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Low longitudinal emittance means small energy spread and short bunch length, which makes high-
power short-wavelength coherent radiation possible. In a storage ring, due to quantum excitation, the
equilibrium longitudinal emittance is mainly the overall contribution of all bend-related elements, such as
bends, undulators and laser modulators. By introducing longitudinal Twiss function and analyzing the
6D one-turn map in 3D Twiss form, the longitudinal emittance contribution of all these elements is
theoretically studied in this paper, and a general method for minimizing the storage ring equilibrium
longitudinal emittance is proposed. An integrated optimization of longitudinal beta function shows, the
longitudinal emittance scales as the third power of bending angle, and can be as low as subpicometer with a
beam energy of 400 MeV in an ultimate state.
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I. INTRODUCTION

Storage ring light sources have become a powerful and
irreplaceable tool for scientific researches. Owing to its
unique properties such as high brightness, good transverse
coherence, excellent polarization and theoretically predict-
able spectrum, synchrotron radiation widely serves in
bioscience, material physics, environmental science and
other fields. Until now, the storage ring has experienced
three generations, and decades of researches have been
carried out on transverse dynamics and emittance optimi-
zation. The state-of-the-art fourth-generation storage ring
targets at a transverse emittance comparable with that of the
produced radiation, or the diffraction limit in other words.
Hence these facilities are called diffraction-limited storage
ring (DLSR) [1–3]. In or near the soft x-ray range, the
corresponding beam transverse emittance is about tens
of picometers, and the spectral brightness may reach
1023−1024 photons s−1mm−2mrad−2 ð0.1% bandwidthÞ−1
[4]. Physically, such high brightness is actually a result of
strong transverse coherence, which is about to be pushed to

an ultimate state. Further improvement should concentrate
on the longitudinal dimension, i.e., increasing the beam
longitudinal coherence.
Similar with the transverse, beam longitudinal coherence

depends on the longitudinal emittance, which is much
less investigated and optimized in a storage ring. Lower
longitudinal emittance means smaller energy spread and
shorter bunch; both are of great significance for storage ring
based light sources, such as storage ring free-electron laser
(SR-FEL) and coherent bend/undulator synchrotron radi-
ation. SR-FEL has long been attractive for the reliable,
stable and high-repetition electron beams in the ring [5,6],
but the relatively large energy spread suppresses and shifts
the microbunching in SASE [7]. A lower energy spread will
certainly help to mitigate this effect and reduce the
undulator length. In terms of the bunch length, it is well
known that the radiated power of a beam at wavelength λ
can be expressed as [8]

P ¼ NeP0½1þ NefðλÞ�; ð1Þ

with Ne being the electron number of this bunch and P0

being the radiated power of a single electron. For a Gaussian
beam with an rms length of σz, fðλÞ ¼ exp½−ð2πσzλ Þ2�. This
factor indicates exactly a strength of longitudinal coherence.
Only when the bunch length σz ≤ λ=ð2πÞ, will the coherence
be significant. In storage rings, a typical relationship
between equilibrium bunch length and energy spread is
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σz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EcR56

eV0 k cosϕs

q
σδ [9]. Ec, V0, k, ϕs are the standard

electron energy, radio frequency (rf) voltage, rf wave number
and electron synchrotron phase, respectively. R56 is the
momentum compaction of the whole ring. To shorten the
bunch and produce coherent short-wave radiation, such as
terahertz (THz) wave, applying a higher frequency rf system
[10] or a lower momentum compaction factor (the “low-
alpha” mode) [11,12], helps. However, there exists an
ultimate bunch length limit caused by partial alpha effect
[13], or more accurately, considering the influence of energy
on partial longitudinal phase slippage from radiation emis-
sion point to observer, it can be called the partial eta (slip
factor) effect [14]. To achieve shorter bunch, apart from low
alpha, efforts on low partial eta are also needed, and the
lattice must be carefully designed for smaller longitudinal
emittance. For instance, in the ten THz range, the required
bunch length is on the order of micron, and the partial eta
effect will dominate.
On the other hand, steady-state microbunching (SSMB)

mechanism has been proposed [15] and actively studied
recently [4,14,16–19]. In the case of steady-state coherent
THz, as mentioned, low longitudinal emittance is an
inevitable requirement. For the future completely laser-
driven storage rings, work in Ref. [19] has shown the
capability of coherently boosting the radiation as a first
step. In the steady state, the diminishment of longitudinal
bucket, due to orders of magnitude shorter wavelength
when comparing laser and rf, requires a much smaller
equilibrium longitudinal emittance. To achieve such a small
emittance, however, there is much less experience for the
design and optimization of the longitudinal dimension
compared with the transverse. Here in this paper, the
longitudinal Twiss function is introduced. Thereafter,
the three-dimensional Twiss has been all gathered. Then
the storage ring one-turn map in 3D Twiss form is deduced,
according to which the dispersion, 3D Twiss functions
and tune can be directly obtained. We also show that the
equilibrium longitudinal emittance can be obtained through
an overall integration of longitudinal beta function along
the ring. By theoretically analyzing the bend-related
elements (bend, undulator, wiggler, laser modulator) and
typical arcs, a general method for the optimization of
longitudinal beta function is given, and the ultimate state of
equilibrium longitudinal emittance of a storage ring is also
analyzed in detail.
This paper is organized as the following. In Sec. II, the

longitudinal Twiss function is introduced, the full 6 × 6
one-turn map in 3D Twiss form is deduced, and the
calculation method of equilibrium longitudinal emittance
is given. Section III analyzes the longitudinal emittance
contribution of bend-related elements. Section IV presents
the design strategy for ultralow longitudinal emittance,
including typical longitudinal-emittance-minimized arcs
and the matching of longitudinal Twiss function. Finally,
a brief summary is given in Sec. V.

II. LONGITUDINAL BETA FUNCTION AND
EQUILIBRIUM EMITTANCE

In accelerator physics, it is convenient and common to
use the transfer matrix to describe the linear motion of
electrons. Define the horizontal direction being x, and yðzÞ
for the vertical (longitudinal), the linear state of an electron
can be expressed by coordinates X ¼ ðx; x0; y; y0; z; δÞT .
Prime terms are a deviation of velocity angles in each
transverse plane, and δ is the relative energy deviation. All
six coordinates are relative to the designed standard
electron, and usually have small values. Electron motion
from position A to position B in a lattice can be written as
XB ¼ MA→BXA, with MA→B the 6 × 6 symplectic transfer
matrix between these two positions. In particular, when the
electron circulates for one turn from A in a storage ring, the
map will beMA→A, orMA for short. For a planar lattice, no
skew quadrupoles exist, and there is no coupling between
the horizontal and the vertical direction. The 6D symplectic
matrix can then be simplified. Since dipoles will naturally
introduce transverse and longitudinal coupling in the
bending plane, by supposing all dipoles bend electrons
horizontally, the transfer map can be reduced to 4 × 4 for
simplicity. Traditionally, to handle the coupling, coordinate
x is split into the transverse betatron motion xβ and the
contribution of energy deviation xδ ¼ ηδ, where η indicates
the dispersion. Then the transverse emittance of one
electron, defined as

ϵx ¼ γxx2β þ 2αxxβx0β þ βxx02β; ð2Þ

is a constant during movement if radiation is ignored. Here
αx, βx, γx are the horizontal Twiss functions [20].
At a dispersion-free position, including rf, the one-turn

map of a ring has the form of

M¼

0
BBB@
cosϕxþαx sinϕx βx sinϕx 0 0

−γx sinϕx cosϕx−αx sinϕx 0 0

0 0 m55 m56

0 0 m65 m66

1
CCCA;

ϕx ¼ 2πνx is the one-turn horizontal betatron phase
advance, and νx represents the horizontal tune. e�iϕx

are the eigenvalues of top left horizontal 2 × 2 matrix.
Similar with the transverse, for the longitudinal phase
space, we can parametrize the bottom right 2 × 2 matrix
as [21]

m55 ¼ cos ϕþ α sin ϕ;

m56 ¼ β sin ϕ;

m65 ¼ −γ sin ϕ;

m66 ¼ cos ϕ − α sin ϕ; ð3Þ
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with ϕ ¼ 2πν being the one-turn longitudinal synchrotron
phase, and ν being the longitudinal tune. α, β, γ ¼ 1þα2

β here
stand for the longitudinal Twiss functions. They are of great
similarity with their transverse counterparts, except for the
magnitude. In most storage rings, the longitudinal focusing
is weak, ϕ and α have small values, hence the β and γ keep
almost constant, unlike their transverse counterparts.
Generally, most of a ring has dispersion. To analyze the

one-turn map of a dispersive position, we focus at an
arbitrary place downstream of the above dispersion-free
one. The transfer map between is represented as

R ¼

0
BBB@

r11 r12 0 η

r21 r22 0 η0

r51 r52 1 r56
0 0 0 1

1
CCCA:

A symplectic condition implies only six matrix elements are
free, the others are correlated through r11r22 − r12r21 ≡ 1,

r51 ≡ ηr21 − η0r11 and r52 ≡ ηr22 − η0r12. Here, r56 ¼
−
R
here
0 ðηðsÞρðsÞ −

1
γ2c
Þds stands for the momentum compaction

between these two positions, where γc is the Lorentz factor
of the standard electron. Then the longitudinal β-function
here is obtained by [22]

α ¼ α0 − γ0r56; ð4aÞ

β ¼ β0 − 2α0r56 þ γ0r256; ð4bÞ

γ ¼ γ0: ð4cÞ

In a pure drift section, the γ-function keeps constant, no
matter in the transverse or longitudinal dimension. It can
only be changed by the focusing elements: quadrupoles in
the transverse; rfs or other elements that introduce energy
chirp in the longitudinal. The β-function, however, depends
quadratically on the drift length: space length L in the
transverse and momentum compaction r56 in the longi-
tudinal. From this point, r56 can be considered as the
longitudinal drift length. For physical space length, L cannot
be negative, while the longitudinal drift length can. This
brings many differences between these two dimensions. As
an example, according to Eqs. (4a) and (4b), the longitudinal
β and α have a relation of

−
1

2

dβ
ds

¼ −
1

γ0
α
dα
ds

¼ α

�
1

γ2c
−
ηðsÞ
ρðsÞ

�
:

It is quite different from the transverse case by a dispersion
related factor dα

ds. Because of this factor, the extremums of β

locate at either α ¼ 0 or ηðsÞ
ρðsÞ ¼ 1

γ2c
. In a bend-related element,

where ηðsÞ and ρðsÞ are both nonzero, β can vary much
more violently.
In matrix, the one-turn map at this dispersive location

can be obtained by Mx ¼ RMR−1. Using xij for matrix
elements of Mx, and combining Eqs. (3) and (4), analysis
shows that at a dispersive location, the definition of Eq. (3)
is also valid, simply replacing mij by xij ðj; i ¼ 5; 6Þ,
except the 56 term. It should be redefined as

x56 −H sin ϕx ¼ β sin ϕ; ð5Þ

where H ¼ γxη
2 þ 2αxηη

0 þ βxη
02 is the chromatic invari-

ant. Thus all the matrix elements are

x61 ¼ x25 ¼ −η0γ sin ϕ;

x62 ¼ −x15 ¼ ηγ sin ϕ;

x65 ¼ −γ sin ϕ;

x66 ¼ m66 − r56m65 ¼ cosϕ − α sin ϕ;

x55 ¼ m55 þ r56m65 ¼ cosϕþ α sin ϕ;

x56 ¼ m56 − ðm55 −m66Þr56 −m65r256
¼ β sin ϕþH sin ϕx;

x11 ¼ cos ϕx þ αx sin ϕx − ηη0 γ sin ϕ;

x12 ¼ βx sin ϕx þ η2γ sin ϕ;

x21 ¼ −γx sin ϕx − η02γ sin ϕ;

x22 ¼ cos ϕx − αx sin ϕx þ ηη0γ sin ϕ;

x16 ¼ −ηðcos ϕx þ αx sin ϕxÞ − η0βx sin ϕx

þ ηðcos ϕ − α sin ϕÞ;
x26 ¼ ηγx sin ϕx − η0ðcos ϕx − αx sin ϕxÞ

þ η0ðcos ϕ − α sin ϕÞ;
x51 ¼ −η0ðcos ϕx þ αx sin ϕxÞ − ηγx sin ϕx

þ η0ðcos ϕþ α sin ϕÞ;
x52 ¼ −η0 βx sin ϕx þ ηðcosϕx − αx sin ϕxÞ

− ηðcos ϕþ α sin ϕÞ:

This is the general transfer matrix in transverse and longi-
tudinal Twiss function form. Given a one-turn map, both
dispersion and Twiss parameters can be quickly deduced.
Take dispersion as an example, η ¼ x15

x65
and η0 ¼ x25

x65
.

With the definition of Eqs. (3) and (5), the longitudinal
emittance can be defined in a similar way as Eq. (2),
with the transverse Twiss functions replaced by their
longitudinal counterparts. Just like the transverse, longi-
tudinal emittance ϵz of each electron keeps constant if
radiation is ignored. Practically, the circulating electrons
will give out radiation randomly. When the damping and
quantum excitation achieve balance, the beam reaches an
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equilibrium state, emittances in three dimensions will hold.
To evaluate the steady-state beam properties, Chao’s
formalism SLIM [23,24] gives the beam distribution second
moments at a certain location s as

hXiXjiðsÞ ¼ 2
X

k¼x;y;z

hjAkj2iRe½EkiðsÞE�
kiðsÞ�: ð6Þ

Here, Xiði ¼ 1; 2;…; 6Þ is the ith coordinate in X. EkiðsÞ is
the ith element of the eigenvector in the kth dimension. The
equilibrium parameter is obtained through

hjAkj2i ¼ C0

γ5c
Dk

I jEk5ðŝÞj2
jρðŝÞj3 dŝ;

where C0 ¼ 55

48
ffiffi
3

p reh
2πmec

, me, re are electron mass and

classical radius, respectively. h represents the Planck’s
constant, Dk is the damping constant of dimension k
and ρðŝÞ stands for the bending radius at position ŝ.
Now, we handle Eq. (6) in the planar lattice case.

According to the above matrix elements, the eigenvectors
of Mx are

Ex ¼

0
BBBBBB@

− η0βxþðαx−iÞηffiffiffiffiffi
2H

p

ηγxþðαxþiÞη0ffiffiffiffiffi
2H

p ffiffiffi
H
2

q
0

1
CCCCCCA
;

0
BBBBBB@

− η0βxþðαxþiÞηffiffiffiffiffi
2H

p

ηγxþðαx−iÞη0ffiffiffiffiffi
2H

p ffiffiffi
H
2

q
0

1
CCCCCCA
;

Ez ¼

0
BBBBBB@

η
ffiffiγ
2

p
η0

ffiffiγ
2

p
−αþiffiffiffiffi

2γ
p ffiffiγ

2

p

1
CCCCCCA
;

0
BBBBBB@

η
ffiffiγ
2

p
η0

ffiffiγ
2

p
−α−iffiffiffiffi

2γ
p ffiffiγ

2

p

1
CCCCCCA
:

Substituting these eigenvectors in to Eq. (6), if we define

I5 ¼
H HðŝÞ

jρðŝÞj3 dŝ and I ¼ H βðŝÞ
jρðŝÞj3 dŝ, one can obtain

hzziðsÞ ¼ C0γ
5
c

2

�
HðsÞ
Dx

I5 þ
βðsÞ
Dz

I

�
; ð7aÞ

hzδiðsÞ ¼ −
C0γ

5
c

2

αðsÞ
Dz

I; ð7bÞ

hδδiðsÞ ¼ C0γ
5
c

2

γðsÞ
Dz

I: ð7cÞ

At a dispersion-free location, HðsÞ≡ 0. The equilibrium
longitudinal emittance has a correlation of ϵ2z ¼ hzzihδδi −
hzδi2 with the second moments. Hence, the equilibrium
longitudinal emittance is

ϵz ¼
C0γ

5
c

2Dz
I: ð8Þ

This form naturally involves the partial eta effect. It applies
for a planar lattice and when all rfs are located at
dispersion-free locations. In the separated-function-lattice
case, the circular integral I can be written as a summation of
all elements with ρ ≠ 0 (bend-related elements). Namely
the equilibrium longitudinal emittance can be considered as
the contribution of all bend-related elements.
From the expression of second moments [Eqs. (7a)

and (7c)], it is clear that the bunch length and energy
spread have formulas as

σz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵzβ þ ϵxH

p
; ð9aÞ

σδ ¼ ffiffiffiffiffiffi
ϵzγ

p
: ð9bÞ

Here, ϵx ¼ C0γ
5
c

2Dx
I5 is the equilibrium horizontal emittance. It

has the same form as the longitudinal one, Eq. (8). For the
horizontal, it is the integration of chromatic invariant that
contributes to emittance, but it is the β-function for the
longitudinal. From Eq. (9), it is clear that when dispersion
is zero, the corresponding bunch length and energy spread
have a traditional expression, σz ¼

ffiffiffiffiffiffiffi
ϵzβ

p
, σδ ¼ ffiffiffiffiffiffi

ϵzγ
p

.
But more generally, if dispersion shows up, transverse-
longitudinal coupling will contribute to bunch length
through the H-function [25]. The energy spread, since γ
keeps constant until rf appears, is a fixed value between two
rfs. For a storage ring with only one rf, the bunch energy
spread does not vary along the whole ring.

III. LONGITUDINAL EMITTANCE
CONTRIBUTION OF ELEMENTS

In the previous section, the equilibrium longitudinal
emittance is obtained by circular integration of the longi-
tudinal β-function, and can be considered as the contribu-
tion of all bend-related elements, such as dipoles,
undulators (or wigglers) and laser modulators. For each
kind of element with length L, define

ΔI ¼
Z

L

0

βðŝÞ
jρðŝÞj3 dŝ

¼ Cαα0 þ Cββ0 þ Cγγ0 ð10Þ

as the longitudinal emittance contribution coefficient. Here,
ðα0; β0; γ0Þ is the entrance longitudinal Twiss, and Cα, Cβ,
Cγ are the corresponding coefficients, all being indepen-
dent of Twiss functions. Considering the relation of γ0 with
α0 and β0, ΔI has a minimum value of

ΔImin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4CβCγ − C2

α

q
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when α0 ¼ −Cα=ΔImin, β0 ¼ 2Cγ=ΔImin and γ0 ¼
2Cβ=ΔImin. These three Twiss parameters are intrinsic
characteristics of the element, and hence called the intrinsic
Twiss (IT). For one bend-related element in a ring, if the
real entrance longitudinal Twiss matches its IT, the longi-
tudinal emittance contribution of this element is minimized.
In this section, we will analyze the longitudinal emittance
contribution of typical bend-related elements and the
behavior under the IT case.

A. Dipole

Dipole is one of the most common elements for a storage
ring. Electrons bend and radiate here, and this means the
dipole can also be thought of as a source of damping and
quantum excitation. In many rings, the equilibrium longi-
tudinal emittance from the dipole dominates. So we start
from the analysis of emittance contribution of a dipole.
According to Eq. (4), for an element, the entrance

longitudinal Twiss and the r56ðα̂Þ inside determine β
together. Assume η0 and η00 being the entrance dispersion
and dispersion angle of a dipole, and denote the standard
electron velocity by βc, then at an arbitrary bending angle α̂
inside the dipole, the accumulated momentum compaction
from the entrance can be expressed as [26]

r56ðα̂Þ ¼ −
η0 sin α̂

βc
−
η00ρð1 − cos α̂Þ

βc
−
ρðβ2cα̂ − sin α̂Þ

β2c
:

The longitudinal βðα̂Þ function is obtained by substituting
this equation into Eq. (4b). Then, setting χ ¼ η0

βcρ
− 1

β2c
and

κ ¼ θ þ η0
0

βc
, the three coefficients are

Cα ¼
2χ

ρ
ð1 − cos θÞ þ θ2

ρ
þ 2η00ðθ − sin θÞ

βcρ
;

Cβ ¼
θ

ρ2
;

Cγ ¼
η00χ
2βc

cos 2θ þ η020 − β2cχ
2

4β2c
sin 2θ

þ 2
βcκχ þ η00

βc
ð1 − cos θÞ þ 2

η00κ − βcχ

βc
ðθ − sin θÞ

þ θ3

3
−
η00θ

2

βc
−
�
η020 − β2cχ

2

2β2c

�
θ −

η00χ
2βc

: ð11Þ

Substituting these coefficients into Eq. (10), the longi-
tudinal emittance contribution of a dipole, ΔIB, will be
obtained. By adjusting the entrance longitudinal Twiss,
the motion and radiation property of the electron bunch
inside the dipole can be slightly changed, and hence also
the contribution to equilibrium longitudinal emittance.
Alternatively, it can be seen that the entrance dispersion
is also flexible for the minimization of ΔIB, which may be

more convenient and direct sometimes compared with the
adjustment of the longitudinal Twiss function.
To get a clear understanding of this, the dipoles in a

storage ring are classified into three categories based on
entrance dispersion, as Fig. 1 shows. The first one (kind A)
is usually the first dipole of a super cell. It introduces
dispersion downstream, but has an initial dispersion of
η0 ¼ η00 ¼ 0. This property limits degrees of freedom of
emittance optimization. However, it is still very effective by
modifying the entrance longitudinal Twiss function, and if
IT is matched, the emittance contribution can be reduced
in orders. Figure 2 shows the theory limit of ΔIB. In the
condition of high energy and γcθ ≫

ffiffiffi
6

p
, ΔIBmin ≈ θ4

4
ffiffi
7

p
ρ
.

Adopting a small dipole does help to minimize equilibrium
longitudinal emittance. The matched β0 and α0 for ΔIBmin
are given in the left part. As the bending angle grows,
matched β0 increases fast, but α0 varies little. In the small
dipole limit or the relative low energy case, β0 and α0 also
behave similarly. However, when γcθ approaches

ffiffiffi
6

p
,

violent change occurs because the momentum compaction
R56 goes to zero. For the achromatic dipole (kind B), its
entrance dispersion is also fixed. The theory limit of ΔIB is
exactly that in case A. But the IT β0 and α0 vary much since
the entrance dispersion is different from that of kind A, as
the dashed line shows in the left part of Fig. 2.

s

( )

A

s

( )

B

s

( )

C

FIG. 1. Three kinds of dipoles based on the entrance dispersion.
Each kind has a different contribution to ϵz and a different
optimization strategy. A: η0 ¼ η00 ¼ 0; B: achromatic dipole,
η0 ¼ ρð1 − cos θÞ=βc, η00 ¼ − tan θ=βc; C: general case.
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FIG. 2. To minimize the longitudinal emittance contribution of
the first two kinds of dipoles (A and B), entrances β0 and α0 need
to be matched with the IT (left). Both A and B have a same limit
of ΔIB which is shown by the red dotted line in the right figure.
Compared with other four cases, in the IT-matched case, ΔIB can
be orders of magnitude smaller. Here, the electron energy is set to
be 400 MeV, and the bending radius equals 1 m.
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The most general case is the third kind (C), where the
initial dispersion provides more space for longitudinal
emittance optimization. Concentrating still on the mini-
mum value of ΔIB, one can find that the initial condition
should satisfy

η0 ¼ ρ
ð1þ β2cÞθ þ β2cθ cos θ − ð1þ 2β2cÞ sin θ

βcðθ − sin θÞ ; ð12aÞ

η00 ¼ −
1

βc
tan

θ

2
; ð12bÞ

α0 ≃ −
ffiffiffi
7

p �
1þ θ2

315

�
; ð12cÞ

β0 ≃
ρθ3

15
ffiffiffi
7

p
�
1þ θ2

60

�
: ð12dÞ

Here, throughout this paper, we make a deal that the symbol
≃ is an approximation that is independent of γc, but ≈ does
depend on the standard energy. The first two conditions of
these equations indicate that η0 at the center of this dipole
equals zero, or η has a minimum value [Fig. 3 (left)], which
is the condition mentioned in Ref. [27]. The last two
indicate the central α ¼ 0. However, compared with the
dispersion function, the longitudinal beta function inside
the dipole undergoes oscillations. The extremums of βðα̂Þ
come not only from α ¼ 0 but also η

ρ ¼ 1
γ2c
. In the optimized

case, a proper location of these extremums results in a
perfect distribution of β inside, making the partial eta
minimized. Hence the longitudinal emittance contribution
can be orders of magnitude lower than the unoptimized
case, as the black star in Fig. 4 shows.
Applying the above initial condition in Eq. (10), it is safe

to conclude that

ΔIB ≃
θ4

60
ffiffiffi
7

p
ρ

�
1þ θ2

90

�
ð13Þ

when θ ≤ 0.5. The longitudinal emittance contribution
is proportional to θ4, as kind A and B dipoles. Figure 5

plots this theory limit. This scaling is very close to the
exact result.

B. Undulator or wiggler

In addition to dipoles, electrons also radiate in an
undulator or wiggler because of the transverse oscillation.
This radiation enhances the damping process, changes the
damping partition, and results in a smaller equilibrium
transverse emittance [28]. Owing to this property, damping
wigglers are widely used in the third-generation storage
rings, and are almost indispensable for DLSRs. Apart from
the transverse effect, the radiation will also affect the
longitudinal emittance.
Consider an ideal planar undulator or wiggler. The

magnetic field on the central plane can be written as

BðzÞ ¼ B0 cosðkuzÞ;
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with B0 representing the peak magnetic field and ku ¼ 2π
λu
.

Under such a field, a relativistic electron will oscillate
transversely when passing through. During this process, the
motion angle is

x0 ¼ vx
vz

¼ K
γc

sinðkuzÞ:

Here, K ¼ eB0

mecku
is the dimensionless strength of the

undulator. It can be proven that the derivative of the
dispersion function inside, η0ðzÞ, also has the same form,
hence the dispersion

ηðzÞ ¼
Z

z

0

η0ðz̃Þds ¼ η0 þ
K

γcku
½1 − cosðkuzÞ�; ð14Þ

where the typical case γc ≫ K is assumed, and the
infinitesimal ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p
dz̃ ≈ ð1þ x02

2
Þdz̃ is used. η0

represents the entrance dispersion of this undulator. A
nonzero η0 indicates that the undulator is placed at a
dispersive section.
The calculation of longitudinal emittance contribution

relies on the exact internal momentum compaction factor.
Considering the resonant condition λ ¼ λu

2γ2c
ð1þ K2

2
Þ, longi-

tudinal dispersive strength inside can be expressed as

r56ðzÞ ¼
Z

z

0

�
−
ηðz̃Þ
ρðz̃Þ þ

1

γ2c

��
1þ x02

2

�
dz̃

≈
2λz
λu

−
K2 sinðkuzÞ

γ2cku

�
1þ γckuη0

K
−
cosðkuzÞ

2

�
:

ð15Þ

At the exit, z≡ Lu, and sinðkuLuÞ≡ 0. This means a total
undulator momentum compaction of

ru56 ¼
2λLu
λu

¼ 2Nuλ ¼
Lu

γ2c

�
1þ K2

2

�
: ð16Þ

Here, Nu represents the number of undulator periods. This
formula indicates that the r56 of each period is just two
times of the fundamental resonant radiation wavelength, λ,
no matter if the undulator is placed dispersively or not.
Again, by assuming α0, β0 and γ0 being the entrance

Twiss, the longitudinal beta inside βðzÞ can be obtained
through Eqs. (4b) and (15). In the undulator, the sine term
of r56ðzÞ leads to an oscillation in β-function. In the low
longitudinal emittance case, this is a vital point for partial
eta effect, similar with that of the whole ring. Therefore, the
contributed longitudinal emittance by an undulator period

is Δϵzi ¼ C0
γ5c
2αz

ΔIi, and

ΔIi ¼
Z

λu

0

βðzÞ
jρ3ðzÞj

�
1þ x02

2

�
dz

¼ Cðαi; βi; γiÞT; ð17Þ
where ðαi; βi; γiÞT is the entrance longitudinal Twiss of this
period, C ¼ ðCα; Cβ; CγÞ, and for undulator or wiggler

Cα ¼ −
16K3k2uλ

3γ3c
;

Cβ ¼
8K3k2u
3γ3c

;

Cγ ¼ −
K3

γ7c

�
160

27
þ 3712K2

675
þ 3112K4

4725

�

þ πK3

γ7c

�
28

9
þ 167K2

45
þ 97K4

90

�

þ 10π2K3

3γ7c

�
1þ K2

2

�
2

: ð18Þ

The three parameters depend strongly on the energy of the
standard electron. But for a given undulator and beam
energy, they are all constants. Looking closely at the three
terms αiCα, βiCβ and γiCγ , we have known that γi keeps
constant inside the undulator since no rf kick exists.
Therefore, for each undulator period, the variation of
emittance contribution, ΔIi, comes only from the first
two terms, αi and βi more specifically.
For each undulator period, ðαi; βi; γiÞT is connected with

each other by the longitudinal transfer map in between. We
have analyzed previously that each period has a momentum
compaction of 2λ, this corresponds to a Twiss function
transfer map:

TD ¼

0
B@

1 0 −2λ
−4λ 1 4λ2

0 0 1

1
CA:

Because the initial Twiss value at the entrance of theundulator
is ðα0; β0; γ0Þ, at the entrance of the ith undulator period, by
iteration, ðαi; βi; γiÞT ¼ Ti−1

D ðα0; β0; γ0ÞT . Inside the undu-
lator,αi depends linearly on z, while βi depends quadratically.
Applying this value to each period, the contribution coef-
ficient ΔIi is obtained. The total longitudinal emittance
contribution coefficient by the whole undulator is the sum-
mation of all periods, hence can be written into

ΔIu ¼
XNu−1

i¼0

ΔIi ¼ C

�XNu−1

i¼0

Ti
D

�
ðα0; β0; γ0ÞT

¼ NuC

0
B@

1 0 ð1 − NuÞλ
2ð1 − NuÞλ 1

2ðNu−1Þð2Nu−1Þ
3

λ2

0 0 1

1
CA
0
B@

α0

β0

γ0

1
CA:

ð19Þ
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It is clear that for an undulator or wiggler, its longitudinal
emittance contribution depends linearly on initial Twiss
parameters, α0, β0 and γ0. However, if the relationship

γ0 ¼ 1þα2
0

β0
is considered, there will be an optimized value.

Figure 6 shows the emittance contribution ρuΔIu under
various initial α0 and β0. When the initial beta is small
while gradient (α0) is large, this contribution is significant.
But if optimized, several orders of magnitude reduction can
be obtained. The best initial condition satisfies that the
central α equals zero, namely β at the undulator center
reaches a minimum value. Under such a circumstance, the
variation of equilibrium bunch length along the undulator is
minimized, so is the emittance contribution.
From Eq. (19), undulator period number Nu or length

contributes much more linearly to emittance growth than
initial Twiss. When Nu increases, the beam transit time
linearly enhances, which is the reason of the first linear Nu
term. The Nu in the 3 × 3 matrix comes from the fact
that the beam longitudinal state, or βðzÞ, varies along the
undulator, and this causes extra contribution. To get a
clearer understanding about the influence of Nu, we set
ðα0; β0Þ ¼ ð1.64; 112 μmÞ, calculate and plot the longi-
tudinal emittance contribution coefficient as the blue solid
line in the left of Fig. 7. As undulator period number
increases, ΔIu grows fast, especially in the large Nu range.
But this can be suppressed by optimizing α0 and β0 for each
case of period number [Fig. 7 (left, red dashed line)]. If this
is done, the contribution coefficient,

ΔIu ¼
Nu

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−9C2

α þ 36CβCγ þ 12C2
βðN2

u − 1Þλ2
q

;

depends quadratically on Nu. At the large Nu case, the
emittance contribution can be greatly reduced.

Practically, a more common situation is to adjust the
undulator gap to modify the K parameter. During this
operation, only undulator period length keeps unchanged,
while the other parameters will be modified. Compared
with the dependence on Nu, the longitudinal emittance
contribution is much more sensitive to K. For the fixed-
initial-Twiss case, as given by the blue solid line in the right
of Fig. 7, at large K range, ΔIu is beyond the fifth order
of K. If optimized, ΔIu ∼ 4.8369kuN2

uK5=γ5c when K ≫ 1,
and ΔIu ∼ 9.6736kuN2

uK3=γ5c when K ≪ 1, as presented
by the red dashed line in the right of Fig. 7.
If the undulator or wiggler locates at a dispersive

position, say η0 ≠ 0 and η00 ¼ 0, there will be an extra
contribution to longitudinal emittance. Substituting
Eq. (15) into Eq. (17), one can find that only Cγ is changed.

Two new terms that are related with η0,
8K5k2uη20
15γ5c

and
K4ku½30πþK2ð32þ15πÞ�η0

30γ6c
, need to be added to the dispersionless

case. Hence the total longitudinal emittance contribution
becomes

ΔIu ¼ ΔIu;nodis þ ΔIu;dis

¼ ΔIu;nodis þ
8K5k2uη20
15γ5c

γ0

þ K4ku½30π þ K2ð32þ 15πÞ�η0
30γ6c

γ0; ð20Þ

which is quadratically dependent on initial dispersion.
Figure 8 presents the influence of η0. To minimize the
total emittance contribution, one can put the undulator or
wiggler at a position with a small negative dispersion. But
this does not help much compared with the dispersionless
case, and may introduce other transverse problems, such as
extra transverse emittance increment.
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C. Laser modulator

As electrons passing through a planar wiggler or
undulator, if a laser, with wavelength matched at the
resonant condition λ ¼ λu

2γ2c
ð1þ K2

2
Þ, joins in, its electric

field will interact continuously with the electrons’ trans-
verse velocity, and energy exchange will occur between the
electron and laser. Depending on the initial phase of the
electron as entering the wiggler or undulator, the energy
gain can either be positive or negative. This effect has been
extensively studied in both FEL and inverse free-electron
laser [29,30]. When the wiggler or undulator is ideal and is
put in a dispersion-free section, the whole interaction
process makes no difference to beam transverse property,
and is hence a 1D dynamic problem. The beam dynamics
can be described by the famous FEL pendulum equation:

dδ
dz

¼ ka0KJ
2γ2c

sin ϕ̂; ð21aÞ

dϕ̂
dz

¼ 2kuδ: ð21bÞ

Here, k ¼ 2π
λ is the laser wave number, a0 ¼ eE0

mekc2
is the

dimensionless laser electric field strength, and J ¼
J0ð K2

4þ2K2Þ − J1ð K2

4þ2K2Þ is a Bessel factor. ϕ̂ ¼ ðkþ kuÞz −
kctþ ϕ̂0 is the ponderomotive phase. Figure 9 shows the
final longitudinal phase space of a line bunch after passing
through the combined fields.
Typically, it can be seen that for a standard electron

(initial phase ϕ̂0 ¼ 0, also the zero-cross point of each
subfigure), its energy does not change after passing through
the laser modulator. Electrons at other phases are accel-
erated or decelerated. In other words, the whole bunch is

modulated. When the laser is weak, the modulation
approaches a sinusoidal or cosinoidal form. But for a
strong laser, the modulation inside the wiggler will cause a
large energy change during every wiggler period. Then,
electrons with positive δ slip forward and negative back-
ward, resulting in a significant longitudinal phase space
rotation around 2ðnþ 1Þπ. If the laser is strong or the
wiggler period number is large, this period-by-period effect
will finally lead to a phase space rotation in an FEL bucket.
The linear region, which is around the standard electron and
the most frequently concerned, will shrink as the phase
space rotation angle increases.
Despite the complexity, the modulation property is very

suitable for the replacement of rfs in a storage ring, pushing
the modulation wavelength from tens of centimeters to
micron, and promoting bunches to microbunches [14].
However, before more detailed analyses, we should make it
clear that there are at least two issues that are very different
from a thin-lens rf. The first one is the longitudinal transfer
matrix; the second is that the laser modulator will contrib-
ute to equilibrium longitudinal emittance.
We have stated that if the laser modulator is located

somewhere dispersionless, the averaged longitudinal
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FIG. 8. The contribution coefficient ΔIu to longitudinal emit-
tance when the undulator or wiggler is located at a dispersive
position. The blue solid line is the result at ðα0; β0Þ ¼
ð1.64; 114 μmÞ. For each η0, there exists an optimized α0 and
β0, and the red dashed line gives the optimized result. λU ¼ 5 cm,
Nu ¼ 50.

FIG. 9. Longitudinal phase space at the exit of the laser
modulator under various laser strength. The initial state is a line
bunch without energy deviation. As the modulation laser strength
grows, electrons rotate and form the FEL bucket, but the linear
region around the zero-cross point shrinks. The blue dotted line
is the tangent at the zero-cross point, the gray dotted line
represents the deviation between modulated result and the
linear tangent line. (a) a0 ¼ 3.9 × 10−6; (b) a0 ¼ 5.8 × 10−5;
(c) a0 ¼ 1.9 × 10−4; (d) a0 ¼ 3.9 × 10−4. The laser wavelength
used is λ ¼ 1 μm, which is the fundamental resonant wavelength
of the undulator with λu ¼ 5 cm, and wiggler periods Nu ¼ 50.
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motion of the electron can be described by Eq. (21). To get
the symplectic transfer matrix, we consider those electrons
close to the standard one (ϕ̂ is small), and linearize
Eq. (21a) as

dδ
dz

¼ ka0K J
2γ2c

cosϕs · ϕ̂:

Here, for a more general case, we assume that the standard
electron has a phase of ϕs. Thus, the motion in the
combined fields can be written into

�
z

δ

�
¼
 

cosΔψm
2 sinΔψm

νmk

− νmk sinΔψm
2

cosΔψm

!�
z0
δ0

�
; ð22Þ

and νm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 4a0KJ

2þK2 cosϕs

q
, Δψm ¼ NuΔψ1 ¼ 2πNuνm is

the equivalent longitudinal Twiss phase advance in Nu
periods. This is the transfer map of the laser modulator in a
thick-lens model. Setting Nu ¼ 1, the single period map is

Mm;1 ¼
�
1 0

h 1

��
1 2 sinΔψ1

νmk

0 1

��
1 0

h 1

�
: ð23Þ

Here, h ¼ − νmk tanðπνmÞ
2

is a small energy kick strength and
2 sin Δψ1

νmk
is the equivalent longitudinal drift strength. When

2πνm ≪ 1, 2 sin Δψ1

νmk
≈ 2λ. This exactly indicates an r56 of 2λ

per undulator period, and the single period modulation map
is the result of one longitudinal drift map sandwiched
by two energy kicks. It should be noted that for a laser
modulator, to get enough modulation, the wiggler usually
has a large K, hence the above approximation is valid
when a0 ≪ 0.01.
For the longitudinal emittance contribution of a laser

modulator, Eq. (23) has given a clear clue for the handling
method. The overriding difference between a laser modu-
lator and a pure wiggler or undulator (or laser is off) is that
the former has energy kicks inside. These energy kicks
change the longitudinal β-function from the laser-off case.
This variation in β affects the equilibrium longitudinal
emittance contribution. By putting two small energy kicks
at the head and tail of each wiggler period, and following
the method in the undulator case, the corresponding Twiss
transfer map of Eq. (23) is then

TM ¼

0
BBB@

cosð2Δψ1Þ νmk sinð2Δψ1Þ
4

− sinð2Δψ1Þ
νmk

− 2 sinð2Δψ1Þ
νmk

cos2Δψ1
4sin2Δψ1

ν2mk2

νmk sinð2Δψ1Þ
4

1
4
ν2mk2sin2Δψ1 cos2Δψ1

1
CCCA:

However, this transfer map does not bring the Twiss
function to the real front of the next period dipole, since
there exists one more energy kick, and the corresponding
map is

TK ¼

0
B@

1 −h 0

0 1 0

−2h h2 1

1
CA:

Therefore, the entrance Twiss of the ith laser modulator
period will be ðαi;βi; γiÞT ¼ TKTi−1

M ðα0;β0; γ0ÞT . Figure 10
presents the longitudinal Twiss function inside a laser
modulator under different synchronous phases. When ϕs
is around π, both α and β oscillate sinusoidally or
cosinoidally, and the oscillation wavelength is λu

2νm
, which

reduces as the laser strength increases. The central
and peak-to-peak values of β are βcen ¼ β0

2
þ 2γ0

k2ν2m
and

Δβpp ¼ 4
k2ν2mβcen

. At small a0, the second term of βcen may

contribute significantly. A large βcen means a large equi-
librium longitudinal emittance contribution. In another
case, if the synchrotron phase is around zero, which
indicates νm is an imaginary number, the Twiss inside
modulator diverges, as the right of Fig. 10 shows. This
would result in vast increasing of β, and hence a much
larger longitudinal emittance contribution.
It should be stated that the above discussion of longi-

tudinal beta is only the averaged performance; a more
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sophisticated evolution exists in every period because of a constantly changing bending radius and energy kick. To embrace
these effects, analytically, eigenvectors and eigenvalues of TKTi−1

M can be used to obtain the total longitudinal emittance
contribution coefficient by the laser modulator, which finally can be written as

ΔIm ¼ CTK

�XNu−1

i¼0

Ti
M

�
ðα0; β0; γ0ÞT

¼ C
sinΔψ1

0
BBBBB@

cos Δ̃
2
sinðΔψmÞ

cos
Δψ1
2

− νmkðNu sin
Δψ1
2

sin Δψ1þsinΔ̃
2
sin ΔψmÞ

4 cos
Δψ1
2

Nu sin
Δψ1
2

sin Δψ1−sin Δ̃
2
sin Δψm

νmk cos
Δψ1
2

− cosΔψ1−cos Δ̃
νmk

ð1þ2NuÞ sin Δψ1þsin Δ̃
4

− ð1−2NuÞ sin Δψ1þsin Δ̃
ν2mk2

νmk sin2 Δψm

2 cos2
Δψ1
2

ν2mk2ð2Nu sin Δψ1−sin 2ΔψmÞ
16 cos2

Δψ1
2

2Nu sinΔψ1þsin 2Δψm

4cos2
Δψ1
2

1
CCCCCA
0
B@

α0

β0

γ0

1
CA: ð24Þ

Here, Δ̃ ¼ ð2Nu − 1Þ2πνm. According to this expression,
the dependence on laser strength is analyzed, shown in the
left part of Fig. 11. Generally, when the entrance β0 deviates
far from the optimized value, ΔIm has a small oscillation as
the laser strength improves. This indicates a series of a0
which make the emittance contribution minimum. However,
when β0 approaches the optimization, the oscillation van-
ishes gradually. Finally, at the best initial state, ΔIm drops
monotonously with the growth of a0 and can be greatly
reduced by increasing laser strength. Besides, the influence
of modulator period number is also analyzed as the right
of Fig. 11 presents. The stepwise growth is a typical
case, which originates from the sinusoidal nature of the
β-function. At the best state, like the dependence on laser, the
stepwise property vanishes again.

IV. ULTRALOW LONGITUDINAL EMITTANCE
STORAGE RINGS

In the previous section, several typical bend-related
elements are analyzed on their equilibrium longitudinal
emittance contribution and longitudinal Twiss functions
evolution. In this section, the matching of longitudinal
Twiss functions, like the transverse ones, is discussed.
Based on the above results, the limit state of longitudinal
emittance of some typical arcs and a storage ring is
analyzed. Two samples of storage ring targeting at ultralow
longitudinal emittance are presented. Of course, to keep the
flexibility in the transverse, only the longitudinal profile
is given.

A. Longitudinal drift section

In the transverse direction, one drift section is a real empty
space. But for the longitudinal, one drift is an achromatic
section, namely a beam line that has only the momentum
compaction effect (r56). Figure 12 shows three kinds of
typical longitudinal drift sections. The simplest one is of
course a real empty space. By changing the space length L,
the r56 alters. But for high energy particles, a significant
value of r56 means a huge length. A clever design is the

magnetic chicane, where the longitudinal drift can be tuned
without increasing or decreasing the real space length,
adjusting the dipole bending angle instead. This greatly
reduces the beam line length, especially for relativistic
particles. The third kind is an arc, where the entrance and
exit direction of beam can be different. Double-bend
achromat (DBA), triple-bend achromat (TBA) and multi-
bend achromat (MBA) are all typical longitudinal drift
sections. In these cases, achromatic condition requires that
the first and last dipoles must have a fixed boundary, hence
the r56 from the two bends cannot be changed. Thus, for
DBA, the r56 can only be modified by varying space length
in between or changing the bending angle. To adjust r56
more conveniently, one (TBA) or more (MBA) dipoles can
be added in between. Unlike the chicane, the adjustment of
longitudinal drift depends on tuning of quadrupole strength
which causes a modification of dispersion inside the added
dipoles. Although the introduction of dipoles breaks the
space limitation for a significant r56, they may bring large
high order momentum compaction if not carefully con-
trolled. Besides, as previously introduced, these dipoles will
contribute to the longitudinal emittance due to radiation, and
this needs to be minimized when low energy spread or
ultrashort bunch is needed.

B. Ultimate-longitudinal-emittance arcs

It is clear that in an arc, the longitudinal emittance
limitation appears when and only when every dipole has a

L

(a)
triple bend

four bend

(b)

DBA

TBA

MBA
(c)

FIG. 12. Three kinds of typical longitudinal drift section.
(a) Pure empty space, r56 ¼ L

β2cγ
2
c
. (b) Four-bend and triple-bend

chicane. (c) A series arcs: DBA, TBA, MBA.
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theoretic minimum emittance contribution. This indicates a
same IT γ for all three kinds of dipoles A, B and C.
Because dipoles in kind A and kind B are usually used to

match the dispersion, from now on, we take θm and ρm as
their bending angle and bending radius, respectively. The
subscript m here represents matching. For these two kinds
of dipoles, from Eq. (11), if they have the same bending
angle and radius, the IT γ for both are consistent naturally.
In a common case, when γcθm ≫ 1, it is safe to write it as

γm ≈
8
ffiffiffi
7

p
β2c

θ3mρm
:

In a DBA, the separation between two dipoles can be
optimized to make them both work at the emittance-
minimized state. This separation is

Ls ¼ ρmγ
2
c
2 − 2 cos θm þ β2cθ

2
m − 2θm sin θm

θm

≈
γ2cρmθ

3
m

4
: ð25Þ

Figure 13(a) shows an example of matched longitudinal
Twiss in DBA. The longitudinal β-function varies quad-
ratically in separated space, and matches the optimized
longitudinal Twiss of two dipoles.
The dipole in kind C is a general case, and is widely used

in a storage ring supercell. We call it the main dipole.

Previously we have analyzed the best initial longitudinal
Twiss for minimum emittance contribution, which is

γ ≃
120

ffiffiffi
7

p

ρθ3
:

When main dipoles and match dipoles both exist in a
beam line, like TBA and MBA, the minimum longitudinal
emittance state requires γ ¼ γm. This means a bending
angle relation between the main dipole and match dipole of
β2cρθ

3 ¼ 15ρmθ
3
m. Another condition is the matching of the

longitudinal β-function. Similar with the DBA bends, a
separation with length

Lmc ≈
γ2cρmθ

3
m

4
ð26Þ

will be the perfect choice for the matching of the main and
achromatic dipoles. Figure 13(b) presents a matched TBA
case. The longitudinal β-function varies violently inside
the dipole, but can be perfectly transformed between them
through an empty space. Actually, more dipoles can be
added and form MBA structure, with each dipole working
in an emittance-minimized state. Assuming all main
dipoles are the same, then the matching of the β-function
between main dipoles can also be accomplished by a
separation. From Eqs. (12c) and (12d), the space equals

Lc ¼
β2cγ

2
cρðθ2 þ θ sin θ − 4þ 4 cos θÞ

θ − sin θ

≈
β2cγ

2
cρθ

3

60
: ð27Þ

Just like Lmc, Lc is also proportional to θ3. Put arbitrary
numbers of main dipoles in DBA, and separate each other
by this length, with Lmc between match and main dipoles,
one longitudinal-emittance-minimized MBA can be
formed. Figure 13(c) is an example of a Twiss function
of a four-bend achromat.

C. Ultimate-longitudinal-emittance storage ring

In a storage ring, to achieve an ultimate-longitudinal-
emittance state, the arcs introduced previously can be used.
However, to form a ring, one more constraint about the
bending angle exists. Assuming the ring consists of Ns
arcs. Each arc has two match bends and Nc main dipoles.
The constraint reads Nsð2θm þ NcθÞ ¼ 2π. Besides, to
make the beam stable, the matching of the longitudinal
Twiss function between theses arcs is needed. Typically,
this matching can be accomplished in two ways.
The first one, similar with the transformation of a

longitudinal Twiss inside arcs, depends on a pure empty
space. It can be seen that when the separation is
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FIG. 13. Matched longitudinal Twiss of three typical arcs. The
Twiss functions inside every dipole are their IT. (a) DBA; (b) TBA;
(c) MBA. The x-axis represents the longitudinal position along this
section. To show the details inside the dipole (with gray back-
ground), the location of the dipole is zoomed in and adopts a unit
of centimeter. For the separation between dipoles (without back-
ground), where β changes quadratically, the x-axis unit is meter. In
each element, the scale of the x-axis is linear.
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Ld ¼ γ2cρm
−2þ 2 cos θm þ β2cθ

2
m

θm

≈ γ2cρm

�
−
θm
γ2c

þ θ3m
12

−
θ5m
360

�
; ð28Þ

the longitudinal β-function of two arcs will be perfectly
connected. In other words, the combination of this sepa-
ration and an arc forms a completely isochronous longi-
tudinal supercell.
The other way takes advantage of the longitudinal

focusing property of an rf or laser modulator to match
the longitudinal β. If only one rf or laser modulator is used
for matching, it must be set at the separation center. In thin
lens approximation, its modulation strength must satisfy

h ¼ eV0

Ec
k ¼ 2ðα0 − γ0ξÞ

−2α0ξþ β0 þ γ0ξ
2
;

where ξ ¼ Lmrf

γ2c
. Lmrf is the separation between the rf or

modulator and the nearby matching dipole, and ðα0; β0; γ0Þ
represents the boundary longitudinal Twiss of the emit-
tance-minimized state. When this matching is completed,
the longitudinal stability is naturally fulfilled. Figure 14(a)
shows an example of this circumstance. If 2Lmrf < Ld, r56
of the whole ring is negative, and h > 0; vice versa. The
further 2Lmrf deviates from Ld, the stronger the required
modulation strength will be. In the case that Lmrf > Ld,
both α and β at the position of rf or laser modulator will
have a large value [as Fig. 14(a) shows], which means a
rather long bunch, and a serious nonlinear effect from rf or
laser modulator. An alternative choice is to apply two rfs or
laser modulators which are set symmetrically, as shown by
Fig. 14(b). There is little requirement on the modulation
strength in this case. From the point of longitudinal Twiss
matching, only physical separations and dipoles can form
periodic Twiss structures, and it seems that the electrons
will be stable in such a ring. But from the point of energy
conservation, rfs or laser modulators are necessary to
compensate the radiation loss. Obviously, there should
be at least one rf or laser modulator in a ring.

Suppose all dipoles in the ring have the same
bending radius, namely ρm ¼ ρ, the radiated synchrotron
radiation energy per turn can be written as

U0 ¼ e2γ4c
3ε0

ð1ρ þ
P Lu

4πρ2u
þP Lm

4πρ2m
Þ. Here, the synchrotron

radiation in all damping wigglers and all laser modulators
is considered. Note that since the electron radiates much
smaller energy when accelerated in rfs compared with the
bending process in dipoles, rf elements are thought to have
no contribution to the longitudinal emittance. Then the
longitudinal damping constant is αz ¼ U0=Ec. We can
obtain the equilibrium longitudinal emittance as Eq. (8),
with I the summation of all dipoles, undulators, damping
wigglers and laser modulators. If only rfs (no laser
modulators) appear in a ring, the ultimate equilibrium
longitudinal emittance will be

ϵz ¼
11

48
ffiffiffiffiffi
21

p λe
32π

γ2cβ
2
cθ

3: ð29Þ

Here, λe denotes electron Compton wavelength. From
this expression, ϵz is independent of bending radius, but
strongly depends on bending angle. Reducing the bending
angle of the main dipole can effectively lower the equi-
librium longitudinal emittance. It should be noted that this
emittance can be very small compared with the longitudinal
rf bucket. In the ultimate state, the ring is actually also a
weak-focusing one, and such small equilibrium longi-
tudinal emittance contributes to a very long quantum
lifetime, even if when the rf is replaced by a laser
modulator. However, the circumference of the ring

Cring ¼ 2πρþ γ2cθ
2ρ

30

�
Nsθ

�
2

3
−

1ffiffiffiffiffi
153

p
�
þ π

�
ð30Þ

may be huge, especially for a high energy ring. But if the
designed electron beam energy is hundreds of MeV, this
value can be reasonable.
If the separation of Eq. (28) is taken to match two arcs, it

can be obtained that the minimum longitudinal β-function

between the two arcs is βmin ≈
β2cρθ

3

120
ffiffi
7

p . This means an

equilibrium energy spread of

σ2δring ≈
55

ffiffiffi
3

p

48

λe
4π

γ2c
ρ
: ð31Þ

It is only related with the bending radius. The scaling is
σδring ∝ ρ−0.5, not that sensitive. Meanwhile, the bunch
length at this point is proportional to γcβ

2
cθ

3 ffiffiffi
ρ

p
. Reducing

the dipole angle can quickly shorten the bunch length.
Table I shows a sample ring working at 400 MeV. The

dipoles are relatively small, and maybe more reliable to
adopt permanent magnets. With such small bends, the
equilibrium longitudinal emittance can be 0.17 pm in the
two-rf case. The bunch length will be as short as 0.40 nm.
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FIG. 14. Longitudinal Twiss matching of two arcs. (a) One rf or
laser modulator at the cente.; (b) Two rfs or laser modulators set
symmetrically.
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Such beam is sufficient to produce high-power coherent
near-soft-x-ray synchrotron radiation in dipoles or undu-
lators. Besides, under such a small total r56, which is
of great challenge to control systems, the ultimate-
longitudinal-emittance ring is weak focusing as stated,
and the bucket height can be extremely huge. This leads to
a very stable microbunch. However, apart from the pressure
on the control system, in the ultimate state, there exist some
intrinsic issues. The first one is located at the ultralow beam
duty cycle due to rf (one single nanometer bunch in every
tens of centimeters), whose wavelength is on the order of
centimeters. But this situation will be greatly relieved by
replacing rfs with laser modulators. The second intrinsic
issue originates from the matching of longitudinal Twiss. It
is not easy to push electron energy to GeV range, where
either the separation between two dipoles will be too large,
or the bending angle of dipoles will be too small. To
overcome this bottleneck, the ultimate state has to be
sacrificed. Namely each dipole has to work at a state that
deviates from its IT, and the equilibrium longitudinal
emittance or bunch length will hence have an increment.

D. Longitudinal-emittance-minimized storage ring

In the previous subsection, the ultimate longitudinal
emittance of a storage ring is presented. For high energy
storage ring, this ultimate state means a huge circum-
ference, which is practically impossible. Generally, if any
one of the following conditions breaks, the ultimate-
longitudinal-emittance state will disappear:

(i) All dipoles between two rfs or laser modulators in
the ring have a same IT γ.

(ii) Separations between dipoles match the IT α and β.
(iii) The setting of rfs or laser modulators does not

disturb the longitudinal Twiss in the ring. They
are only used for Twiss matching like quadrupoles in
the transverse Twiss matching process.

To minimize the equilibrium longitudinal emittance, the
optimization of a larger unit, such as one supercell or even
the whole ring, should be focused on. Here, we show a
method that targets at a super-cell.
Suppose the supercell has a layout shown as Fig. 15,

following the analysis of undulator and laser modulator, the
3 × 3 matrix concatenating method is used to find the
entrance longitudinal Twiss of each dipole. Using symbols
ðCαA; CβA; CγAÞ, ðCαB; CβB; CγBÞ and ðCαC; CβC; CγCÞ for
the coefficients of dipole A, B and C respectively, the total
coefficients of the supercell will be

Cα ¼ CαA þ CαB þ NcCαC

− NcξtcCβC − 2ξtmCβB

Cβ ¼ CβA þ CβB þ NcCβC

Cγ ¼ CγA þ CγB þ NcCγC

−
1

2
NcξtcCαC þ ξ2tmCβB − ξtmCαB

− Nc

�
ξ2mL − ξtcξmL −

2Nc − 1

6ðNc − 1Þ ð2ξmL − ξtcÞ2
�
CβC:

Here, ξtc¼ ξt−ξ−Ld
γ2c
, ξtm¼ ξt−ξm−

Ld
γ2c
and ξmL¼ ξmþLmc

γ2c
.

The longitudinal Twiss matching using a separation
requires that ξt ≡ 0. With these definitions, parameters
can be chosen to satisfy the IT of this supercell, and once
done, the longitudinal emittance contribution will be
minimized. It is obvious that this IT is not consistent with
that of each dipole, which means the dipole’s ultimate-
longitudinal-emittance state, or Eq. (12), is broken. But
usually, for the lattice symmetry, the property η0 ¼ 0 at the
center of each main dipole should be kept, which is much
easier for operation. It should be pointed out that though the
ultimate state is sacrificed, the equilibrium longitudinal
emittance can also be orders of magnitude smaller than
present electron storage rings, reaching pm to nm range.

TABLE I. Parameters of a sample ultimate-longitudinal-
emittance ring.

Match strategy 2 rfs

Ec 400 MeV
ρ 1.5 m
θ 61.3 mrad
θm 25.0 mrad
Lc 3.53 m
Lmc 3.53 m
Ld 1.16 m
U0 1.51 keV
Nc 12
Ns 8
Cring 385.54 m
Total r56 −3.15 μm
rf voltage V0 5 MV
Frequency f 500 MHz
h 1.31 × 10−1 m−1

ϕs 179.991 deg
ϵz 0.17 pm
Energy spread 4.21 × 10−4

Bucket height 55.00

m

m

m

m

m

m

L L L L L

Nc main dipoles

FIG. 15. Layout of a typical longitudinal supercell. Two
achromatic dipoles are located at the head and tail, each one
has a bending angle of θm, radius of ρm and r56 of ξm. Nc main
dipoles with separations of Lc are inserted in between. Their
bending angle, radius and r56 are θ, ρ and ξ respectively. Ld is the
space for longitudinal Twiss matching. The total r56 of this
supercell is ξt.
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Again, for such a small longitudinal emittance, if rfs are
taken to match the longitudinal Twiss and compensate
energy loss, the relative large rf wavelength will lead to a
small duty cycle. Thus, it is preferred to use a device with
much smaller modulation wavelength—the laser modula-
tor. Here, we show a sample ring targeting at ultrashort
bunch length and taking advantage of laser modulators
in Table II. Compared with the ultimate-longitudinal-
emittance case in Table I, the dipoles can be larger, and
the circumference can also be much shorter. The energy
spread is about 4.48 × 10−4, hence the beam can stay happy
in the bucket with a height of 4.24 × 10−2. Figure 16
presents the longitudinal Twiss functions of this sample
ring. As previously stated, the β-function inside dipoles
varies a lot. The laser modulator is located around
s ¼ 45 m. It is originally a drift section, but to keep the
longitudinal Twiss matched, when the laser modulator is

set, the separation must be adjusted. Around the position of
s ¼ 87 m and s ¼ 136 m, straight sections are prepared for
undulators, through which coherent EUV can be produced.

V. CONCLUSION

Decades of studies have focused on the storage ring
transverse dynamics, but recently, with the development of
storage ring FEL, laser-driven storage ring, SSMB, etc.,
there is an increasing demand for low or ultralow equilib-
rium longitudinal emittance. In this paper, the longitudinal
Twiss functions are used to analyze the longitudinal
dynamics and emittance, imitating the transverse counter-
parts. The storage ring one-turn map in 3D Twiss form is
deduced. According to this form, it is not necessary to
remove rf kicks first when analyzing a planar lattice. The
dispersion, three-dimensional Twiss and tune can be
directly obtained from the one-turn map. This simplifies
the analyzing process and may lead to a new and completed
way to look into beam dynamics. Making use of this
form and based on the longitudinal Twiss function, the
equilibrium longitudinal emittance contribution of dipoles,
undulators or wigglers, and laser modulators are also
theoretically analyzed in a systematic way. For each kind
of bend-related element, there exists an emittance-
minimized state when a working Twiss matches its intrinsic
Twiss. For undulators, wigglers and laser modulators, such
state occurs if the central longitudinal beta inside reaches a
minimum value. But for dipoles, the dispersion property
makes the situation more complicated. Dipoles are clarified
into three kinds, with each one being carefully analyzed.
By applying these results, the ultimate-emittance state of
typical arcs, such as DBA, TBA and MBA, are given.
Further more, after the matching of longitudinal IT of these
arcs, a storage ring that reaches an ultimate state of
longitudinal emittance is formed. In this state, final
equilibrium longitudinal emittance will be proportional
to γ2 and θ3. By reducing θ to tens of milliradians, the
equilibrium longitudinal emittance can be orders of mag-
nitude smaller than the current existing worldwide facili-
ties. However, this ultimate-longitudinal-emittance storage
ring is not easy to be applied to GeV range since the
required dipoles will be too small and the desired circum-
ference will be huge. Compromise has to be made to solve
this issue, that is minimizing the longitudinal emittance
of a longitudinal supercell. At last, two groups of sample
parameters are given to show these longitudinal-emittance-
minimized storage rings. Both in the ultimate and
longitudinal-emittance-minimized case, to keep the low
longitudinal emittance property, a variation of one-turn r56
below one micron is required, which is of great challenge
for the current control system, but may be available in the
next decades.
The design of ultralow longitudinal emittance rings has

actually at least two directions, ultralow energy spread and
ultrashort bunch length. The former, once combined with

TABLE II. Parameters of a sample longitudinal-emittance-
minimized ring.

Match strategy 2 laser modulators

Ec 400 MeV
ρ 1.0 m
θ 106.70 mrad
θm 43.45 mrad
Lc 3.50 m
Lmc 3.50 m
Ld 13.15 m
Nc 9
Ns 6
U0 2.32 keV
Cring 272.88 m
Total r56 −39.97 μm
Laser strength a0 1.0 × 10−5

Laser wavelength λ 1.0 μm
Modulator periods Nu 10
ϵz 1.38 pm
Bunch length 3.10 nm
Bucket height 4.24 × 10−2
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FIG. 16. Longitudinal Twiss functions of the half ring in
Table II.
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storage ring FEL, can greatly improve the radiation quality
and shorten the undulator length. The latter will be of great
benefit to the improvement of short wavelength radiation
power. Meanwhile, this low longitudinal emittance design
is inevitable in the future completely laser-driven storage
rings, such as SSMB.
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