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We review the theory of optical klystrons, with its applications for self-amplified spontaneous emission
free electron lasers in mind. We show that previous theories miss terms in the power gain factor that cannot
be neglected, and we illustrate differences between the previously known analytical expressions, new ones
found in this paper, and numerical calculations. We then consider the use of optical klystrons for electron
energy-spread and radiation coherence-time diagnostics purposes.
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I. INTRODUCTION

A free electron laser (FEL)-based optical klystron [1–8]
is a device constituted by two FEL radiators with a
longitudinal dispersion element in between. Figure 1
sketches a typical realization in the case of a segmented
FEL with tunable undulator gaps, where an undulator
segment is removed and substituted by a magnetic chicane,
and the longitudinal dispersion can be finely tuned with the
help of a phase shifter belonging to the original setup.
Similar realizations are currently available at all major
XFEL facilities. To give an example, optical klystron
capabilities are currently present both at the SASE2 and
SASE3 undulator lines of the European XFEL, where
magnetic chicanes are installed as part, respectively, of hard
x-ray self-seeding and two-color pump-probe setups, see
[9,10]. Optical klystrons allow for optimizing the electron
bunching process with the help of a nonzero longitudinal
dispersion. The final FEL output results are thus enhanced
with respect to the usual case, which is recovered when the
chicane is switched off. Since the behavior of the power
gain factor on the strength of the dispersion depends
parametrically on the electron energy spread, the system
can be used in order to diagnose this important parameter. It
has also been considered [11] to use optical klystron-based
measurements to investigate the coherence properties of the
FEL pulse directly in the time domain.
The widespread availability of the setup, together with its

many uses, makes the theory behind it particularly

important, especially when it is applied to retrieve relevant
electron or radiation characteristics. A theory of FEL-based
optical klystrons was developed in the FEL community
already several years ago [2]. In this paper we revisit it,
showing that important terms in the analytical expression
for the power gain factor are missing, namely those
involving products of the dispersion strength parameter
and the energy spread parameter.
In Sec. II B we review the one-dimensional theory,

basically confirming the general expression for the optical
klystron enhancement factor found in [2,8]. Upon expansion
for a small energy spread parameter, however, we find
deviations from previously reported expressions for the
power gain factor. These deviations are ascribed to the fact
that, in previous treatments, the dispersion strength param-
eter was not taken to be of order of the inverse energy spread
parameter, and was thus neglected. In Sec. III we compare
our analytical expressions with those available in literature
andwith numerical calculations.We then discussways to use
the theory to come to a determination of the energy spread of
the electron beam and of the coherence time of the radiation
pulse. Finally, we come to a discussion about the applicabil-
ity of the one-dimensional theory and to conclusions.

II. THEORY

A. Solution of the initial value problem

We solve the FEL initial value problem using the Vlasov
equation approach in [1] (paragraph 2.14) for the

FIG. 1. Sketch of an optical klystron arrangement at a seg-
mented FEL with tunable undulator gaps.
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one-dimensional steady-state FEL problem, slightly gen-
eralizing it for a non-negligible energy spread. The coor-
dinates of an electron in the longitudinal phase space are
specified by the electron energy deviation from the nominal
value E0, which we indicate with P ¼ E − E0, and by
the ponderomotive phase ψ ¼ kuzþ ωðz=c − tÞ with
ku ¼ 2π=λu, λu being the undulator period.
We indicate with Ẽ the slowly varying amplitude of the

complex electric field at frequency ω. The equation for the
evolution of Ẽ along the undulator is then

dẼ
dẑ

¼
Z

ẑ

0

dẑ0Ẽðẑ0Þ
Z

∞

−∞
dP̂

dF̂

dP̂
exp ½iðP̂þ ĈÞðẑ0 − ẑÞ�

þ
Z

∞

−∞
dP̂f̂1jẑ¼0ðP̂Þ exp ½−iðP̂þ ĈÞẑ�: ð1Þ

We kept the same notations in [1] and in particular the
definition of normalized quantities: ẑ ¼ zρω=ðγ2zcÞ, with z
the distance traveled inside the undulator, ρ the 1D FEL
parameter, γz ¼ ½1 − v̄2zðE0Þ=c2�−1=2 the longitudinal
Lorentz factor of an electron with nominal electron energy
E0 and average longitudinal velocity v̄zðE0Þ, and c the
speed of light in vacuum; P̂ ¼ P=ðρE0Þ; Ĉ ¼ Cγ2zc=ðρωÞ,
with C ¼ ku þ ω=c − ω=v̄zðE0Þ the detuning from reso-
nance of the nominal electron; f̂1 ¼ 2πeK ρ2ωE0=
ðγ2zγcÞf̃1, with K the maximum1 undulator parameter
and f̃1 the slowly varying complex amplitude of the
electron density modulation at the fundamental harmonic;
F̂ ¼ ρE0F, with FðPÞ the energy spread distribution.
The solution through the Laplace technique gives

ẼðẑÞ ¼
�

E0

1 − D̂0
jλ¼λ1

þ D̂fjλ¼λ1

1 − D̂0
jλ¼λ1

�
expðλ1ẑÞ; ð2Þ

where E0 is an initial external field amplitude and we
defined

D̂ ¼

8>>>>><
>>>>>:

R
∞
−∞ dP̂ F̂0ðP̂Þ

λþiðP̂þĈÞ ReðλÞ > 0

P:V:
R∞
−∞ dP̂ F̂0ðP̂Þ

λþiðP̂þĈÞ þ πF̂0ðiλ − ĈÞ ReðλÞ ¼ 0

R∞
−∞ dP̂ F̂0ðP̂Þ

λþiðP̂þĈÞ þ 2πF̂0ðiλ − ĈÞ ReðλÞ < 0

ð3Þ

and

D̂f ¼

8>>>>><
>>>>>:

R∞
−∞dP̂

f̂1jẑ¼0ðP̂Þ
λþiðP̂þĈÞ ReðλÞ> 0

P:V:
R
∞
−∞dP̂

f̂1jẑ¼0ðP̂Þ
λþiðP̂þĈÞþπf̂1jẑ¼0ðiλ− ĈÞ ReðλÞ¼ 0

R∞
−∞dP̂

f̂1jẑ¼0ðP̂Þ
λþiðP̂þĈÞþ2πf̂1jẑ¼0ðiλ− ĈÞ ReðλÞ< 0;

ð4Þ

P.V. indicating the principal value.
Substitution of Eq. (2) into the explicit expression for f̃1

[see Eq. (2.52) in [1]] gives the following expression for the
evolution of the normalized density modulation amplitude,

f̂1ðẑÞ ¼
F̂0ðP̂ÞẼðẑÞ

λ1 þ iðP̂þ ĈÞ þ f̂1jẑ¼0 exp ½−iẑðP̂þ ĈÞ�; ð5Þ

where λ1 is the high-gain solution of the eigenvalue
equation:

λj − D̂ ¼ 0: ð6Þ

Once an initial modulation f̂1jẑ¼0 and an initial field
amplitude E0 are given, Eqs. (2) and (5) describe the
evolution of the system.

B. Optical klystron enhancement factor

We now consider the effect of a dispersive element. We
begin by discussing the impact of a detuned undulator, and
we indicate with the phase Δψ the product of the frequency
ωwith the delay accumulated by an electron with respect to
the wave:

Δψ ¼ −ω
�

1

hvzðEÞi
−
1

c

�
Δz ≃ −

ωΔz
2hγzðEÞi2c

; ð7Þ

where Δz is the longitudinal extension of the detuned
section, hvzðEÞi is the average electron velocity for an
electron with energy E and hγzi the corresponding longi-
tudinal Lorentz factor. This definition fixes a convention
such that Δψ > 0 indicates a delay. Expanding around the
nominal energy E0 and remembering that vz ≃ c, we obtain

Δψ ≃ −
ωΔz

2hγzðE0Þi2c
þ CΔzþ ωP

cE0

Δz
hγzðE0Þi2

: ð8Þ

The longitudinal dispersion, identified by the R56 element
of the transfer matrix is just R56 ¼ Δz=hγzðE0Þi2.
According to the previous convention, a positive R56 means
that particles with lower energies acquire a larger delay
compared to those with higher energies.
We now consider the system in Fig. 1. We indicate with

ẑ1 the position at the exit of U1, so that Eqs. (2) and (5) with
ẑ ¼ ẑ1 describe the system at that location. If we indicate
with R56 the dispersion due to the chicane and the phase

1The original derivation in [1] deals with a helical undulator,
which we follow here. Generalization to the case of a planar
undulator can be obtained by using Krms and considering a
modified coupling factor between radiation and electrons. The
final result in terms of enhancement factor does not change.
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shifter, instead of that due to the detuned undulator
introduced above, our equations hold anyway. Following
the notation in [2] here we introduce the parameter
D≡ R56ρω=c. Moreover, we define ϕ≡D=ð2ρÞ. In this
way

Δψ ≃þDðĈþ P̂Þ − ϕ: ð9Þ

Thismeans that, after the passage through chicane and phase
shifter, the longitudinal phase space distribution of the
electron bunch, f̂ðP̂;ψÞ transforms to f̂ðP̂;ψ − ΔψÞ. We
remind that f̂ is related to f̂1, defined above, by the rela-
tion f̂ðP̂; ψÞ ¼ f̂0ðP̂Þ þ f̂1ðP̂Þ expðiψÞ þ f̂�1ðP̂Þ expð−iψÞ.
This means2 that f̂1ðP̂Þ transforms to f̂1ðP̂Þ expð−iΔψÞ,
where Δψ is specified by Eq. (9). Therefore, if we indicate
with ẑ ¼ ẑþ1 the position just after the dispersive elements,
we find

Ẽðẑþ1 Þ ¼
�

E0

1 − D̂0
jλ¼λ1

þ D̂fjλ¼λ1

1 − D̂0
jλ¼λ1

�
expðλ1ẑ1Þ ¼ Ẽðẑ1Þ;

ð10Þ

because the dispersive elements have no effects on the field
and

f̂1ðẑþ1 Þ ¼
F̂0ðP̂ÞẼðẑÞ

λ1 þ iðP̂þ ĈÞ exp½iϕ − iDðĈþ P̂Þ�

þ f̂1jẑ¼0 exp ½−iðDþ ẑ1ÞðP̂þ ĈÞ þ iϕ�: ð11Þ

Using the field and the bunching factor just after the
dispersive elements, Eqs. (10) and (11), as initial conditions
for the second undulator part, named U2 in Fig. 1, we can
now find the field at the exit of U2 at position ẑ ¼ ẑ2:

Ẽðẑ2Þ¼
�

Ẽðẑ1Þ
1− D̂0

jλ¼λ1

þ D̂fjλ¼λ1ðẑþ1 Þ
1− D̂0

jλ¼λ1

�
exp½λ1ðẑ2− ẑ1Þ�: ð12Þ

The ratio R of the field in the case of a given dispersion
strengthD with the field at zero dispersionD ¼ 0 is known
as optical klystron enhancement factor [2] and can be found
by explicitly calculating Eq. (12) for the two cases ofD ≠ 0
and D ¼ 0, and taking the ratio of the two. It gives

R ¼
1þ R

∞
−∞ dP̂ F̂0ðP̂Þ exp ½−iðP̂þĈÞDþiϕ�

½λ1þiðP̂þĈÞ�2

1þ R
∞
−∞ dP̂ F̂0ðP̂Þ

½λ1þiðP̂þĈÞ�2
: ð13Þ

This expression is basically3 equivalent to that in Eq. (2)
of [2], which was derived for the first time in Eq. (7) of [5].
Finally, we note that F̂ðP̂Þ must be vanishing for

P̂ → �∞. Then, integration by parts yields the following
expression equivalent to Eq. (13):

R ¼
1 −

R∞
−∞ dP̂ F̂ðP̂Þ exp ½−iðP̂þĈÞDþiϕ�

½λ1þiðP̂þĈÞ�2 f −2i
½λ1þiðP̂þĈÞ�−iDg

1þ 2i
R
∞
−∞ dP̂ F̂ðP̂Þ

½λ1þiðP̂þĈÞ�3
: ð14Þ

C. Optical klystron power gain factor

The klystron power gain factor is defined in [2] by
integrating the square modulus of R over the FEL spectrum
SðĈÞ:

G ¼
Z

∞

−∞
dĈjRðĈÞj2SðĈÞ: ð15Þ

In the following we will assume an average self-
amplified spontaneous emission (SASE) spectrum

SðĈÞ ¼ 1ffiffiffiffiffiffi
2π

p
σĈ

exp

�
−
ðĈ − ĈmÞ2

2σ2
Ĉ

�
; ð16Þ

where Ĉm indicated the optimal detuning from resonance.
Moreover, from now on we will assume

F̂ðP̂Þ ¼ 1ffiffiffiffiffiffi
2π

p
Λ̂T

exp

�
−

P̂2

2Λ̂2
T

�
: ð17Þ

We note that with these definitions, the physical meaning of
Λ̂T is that of the usual normalized energy spread parameter:
Λ̂T ¼ σδ=ρ, with σδ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðδEÞ2i

p
=E0.

D. Limit for Λ̂T ≫ 1

When Λ̂T ≫ 1, F̂ðP̂Þ is about constant, and therefore
F̂0ðP̂Þ ≃ 0. From Eq. (13), one readily has R ≃ 1. This limit
has no practical importance for FELs.

2Note that we enforce the linear approximation, by which no
harmonics except the first is generated. This implies that the
relative energy modulation level pm at the dispersive element is
such that 2πR56pm=λ ≪ 1. However, we are not limiting the
energy difference P from reference. In fact, we will see that the
phase iDP̂, once integrated over the particle energy distribution
leads to the parameter DΛ̂T ¼ 2πR56σδ=λ, which varies freely to
values larger than unity as we scan the chicane strength. This is a
consequence of the dependence of Δψ on P̂. Because of it, the
chicane cannot be considered as a simple delay, as is the case,
instead, of the small phase-shifter phase change, ϕ.

3In order to see this, the reader should substitute notations:
F̂ → V, P̂ → ξ, Ĉ → ð1 − νÞ=ð2ρÞ, λ1 þ iĈ → −iμ. By doing so,
one only finds a difference in the phase factor, where one of the
phase terms in the numerator reads iρR56krξ in our expression,
instead of iρR56krξν in [2]. The difference is unimportant as ν ¼
ω=ωr ≃ 1 with ωr ¼ ckr is the resonant frequency.
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E. Limit for Λ̂T ≪ 1

The limit for Λ̂T ≪ 1 is of practical importance for a
number of FELs. Since energy spread effects become
important when D is comparable with Λ̂−1

T , in this limiting
case the expression for the power gain factor G includes
simultaneously a small, Λ̂T , and a large, D, parameter. As a
result, care must be taken while controlling the accuracy of
the calculations.
Let us consider Eq. (14). Once the integration in P̂ is

performed, one obtains terms of R where different orders in
D and Λ̂T mix up. In order to control the accuracy of R one
needs to count D of order Λ̂−1

T , and expand R accordingly.
When discussing about a certain order in Λ̂T accounting for
D as of order Λ̂−1

T , we will talk about the effective order in
Λ̂T . To be explicit, a term proportional to DmΛ̂n

T is of
effective order n −m in Λ̂T .
In order to calculate G, one then needs to take the square

modulus of R. If a defined accuracy to a certain fixed order
in Λ̂T is wanted, special care must be taken to include all
relevant terms. For example, in the expression for R, any
linear term in D [like the term −iD in curled brackets in
Eq. (14)] and any third order term in Λ̂T will yield, in the
expression for G, to a term of the second order in Λ̂T . As a
result, accounting for D as of order Λ̂−1

T , an expansion of R
up to the second effective order in Λ̂T is not sufficient to
obtain a consistent expansion of G up to the second
effective order in Λ̂T .
When expanding R and G, one should consider that the

eigenvalue λ1 depends both on Λ̂T and on the detuning
parameter Ĉ, i.e., λ1 ¼ λ1ðĈ; Λ̂TÞ, and must be found
explicitly by solving the eigenvalue equation. The detuning
parameter can be further expanded, independently, to a
fixed order around the value corresponding to the optimum
amplification Ĉm, which in its turn depends on Λ̂T , i.e.,
Ĉm ¼ ĈmðΛ̂TÞ. Note that for ordering purposes, we can
consider λ1 of order unity.

1. Expansion of R in P̂ around zero

Having made these preliminary considerations, we con-
sider the integration in P̂ in Eq. (14). The distribution F̂ðP̂Þ
becomes very narrow (order Λ̂T ≪ 1) with respect to the
integrand. In other words, we are integrating over values of
P̂ near to zero. This allows an expansion of all the terms in
P̂ under the integral with exception of FðP̂Þ expð−iP̂DÞ in
the numerator and FðP̂Þ in the denominator.
Consider first the denominator. Due to the symmetry of

the distribution in Eq. (17) odd orders in P̂ yield zero
contribution. A second (or third) order expansion in P̂ gives

Denominator of R ¼ 1þ 2i½ðiĈþ λ1Þ2 − 6Λ̂2
T �

ðiĈþ λ1Þ5
: ð18Þ

Therefore, the denominator includes terms of
order unity and smaller, and D does not enter in it. The
difference with respect to a first order expansion in P̂ is the
term in Λ̂2

T . Expanding to the fourth and higher orders in P̂
would lead to corrections of the fourth order and higher
in Λ̂T .
Consider now the numerator. Direct calculations show

that the second order expansion in P̂ differs from the first
order expansion in P̂ of terms of effective order Λ̂T and
smaller. The third order expansion differs from the second
order of terms of effective order Λ̂2

T and smaller. The fourth
order expansion differs from the third order of terms of
effective order Λ̂3

T and smaller, and so on. This is due to the
mathematical structure of the integral. In fact, terms of
order n in P̂ give, after integration, dominant terms of
effective order λ̂n−1T . This means that the nth order expan-
sion in P̂ includes all terms of effective order Λ̂n−1

T .
Once an effective order in Λ̂T is fixed, as a result of the

expansion in P̂, integration of the numerator in Eq. (14) will
involve integrals of the form

R∞
−∞ dP̂P̂kF̂ðP̂Þ expð−iP̂DÞ,

with k a positive integer, which will result in the following
form of Eq. (14):

R ¼ f1ðΛ̂T; ĈÞ þ f2ðΛ̂T; ĈÞ exp
�
−
D2Λ̂2

T

2

�
ð19Þ

so that

G≡G1 þ G2 þ G3

¼
Z

∞

−∞
dĈjf1ðΛ̂T; ĈÞj2SðĈÞ

þ
Z

∞

−∞
dĈjf2ðΛ̂T; ĈÞj2SðĈÞ exp ð−D2Λ̂2

TÞ

þ
Z

∞

−∞
dĈ½f1ðΛ̂T; ĈÞf̄2ðΛ̂T; ĈÞ

þ f̄1ðΛ̂T; ĈÞf2ðΛ̂T; ĈÞ�SðĈÞ exp
�
−
D2Λ̂2

T

2

�
: ð20Þ

This derivation highlights the meaning of the different
dependencies on D of the various terms G1, G2 and G3

as a consequence of the square modulus operation.
In particular, one sees a first term, undamped, a second
term damped according to expð−D2Λ̂2

TÞ and a third
interference term arising damped according to
expð−D2Λ̂2

T=2Þ. This last term includes oscillations due
to the phase in f2.
Since R is expanded to a given order in Ĉ around the

optimum amplification value ĈmðΛ̂TÞ, the accuracy of the
final result depends on the actual spectral width and on
the order of the expansion in Ĉ. In the limit for σĈ → 0, for
example, a zeroth order expansion in Ĉ around ĈmðΛ̂TÞ
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will be sufficient. However, in practical cases, σĈ is of order
unity4 and keeping higher orders is necessary. Note that
while Ĉm is (see the next paragraph) of order Λ̂2

T, when
performing the various expansions we should consider Ĉ of
order unity in order to be able to treat cases when σĈ is of
order unity.

2. Eigenvalue equation

Before we proceed further, we need to find an expression
for λ1ðĈ; Λ̂TÞ, i.e., we need to solve the FEL eigenvalue
equation. Here we introduce corrections to the cold-beam
case, to the second order in Λ̂T . We follow [1] and report
the following eigenvalue equation in the case of Gaussian
energy spread, Eq. (17), which is valid in the high-gain
limit, for Reðλ1Þ > 0:

λ1 ¼ i
Z

∞

0

dξ ξ exp

�
−
Λ̂2
Tξ

2

2
− ðλ1 þ iĈÞξ

�
: ð21Þ

When Λ̂T ¼ 0, Eq. (21) becomes the usual cubic
equation for the cold case

λ ¼ iðλþ iĈÞ−2; ð22Þ

where the high-gain solution can be written explicitly as

λ0 ¼
1

3

�
−2iĈ −

21=3Ĉ2

ð27i − 2iĈ3 þ 3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−27þ 4Ĉ3

p
Þ1=3

þ ð27i − 2iĈ3 þ 3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−27þ 4Ĉ3

p
Þ1=3

21=3

�
: ð23Þ

Since we deal with Λ̂T ≪ 1, we can find a correction δλ
to λ0 up to the second order in Λ̂T by approximating
Eq. (21) as

λ0þδλ¼ i
Z

∞

0

dξξ

�
1−

Λ̂2
Tξ

2

2

�
exp ½−ðλ0þ iĈÞξ�ð1−ξδλÞ;

ð24Þ

where we assumed expð−ξδλÞ ≃ ð1 − ξδλÞ. Equation (24)
can be cast in the form of an equation for δλ, with solution

δλ ¼ −
3iΛ̂2

T

ðiĈþ λ0Þ4½1þ 2i
ðiĈþλ0Þ3�

: ð25Þ

This solution is consistent with our choice of accuracy to
the second order in Λ̂T . The eigenvalue is thus

λ1 ≃ λ0 þ
3iΛ̂2

Tλ
2
0

½1þ 2i
ðiĈþλ0Þ3�

: ð26Þ

Equation (26) can now be substituted into Eqs. (7) and (8)
[or in principle directly into Eq. (30)]. Before doing so, we
note that we have now separate control on the accuracy that
we want to keep for the detuning parameter Ĉ. For example,
if we keep up to the second order in Ĉ, the expression for
Eq. (26) becomes

λ1 ≃
� ffiffiffi

3
p

2
−

Ĉ2

6
ffiffiffi
3

p
�
þ i

�
1

2
−
2

3
Ĉþ Ĉ2

18

�

þ
��

−
ffiffiffi
3

p

2
þ Ĉffiffiffi

3
p

�
þ i

�
1

2
þ Ĉ

3

��
Λ̂2
T: ð27Þ

The next order correction is of order Λ̂4
T. For our purposes

we will not need to calculate it explicitly, because terms
related with this correction will drop out of actual calcu-
lations, but we will still indicate it as β1Λ̂4

T , with β1 a
complex number.
Since we deal with the high-gain limit, only values of Ĉ

near to the optimum value should be accounted for. It has
been shown (see [1], paragraph 2.1.3) that the optimum
detuning in the limit of a small energy spread is given by
Ĉm ≃ 3Λ̂2

T . We can indicate the next order correction to the
optimum detuning value with β2Λ̂4

T , with β2 a real number.
Terms related with this correction also drop out of explicit
calculations.

3. Expansion of R in P̂ around zero

We can now begin to consider a second order expansion
of the integrands Eq. (14) in P̂, which means we are
accounting for all terms of effective order up to Λ̂T . The full
expression for the numerator of R is

Numerator of R ¼ 1 − exp

�
−
D2Λ̂2

T

2
− iĈDþ iϕ

��
−2iþ ĈD − iDλ1

ðiĈþ λ1Þ3

þ iΛ̂2
T ½12 − iDðiĈþ λ1Þð9i − 2ĈDþ 2iDλ1Þ� þ 3iD2ð−4 − iĈD − λ1DÞΛ̂4

T

ðiĈþ λ1Þ5
�
: ð28Þ

4The reader can verify that σĈ ¼ 1=2 corresponds to a spectral width of ρ, which is of order of the FEL bandwidth.
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Since the second order expansion includes all terms of effective order up to Λ̂T , we can neglect terms that contain only
higher effective orders. With already in mind the expressions for λ1 and for the optimum value of Ĉ we can neglect a few
terms and write

Numerator of R ¼ 1 − exp

�
−
D2Λ̂2

T

2
− iĈDþ iϕ

��
−2iþ ĈD − iDλ1

ðiĈþ λ1Þ3

þ iΛ̂2
T ½−iDðiĈþ λ1Þð9i − 2ĈDþ 2iDλ1Þ� þ 3iD2ð−iĈD − λ1DÞΛ̂4

T

ðiĈþ λ1Þ5
�
: ð29Þ

Using Eqs. (18) and (29) we see that Eq. (14) gives

R ¼
�
1þ 2i½ðiĈþ λ1Þ2 − 6Λ̂2

T �
ðiĈþ λ1Þ5

�−1�
1 − exp

�
−
D2Λ̂2

T

2
− iĈDþ iϕ

��
−2iþ ĈD − iDλ1

ðiĈþ λ1Þ3

þ iΛ̂2
T ½−iDðiĈþ λ1Þð9i − 2ĈDþ 2iDλ1Þ� þ 3iD2ð−iĈD − λ1DÞΛ̂4

T

ðiĈþ λ1Þ5
��

: ð30Þ

We now define the two auxiliary functions

f1ðĈÞ ¼
�
1þ 2i½ðiĈþ λ1Þ2 − 6Λ̂2

T �
ðiĈþ λ1Þ5

�−1
ð31Þ

and

f2ðĈÞ¼−f1ðĈÞ exp ð−iĈDþ iϕÞ
�
−2iþ ĈD− iDλ1

ðiĈþλ1Þ3
þ iΛ̂2

T ½−iDðiĈþλ1Þð9i−2ĈDþ2iDλ1Þ�þ3iD2ð−iĈD−λ1DÞΛ̂4
T

ðiĈþλ1Þ5
�
:

ð32Þ

In order to calculate f1 and f2 explicitly we use Eq. (27).
Since we deal with the high-gain limit we can effectively
expand around Ĉ ¼ Ĉm ≃ 3Λ̂2

T , except in the phase factor
of f2. The order of this expansion is a fully independent
parameter. Finally, we expand in Λ̂T , keeping only up to the
first effective order.
Expanding to the zeroth order in Ĉ we obtain

f1 ¼
1

3
ð33Þ

and

f2 ¼
1

6
exp ð−iĈDþ iϕÞ

× ½ðiþ
ffiffiffi
3

p
ÞDþ 4ð1 −D2Λ̂2

TÞ
þ ð

ffiffiffi
3

p
− iÞð−5DΛ̂T þ 3D3Λ̂3

TÞΛ̂T �: ð34Þ

We can use these expressions for f1 and f2 to calculate G1,
G2 and G3. Note that the zeroth order expansion in Ĉ
around Ĉm is equivalent to the substitution Ĉ ¼ Ĉm ≃ 3Λ̂2

T ,
except for the phase factor of f2, which we did not expand

because it is highly oscillatory. Finally, we must remember
from the previous discussion that f1 and f2 include all
terms up to the first order, but that they also include terms
of order Λ̂−1

T . When calculating the square modulus, the
terms of order Λ̂−1

T mix with the others: if we had kept terms
up to Λ̂2

T , the mixed terms would give terms of order Λ̂T.
Therefore, if we want a well-defined expansion order in Λ̂T ,
we must only keep terms to the zero order in Λ̂T , which
gives

G1 ¼
1

9
ð35Þ

G2 ¼
1

9
expð−D2Λ̂2

TÞ½4þ 2
ffiffiffi
3

p
DþD2 − 13D2Λ̂2

T

− 2
ffiffiffi
3

p
D3Λ̂2

T þ 7D4Λ̂4
T � ð36Þ

G3 ¼
1

9
exp

�
−
D2ðΛ̂2

T þ σ2
Ĉ
Þ

2

�

× ½ð4þ
ffiffiffi
3

p
D − 4D2Λ̂2

TÞ cosðϕÞ −D sinðϕÞ�; ð37Þ
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where we neglect the term −3DΛ̂2
T in the argument of the

sinusoidal functions in agreement with our prescription of
keeping, effectively, zeroth-order terms in Λ̂T . The depend-
ence on σĈ follows from the only dependence on Ĉ
explicitly left in f2, which is in the phase.
An expression for G to the zeroth effective order in Λ̂T

but to the second order in Ĉ, and an expression for G to the
second effective order in Λ̂T and the zeroth order in Ĉ are
explicitly given in the Appendix of this paper. This last
expression is found upon an expansion of R to the third
effective order in Λ̂T .

III. NUMERICAL CALCULATIONS AND RESULTS

In the previous section we considered a derivation of R
and G in the limit for Λ̂T ≪ 1. However, in both cases we
relied on Λ̂T ≪ 1, while in cases of practical interest we
deal with small values of Λ̂T , but not necessarily with the
limiting case for a vanishing small Λ̂T ≪ 1. While, in
principe, one can expand the expression for G to higher
orders in Λ̂T , in practice the analytical results become more
and more complicated. As a result, numerical calculations
are simpler to perform, in order to improve accuracy of the
results.
Numerical calculations can be performed using directly

Eqs. (13) and (15). First, the eigenvalue equation is solved
numerically for a Gaussian energy spread profile, in the
limit for a high-gain amplifier. The equation to be solved,
see [1], is

λ1 ¼ i
Z

∞

0

dξ ξ exp

�
−
Λ̂2
Tξ

2

2
− ðλ1 þ iĈÞξ

�
: ð38Þ

While solving Eq. (38), special care must be taken with
the initial value of the root-finding routine. We start with
the maximum value of Ĉ, giving the cold solution as an
initial condition, and we feed the newly found root as an
initial value for the next step. Solutions for the eigenvalue
equations are rendered graphically in Fig. 2, where they are
compared with the cold-beam case. Note that Eq. (38) gives
acceptable values only for Ĉ corresponding to Reðλ1Þ > 0.
Once λ1ðĈÞ is tabulated for a certain value of Λ̂T , we

tabulate R as a function of Ĉ by evaluating numerically the
numerator and the denominator of Eq. (13), using as
integration limits �5Λ̂T . Finally, we use RðĈÞ, integrating
Eq. (15) for limiting values of Ĉ depending on σĈ. In
particular we used Ĉ between �2.5 for σĈ ¼ 0.1, and Ĉ
between �4 for σĈ ¼ 0.2, σĈ ¼ 0.5. This is more than
enough to include the high-gain case for moderate levels of
Λ̂T , which is what we are interested in for the case of a
working FEL. Finally, it should be reminded that, when one
calculates G, special care is needed when integrating
numerically in Ĉ. In fact, our solutions for λ1 [Eq. (21)]

is correct only for Reðλ1Þ > 0. Therefore, integrating
for Ĉ between �4 is only justified under the assumption
of the high-gain limit that bounds the effective values
of the detuning. While performing the numerical calcu-
lations, one should be careful with the point around
Ĉ0 ¼ 3=22=3 ≃ 1.89. At that position for a cold beam
(and around that position for nonzero energy spread),
the real part of λ1 becomes zero, and the denominator in
Eq. (13) also vanishes, leading to numerical difficulties. For
relatively small values of σĈ this is not a problem because
the contribution to G around Ĉ0 is damped exponentially.
Once G1, G2 and G3 are evaluated numerically, we can

proceed to a comparison with the analytical expressions
derived above, for the case Λ̂T ≪ 1. In all these cases we
identified, during our analysis, important differences with
expressions in [2], which are traced back to the presence
of a parameter, D, assuming large values up to order Λ̂−1

T .
Following our notations,5 the expressions in [2] can be
written as

G≃
1

9

�
1þð4þD2Þexpð−D2Λ̂2

TÞþ2
ffiffiffi
3

p
D exp

�
−
D2Λ̂2

T

2

�

þ½ð4þ
ffiffiffi
3

p
DÞcosðϕÞ−D sinðϕÞ�

×exp

�
−D2Λ̂2

T

2

�
exp

�−D2σ2
Ĉ

2

��
: ð39Þ

Essentially,6 these expressions result from expansions that
are carried out without accounting for the fact thatD can be
large, resulting in the neglection of a few important terms.
These terms are readily identified by comparison with our
expressions, e.g., Eqs. (35)–(37).

A. Comparison of G using different expansions for
different values of σĈ

In Figs. 3 and 4 we consider the two cases for σĈ ¼ 0.1
and σĈ ¼ 0.5 (this last value corresponding to a relative
spectral width of order ρ). The different rows show different
values of Λ̂T . The left column illustratesG1 þ G2, while the
right column illustrates G ¼ G1 þ G2 þG3. The blue lines
refer to numerical integration, the black lines show the
zeroth effective order in Λ̂T ≪ 1, using a zeroth order
expansion in Ĉ [Eqs. (35)–(37)]. The yellow dashed lines
refer to the zeroth effective order in Λ̂T ≪ 1, using a second
order expansion in Ĉ [Eqs. (A3)–(A5)]. The red dashed
lines illustrate expressions for the second effective order in

5In the original paper [2] σξ corresponds to Λ̂T , while ð1 −
νÞ=ð2ρÞ corresponds to our symbol Ĉ, so that σĈ ¼ σν=ð2ρÞ.

6A different question concerns the term 2
ffiffiffi
3

p
D expð− D2Λ̂2

T
2

Þ,
which should be part of G2 and in our case actually reads
2

ffiffiffi
3

p
D expð−D2Λ̂2

TÞ, see Eq. (36), in agreement with the general
shape of G in Eq. (20).
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FIG. 2. Numerical solutions (blue lines) of the eigenvalue equation for different values of Λ̂T . The dashed line corresponds to the cold-
beam case. Note that only the values for Ĉ corresponding to Reðλ1Þ > 0 are mathematically acceptable.
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FIG. 3. σĈ ¼ 0.1. Left column: comparison of G1 þ G2 at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4 (rows one to four) using different
methods discussed in this paper. Right column: comparison of G1 þ G2 þ G3 at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4 (rows one to
four) using different methods discussed in this paper. These different methods are rendered in the following way. Blue lines: numerical
integration; black lines: zeroth effective order in Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (35) and (36)]; yellow dashed lines:
zeroth effective order in Λ̂T ≪ 1, using a second order expansion in Ĉ [Eqs. (A3) and (A4)]; red dashed lines: second effective order in
Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (A8) and (A9)]; green lines: results from Ref. [2].
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FIG. 4. σĈ ¼ 0.5. Left column: comparison of G1 þ G2 at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4 (rows one to four) using different
methods discussed in this paper. Right column: comparison of G1 þ G2 þ G3 at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4 (rows one to
four) using different methods discussed in this paper. These different methods are rendered in the following way. Blue lines: numerical
integration; black lines: zeroth effective order in Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (35) and (36)]; yellow dashed lines:
zeroth effective order in Λ̂T ≪ 1, using a second order expansion in Ĉ [Eqs. (A3) and (A4)]; red dashed lines: second effective order in
Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (A8) and (A9)]; green lines: results from Ref. [2].
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Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (A8)–
(A10)]. Finally, the green lines are the results from Ref. [2].
For the numerical case (blue line)G1 þG2 can be extracted
by convolving the results for G with a flattop function, thus
effectively averaging over the fast oscillations due to G3.
As expected, the reader can see by inspection a better

agreement between analytical results (black, yellow and red
lines) and numerical results in the case for smaller values of
Λ̂T . The expansion to the second order in Ĉ (yellow line)
differs from the black line for the larger value of σĈ ¼ 0.5,
but differences are relatively small. All our plots, however,
underline an important difference with the results of [2]
(rendered with green lines). Both the expression in [2] and

our expressions include the fast oscillations in G3, and both
are expansions for small values of Λ̂T : in fact, in the limit
Λ̂T → 0 and σĈ → 0 all lines collapse to the same function,
as it should be. The difference is not due to the order of the
expansion in Λ̂T or in Ĉ. In fact, the effect of different
expansion order can be seen by comparing the blue line
(numerical calculations) with the black, yellow, and red
lines (accounting for different accuracies in the order of the
expansion, as defined above) and is not too large. The
difference with the green curve [2] is due to the fact that in
[2], terms of order DnΛ̂n

T are neglected, and in that
reference the value DΛ̂T which maximizes the gain is
erroneously predicted to be close to unity. Figure 5 gives a

FIG. 5. Left plot: value ofDΛ̂T for the maxima ofG1 þ G2 in Fig. 3, as a function of Λ̂T for the case σĈ ¼ 0.1. Right plot: the same for
the maxima of G1 þG2 in Fig. 4, that is for σĈ ¼ 0.5. Blue lines: numerical integration; black lines: zeroth effective order in Λ̂T ≪ 1,
using a zeroth order expansion in Ĉ [Eqs. (35) and (36)]; yellow dashed lines: zeroth effective order in Λ̂T ≪ 1, using a second order
expansion in Ĉ [Eqs. (A3) and (A4)]; red dashed lines: second effective order in Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (A8)
and (A9)]; green lines: results from Ref. [2]. Only the analytical expression in Eq. (A4) depends, slightly, on σĈ; the blue lines
(numerical integration) vary as well. Differences are very slight, although they can be seen by inspection.

FIG. 6. Left plot: values of D1=2Λ̂T for G1 þ G2 (see text for further explanations) in Fig. 3, as a function of Λ̂T for the case σĈ ¼ 0.1.
Right plot: the same for the values of D1=2Λ̂T for G1 þG2 in Fig. 4, that is for σĈ ¼ 0.5. Blue markers: numerical integration; black
markers: zeroth effective order in Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (35)–(37)]; yellow markers: zeroth effective order
in Λ̂T ≪ 1, using a second order expansion in Ĉ [Eqs. (A3)–(A5)]; red markers: second effective order in Λ̂T ≪ 1, using a zeroth order
expansion in Ĉ [Eqs. (A8)–(A10)]; green markers: results from Ref. [2]. Only the analytical expression in Eq. (A4) depends, slightly, on
σĈ; the blue markers (numerical integration) vary as well. Differences are very slight.
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direct representation of this statement. Note that for a fixed
value of Λ̂T , the magnitude of terms inDnΛ̂n

T depend on the
value of the dispersion D. In the limit for vanishing small
Λ̂T , whenDnΛ̂n

T becomes of order unity, the dominant term
in the expression forG is of orderD2 ∼ Λ̂−2

T (inG2) and the
correction is small: this leads to the collapse of all curves in
the plots. However, for small, but not vanishing-small
values of Λ̂T , the error, i.e., the difference between green
and black lines, can become large both in position and
amplitude. As we will see, this has an impact on energy
spread estimations that cannot be neglected.
As wewill see in the next section, from the previous plots

one can extract information allowing to diagnose energy
spread of the electron beam and coherence time of the
radiation pulse. The idea of estimating the energy spread by
measuring the gain as a function of the dispersion is well
known, see e.g., a recent measurement in [12]. Different
options are possible, and wewill consider, in particular, two
of them. In view of these applications we extract the position
DΛ̂T for which one obtains the maximumvalue ofG1 þ G2,
plotted against Λ̂T , see Fig. 5 and the valueD1=2Λ̂T > 0, for
which G drops to half of the value it has atD ¼ 0, see Fig. 6.
We do that comparing numerical calculations with various
analytical approximations used in this paper.

IV. DIAGNOSTICS APPLICATIONS

In a typical XFEL setup, like that sketched in Fig. 1, one
can change the delay of the chicane in steps, and perform a
phase-shifter scan for each delay step. The measured
quantities for each phase-shifter scan are the mean pulse
energy and the oscillation amplitude (scan results are fitted
with a sinusoidal function). From the dependency of these
two quantities on the delay, one can extract the uncorrelated
energy spread in the electron beam as well as the coherence
time (or, equivalently, the intrinsic bandwidth) of the SASE
FEL radiation by comparison with the theoretical results
presented in this paper.

A. Energy spread diagnostics

One can extract information on the energy spread by
looking at the behavior of the function Ḡ≡G1 þ G2. One
can consider several algorithms. For example, one can fit
the scan result with one of the analytical solutions pre-
sented in this paper. As one can see from Figs. 3 and 4,
these solutions are sufficiently accurate up to Λ̂T ≃ 0.1–0.2.
Alternatively, one can use simplified algorithms for quick

estimates using Figs. 7–9. These estimates can be used in a
wider range of values of Λ̂T . The plots refer to the case
σĈ ¼ 0.5, though differences with smaller values are small.
At the first step one can estimate the value of Λ̂T from

Fig. 7, where the value Ḡmax=Ḡð0Þ is presented, by taking
the correspondent maximum value of the experimental
curve. For convenience, on the same figure we also present
(blue dotted lines) the fit function

Ḡmax=Ḡð0Þ ≃ 0.593þ 0.0763

Λ̂2
T

; ð40Þ

to the data. Since the ρ parameter is not known a priori, one
needs additional information to extract an uncorrelated
energy spread. It is possible, for example, to extract the
position DΛ̂T for which one obtains the maximum value of
G1 þ G2, and plot it against Λ̂T . This is done in Fig. 8,
where the dotted line shows the fit with7

FIG. 7. Value of Ḡmax=Ḡð0Þ at σĈ ¼ 0.5 (solid line). The dotted
line is obtained fitting Eq. (40) to the numerical calculations.

FIG. 8. Value of DΛ̂T for which one obtains the maximum
value of G1 þG2, plotted against Λ̂T for σC ¼ 0.5 (solid line).
The dotted line is obtained fitting Eq. (41) to the numerical
calculations.

7It is interesting to note that the best fit coefficient here is close
to

ffiffiffi
3

p
that can be obtained analytically from Eq. (36) when only

the terms D and D2 are kept in the brackets.
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ðDΛ̂TÞmax ≃ 1 − 1.66Λ̂T: ð41Þ

Now one can use the previously obtained first guess for Λ̂T

and find DΛ̂T ¼ σδR56ω=c at the maximum. Then, from
the experimentally determined R56 at the maximum, we
find the uncorrelated energy spread σδ.
An alternative method is based on the determination of

the value D1=2Λ̂T > 0, for which Ḡ drops to half of the
value it has at D ¼ 0. The results of these plots are shown
in Fig. 9. One can also use a fitting formula

D1=2Λ̂T ≃ −0.915 −
0.846

Λ̂1=2
T

þ 2.72

Λ̂1=3
T

: ð42Þ

Once the estimates of Λ̂T and σδ are obtained, one can also
get an estimate for ρ.

B. Coherence time diagnostics

Analytical calculations can also be used to extract
information on the coherence time, through the study of
G3. One can explicitly use the expressions forG3 derived in
the previous sections in the case for Λ̂T ≪ 1, or can extract
G3 from the numerical calculations by subtraction of G1 þ
G2 (which is, in turn, obtained by averaging over fast
oscillations as discussed before). The mathematical struc-
ture of G3 is always G3 ¼ A cosðψÞ þ B sinðψÞ ¼
G̃ cosðΦÞ, with G̃ > 0. In the numerical calculations one
can find jG3j ¼ G̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðΦÞ

p
and then average over fast

oscillations to obtain G̃. In the analytical case, A and B are
known, and setting ξ ¼ arctanðA=BÞ − π one can explicitly
calculate G̃ ¼ A sinðξÞ þ B cosðξÞ. The results are shown in
Fig. 10 (right column) for σĈ ¼ 0.1 and Fig. 11 (right
column) for σĈ¼0.5. For the smaller σĈ¼0.1 we report
a remarkably good agreement between the numerical

calculations for G̃, blue lines, and the analytical case to
the second effective order in Λ̂T and zeroth order in Ĉ, red
lines. For the smaller σĈ ¼ 0.5, the analytical case to the
zeroth effective order in Λ̂T and second order in Ĉ, yellow
line, is the best fit instead.
Since the dependence of G̃ on Λ̂T and σĈ is known, once

Λ̂T is estimated, also σĈ can be retrieved. Since ρ is already
found during energy spread measurements, one can also
find intrinsic FEL bandwidth. The relation with coherence
time can be found in [1].
Note that a similar approach for the determination of the

coherence time was developed in [11]. The difference is
that in [11], the second part of the undulator is short and
operates as a radiator. The theoretical results of that paper,
however, consider the effect of a chicane as a delay between
the electron bunch and the field only, thus ignoring any
modification of the distribution function in the chicane. We
think that this modification cannot be ignored. The R56

values needed for coherent time measurements in the
experiment [11] are in the order of the coherence length,
and therefore much smaller than what is needed to reach the
maximum of the optical klystron gain. However, these R56

levels, albeit small, are still much larger than a wavelength,
and our view is that they cannot be considered as simple
delays (at variance with the case of small phase-shifter
changes of the order of several wavelengths). We justify our
criticism by inspecting Eq. (9), which quantifies the phase
change for a finite dispersion D. The term −ϕ in Eq. (9) is
actually modeling a simple delay: in fact, it does not modify
the electron distribution function, because being indepen-
dent of P̂, it can be taken out of the sign of integral in the
numerator of Eq. (13). Equation (13) is the expression for the
field for finite dispersion D, and the multiplicative factor
expðiϕÞ simply amounts to a delay. However, the termDP̂ in
Eq. (9) depends on P̂: it modifies the electron distribution
function and therefore the field integral in the numerator of
Eq. (13). When the phase DP̂ is much smaller than unity, it
can be neglected. The effective range of P̂ where the
integrand in the numerator of Eq. (13) is contributing to
the integral is limited to values of F0ðP̂Þ sensibly different
from zero. By definition of the normalized momentum
deviation P̂, this is for values of P̂ not too much larger
than unity. Then, the phaseDP̂ becomes much smaller than
unity and can be neglected only for valuesD ¼ ðρR56=ƛÞ ≪
1. Since ƛ=ρ is of order of the coherence length, the previous
condition is satisfied for R56 much smaller than the coher-
ence length. In other words, it is fine to neglect DP̂ (and
therefore the changes to the electron distribution function)
for a small phase shifter, i.e., when we discuss about R56

values of the order of several wavelengths, but not in the case
of R56 values of order of the coherence length, which is
indeed the case discussed in [11]. Similarly, one can see from
G3 that in order to measure coherence time, one needs to get
to values ofD at least of order unity (since σĈ ≃ 0.5, and in

FIG. 9. Value of D1=2Λ̂T > 0, for which Ḡ drops to half of the
value it has at D ¼ 0 for σC ¼ 0.5 (solid line). The dotted line is
obtained fitting Eq. (42) to the numerical calculations.
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any case it cannot be much larger than unity). Then fromG2

one sees that there is gain, which is only possible when the
distribution function is modified. There is no small param-
eter that allows to neglect it.

V. COMPARISON WITH LITERATURE AND
CONCLUSIONS

We reviewed optical klystron enhancement effects in
SASE FELs within the framework of a 1D steady state

theory, which is expected to be a relatively good approxi-
mation in the case of hard x-ray facilities in optical klystron
configurations where U1 and U2 lase in the linear regime,
see Fig. 1. We found the same overall expressions already
reported in literature [2,8] for the optical klystron enhance-
ment factor R, Eq. (13), and for the klystron power gain
factor G, Eq. (15). However, we report relatively large
differences with analytical limits reported in literature for
Λ̂T ≪ 1, which are most relevant for XFELs. These

FIG. 10. σĈ ¼ 0.1. Left column: comparison of G1 þG2 at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4 (rows one to four) using
different methods discussed in this paper. Center column: comparison of G1 þG2 þ G3 at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4
(rows one to four) using different methods. Right column: comparison of G̃ðDΛ̂TÞ=G̃ð0Þ at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4
(rows one to four) using different methods discussed in this paper. These different methods are rendered in the following way. Blue lines:
numerical integration; black lines: zeroth effective order in Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (35)–(37)]; yellow lines:
zeroth effective order in Λ̂T ≪ 1, using a second order expansion in Ĉ [Eqs. (A3)–(A5)]; red dashed lines: second effective order in
Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (A8)–(A10)]; green lines: results from Ref. [2].
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differences are not related to different accuracy chosen, but
rather to the neglection, in literature, of terms of order
DnΛ̂n

T . This can be seen by inspection by comparing the
expressions in [2], Eq. (39), with our G ¼ G1 þG2 þG3

with G1, G2 and G3 given by Eqs. (35)–(37): both of these
expressions for G are calculated up to the zeroth order in
Λ̂T and both of these expressions include the fast oscillatory
term G3. However, our expressions include terms of order
DnΛ̂n

T that are neglected in [2]. Since energy spread effects
become important when D becomes of order Λ̂−1

T , small

values of Λ̂T correspond to large values of D, and DnΛ̂n
T

can never be neglected, mathematically, if an accuracy to
the zeroth order in Λ̂T is selected. For a fixed value of Λ̂T ,
the magnitude of terms inDnΛ̂n

T depends on the value of the
dispersion D. In the limit for vanishing small Λ̂T , when
DnΛ̂n

T becomes of order unity, the dominant term in the
expression for G is of order D2 ∼ Λ̂−2

T (in G2) and the
correction is small. This can be seen from Fig. 4: for smaller
values of Λ̂T the error made by neglecting terms of order

FIG. 11. σĈ ¼ 0.5. Left column: comparison of G1 þG2 at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4 (rows one to four) using
different methods discussed in this paper. Center column: comparison of G1 þG2 þ G3 at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4
(rows one to four) using different methods. Right column: comparison of G̃ðDΛ̂TÞ=G̃ð0Þ at different values of Λ̂T ¼ 0.1, 0.2, 0.3, 0.4
(rows one to four) using different methods discussed in this paper. These different methods are rendered in the following way. Blue lines:
numerical integration; black lines: zeroth effective order in Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (35)–(37)]; yellow dashed
lines: zeroth effective order in Λ̂T ≪ 1, using a second order expansion in Ĉ [Eqs. (A3)–(A5)]; red dashed lines: second effective order
in Λ̂T ≪ 1, using a zeroth order expansion in Ĉ [Eqs. (A8)–(A10)]; green lines: results from Ref. [2].
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DnΛ̂n
T becomes smaller and smaller. However, for small,

but not vanishing-small values of Λ̂T , the error, i.e., the
difference between green and black lines, becomes impor-
tant both in position and amplitude. This has a major impact
on energy spread estimations.8

Such an impact can be clearly seen also from Fig. 8, which
shows the deviation from unity of the maximum value of
DΛ̂T . The importance of the deviation found depends on the
energy spread parameter Λ̂T. The theory in [2,8] always
predicts a maximum gain near DΛ̂T ¼ 1 and overestimates
the actual valueof the energy spread.However, the errormade
can be negligible or not, depending on the case under study.
To illustrate this point consider, for instance, the exper-

imental case in [12]. For the parameters in that work and for
e.g., the second case in Table II, we find Λ̂T ≃ 0.06, and the
actual maximum at DΛ̂T ≃ 0.9, as can also be readily
estimated from Fig. 8, so that the values for the relative
energy spread are overestimated of a small amount of about
10%. An investigator studying an FEL like FERMI,
operating in the vacuum ultraviolet to extreme ultraviolet
and soft x-ray range of the spectrum with very small energy
spread parameters, will only make a small error. In this
case, our correction is likely to be only of academic interest.
However, consider a hard x-ray FEL working with peak

currents of the order of several thousand amperes. In this
case, the energy spread parameter will be larger. It is not
unusual to reach values Λ̂T > 0.2. This leads to much
smaller maxima at DΛ̂T < 0.6. In this case, neglecting
corrections one would overestimate the energy spread of
about 40% or larger. An investigator studying the European
XFEL would thus make a much more important error. In
this case, our correction must be accounted for.

We derived analytical expressions for R and G to
different effective orders in Λ̂T and expansion in Ĉ, in
the limit for Λ̂T ≪ 1 and compared them with the numeri-
cal integration of R and G. The expressions for G, either
found by numerical or analytical means, can be used for
the determination of Λ̂T , and hence the energy spread of the
electron beam, but also for the determination of the
coherence time, through the analysis of the oscillatory part
of G.

APPENDIX: HIGHER ORDER
EXPANSIONS IN Ĉ AND Λ̂T

In this Appendix we treat two examples of higher order
expansions in Ĉ and Λ̂T . We report the expressions used
explicitly, as they may be interesting for cross-checking of
numerical codes.

1. Zeroth effective order in Λ̂T and second order
expansion in Ĉ

Using the second order expansion of the integrands
Eq. (14) in P̂, i.e., keeping the zeroth effective order in Λ̂T

in G, we are still free to expand Ĉ up to any order. Since we
deal with the high gain case, the zeroth order expansion in
Ĉ is acceptable as a limiting case, but in practice, one needs
to keep higher order to account for the fact that σĈ is of
order unity in the SASE case. Expanding Ĉ to the second
order9 around Ĉm ≃ 3Λ̂2

T and keeping up to the first
effective order in Λ̂T we obtain

f1 ¼
1

3
þ 1

9
ð1þ i

ffiffiffi
3

p
ÞĈþ 1

27
ð−1þ i

ffiffiffi
3

p
ÞĈ2; ðA1Þ

f2 ¼
1

3
exp

�
−iĈDþ iD

2ρ

��
1

2
½ðiþ

ffiffiffi
3

p
ÞDþ 4ð1 −D2Λ̂2

TÞ þ ð
ffiffiffi
3

p
− iÞð−5DΛ̂T þ 3D3Λ̂3

TÞΛ̂T �

þ 1

18
ð1þ i

ffiffiffi
3

p
Þ½−6 − 6Dð2i − 2

ffiffiffi
3

p
−DÞΛ̂2

T − 9ð−iþ
ffiffiffi
3

p
ÞD3Λ̂4

TÞ�Ĉ

þ 1

18
ð1þ i

ffiffiffi
3

p
Þf−1 − i

ffiffiffi
3

p
−D½iþ ð1þ i

ffiffiffi
3

p
Þð2i −DÞΛ̂2

T �gĈ2

�
; ðA2Þ

and the resulting expressions for G1, G2 and G3 become, after truncation10 of terms in Ĉ of order higher than the second,

G1 ¼
1

9
þ 2

81
σ2
Ĉ

ðA3Þ

G2 ¼
1

9
expð−D2Λ̂2

TÞð4þ 2
ffiffiffi
3

p
DþD2 − 13D2Λ̂2

T − 2
ffiffiffi
3

p
D3Λ̂2

T þ 7D4Λ̂4
TÞ

þ 1

81
expð−D2Λ̂2

TÞf8þD½2
ffiffiffi
3

p
þDþ 2Dð−9 −

ffiffiffi
3

p
DÞΛ̂2

T − 14D3Λ̂2
T �gσ2Ĉ ðA4Þ

10Truncation is implemented as a further expansion in Ĉ around zero, not anymore around Ĉm.

9As before the phase factor in f2 remains unexpanded.

8A separate difference with [2], which we ascribe to a misprint in [2], is discussed in footnote 6.
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G3 ¼
1
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Ĉ
Þ þ 6Λ̂2

T ½−
ffiffiffi
3

p
þDð1 −

ffiffiffi
3

p
Dσ2

Ĉ
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Note how all these expressions are actually generalizations
of those for the zeroth order in Ĉ. This can be seen by
inspection, as f1;2,G1;2;3 are now written as the expressions
found before for the zeroth order in Ĉ plus additional terms.

2. Second effective order in Λ̂T and second order
expansion in Ĉ

In order to increase the accuracy of G to the second
effective order in Λ̂T one needs to write f1 and f2 (or
equivalently R) including all terms of effective order Λ̂3

T, so
that the square modulus includes all terms of order Λ̂2

T.
According to our previous discussion, this needs an

expansion of Eq. (14) to the fourth order in P̂.
Furthermore Eq. (27), to which we add the fourth order
corrections β1Λ̂T , should now be used as an expression for
the eigenvalue solution. As before, we can expand in Ĉ
around the optimum Ĉm to any order. To be consistent we
take Ĉm ≃ 3Λ̂2

T þ β2Λ̂4
T . In the following, we only report

the zeroth order expansion, which leads to

f1 ¼
1

3
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TÞ ðA6Þ

and

f2 ¼
1

6
exp

�
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Note that β2 would enter in the expression for f2 only if we expanded the phase, which we do not. Since we keep up to the
third effective order in Λ̂T it becomes unimportant for the later calculation ofG. In fact, keeping up to the second order in Λ̂T
we have
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which would only include terms of order Dβ2Λ̂4
T in the arguments of the sin and cos functions in Eq. (A10) only,

but can be neglected because we keep up to the second effective order in Λ̂T . It can be seen by inspection
that neglecting effective orders in Λ̂T yields back the results in the main text as it should be.
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