so that J ¼ 0 and J ¼ 1 are singular
lines for the Hamiltonian (23). We also defined ϕ ¼
ϕa þ π=2, and then replaced δðλÞ→δðλÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωxðλÞωyðλÞ
p

=Jb,
which corresponds to a global rescaling of the Hamiltonian.
We remark that

δðλÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωxðλÞωyðλÞ

p
Jb

¼ δðλÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωxð0Þωyð0Þ

p
Jb

þOðϵ2Þ ð24Þ

and the higher-order terms can be dropped as they are part of
the error considered in Eq. (21).
Note that the Hamiltonian (23) has the form

Hðϕ; J; λÞ ¼ ϵtJ þ qH1ðJ;ϕÞ; ð25Þ

for which the equations of motion are

dJ
dt

¼ −q
∂H1

∂ϕ and

dϕ
dt

¼ ϵtþ q
∂H1

∂J : ð26Þ

By introducing a new time t̄ ¼ qt, Eq. (26) can be recast in
the following form

dJ
dt̄

¼ −
∂H1

∂ϕ ;

dϕ
dt̄

¼ þ ϵ

q2
t̄þ ∂H1

∂J : ð27Þ

Thus, the small parameter characterizing the adiabaticity is
ϵ̄ ¼ ϵ=q2 and the new slow time is λ̄ ¼ ϵ=q2t̄.We remark that
the reasoning can be extended to the case in which δðλÞ is a
nonlinear function of λ, e.g. δðλÞ ≈ 1=ð2nþ 1Þðλ − λcÞ2nþ1,
where λc represents the time of the resonance crossing. This
optionmight be useful in applications in order to improve the

overall adiabaticity of the process, as it was found in Ref. [5].
In this case, it is easy to show that the small parameter
characterizing the adiabaticity is ϵ̄ ¼ ϵ=q

2nþ2
2nþ1, and the expo-

nent tends to 1 when n → ∞.
The Hamiltonian (23) is symmetric with respect to the

transformation J̃ ¼ 1 − J and ϕ̃ ¼ −ϕ, as

Hðϕ̃; J̃; λÞ ¼ δðλÞð1 − J̃Þ − q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − J̃ÞJ̃

q
sin ϕ̃

¼ δðλÞ −Hðϕ; J; λÞ ð28Þ

so that we have the same dynamics by reverting the time
arrow and the behavior for J → 0 is the same as J → 1.
The level curve that reaches J ¼ 1 at ϕ ¼ 0 and ϕ ¼ π is

a critical one. It fulfills the equation

Hðϕ; J; λÞ ¼ Hð0; 1; λÞ ð29Þ

i.e.

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − JÞJ

p
sin ϕ − δðλÞð1 − JÞ ¼ 0 ð30Þ

and thus

JðϕÞ ¼ δ2

δ2 þ q2sin2ϕ
→ 1 for ϕ → 0 ð31Þ

that shows how the level curve JðϕÞ is tangent to the J ¼ 1
curve. It is worth stressing that, in spite of being a critical
curve, this special level curve of the HamiltonianH is not a
singularity of the dynamics and, in particular, the time spent
on this curve is finite (see Appendix A).
In Fig. 1, the phase-space portraits of the Hamiltonian

(23) (assumed to be frozen, i.e. with λ constant) are shown
in the first column, for q ¼ 1 [24] and three values of δ,
namely 1; 0;−1 for the top, center, and bottom plot,
respectively.
The red lines represent the critical curve, which is also

called coupling arc in Refs. [17,22]. In the top plot (δ ¼ 1),
two separated islands are visible, whose areas increase as δ
decreases to zero. Furthermore, there exists a region of
separatrix curves around the islands, tangent to the singular
lines J ¼ 0 and J ¼ 1. When δ ¼ 0 (center plot), the
islands have maximal area, with a sort of separatrix that
connects the singular line through the vertical line ϕ ¼ π.
Finally, a symmetric situation when δ < 0 is visible in the
bottom plot.
The dynamics can also be studied by using the variables

X ¼
ffiffiffiffiffi
2J

p
sin ϕ Y ¼

ffiffiffiffiffi
2J

p
cos ϕ ð32Þ

so that the Hamiltonian reads as
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HðX ;Y; λÞ ¼ δðλÞ
2

ðX 2 þ Y2Þ þ q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ðX2 þ Y2Þ

q
X :

ð33Þ

A limiting circle X2 þ Y2 ¼ 2 appears and the dynamics
is confined within it, due to the presence of the square root.
Moreover, the coupling arc is the solution of

δ2ðλÞðX2 þ Y2Þ þ q2X2 ¼ 2δ2ðλÞ ð34Þ

that separates the accessible domain of the phase space into
two regions of different sizes, depending on the value of
δðλÞ. A sketch of the phase-space portrait is depicted in the
central column of Fig. 1.

FIG. 1. Phase-space portraits of the Hamiltonian (23) for q ¼ 1 and δ ¼ 1 (top), δ ¼ 0 (center), and δ ¼ −1 (bottom) in three different
representations: action-angle coordinates ðϕ; JÞ on the left column, Cartesian coordinates ðX ¼ ffiffiffiffiffi

2J
p

sin ϕ;Y ¼ ffiffiffiffiffi
2J

p
cos ϕÞ in the

central column, and on a spherical surface (as described in Sec. II B) on the right column, where the coordinate ϕ is the polar angle while
the azimuthal angle is given by θ ¼ asinð2J − 1Þ. The red line represents the critical curve (the so-called coupling arc in Refs. [17,22]).
The plots on the left column are the equirectangular projections of the spherical surface, the poles being represented by the J ¼ 0 and
J ¼ 1 lines while the plots on the central column are the azimuthal representations centered around the south pole. Note that the
artificially large value of q, together with large values of δ and of J, is used to make more visible the key features of the phase-space
portrait.
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B. Visualization of the dynamics on a sphere

In the Sec. I, the dynamics of the Hamiltonian (23) has
been analyzed by means of two different coordinate
systems. However, the essential features of the dynamics
can be best appreciated by looking at the dynamics
generated on a sphere, since we have two singular lines,
namely, J ¼ 0 and J ¼ 1.
The north pole can be identified with J ¼ 1 and the south

pole with J ¼ 0. Two charts have to be defined: one
describing the southern and one the northern hemisphere,
with a nonzero overlap at the equator to provide the necessary
compatibility between the two charts. The coordinates (32)
can be used to describe the chart of the northern hemisphere.
There are two symmetrically located elliptic fixed points

on the sphere, whereas the poles are singular lines, i.e. the
phase dynamics ϕðtÞ is not defined on the poles, but we
observe that the phase velocity _ϕ increases as one approaches
the poles as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − JÞJp
so that the time spent in the part of

the energy-level curves near the lines J ¼ 0 and J ¼ 1 tends
to 0. We remark that the level curves tend to be parallel to
these singular lines, whereas the angle ϕ varies in a
neighborhood of π=2 or 3π=2.
The level line HðX ;Y; λÞ ¼ 0 close to the origin is

given by

δðλÞðX2 þ Y2Þ þ
ffiffiffi
2

p
qX ¼ Oð3Þ; ð35Þ

where Oð3Þ stands for the third-order terms in X and Y.
Such a curve is smooth and represents a circle passing
through the origin. In the limit δ → 0, the radius of
curvature diverges and the same is true near the south
pole J ¼ 1, where the variables are given by

X̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − JÞ

p
sin ϕ; Ỹ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − JÞ

p
cos ϕ ð36Þ

and the Hamiltonian is

HðX̃ ; Ỹ; λÞ ¼ −
δðλÞ
2

ðX̃ 2 þ Ỹ2Þ

þ q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − X̃2 þ Ỹ2

p
X̃ þ δðλÞ: ð37Þ

Both Hamiltonians (33) and (37) are analytic at their origin,
and they have a singularity at

X̃2 þ Ỹ2

2
¼ X2 þ Y2

2
¼ 1 ð38Þ

corresponding to the points J ¼ 1 and J ¼ 0, respectively.
However, the singularity is not in the dynamics, but only in
the coordinates. Hence, the dynamics on the sphere has no
singularity, although it cannot be described by a single
chart and this is an essential point for our analyses. The
dynamics on the sphere is represented in the plots on the
third column of Fig. 1.

When the time dependence is considered, and in par-
ticular the limit δðλÞ → 0 is analyzed, then one can
introduce the action-angle variables ðθ; IÞ for each chart
of the 1 d.o.f frozen Hamiltonian (33).

C. Analysis of the pseudoresonance-crossing process

Let us assume that δðλÞ ¼ δmaxϵt where t ∈ ½−ϵ−1; ϵ−1�
and δðλÞ ∈ ½−δmax; δmax�.
The fixed points of the Hamiltonian (23) correspond to

ϕ�
x ¼ π=2; 3π=2 and their action J� is given by

2δmax

q
λ ¼ � 1 − 2J�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J�ð1 − J�Þp ; ð39Þ

where the plus sign refers to ϕ� ¼ π=2.
The applicability of the adiabatic theory for a resonance

crossing relies on the control of a slow phase change during
the variation of the parameter δðλÞ. When λ ¼ 0, J� ¼ 1=2,
and

dJ�ð0Þ
dt

≃ −
δmax

q
ϵ ð40Þ

and this quantity has to be small, i.e. ≪ 1, to apply the
adiabatic theory.
The two fixed points move to opposite directions during

the resonance-crossing stage, and the corresponding reso-
nance islands have an amplitude Jri estimated by

JriðλÞ ¼
1

ðδðλÞq Þ2 þ 1
: ð41Þ

JriðλÞ is maximum when δðλÞ ¼ 0, but at the boundary
values, i.e. �δmax, it can be small if δmax=q ≫ 1. In such a
case, trapping inside the island can occur near one of the
borders, whereas detrapping occurs near the other one and
such a phenomenon happens in a symmetric fashion with
respect to the horizontal line J ¼ 1=2, so that the values Ix
and Iy (i.e. the Courant-Snyder invariants and then also the
beam emittances) are exchanged by keeping approximately
fixed their sum.

III. ANALYSIS OF THE DYNAMICS USING THE
NORMAL MODES

By following the approach described in detail in
Appendix B, the prototype Hamiltonian to study the
emittance exchange process can be written in the normal
modes space in the following form

Hðϕ; J; λÞ ¼ γðλÞJ þ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − JÞJ

p
sin ϕ; ð42Þ

where, without loss of generality, we assume J2 ¼ 1, so
that J ¼ 0 and J ¼ 1 are singular lines for the Hamiltonian.
Although the geometrical properties of the dynamics
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generated by the Hamiltonian (42) coincide with those of
(23), the two descriptions are carried out in different spaces,
namely that of physical coordinates for Eq. (23) or that of
the normal modes for Eq. (42). Hence, the exchange of the
invariants occurs in different spaces.
The Hamiltonian (42) allows to study the effect of

adiabaticity in the angular frequency modulation on the
preservation of the action variables ðJ1; J2Þ and of their
approximations ðJa; JbÞ in the physical planes.
The Hamiltonian (42), being of the same form as (23),

has two elliptic fixed points at ϕ� ¼ π=2, 3π=2 and

γðλÞ ¼ �ϵ
1 − 2J�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�ð1 − J�Þp ð43Þ

so that if γ ≫ ϵ they are very close to boundaries J ¼ 0 and
J ¼ 1, which means that the resonance trapping is not
possible, and we have simply the invariance of J for ϵ → 0.
The maximum resonance amplitude Jra occurs at the
minimum value of γ

Jra ¼
1

OððqϵÞ2Þ þ 1
ð44Þ

so that Jra ¼ Oð1Þ only if q ¼ OðϵÞ whereas if q ≫ ϵ, then
Jra is negligible, which clearly describes the interplay
between the two small parameters q and ϵ.
Even for q ¼ OðϵÞ, I1 and I2 are adiabatic invariants,

which are referred to the phase planes defined by the
eigenvectors. At the beginning of the crossing process,
given that q is small, the two planes are close to the original
phase planes ðX;PXÞ and ðY; PYÞ, and the same holds for
the initial actions so that I1 ≃ Ixð0Þ and I2 ≃ Iyð0Þ. With an
error OðqÞ, at the end of the process the two planes are
exchanged, and the same is true for the emittances with the
same approximation OðqÞ. Hence, q defines the maximum
possible emittance exchange whereas ϵ ≪ 1 allows a
conservation of the adiabatic invariants.
Furthermore, the action-angle variables are analytic for

γðλÞ → 0 and the Hamiltonian reduces to the form

Hðϕ; J; λÞ ¼ HðJ; λÞ þ ϵH1ðϕ; J; λÞ; ð45Þ

which is analytic on the sphere. It is then possible to apply
the theorem reported in Ref. [19] to the Hamiltonian
Hðϕ; J; λÞ to state that the change of the action ΔJ for a
given orbit of the system is exponentially small, i.e.

ΔJ ¼ Oðexpð−c=ϵÞÞ ð46Þ

with c a positive constant, when λ varies, which corre-
sponds to the crossing of the original difference resonance.
It is worth stressing that the same remarks made for the

Hamiltonian (23) about the rescaled adiabaticity parameter
hold also for the Hamiltonian (42). Therefore, one can state
that

ΔJ ¼ O ðexpð−cq2=ϵÞÞ ð47Þ

in case of a resonance crossing linear in λ, or

ΔJ ¼ O ðexpð−cq2nþ2
2nþ1=ϵÞÞ ð48Þ

in case of a crossing of the resonance that is nonlinear in λ.
Note that a nonlinear resonance crossing is more advanta-
geous in terms of the adiabaticity of the process with respect
to a linear one.

IV. IMPACT OF AMPLITUDE DETUNING

In the presence of amplitude detuning generated by
nonlinearities, the dynamics is governed by the
Hamiltonian (6) plus the terms [21]

Hdetðpx; py; x; yÞ ¼ αxx

�
x2 þ p2

x

2

�
2

þ 2αxy

�
x2 þ p2

x

2

��
y2 þ p2

y

2

�

þ αyy

�
y2 þ p2

y

2

�
2

: ð49Þ

This approach assumes that either nonlinear resonances
are not excited by the nonlinearities, otherwise, additional
terms should be included in the model studied, or that the
resonances excited are far from the difference resonance we
are considering. By performing the same substitutions that
led to the Hamiltonian (23) starting from (6), Hdet becomes

Hdetðϕa; JaÞ ¼ αaaJ2a þ αabJaJb; ð50Þ

where a constant term in Jb has been discarded as Jb is a
constant of motion and hence the constant term is irrelevant
for the dynamics of Ja and ϕa, and

αaa ¼ αxx − 2αxy − αyy; αab ¼ 2αxy − αyy ð51Þ

and the complete Hamiltonian becomes

Hðϕa; Ja; λÞ ¼ ðδðλÞ þ αabJbÞJa þ αaa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωxðλÞωyðλÞ

q
J2a

þ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JaðJb − JaÞ

p
cos ϕ: ð52Þ

It is obvious that αab can be reabsorbed in the definition
of δ, which effectively would correspond to shifting the
resonant condition to ωx − ωy þ αabJb ¼ 0 or, equiva-
lently, to shifting the time at which the resonance is
crossed. It is also evident that by acting on the three
physical quantities αxx; αxy; αyy it is possible to control the
values of αaa and αab independently on each other. As it was
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done for the Hamiltonian (23), it is possible to shift the
phase of ϕ and set Jb ¼ 1 to cast (52) in the following form

Hðϕ; J; λÞ ¼ δ̃ðλÞJ þ αðλÞJ2 þ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jð1 − JÞ

p
sin ϕ: ð53Þ

Whenever the analysis would be carried out in the
normal modes’ coordinates, then it would be immediate
to find that the amplitude detuning would lead to the
following general Hamiltonian

Hðϕ; J; λÞ ¼ γ̃ðλÞJ þ α̂ðλÞJ2 þ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jð1 − JÞ

p
sin ϕ; ð54Þ

where also in this case γ̃ðλÞ incorporates a constant term αab
with respect to the original definition used in Ref. (42).
The parameter αðλÞ [or α̂ðλÞ] has a fundamental impact

on the phase-space topology as, when α ¼ 0 the
Hamiltonians (23) or (42) have only two elliptic fixed
points, whereas when α ≠ 0 an additional pair of one
elliptic and one hyperbolic fixed point might be generated
(see Ref. [21]). The conditions for the existence of these
additional fixed points are discussed in Appendix C.
Indeed, the presence of a hyperbolic fixed point implies
the existence of a separatrix, which introduces a singularity
in the phase-space structure and hence alters the character
of the dynamics. Examples of phase-space portraits for
different values of δ are shown in Fig. 2, and the hyperbolic
fixed points are clearly visible.
In particular, the nice property about the exponentially

small change of J, linked to the analyticity of the dynamics
of (42), is lost. From the discussion presented in
Appendix C, it follows that when αaa is sufficiently small,
no extra fixed point is present and the phase-space topology
is unchanged with respect to Eq. (23) with no separatrix
present and hence an exponentially small bound on the
variation of the invariant change during the resonance-
crossing process.

V. DIGRESSION: TWO-WAY CROSSING OF THE
COUPLING RESONANCE

So far, the focus has been on the analysis of the
adiabaticity properties of the crossing of the coupling
resonance for a linear and nonlinear system. However,
another process is possible and is interesting to consider,
namely the two-way crossing of the resonance. Such a
process would allow studying the reversibility of the
resonance-crossing process and, in particular, the impact
on the phase variable, as that on the action variable is
already fully covered by the considerations made in the
previous sections. The treatment proposed in Ref. [20] is
used to deal with the two-way resonance crossing. The
starting point is the Hamiltonian (54) in which the
parameter γðλÞ is supposed to describe a closed curve
when λ ∈ ½0; 1�, corresponding to t ∈ ½0; 1=ϵ�. The change
in the phase of the action-angle variables when the system
moves along the closed curve can be evaluated by [20]

ϕ

�
1

ϵ

�
− ϕð0Þ ¼ χdyn þ χgeom þ χrem; ð55Þ

where the three terms can be generically computed,
assuming the Hamiltonian is given as H ¼ H0ðJ; γðτÞÞ þ
ϵH1ðϕ; J; τÞ, according to

χdyn ¼
1

ϵ

Z
1

0

∂H0ðJðτϵÞ; γðτÞÞ
∂J dτ

χgeom ¼
Z

1

0

∂H1ðJð0Þ; τÞ
∂J dτ; H1 ¼ hH1iϕ

χrem ¼ ϵ

Z
1=ϵ

0

∂H1ðϕðηÞ; JðηÞ; ϵηÞ
∂J dη − χgeom: ð56Þ

The first term, χdyn, takes into account the dynamical
change of the phase and is relevant in the adiabatic regime,
i.e. when ϵ ≪ 1 and depends only on the form of H0. The
second term, χgeom, depends on the angular average of H1

and is the so-called Berry phase [25,26] or Hannay angle

FIG. 2. Phase portraits of the Hamiltonian (52) with αaa ¼ 1, αab ¼ 0, q ¼ 0.25, Jb ¼ 1 at δ ¼ −1 (left), δ ¼ −0.58 (center),
δ ¼ −0.44 (right), in Cartesian ðX ;YÞ coordinates. The orbits that pass through X ¼ 0, Y ¼ � ffiffiffi

2
p

are shown in red.
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[27]. The third term, χrem, is relevant in the nonadiabatic
regime and depends only on H1.
These general definitions can be specialized to the case

of the Hamiltonian (54) and one obtains

χdyn ¼
1

ϵ

Z
1

0

γðτÞ dτ

χgeom ¼ 0

χrem ¼ ϵ

2

Z
1=ϵ

0

1 − 2JðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − JðηÞÞJðηÞp sin ϕðηÞ dη; ð57Þ

where χgeom ¼ 0 is due to the special form of H1, which is
zero when averaged over the angle ϕ. Note that χdyn is
independent on the action variable, whereas it depends on
ϵ. It is worth noting that geometrically, χdyn represents the
area enclosed by the closed curve described by γðτÞ, and
such an area is zero in case resonance is crossed in the same
way in each of the two directions. χrem depends on the
action-angle variables. This means that in the adiabatic
regime the phase is affected by an ϵ-dependent shift, only,
whereas in the nonadiabatic case the shift depends also on
the action-angle variables. Therefore, in the adiabatic case,
the distribution of initial conditions is rigidly rotated, i.e. by
an amplitude-independent angle, in a two-way crossing of
the coupling resonance (the action variable is only very
weakly affected), while in the nonadiabatic case the initial
distribution undergoes a nonlinear deformation by a two-
way resonance-crossing process.
It is worth stressing that the rigid rotation of the initial

distribution in case of a two-way crossing of the coupling
resonance in the adiabatic regime is a consequence of the
special form of H0, which is linear in the action variable.
Indeed, whenever amplitude detuning is considered, H0 is
no longer a linear function of J and, hence, even in the
adiabatic regime, the initial distribution will be rotated by
an amplitude-dependent quantity. This means that a two-

way crossing of the resonance is never a fully reversible
process for a nonlinear system. Hence, a periodic crossing
of the coupling resonance, even if it occurs adiabatically,
will always distort the distribution, with an adverse effect
on the preservation of the linear invariants. In physical
terms, this is the situation for a circular accelerator operated
with nonzero chromaticity and close to the coupling
resonance, which can be crossed due to the tune modulation
induced by the chromaticity.

VI. THE MAP MODEL

A system made of a FODO cell and a skew quadrupole,
which is interpolated by the phase flow of the Hamiltonian
(6), is described by the one-turn map given by

xnþ1 ¼ MFODOMSkew xn ð58Þ
where

MSkew ¼

0
BBB@

1 0 0 0

0 1 q̂ 0

0 0 1 0

q̂ 0 0 1

1
CCCA: ð59Þ

Using the steps detailed in Appendix D, it is possible to
recast Eq. (58) as a Hénon-like map as0
BBB@

X

X0

Y

Y 0

1
CCCA

nþ1

¼
�
RðωxÞ 0

0 RðωyÞ
�0BBB@

X

X0 þ qY

Y

Y 0 þ qX

1
CCCA

n

ð60Þ

and this is the map used in the numerical simulations
presented in Sec. VII.
As an example, the resonance-crossing process is shown

in Fig. 3, where a distribution of initial conditions with

FIG. 3. Distribution of particles in ðX ;YÞ space from simulation of map (60) for δ ¼ −0.1 (left), δ ¼ 0 (center), and δ ¼ 0.1 (right),
for a set of initial conditions at fixed Jb ¼ 2 × 10−4. The colors encode the value of the initial action Ja;i, and show how particles
exchange their action values Ja;f at the end of the process.
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variable Ja;i value and a constant Jb ¼ 2 × 10−4 evolves
through the resonance from a negative value of δ (left), a
zero one (center), and a positive one (right) using the map
(60). The color scale is used to encode the value of Ja and it
is clearly visible how the conditions exchange the Ja value
between beginning and end of the crossing process. In fact,
the conditions around the origin of phase space at the end of

the crossing have the same action values as those in the
outer part of phase space at the beginning.
The analysis of the impact of the amplitude detuning

has been studied by modifying the map (60) includ-
ing the effect of a angular frequency variation on the
amplitude in phase space. In this case, the map model
becomes

0
BBB@

X

X0

Y

Y 0

1
CCCA

nþ1

¼
 
Rðωx þ αxxðX2 þX02Þ þ αxyðY2 þ Y 02ÞÞ 0

0 Rðωy þ αxyðX2 þX02Þ þ αyyðY2 þ Y 02ÞÞ

!
·

0
BBB@

X

X0 þ qY

Y

Y 0 þ qX

1
CCCA

n

; ð61Þ

where αxx; αxy; αyy are the terms introduced in Eq. (49) to
describe the variation of the angular frequency with
amplitude in the two transverse planes. This model satisfies
the requirements mentioned earlier of simulating an angular
frequency variation with amplitude, but without exciting
resonances other than the coupling one.

VII. RESULTS OF NUMERICAL SIMULATIONS

Numerical simulations have been performed using both
the Hamiltonian and the map models. However, based on
the fact that the results obtained are the same, only those
obtained with the map will be presented here.

A. Linear map model

As a first step, numerical simulations have been carried
out to evaluate the dependence of the emittance-exchange
phenomenon on the adiabaticity of the resonance-crossing
process. In the simulations, ωy has been changed while
keeping ωx constant. Thus, δðλÞ ¼ ωx − ωyðλÞ is changed
from a negative to a positive value passing through zero. As
a figure of merit, we used the function Pna, introduced in
Ref. [3], which is defined as

Pna ¼ 1 −
hIx;fi − hIx;ii
hIy;ii − hIx;ii

; ð62Þ

where Iz;i and Iz;f are the initial and final linear action
variables, respectively. Therefore, Pna is zero when a
perfect exchange is attained and one when no exchange
occurs.
The evolution of a set of initial conditions, representing

a beam exponentially distributed in Ix, i.e. ρðIxÞ ¼
ðN0=hIxiÞ expð−Ix=hIxiÞ, has been computed by means
of the map (60), while varying ωy in the fixed interval
ωy;i ¼ 2.5 and ωy;f ¼ 2.7 over a given time interval N.
According to the Hamiltonian theory presented in the
previous sections, we expect that hIxi becomes hIyi after
the resonance crossing. What we observe in Fig. 4 is a clear

exponential dependence of Pna as a function of 1=ϵ, in
evident agreement with the findings of Ref. [3], and also in
perfect agreement with the discussion carried out
previously.
The exponential behavior of Pna features a clear depend-

ence on q, and an oscillatory behavior is also observed. We
have been studying this effect by means of dedicated
numerical simulations, in which the evolution of Pna at
large number of turns has been probed.
Figure 5 (top left) shows these oscillations, whose ampli-

tude and angular frequency are shown in the top-right and
center-left plots, respectively. The oscillations of Pna
are characterized by an angular frequency, which has been
determined byusing refined techniques basedon FFT [28,29],
that for small q values corresponds to ðωy;f − ωxÞ=2. The
sudden jump visible in the inset is due to the q-value
being too small for the ϵ-value used to preserve the

FIG. 4. Evolution of Pna as a function of 1=ϵ for an exponential
distribution of initial conditions and different values of q.
Exponential fits are also presented. The map (60) has been used,
with parameters ωx ¼ 2.602, ωy;i ¼ 2.5, ωy;f ¼ 2.7, and a set of
initial conditions with hIx;ii ¼ 10−4, hIy;ii ¼ 4 × 10−4.
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resonance-crossing process. This is similar to what can be
observed in the center-right plot of the same figure.
In the center-right part of Fig. 5, a zoom of the behavior

of the average Pna for small jqj values is shown and the
characteristic scaling with q2 is clearly visible, which is
linked to the neglected terms that are affecting the pres-
ervation of the invariants. Note the rapid increase of Pna
toward 1 when jqj → 0, which originates from the linear

coupling being too small for the exchange of the invariants
to occur.
Another important point to stress is that these scaling

laws are not connected to the features of the distribution of
initial conditions, as the theoretical results clearly indicate
that these properties are linked to the individual orbits
of the Hamiltonian system. Indeed, this can be seen
in Fig. 6.

FIG. 5. Top left: Oscillations of Pna at large values of turns N for different values of q. Top right: Minimum, average, and maximum
value of Pna for 9 × 104 ≤ N ≤ 1 × 105 for different values of q. Center right: zoom in the small q region of the average value of Pna
with a quadratic fit. Note that for small jqj values the emittance exchange breaks down, which is indicated by Pna growing toward 1 and
the q-value corresponding to the break down is ϵ-dependent. Center left: main angular frequency of the oscillations of Pna obtained by a
refined FFT as a function of q. Bottom: relation between the critical value of jqj, for which the break down of Pna is observed, and ϵ. A
quadratic fit to the data is also shown, which confirms the scaling law (63). The map (60) has been used, with parameters ωx ¼ 2.602,
ωy;i ¼ 2.5, ωy;f ¼ 2.7, and a set of initial conditions with hIx;ii ¼ 10−4, hIy;ii ¼ 4 × 10−4.
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In fact, when plotting hJa;fi as a function of Ja;i (left), we
observe a linear difference between ðJb − Ja;iÞ and hJa;fi
when the adiabatic parameter ϵ is very small. This difference
decreases exponentially when we vary the adiabaticity
of the resonance-crossing process (right), i.e. ΔJa ¼
κ exp ½−ξðωy;f − ωy;iÞ=ϵ�. Note that also in this case oscil-
lations appear when ϵ decreases as the actions Ja;b are not the
correct adiabatic invariant due to the value of q used in the
simulations.
The dependence of the exponential fit parameters κ and ξ

can be fully determined by means of numerical simulations.
If we perform the same analysis on different values of the
initial action [using a set of initial conditions δðJa − Ja;iÞ
uniformly distributed with respect to the angular variable]

and we apply the same exponential fit we see that κ ∝ Ja;i
whereas ξ remains constant (Fig. 7, left).
Therefore, the value of ξ ¼ ð1.9544� 0.0007Þ × 10−4

(obtained by fitting the data with a constant) is independent
on the initial radial distribution and is indeed retrieved in
the fit of Fig. 4 for q ¼ −0.005 where we get ξ ¼
ð1.9563� 0.0015Þ × 10−4. Finally, as predicted in
Sec. III, we observe (Fig. 7, right) that ξ depends quad-
ratically on the linear coupling strength q, as found also
in Ref. [3].
It is key to stress that the scaling law ΔJa ¼

κ exp ð−ξ̂q2=ϵÞ, which has been justified theoretically in
the previous sections, is essential in establishing a link
between the two parameters q and ϵ that are governing

FIG. 6. Left: computed, (hJa;fi, black line) and expected, (Jb − Ja;i, red, dashed) final value of the invariant as a function of Ja;i after a
resonance-crossing procedure. To each Ja;i value is associated a uniform distribution of angles in ½0; 2π�. Right: amplitude of the
difference between the two lines in the left plot for Ja;i ¼ 0 (close to the fixed-point position) as a function of 1=ϵ. The map (60) has been
used, with parameters q ¼ −0.005, ωx ¼ 2.602, ωy;i ¼ 2.5, ωy;f ¼ 2.7, and a set of initial conditions with Jb ¼ 2 × 10−4.

FIG. 7. Left: Parameters of the exponential fit to the formula ΔJa ¼ κ exp ½−ξðωy;f − ωy;iÞ=ϵ� for distributions with constant Ja;i as in
the bottom plot of Fig. 6 as a function Ja;i. The oscillations of the value of ξ when Ja;i is close to Jb=2 is linked to the increase of the
uncertainty on the exponential fit parameter at small values of jκj. Right: dependence of the parameter of the exponential ξ on the q (a
quadratic fit is also presented). The map (60) has been used with parameters q ¼ −0.005 (for the left plot), ωx ¼ 2.602, ωy;i ¼ 2.5,
ωy;f ¼ 2.7, and a set of initial conditions with Jb ¼ 2 × 10−4.
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the dynamics of the system under consideration. Indeed,
whenever the following is satisfied

ϵ ¼ const × q2 ð63Þ

the variation of Ja is left unchanged. This means that when q
is decreased, ϵ should be reduced even further tomaintain the
character of the dynamics unaffected. This aspect is clearly
appreciated in Fig. 5 (center right) where the curves
corresponding to two values of ϵ are shown: a reduction
of ϵ allows moving forward the break down behavior
observed. This phenomenon has been studied in detail,
and the results are shown in the bottom plot of Fig. 5, where
the relationship between the break-down value q and the
corresponding ϵ value is shown. The points lie on a quadratic
curve, in perfect agreement with the scaling law reported in
Eq. (63). It is evident that in the case of a resonance crossing

that is nonlinear in λ, as discussed earlier, the relationship
(63) reads

ϵ ¼ const × q
2nþ2
2nþ1; ð64Þ

where 2nþ 1 is the power of λ with which the resonance is
crossed.
The distribution of the action jumps during the reso-

nance-crossing process for a set of initial conditions with
the same value of Ja;i and the phase uniformly distributed in
½0; 2π�, is shown in Fig. 8.
It is worth noting that when ϵ decreases the average of

the jump of the invariant tends to zero (see the right plot in
Fig. 11) and the extent of the support of the distribution of
ΔJa shrinks. At the same time, the distribution becomes
more symmetrical and it flattens out.

B. Map model with amplitude detuning

As described in Sec. IV, we studied also the impact of
amplitude detuning on the adiabaticity of the emittance
exchange using the map model given in (61) and simulating
the resonance-crossing process in the same way as in the
absence of detuning. The map (61) depends on three
parameters that describe how the frequencies vary with
the amplitude in phase space. In the numerical simulations
presented in the following a single parameter α is varied,
which is related with the others by α ¼ 2αxx ¼ 2αyy ¼
−4αxy. This choice is made to mimic the amplitude detuning
generated by a system including a single octupole in thin lens
approximation [30].
For Gaussian distributions of initial conditions corre-

sponding to different emittances in x and y, Pna has been
evaluated for different values of α and the results are shown
in Fig. 9.

FIG. 8. Distribution of the jump of the invariant (difference
between Ja;f and the expected one Jb − Ja;i) for particles at
J1;i ¼ 5 × 10−5. Top: N ¼ 104, i.e. ϵ ¼ 2 × 10−5, Bottom:
N ¼ 5 × 104, i.e. ϵ ¼ 4 × 10−6. The map (60) has been used,
with parameters q ¼ −0.005, ωx ¼ 2.602, ωy;i ¼ 2.5, ωy;f ¼ 2.7,
Jb ¼ 2 × 10−4.

FIG. 9. Pna as a function of the detuning coefficient α. The map
(61) has been used with parameters q ¼ −0.008, ωx ¼ 2.602,
ωy;i ¼ 2.5, ωy;f ¼ 2.7, N ¼ 105, and a set of initial conditions
with hIx;ii ¼ 10−4, hIy;ii ¼ 4 × 10−4.
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Two behaviors, depending on the value and sign of α, are
clearly visible. For α > 0 and α small in absolute value, Pna
is essentially zero, which indicates that even when ampli-
tude detuning is present, a perfect emittance exchange
occurs. Such a behavior is hardly seen for α < 0, even in
the neighborhood of zero. Rather, a sharp rise of Pna is
visible. Globally, outside a small interval around zero for α,
Pna is always different from zero, indicating that the
emittance exchange is not perfect.
Note that the position of the new fixed points either on

the right or on the left of the coupling arc is linked to the
sign of α. Therefore, the presence of new detuning-related
fixed points has a different impact on the final distribution
of initial conditions, and hence on the emittance exchange,
depending on where they are located in the phase space. In
this specific case, when 0 < α < 15 even if α is positive the
effect on Pna is negligible: this is compatible with the
theoretical predictions that small enough values of α do not

generate new fixed points and do not affect the emittance
exchange.
The essential difference between the linear case and that

with amplitude detuning is clearly visible when investigat-
ing the dependence of Pna on the adiabatic parameter ϵ.
This is shown in Fig. 10 (top left). The exponential
behavior is lost and is replaced by a power-law function
for Pna.
The two values of α have been selected to provide cases

in which more than two fixed points are present. The
dependence on α is shown in the top-right plot, where the
dependence of the fit parameters is reported together with
the behavior of the reduced χ2, which is depicted for the
power- and exponential-law cases. The behavior of the
reduced χ2 for the two fit models shows clearly that while
the exponential dependence is the most suitable one for α
close to zero, the power-law best describes the data outside
of this interval of α. This is in full agreement with the

FIG. 10. Top left: Dependence of Pna on ϵ for α ¼ 10 and α ¼ −10. A power-law dependence Pna ¼ aϵb þ c, is fitted and the results
are also shown (b ¼ −1.61� 0.01 for α ¼ 10 and b ¼ −0.642� 0.006 for α ¼ −10). Top right: dependence of the power-law exponent
b and c (left axis) and reduced χ2 for the power- and exponential-law fits (right axis) as a function of α. Bottom: dependence of power-
law exponent b (left) and c (right) on q, for some values of α. The map (61) has been used, with parameters q ¼ −0.008 (top plots),
ωx ¼ 2.602, ωy;i ¼ 2.5, ωy;f ¼ 2.7, N ¼ 105, ϵ ¼ 2 × 10−6, and a set of initial conditions with hIx;ii ¼ 10−4, hIy;ii ¼ 4 × 10−4.
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theoretical discussion carried out in Sec. VI. Finally, the
dependence of the fit parameters for some values of α is
shown as a function of q in the bottom plots of Fig. 10.
Additionally, in the presence of amplitude detuning, it is

possible to derive a scaling law linking q and ϵ. It is very
easy to conclude that Pna is linked to the change of the
invariants during the crossing process. Therefore, the
scaling law Pna ¼ aϵbðα;qÞ þ cðα; qÞ, which has been ana-
lyzed in Fig. 10, gives rise to the following relationship

ln ϵ ¼ constþ cðα; qÞ
abðα; qÞ ; ð65Þ

which should be fulfilled in order to keep constant the
change of the invariant. The essential difference with
respect to what has been found in the absence of nonlinear
detuning is apparent.
Finally, Fig. 11 shows the features of the distribution of

the jumps of the invariants in the case with amplitude
detuning.
In the left plot, the distribution of Ja, i.e. the difference

between the observed and the expected value of Ja;f , for
α ¼ 10 for initial conditions at a given fixed Ja;i and Jb, is
shown for two values of ϵ. The distributions look com-
pletely different from the ones obtained in the linear case
and shown in Fig. 8. Although these distributions tend to be
centered around zero as ϵ decreases, their standard
deviation σ as a function of ϵ might tend to a finite limit
for ϵ → 0. This is visible in the right plot, where the
evolution of the standard deviation of the distribution of the
action jump is depicted as a function of ϵ. Three values of α
are shown, namely, 0,1,10. The asymptotic behavior is
clearly different: while for the first two values it tends to

zero, the case α ¼ 10 features a nonzero limiting value.
Note that the first two values correspond to Pna ¼ 0, i.e. a
perfect emittance exchange occurs. These results and
observations indicate that the invariant is indeed experi-
encing a finite jump even when the adiabatic regime is
reached when α is large enough. This is a direct conse-
quence of the presence of a separatrix linked to additional
fixed points, as found in Ref. [31,32].

VIII. CONCLUSIONS

In this paper, the Hamiltonian theory of the dynamic
crossing of the coupling resonance has been presented and
discussed in detail, considering not only the linear but also
the case with nonlinear dependence of the frequencies on
the phase-space amplitude.
The main focus has been the analysis of the so-called

emittance exchange process, which arises from the reso-
nance crossing. The detail of the mechanism has been
considered, both in standard phase space as well as
considering the normal modes, which provides the correct
description of the system behavior. In particular, this
framework allows considering the interplay between the
two small parameters of the problem, namely the adiaba-
ticity parameter and the strength of the linear coupling. It is
worth stressing that, while the true invariants are exactly
exchanged, the linear actions feature only a partial
exchange. This is because they are not the true invariants
of the system and that a projection effect from the space of
the invariants to the physical space has to be taken into
account. All this should be carefully considered when
translating these observations to circular accelerators, in
which the physical planes are normally the reference
concepts used to interpret the phenomena linked to the

FIG. 11. Left: Distribution of the jump of the invariant (difference between Ja;f and the expected one Jb − Ja;i) for α ¼ 10, for
N ¼ 5 × 103, i.e. ϵ ¼ 4 × 10−5 and N ¼ 5 × 104, i.e. ϵ ¼ 4 × 10−6. Right: standard deviation σ of the jumps distribution for α ¼ 0, 1,
10 at different values of ϵ. The map (61) has been used, with parameters q ¼ −0.008, ωx ¼ 2.602, ωy;i ¼ 2.5, ωy;f ¼ 2.7, and a set of
initial conditions with Ja;i ¼ 5 × 10−5, Jb ¼ 2 × 10−4.
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crossing of the coupling resonance. Otherwise, the system
undergoes periodic variations of the transverse emittances
as a function of ϵ−1. This is a simple consequence of the
fact that, whenever the coupling strength is not small, the
uncoupled emittances are no longer the correct invariants of
the system. Furthermore, it has been shown how the
dynamical properties of the system under consideration
can be best appreciated by looking at the dynamics on a
sphere, rather than the standard flat phase space.
It has been discussed how the presence of a real

separatrix in phase space is the key feature that distin-
guishes the behavior of the crossing of the coupling
resonance for a linear and nonlinear system. The origin
of such a difference is connected with the breaking down of
the analytical properties of the dynamical system whenever
a separatrix is present.
Detailed numerical simulations have been carried out to

provide a full characterization of the rich spectrum of
behaviors. It is worth stressing that the observed exponen-
tial dependence on the adiabaticity parameter of the
emittance exchange is a natural consequence of the
analyticity properties of the system under consideration.
To the best of our knowledge, for the first time, the behavior
of a nonlinear system has been probed while crossing the
coupling resonance and, in excellent agreement with the
theory presented, a power law, instead of an exponential
one, has been observed for the emittance exchange process.
A fundamental relationship between the key system

parameters q and ϵ has been derived for the case with
and without amplitude detuning. Such a link describes how
the crossing of the coupling resonance should be performed
in order to keep it adiabatic as a function of the value of the
linear coupling. It is evident that such a relationship is of
paramount importance in applications and, to the best of
our knowledge, it has been derived for the first time in
this paper.
Finally, a digression has been made, considering the

features of a two-way crossing of the coupling resonance.
By applying the adiabatic theory, it has been shown that the
reversibility of the resonance crossing process is not
granted in the nonlinear case, even in the adiabatic limit.
This is a rather interesting and thoughtful result for its
implications in the domain of accelerator physics applica-
tions, e.g. in the case of periodic resonance crossing
induced by finite chromaticity, for which a non-negligible
impact on the beam distribution is to be expected, no matter
the speed of the resonance crossing.

APPENDIX A: COMMENTS ON THE
EQUATIONS OF MOTION OF THE

HAMILTONIAN (23)

Let us consider a Hamiltonian Hðϕ; JÞ and the scaled
Hamiltonian H̃ðϕ; JÞ ¼ λðJÞðHðϕ; JÞ − E0Þ, where
Hðϕ0; J0Þ ¼ E0. We explicitly compute (in this context 0
stands for the derivative with respect to J)

∂H̃
∂J ¼ λðJÞ ∂H∂J þ λ0ðJÞðHðϕ; JÞ − E0Þ
∂H̃
∂ϕ ¼ λðJÞ ∂H∂ϕ

so that given the initial conditions ðϕ0; J0Þ and E0 the
solution of the Hamiltonian system

dϕ
dτ

¼ ∂H̃
∂J

dJ
dτ

¼ −
∂H̃
∂ϕ

with initial energy H̃ðϕ; JÞ ¼ 0, we obtain the system

1

λðJÞ
dϕ
dτ

¼ ∂H
∂J

1

λðJÞ
dJ
dτ

¼ −
∂H
∂ϕ

and if we introduce the scaled time λðJÞdτ ¼ dt, we recover
the solution of the initial Hamiltonian. Of course, the
phase-space structure of both Hamiltonian systems is
the same.
Using this approach, the solutions of the equations of

motion of the Hamiltonian (23) can be associated with
those of the Hamiltonian

H̃ðϕ; J;λÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1− JÞJp f½δðλÞJ −E0� þ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− JÞJ

p
sinϕg

¼ δJ −E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1− JÞJp þ q sin ϕ ðA1Þ

in the scaled time
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − JÞJp

dt ¼ dτ, where E0 is the value
of the initial energy, namely

E0 ¼ δðλÞJ0 þ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − J0ÞJ0

p
cos ϕ0: ðA2Þ

Therefore, we consider the orbit with zero energyH0 ¼ 0
and the equations of motion give the solution of the initial
Hamiltonian system in the scaled time. However, the phase
space has the same structure for both Hamiltonians. In the
Hamiltonian H0, E0 is a parameter.
Starting from the Hamiltonian (23) and using the

expression given in Eq. (A2) for E0, we get the equation
of motion (see Ref. [22])

J̈ þ ðδ2 þ q2ÞJ ¼ δE0 þ
q2

2
ðA3Þ

that can be explicitly solved in the form of
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JðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δE0 þ

q2

2

�
−

E2
0

δ2 þ q2

s
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ q2

q
t

�

þ δE0 þ
q2

2
ðA4Þ

that is a sinusoidal function, whose period is given by

T ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ q2

p ðA5Þ

and that is independent on the initial energy.

APPENDIX B: DETAIL OF THE ANALYSIS OF
THE DYNAMICS USING THE NORMAL MODES

Let us start from the Hamiltonian (6) with the goal of
studying the dynamics considering the normal modes. Let
us denoteω ¼ ðω1;ω2Þ the vector of the normal modes and
RðλÞ the orthogonal matrix built using the components of
the eigenvectors, then the normal variables X are
defined

x ¼ RðλÞX ðB1Þ

A generating function for the transformation F2ðx;P; λÞ
can be written in the form

F2ðx;P; λÞ ¼ PRðλÞ⊤x ðB2Þ

and the new Hamiltonian reads

HðX;P; λÞ ¼ P2
1 þ P2

2

2
þ ω2

1ðλÞX2
1 þ ω2

2ðλÞX2
2

2
þ ϵP

∂R⊤
∂λ R;

ðB3Þ

where the last term is generated by the time derivative of the
generating function. Furthermore, it can be verified that the
matrix

ΞðλÞ ¼ ∂R⊤
∂λ R ðB4Þ

is anti-symmetric and has the form

ΞðλÞ ¼
�

0 ξðλÞ
−ξðλÞ 0

�
; ðB5Þ

where

ξðλÞ ¼ −2q
ωxðλÞω0

xðλÞ − ωyðλÞω0
yðλÞ

ðω2
xðλÞ − ω2

yðλÞÞ2 þ 4q2
¼ −q

δ02ðλÞ
δ22ðλÞ þ 4q2

ðB6Þ

and we obtain a term analogous to the Coriolis potential in
the Hamiltonian. Note that ξðλÞ ¼ 0 when δ0ðλÞ ¼ 0 and
ξðλ�Þ ∝ −ð2qÞ−1 ≫ 1 when δðλ�Þ ¼ 0, however, in this
case δ0ðλ�Þ ¼ Oð1Þ.
We evaluate

ω1

ω2

¼ 1

2

�
ω2
1 þ ω2

2

ω1ω2

��
1þ ω2

1 − ω2
2

ω2
1 þ ω2

2

�
ðB7Þ

so that we get the estimates

ffiffiffiffiffiffi
ω1

ω2

r
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
ω2
1þω2

2

ω1ω2

�s �
1þ1

2

ω2
1−ω2

2

ω2
1þω2

2

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

 
ω2
xþω2

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
xω

2
y−q2

q
!vuuut
�
1þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ22ðλÞþ4q2

p
ω2
xþω2

y

�

ffiffiffiffiffiffi
ω2

ω1

r
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

 
ω2
xþω2

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
xω

2
y−q2

q
!vuuut
"
1−

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ̂2ðλÞþ4q2

q
ω2
xþω2

y

#
: ðB8Þ

Finally, we define the quantities

ξ1ðλÞ ¼ ξðλÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

0
B@ ω2

x þ ω2
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
xω

2
y − q2

q
1
CA

vuuuut ðB9Þ

ξ2ðλÞ ¼ ξðλÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8

δ22ðλÞ þ 4q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

xω
2
y − q2

q
Þðω2

x þ ω2
yÞ

vuut ; ðB10Þ

and we observe that ξ2 ¼ OðqÞ when δðλÞ → 0.
By introducing the scaled variables X̃ ¼ ðX1=

ffiffiffiffiffiffi
ω1

p
;

X2=
ffiffiffiffiffiffi
ω2

p Þ, P̃ ¼ ðP1

ffiffiffiffiffiffi
ω1

p
; P2

ffiffiffiffiffiffi
ω2

p Þ and the matrix Ω ¼
diagðω1;ω2Þ we get the Hamiltonian

HðX̃; P̃; λÞ ¼ ω1ðλÞ
X2
1 þ P2

1

2
þ ω2ðλÞ

X2
2 þ P2

2

2

þ ϵP̃⊤ΩΞΩ−1 X̃ þ ϵX̃⊤ dΩ
dλ

Ω−1P̃; ðB11Þ

where the last term is generated by the time derivative of the
generating function of the coordinate transformation and

dΩ
dλ

Ω−1 ¼
�
ω0
1ðλÞ=ω1ðλÞ 0

0 ω0
2ðλÞ=ω2ðλÞ

�
: ðB12Þ

The Hamiltonian (B11) can be cast in the following form
by using the linear action angle variables
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Hðθ; I; λÞ ¼ ω1ðλÞI1 þ ω2ðλÞI2 þ 2ϵξ
ffiffiffiffiffiffiffiffi
I1I2

p
×
� ffiffiffiffiffiffi

ω2

ω1

r
sin θ1 cos θ2 −

ffiffiffiffiffiffi
ω1

ω2

r
cos θ1 sin θ2

�

þ ϵ
ω0
1

ω1

I1 sin θ1 cos θ1 þ ϵ
ω0
2

ω2

I2 sin θ2 cos θ2: ðB13Þ

Both actions I1;2 are adiabatic invariants as the resonant conditions ω1 � ω2 ¼ 0 are never satisfied, and we define

δ̂ðλÞ ¼ ω1ðλÞ − ω2ðλÞ

¼ δðλÞωxðλÞ þ ωyðλÞ
ω1ðλÞ þ ω2ðλÞ

−
1

ω1ðλÞ þ ω2ðλÞ
�
δ2ðλÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ22ðλÞ þ 4q2

q �
ðB14Þ

so that δ̂ðλÞ ≥ OðqÞ and there is a quasi-resonant condition only if q ≪ 1. Hence, we introduce the slow angle
ϕ1 ¼ θ1 − θ2, and we define ϕ2 ¼ θ2 and J1, J2 are the corresponding actions, so that the new Hamiltonian is

Hðϕ; J; λÞ ¼ δ̂ðλÞJ1 þ ω2ðλÞJ2 þ 2ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2 − J1ÞJ1

p
½ξ1ðλÞ sin ϕ1 þ ξ2ðλÞ sin ðϕ1 þ 2ϕ2Þ�

þ ϵ

2

�
ω0
1

ω2

J1 sin 2ðϕ1 þ ϕ2Þ þ
ω0
2

ω2

ðJ2 − J1Þ sin 2ϕ2

�
: ðB15Þ

If ω2 ∼ 1, one can average on the angle ϕ2 and the Hamiltonian reduces to

Hðϕ; J; λÞ ¼ δ̂ðλÞJ1 þ ω2ðλÞJ2 þ 2ϵξ1ðλÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2 − J1ÞJ1

p
sinϕ1: ðB16Þ

We remark that ξ1ðλÞ ¼ Oðq−1Þ and δ̂ðλÞ ¼ OðqÞ when δ2ðλÞ → 0. Therefore, using a time scaling, the previous
Hamiltonian is equivalent to

Hðϕ; J; λÞ ¼ γðλÞJ1 þ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2 − J1ÞJ1

p
sinϕ1; ðB17Þ

where J2 is an integral of motion whereas J1 changes when
γðλÞ ≪ 1; γðλÞ ¼ δ̂ðλÞ=ð2ξ1ðλÞÞ ¼ Oðq2Þ when δ2 → 0.

APPENDIX C: CONSIDERATIONS ON THE
EXISTENCE OF ADDITIONAL FIXED POINTS

FOR THE HAMILTONIAN (53)

The determination of the fixed points of the Hamiltonian
(53) is done by imposing that _ϕ ¼ 0 and _J ¼ 0, i.e.

cosϕ ¼ 0

δ̃þ 2αJ � q
2

1 − 2Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jð1 − JÞp ¼ 0; ðC1Þ

where the first equation gives ϕ ¼ π=2; 3π=2 and the
second one the following quartic equation

16α2J4 þ 16αðδ̃ − αÞJ3 þ 4ðq2 þ δ̃2 − 4αδ̃ÞJ2
þ −4ðq2 þ δ̃2ÞJ þ q2 ¼ 0; ðC2Þ

where it is immediate to observe that the coefficients of the
terms J4, J, and the constant term have a fixed sign, which

is positive, negative, and positive, reflectively. On the other
hand, the coefficients of the terms J3 and J2 do not have a
fixed sign, but when δ̃ ≪ 1, the first is negative and the
latter is positive.
For our purpose, we want to determine the conditions

under which Eq. (C2) has two real solutions, which occurs
when the discriminant Δ is negative. By direct computa-
tion, one obtains

Δ ¼ −65536α2 q2ðαþ δ̃Þ2½27α4q2 þ α3ð8δ̃3 þ 54δ̃q2Þ
þ α2ð12δ̃4 þ 39δ̃2q2Þ þ 6αδ̃ðδ̃2 þ q2Þ2 þ ðδ̃2 þ q2Þ3�

¼ −65536α2q2ðαþ δ̃Þ2fðαÞ ðC3Þ

and this implies that fðαÞ should always be positive. Note
that fðαÞ is also represented by a quartic polynomial and its
sign can be studied by considering its discriminant, Δ̂,
which reads

Δ̂ ¼ 314928q4ðq4 − δ̃4Þ3ðδ̃4 þ 4q4Þ2 ðC4Þ

and whose sign is easily determined
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Δ̂ > 0 if − q < δ̃ < q: ðC5Þ
Therefore, considering also the following properties

fð0Þ > 0

f0ð0Þ > 0 if δ̃ > 0 ðC6Þ

one has that

if δ̃ < −q or δ̃ > q then Δ̂ < 0

hence

fðαiÞ ¼ 0 i ¼ 1; 2 αi ∈ R

and

δ̃ < −q 0 < α1 < α2

δ̃ > q α1 < α2 < 0

hence

fðαÞ > 0 for α < α1 or α > α2: ðC7Þ

Note that during the resonance-crossing process δ̃ → 0

with constant q and therefore Δ̂will eventually change sign.
Whenever Δ̂ > 0 four or no real roots are possible and

this depends on the conditions on two additional quantities,
namely

if − q < δ̃ < q then Δ̂ > 0

hence if

16δ̃6 þ 27 δ̃2q4 > 0

and

− 64 δ̃12 þ 8019 δ̃4q8 − 216δ̃8q4 þ 6561 q12 < 0

there are four distinct roots

else; if

16δ̃6 þ 27δ̃2q4 < 0

or

− 64δ̃12 þ 8019δ̃4q8 − 216δ̃8q4 þ 6561q12 > 0

there are no real roots ðC8Þ

from which the conclusion on the number of real solutions
of the equation fðαÞ ¼ 0 depends only upon the study of
the sign of the polynomial

gðδ̃Þ ¼ −64 δ̃12 − 216 δ̃8q4 þ 8019δ̃4q8 þ 6561q12 ðC9Þ

that is even, i.e. gðδ̃Þ ¼ gð−δ̃Þ and gðδ̃Þ → −∞ for
δ̃ → �∞. gðδ̃Þ can be considered as a cubic polynomial
in the variable δ̃4 and one can verify that the discriminant is
always positive, thus ensuring that there are three real and

distinct roots of the equation gðδ̃Þ ¼ 0. Moreover, their
product is positive, thus imposing that they are all positive
or one positive and two negative. It turns out that indeed
only one is positive and the solution of the initial equation
is given only by

δ̃4 ¼ μq4 i:e: δ̃ ¼ �μ1=4jqj; μ ≈ 17.9085 ×
9

16
:

ðC10Þ
Therefore,

gðδ̃Þ > 0 if − μ1=4q < δ̃ < μ1=4q ðC11Þ

and a fortiori it is positive in the interval ½−q; q�, which
shows that on that interval fðαÞ ¼ 0 has four real and
distinct roots. It is easy to verify that an even number of
roots can be negative and such a number does not depend
on the sign of δ̃.
On the other hand, looking at the extrema of fðαÞ, one

finds three real and distinct extrema and the product of the
values αi;ext; i ¼ 1, 2, 3 for which the extremum is reached
satisfies sgnðα1;extα2;extα3;extÞ ¼ −sgnðδ̃Þ, which shows that
for δ̃ > 0 an odd number of extrema is negative, whereas
for δ̃ < 0 an even number is negative.
It is then clear that as the sign of the solutions of fðαÞ ¼

0 does not depend on the sign of δ̃ while the sign of αi;ext
does, only two solutions αi are positive and the number
maxima with negative position varies from two for δ̃ < 0 to
one for δ̃ > 0. In summary, the following holds

if − q < δ̃ < q then Δ̂ > 0

hence

fðαiÞ ¼ 0 i ¼ 1; 2; 3; 4 αi ∈ R

and

α1 < α2 < 0 < α3 < α4

hence

fðαÞ > 0 if α < α1 or α2 < α < α3 or α > α4

ðC12Þ

and this shows that it is indeed possible to have only two
fixed points in phase space with a nonzero amplitude
detuning.

APPENDIX D: DETAILS OF THE
COMPUTATION OF THE MAP USED IN THE

NUMERICAL SIMULATIONS

The matrix MFODO can be transformed in Jordan form
via the transformation T, so that T−1MFODOT ¼ Rðωx;ωyÞ,
where Rðωx;ωyÞ is the 4D rotation matrix for the frequen-
cies ωx and ωy, i.e.
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Rðωx;ωyÞ ¼ RðωxÞ ⊗ RðωyÞ ¼
�
RðωxÞ 0

0 RðωyÞ
�
;

ðD1Þ

where RðωzÞ is a standard 2D rotation matrix. This trans-
formation induces a new set of coordinates X ¼
ðX;X0; Y; Y 0Þ defined as X ¼ T−1x where T is well known
and reads

T ¼
�
Tx 0

0 Ty

�
where Tz ¼

� ffiffiffiffiffi
βz

p
0

−αz=
ffiffiffiffiffi
βz

p
1=

ffiffiffiffiffi
βz

p �
:

ðD2Þ

The map then reads

Xnþ1 ¼ ðT−1xnþ1Þ
¼ ðT−1MFODOTÞ ðT−1MSkewTÞ ðT−1xnÞ
¼ Rðωx;ωyÞ ðT−1MSkewTÞXn; ðD3Þ

where

M̂Skew ¼ T−1MSkewT ¼
�

1 Q

Q 1

�
ðD4Þ

and

Q ¼
�
0 0

q 0

�
; q ¼

ffiffiffiffiffiffiffiffiffi
βxβy

q
q̂ ðD5Þ

so that

Xnþ1 ¼ Rðωx;ωyÞM̂Skew ¼
�
RðωxÞ Qx

Qy RðωyÞ
�
Xn ðD6Þ

having defined

Qz ¼ q

�
sinωz 0

cosωz 0

�
: ðD7Þ
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