
Point-to-point Coulomb effects in high brightness photoelectron beam lines
for ultrafast electron diffraction

M. Gordon ,1 S. B. van der Geer ,2 J. Maxson,3 and Y.-K. Kim 1

1University of Chicago Department of Physics, Chicago, Illinois 60637, USA
2Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven, The Netherlands

3Cornell University Department of Physics, Ithaca, New York 14853, USA

(Received 20 April 2021; accepted 2 August 2021; published 24 August 2021)

In an effort to increase spatial and temporal resolution of ultrafast electron diffraction and microscopy,
ultrahigh-brightness photocathodes are actively sought to improve electron beam quality. Beam dynamics
codes often approximate the Coulomb interaction with mean-field space charge, which is a good
approximation in traditional beams. However, point-to-point Coulomb effects, such as disorder-induced
heating (DIH) and the Boersch effect, cannot be neglected in cold, dense beams produced by such
photocathodes. In this paper, we introduce two new numerical methods to calculate the important effects of
the photocathode image charge when using a point-to-point interaction model. Equipped with an accurate
model of the image charge, we calculate the effects of point-to-point interactions on two high-brightness
photoemission beam lines for ultrafast diffraction. The first beam line uses a 200 keV gun, whereas the
second uses a 5 meV gun, each operating in the single-shot diffraction regime with 105 electrons=pulse.
For the beam lines simulated in this paper, assuming a zero photoemission temperature, it is shown that
including stochastic Coulomb effects increases the final emittance by over a factor of 2 and decreases the
peak transverse phase space density by over a factor of 3 as compared to mean-field simulations. We then
introduce a method to compute the energy released by DIH using the pair correlation function and
approximate the contribution DIH has on the emittance, which may serve as a reasonable estimate for the
effects of DIH beyond the cases studied in this work. This DIH energy was found to scale very near the
theoretical result for stationary ultracold plasmas, and it accounts for over half of the emittance growth
above mean-field simulations.
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I. INTRODUCTION

The development of high-brightness photocathodes is a
driving force in the improvement of electron accelerator
technologies such as free electron lasers, energy recovery
linacs, and ultrafast electron diffraction (UED) and micros-
copy. The brightness of the beams used in these applica-
tions is set at the electron source and can only degrade
during further acceleration and transport. Consequently, the
brightness of the electron source defines the ultimate limits
of the capabilities of these devices [1–4]. The photocathode
brightness is set by two parameters: the density of electrons
emitted from the source, and their mean transverse energy
(MTE), which acts as an effective beam temperature [5,6].
Increasing the electron density at the source is not always a
viable option, as space charge forces can reduce brightness
downstream dramatically. While some of this brightness

can be restored via emittance compensation, some is lost to
nonlinear distortions which are challenging to reverse [7,8].
However, it has been shown in many modern applications
that reducing the MTE of the photocathode can still lead to
large gains in brightness [9].
Reducing the MTE of photocathodes is a very active area

of research inwhich significant progress has beenmade in the
last decade. Typical photocathodes used in accelerator
facilities today have a MTE of a few hundred meV
[10–12] whereas near threshold emission at room temper-
ature has demonstrated electron beams with an MTE of
∼25 meV [13]. Furthermore, cryocooled photocathodes near
threshold have shown the capability to go down even further
to anMTEof∼5 meV [14].At these low temperatures, point-
to-point interactionsplay an increasingly important role in the
overall beamdynamics, as shown by the following argument.
The mean-field approximation commonly used in sim-

ulation codes is only valid when there are many particles in
a Debye sphere. This Debye screening length is given by

λ ¼
ffiffiffiffiffiffiffiffiffiffi
ϵ0kT
n0e2

s
ð1Þ
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where ϵ0 is the permittivity of free space, k is the Boltzmann
constant, T is the temperature of the beam, n0 is the volume
number density of the beam, and e is the charge of the
electron. For kT ¼ 5 meV and a density of 1017 m−1=3

(commonly achieved in photoinjectors today), the Debye
screening length is approximately 1.7 μm. However, the
average interparticle spacing n−1=30 at the same density is
2.2 μm. Thus, very few electrons will be within one Debye
screening length of any given electron [15]. This situation has
been studied extensively for ultracold gas-based plasma and
electron sources, which exhibit single meVelectron temper-
atures in photoemission [16–23].
Brute force calculation of the pairwise Coulomb inter-

action scales with the square of the number of electrons,
OðN2Þ, making it prohibitively time-consuming to exactly
simulate dynamics with large number of electrons. Thus, to
accurately capture the beam dynamics, approximation
methods are used which compute pairwise interactions
of nearby particles, while approximating long-range inter-
actions using the mean-field approach. These methods
scale as OðN logNÞ for traditional tree-based methods
and OðNÞ for the fast multipole method, making them
feasible for simulation [24,25]. We will refer to these
methods as point-to-point methods.
A critical challenge in employing a classical point-

charge force model for a photoelectron source is the
unphysical divergence of the image potential at the cathode
surface. The underlying cause of the problem is that
classical equations of motion are not valid at and very
near the cathode surface. In a classical simulation, however,
the size of the integration step typically scales inversely
proportional to the gradient of the potential. Thus, near a
divergence, the integration step can limit to zero. This
produces a scale-matching problem wherein very small step
sizes must be maintained throughout the particle emission
process, which can lead to prohibitively long simulation
times. However, as will be shown below, image charge
effects significantly impact beam size and emittance
evolution, and cannot be ignored.
This work aims to extend the work on Coulomb effects in

ultracold plasma electron sources to photocathode guns,
which can potentially support even higher beam density.
We provide a new method to compute the image force
which is free of divergences and tuning parameters. Using
this model of the overall beam dynamics, we turn to
introduce new microscopic figures of merit to disentangle
the global and local effects of point-to-point interactions.
To show the generality of the new methods, we examine

beam dynamics in two very different UED beam lines based
on archetypes used in practice today: a 200 keV dc gun with
lower total initial beam density (∼1017 m−3), and a high
gradient 5 MeV rf photoinjector with higher initial beam
density (∼1018 m−3). UED is a good test case for examining
point-to-point effects as the number of particles needed per
bunch is often relatively small (105–107) in comparison to

synchrotron radiation applications, making it feasible to
simulate every particle in the bunch with modest computing
resources. Along with this, the short bunch lengths, small
spot sizes, and long coherence lengths needed to make
atomic scale resolution diffraction patternswith femtosecond
time resolution ultimately result in peak current densities
comparable to those in free electron laser injectors [1,26].
Using our new method of calculating near-photocathode

dynamics, we highlight one unique point-to-point phe-
nomenon called disorder-induced heating (DIH) which
arises very near the photocathode. DIH was originally
studied in the ultracold plasma community (see, e.g.,
Ref. [27]), but it may have significant implications for
cold photoemitted electron beams [20,28]. DIH is the
thermalization of the initial potential energy stored in the
random positions of near neighbor photoelectrons. Upon
thermalization, the particle distribution develops a charac-
teristic microscopic structure with a lack of near neighbors,
and the beam simultaneously suffers emittance growth due
to the increased temperature. For a stationary (nonaccel-
erating, no expansion) electron bunch starting with zero
temperature, the temperature rise due to DIH is given by

kTDIH ¼ Ce2

4πϵ0a
ð2Þ

where a ¼ ð3=4πn0Þ1=3 is the Wigner-Seitz radius of the
bunch and k is the Boltzmann constant. C is a dimension-
less constant which can be determined by tabulated plasma
correlation energies to be roughly C ≈ 0.45 [28,29]. The
timescale τ of the thermalization can be calculated to be a
constant fraction of a plasma period [30]. In photoinjectors,
this time is typically of the order of ten picoseconds (ps) or
less, resulting in thermalization near the photocathode
during initial acceleration. A correct image charge model
is thus critical to understand DIH in photoinjectors.
Furthermore, the beam density can change significantly
near the photocathode due to space charge expansion and
acceleration. The resulting balance has not been studied in
detail in photocathode guns before.
In this work, we introduce new methods for simulating

high-brightness photoelectron beam lines. We simulate two
UED beam lines with 0 meV MTE with multiple methods
of calculating the electrons interactions to show why these
new methods are crucial for accurately determining the
capabilities of these devices. Next, we quantify DIH via an
analysis of the resulting microscopic density distribution.
We then estimate the rms emittance increase attributable to
DIH and find that it is the dominant source of emittance
dilution in the two cases under study.

II. POINT-TO-POINT SIMULATION METHODS

A. Coulomb interactions and image charge model

The simulations shown in this paper were performed
with the space charge tracking code General Particle
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Tracer (GPT) [31] using three different algorithms. The first is
GPT’s mean-field space charge algorithm, a nonequidistant
3D multigrid Poisson solver [32], which is used to calculate
the mean-field interaction of the entire bunch, including
image charge effects. The second is the Barnes-Hut
algorithm internal to GPT [24], with a Barnes-Hut angle
parameter of 0.3, used to model point-to-point Coulomb
interactions. It does this by exactly computing the electric
fields from near neighbor particles at each time step using
Coulomb’s law whereas long-range interactions are
approximated using multipole expansions. This makes
the Barnes-Hut algorithm capable of simulating stochastic
effects like DIH and Boersch effect, while also taking into
account long-range space charge forces. However, due to
divergent fields at the cathode, the Barnes-Hut algorithm
does not allow for simple inclusion of image effects. To
include these effects, we developed a third technique which
we call the plus-minus-plus (PMP) Method.
The PMP method approximates the image charge as

arising from a mean-field calculation and the total space
charge force is calculated in a three step process as depicted
in Fig. 1. In PMP, GPT’s mean-field space charge algorithm
is used to calculate the mean-field interaction of the entire
bunch, including image effects. Subsequently, a second call
is made to the mean-field solver, but this time without the
cathode boundary condition. By subtracting this field from
the initial full mean-field space charge calculation, the
mean-field approximation of the image field alone is
extracted. The last step in the PMP process adds the
stochastic interactions to the previously obtained mean-
field image charges with the stochastic Barnes-Hut point-
to-point method.

In an Appendix, we discuss the accuracy of the
assumption of a mean-field image force. Specifically, we
compare the PMP method with another image charge
method which includes point-to-point effects via a dynami-
cal image charge potential which does not diverge [33]. The
latter requires additional computing time and tuning
parameters, and in general we find good agreement with
PMP. Thus, PMP is our method of choice throughout.
To achieve an accurate accounting of stochastic

Coulomb effects, each macroparticle represents exactly
one electron in all simulations, and all distributions are
pseduorandom, rather than quasirandom. These same
macroparticle settings were used in the mean-field simu-
lations for consistency.
To test the convergence of GPT’s mean-field space charge

algorithm, the same beam line was simulated multiple times
using different space charge solver parameters. We set a
convergence limit of 5% relative variation in rms quantities
with increasing space charge accuracy. We found that
nearly all default settings for GPT’s mean field space charge
solver were sufficient to satisfy this limit, except for the
total number of meshlines which was increased by 20%
such that the variation was below this threshold.

B. Using 90% rms figures of merit

Root-mean-squared (rms) figures of merit for beam size/
length, energy spread, and emittance are not well defined in
the presence of strong point-to-point Coulomb interactions.
This is due to the presence of large angle scattering which
generates long-tailed distributions for which rms values
diverge [34]. To avoid sensitivity to outliers, but retain the
sense of the traditional accelerator figures of merit, all
quantities presented in this paper are calculated using 90%
rms values unless otherwise denoted, wherein a subset of
the distribution containing 90% of the particles are chosen
such that the metric in question is minimized.

III. DESCRIPTION OF DC AND NCRF GUN UED
BEAM LINES

Both beam line designs considered here originated from
a multiobjective genetic algorithm optimization study,
using the mean-field space charge model, to provide an
emittance minimum at the sample plane with realistic

Image Charge
Cathode

Real Electrons

-

+

=

FIG. 1. Depiction of PMP three-step space charge calculation.
Filled in ellipses represent mean-field calculation of electric
fields, and ellipses filled with dots represent a Barnes-Hut
calculation of electric fields.

FIG. 2. Layout of the cryocooled dc gun UED beam line used in
the following simulations.
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constraints on the bunch length and spot size. These
optimizations are described in Refs. [9,35,36]. Each case
shown here is an individual from a multiobjective genetic
algorithm Pareto optimal frontier with a MTE of 0 meV.
Individuals were selected containing a charge closest to
105 electrons=pulse and were then reevalutated using the
PMP method.
The lower energy dc beam line, depicted schematically

in Fig. 2, consists of a cryocooled 200 kV dc gun [37] with
an extraction electric field of 11.25 MV=m, followed by a
solenoid, a normal conducting 3.0 GHz buncher cavity of
the Eindhoven design [38], and a second solenoid. The
beam line was optimized to have a minimal emittance at a
sample location approximately 1 m from the cathode when
emitting an electron beam with 0 meV MTE [35]. Beam
parameters are shown in Table I.
The higher energy normal conducting radio frequency

(NCRF) beam line, depicted schematically in Fig. 3,
consists of a 1.6 cell 2.856 GHz NCRF gun of the
BNL/SLAC/UCLA design [39], with a peak electric field
of 100 MV=m, launch phase of 38.6° from peak field, and
final beam energy of 5 MeV, followed by a solenoid, a 9
cell buncher cavity, and a second solenoid. The buncher is
modeled using nine copies of the first cell of the SLAC
linac [40]. The beam line was optimized to have a minimal
emittance at a sample location approximately 2.5 m from
the cathode when emitting an electron beam with 0 meV
MTE [36]. Beam parameters are shown in Table II.

IV. MACROSCOPIC BEAM EVOLUTION

The 90% rms transverse size of the beam along the dc
and NCRF UED beam line is shown in Figs. 4(a) and 5(a),
respectively. In all simulations, space charge increases
the beam size, after which the first solenoid matches the
beam size into the buncher cavity (which has a noticeable
transverse defocusing), and the second solenoid forms the
final waist. As expected from the emittance compensation

process, the emittance minimum occurs very near the beam
size waist.
In the Barnes-Hut simulation without the cathode boun-

dary condition, the initial space charge blowup leads to a
larger spot size at the first solenoid. Because of this, the
focusing elements cause the beam waist to occur earlier
than when the image force is included. Thus, omission of
the image force generates significantly different beam
dynamics.
The difference between the mean-field and PMP simu-

lation is solely due to point-to-point effects, as a mean-field
image force is included in each. It is interesting to note that

TABLE I. dc beam line simulation beam parameters.

Parameter Value

Bunch charge (fC) −14
Transverse rms size (μm) 8.1
Laser pulse length (ps) 9.8

Solenoid Solenoid

9 Cell Buncher RF Gun Sample

2.5 m

FIG. 3. Layout of the NCRF gun beam line used in the
following simulations.

TABLE II. NCRF beam line simulation beam parameters.

Parameter Value

Bunch charge (fC) −17
Transverse rms size (μm) 2.5
Laser pulse length (ps) 3.2

(a)

(b)

FIG. 4. (a) Spot size and (b) transverse normalized rms
emittance comparison between the PMP method, Barnes-Hut
method without a cathode, and mean-field space charge simu-
lations of the dc UED beam line with 0 meV MTE.
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the slightly larger spot size in PMP simulations translates to
noticeably stronger focusing downstream. In the dc gun
beam line, the stronger focusing is noted by a smaller beam
size at the focus, and in the NCRF beam line, the beam
waist is formed earlier by 5.5 cm.
The evolution of the normalized transverse rms emit-

tance for the dc and NCRF UED beam line with 0 meV
MTE is shown in Figs. 4(b) and 5(b), respectively. Starting
at an emittance of zero, the emittance quickly grows as the
beams experience both the mean-field space charge phase
space shearing, and also a growth in temperature due to the
thermalization of the initial stochastic potential energy
stored between near neighbors.
Comparing the transverse 90% rms emittance of the

Barnes-Hut method without a cathode to the PMP method,
we find that qualitatively they behave similarly. However,
due to the earlier location of the beam waist in the Barnes-
Hut simulations, the location of the emittance minima also
shifts to an earlier position.

Although at a higher beam energy, we note the NCRF
beam line exhibits a larger relative effect from point-to-
point interactions. Later, we will show that this can be
explained by the effects of DIH with a larger initial electron
number density. Though the space charge forces are more
heavily suppressed at high energy, the effects of DIH
thermalization occur at low energy near the cathode where
relativistic suppression is negligible. The timescale of the
evolution of the thermalization is a constant fraction of
the plasma period [28], which in this case is roughly 30 ps.
The value of the emittance is over a factor of 3.7 larger than
when using only the mean-field approximation when
including point-to-point effects.
It should be noted that because these beam lines were

optimized to minimize the emittance of the mean-field
space charge beam with 0 meV MTE at the sample, the
emittance in the PMP simulation is not necessarily opti-
mized to be maximally compensated at its respective
minimum. Thus, these numbers represent an upper bound
to the maximal effect of point-to-point space charge on the
emittance for these UED beam lines. However, as we will
show later, most of the emittance growth above the mean-
field case arises from microscopic DIH-like effects, which
are insensitive to small perturbations in the focusing optics.
The slice energy spread results from the two beam lines

are shown in Table III. In both beam lines, the slice energy
spread slowly varies except for jumps at their respective
gun, buncher, and beam waist. The energy spread has time
dependence affecting the second significant figure, so only
the most significant figure is reported.
In all simulations, the bunch length is approximately

constant until the buncher, after which it decreases linearly
in time. In the dc beam line, the bunch length at the sample
is 0.92 ps in the PMP simulation and 0.91 ps in the mean-
field simulation. In the NCRF beam line, the bunch length
at the sample is 0.91 ps in both simulations. Thus, point-to-
point effects do not play a large role in determining bunch
length at the sample. We note here that the bunch lengths at
the sample location are higher here than in many UED
setups which achieve temporal resolution well below 1 ps.
Optimizations of time-resolved electron scattering instru-
ments inherently have a tradeoff between transverse emit-
tance and longitudinal size, and the optimal point on this
tradeoff curve depends on the phenomenon being studied.

(a)

(b)

FIG. 5. (a) Spot size and (b) transverse normalized rms
emittance comparison between the PMP method, Barnes-Hut
method without a cathode, and mean-field space charge simu-
lations of the NCRF UED beamline with 0 meV MTE.

TABLE III. Slice energy spread in 0 meV MTE simulations.

Simulation σE
Ē before buncher σE

Ē after buncher

dc(PMP) 5 × 10−6 5 × 10−5

dc(Barnes-Hut) 5 × 10−6 5 × 10−5

dc(mean-field) 9 × 10−7 5 × 10−5

NCRF(PMP) 4 × 10−5 3 × 10−4

NCRF(Barnes-Hut) 4 × 10−5 3 × 10−4

NCRF(mean-field) 4 × 10−5 3 × 10−4
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By choosing a very small transverse emittance at the
expense of bunch length, the longitudinal dynamics are
less sensitive to stochastic effects than the transverse
dynamics, making these simulations a more stringent test
of DIH.

V. MICROSCOPIC EVOLUTION

We now move to analyze the microscopic real and phase
space distributions in an effort to determine to what extent
they follow simple predictions of beam heating via DIH,
and to what extent this heating determines the total rms
emittance growth from point-to-point effects.

A. Core emittance

One tool which can be used to analyze the microscopic
evolution of a beam is the core emittance. The core
emittance is a measure of the peak transverse phase space
density. It is defined through an emittance vs particle
fraction curve [41]. Starting with the full beam emittance
(particle fraction of 1), particles can be excluded from the
emittance calculation such that the resulting emittance is
minimized, see Fig. 6. The core emittance is defined as the
limit of the slope of the emittance vs particle fraction curve
as the particle fraction goes to 0. It is inversely proportional
to the peak transverse phase space density,

ϵc ¼
dϵ
df

����
f→0þ

¼ 1

4πρ0
; ð3Þ

where ϵ is the emittance of the beam for a given fraction of
particles, f is the particle fraction, and ρ0 is the peak phase
space density. We expect ρ0 to be invariant in mean-field
space charge systems but the introduction of point-to-point
effects can break this invariance. However, because we
compute the core emittance with a finite number of beam

particles and a finite number of bounding ellipses the value
will never be exactly zero even if we start with zero MTE.
In Figs. 7(a) and 7(b), the emittance vs fraction curves at

the emittance minima are shown for mean-field and point-
to-point space charge for the dc gun and NCRF gun UED
beam lines. Note the sharp increase in rms emittance due to
outliers when the particle fraction approaches unity. As can
be seen, for small particle fractions, the emittance of the
PMP simulation is significantly higher than that of the
mean-field simulation. This shows that point-to-point
effects not only have created more outliers but have
fundamentally degraded beam quality up to and including
the core of the beam, as would be expected from DIH. To
help illustrate this further, phase space portraits are shown
at the respective emittance minima for the two beam lines
with mean-field space charge in Figs. 7(c) and 7(d) and
with PMP space charge in Figs. 7(e) and 7(f). The decrease
in core phase space density is clearly seen by the increased
width in the γβx coordinate in Figs. 7(e) and 7(f). Note that
the faint diagonal tails in these figures are not outliers due
to stochastic interactions but the effect of slightly mistuned
optics.
The core emittance of the beamwas computed at different

points along the dc beam line, see Figs. 8 and 9 for the NCRF
gunbeam line.After a quick initial rise at low energy, the core
emittance in the point-to-point simulations remains far above
that of the mean-field simulation.
The core emittance at the sample of these simulations is

shown in Table IV. As with the transverse rms emittance,
the effects of point-to-point space charge are more distinct
in the NCRF beam line, where the number density of
electrons is higher.

B. Radial distribution function

The radial distribution function, gðrÞ, of a system
of particles relates the bulk density of particles to the local
particle density as a function of distance from a reference
particle [42]. A microscopically uniform distribution
of particles has a constant radial distribution function
excluding effects from finite system size. In this case, a
neighbor particle to a given reference particle is equally
likely to be found at any distance. However, due to the
divergence of the Coulomb interaction, the number of very
near neighbors to a reference particle in an electron beam
evolves to become zero. This is known as the Coulomb hole
and it results in a decrease of the total potential energy of
the system [43]. This release of potential energy causes
DIH and we denote the resulting mean kinetic energy each
particle gains from this heating by EDIH.
To calculate gðrÞ, the following procedure is used:

screen-based outputs are taken from chosen positions along
the beam line. Because we are interested in the dynamics of
the core of the beam, only the 10% of electrons which are
closest to the longitudinal center of the beam are used. For
each of these particles, the distance to every other selected

100%
50%
10%
5%

–1.0 –0.5 0.0 0.5 1.0

–1.0

–0.5

0.0

0.5

1.0

x (arb. units)

p
x

(a
rb

.u
n

it
s)

FIG. 6. Depiction of emittance vs particle fraction selection.
Ellipses are drawn such that they represent the phase space area
occupied by the beam using only a given fraction of the total
number of particles. Ellipse dimensions are selected such that the
emittance is minimized for each particle fraction.
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Transverse normalized rms emittance vs particle fraction plots and phase space comparison between PMP and mean-field
simulations of the two UED beam lines at the respective emittance minimum near the end of the beam lines. Subfigures (a), (c), and
(e) correspond to the dc beam line and subfigures (b), (d), and (f) correspond to the NCRF beam line. Phase space portraits from the
mean-field simulations are shown in subfigures (c) and (d) and for PMP simulations in (e) and (f) phase space portraits are shown with
linear x–px correlation removed.
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particle is calculated. By making a histogram of these
distances, we generate a plot of gðrÞ × ρN × 4πr2Δr as a
function of r, where N is the number of particles, ρ is the
bulk volume density of those particles, and Δr is the bin
size. A statistical uncertainty is assigned to each bin equal
to the square root of the number of particles in the bin.
Dividing out the r2 term, gðrÞ is found up to numerical
prefactors.
The radial distribution function shortly after emission in

the case of the NCRF UED beam line with 0 meV MTE is
shown in Fig. 10. For distances smaller than 1.5 μm, the
radial distribution function in the case of point-to-point
space charge decreases to 0 as expected, while gðrÞ of

mean-field space charge does not. This same behavior can
be seen for the dc beam line with an MTE of 0 meV.

C. DIH calculation

From the radial distribution function, the potential
energy of a particle due to its surrounding particles can
be calculated as

Epotential ¼
Z

∞

0

4πr2ρgðrÞuðrÞdr ð4Þ

where ρ is the bulk volume density of the beam and uðrÞ is
the potential energy of two electrons particles separated by
a distance r [44]. Using Eq. (4), EDIH can be calculated by
finding the difference between the potential energy calcu-
lated via the radial distribution function in the point-to-
point simulation and a calculation using the same radial
distribution function where the Coulomb hole is artificially
filled. Tests with stationary distributions which have known
EDIH show that this estimation method is accurate to within
20%, with discrepancies arising primarily due to the
determination of the peak location of gðrÞ.
This energy difference would be EDIH for all times after

heating if the beam did not change in size throughout the
simulation. Because the beam size changes, additional
calculation is required to recover EDIH. If the beam changes
in a self-similar way, such that its aspect ratio remains
constant, the energy found through this subtraction is EDIH
multiplied by the ratio of the initial average interparticle
distance to the current average interparticle distance. This
can be seen by investigating the radial scaling of Eq. (4)
noting that ρ ∝ 1=r3 and uðrÞ ∝ 1=r. Thus by multiplying
by the inverse of this factor, we can estimate EDIH assuming
DIH takes place very near the cathode. Further, it is clear

FIG. 8. Core emittance comparison between PMP and mean-
field simulations of the dc UED beam line with 0 meV MTE.

FIG. 9. Core emittance comparison between PMP and mean-
field space charge for the NCRF UED beam line with 0 MTE.

TABLE IV. Core emittance with 0 meV MTE at sample.

Beam line PMP ϵc (nm) Mean-field ϵc (nm)

dc 0.28 0.08
NCRF 0.12 0.020

FIG. 10. Radial distribution function comparison between PMP
and mean-field simulations of the NCRF UED beam line with
0 meV MTE ∼ 3 mm away from the cathode. Only a small r
portion of the distribution is plotted to show the creation of the
Coulomb hole when point-to-point space charge is used. For
comparison, the distributions were normalized such that the mean
of the radial distribution functions from 1.5 to 3.0 μm is
equal to 1.
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the assumption of self-similarity is invalid if the beam
deviates significantly from its initial aspect ratio, which can
occur when space charge forces cause significant “blow-
out” (spatial [45] or longitudinal [46]) and near most beam
waists.
The initial interparticle spacing and initial electron

density require definition, as at t ¼ 0, no beam yet exists.
To do this, we will approximate the beam as a uniform
cylinder with equivalent rms sizes as at the cathode surface.
Assuming a uniform acceleration over the small length and
timescale the beam is being emitted from the cathode, the
front of the beam will travel to a distance of L ¼ 1

2
aE0

t2,
where aE0

is the acceleration of an electron in a uniform
electric field E0, and t is the difference in time between the
first and last particle emitted. Approximating as a uniform
distribution where R ¼ 2σR and t ¼ ffiffiffiffiffi

12
p

σt, the volume of
the beam can be found as

V ¼ πR2L ≈
24πeE0

mc2
σ2xðcσtÞ2: ð5Þ

Using this volume, an initial average interparticle dis-
tance can be found as ρ ≈ ðV=NÞ1=3 and initial electron
density is n0 ≈ ðN=VÞ.
A plot of the EDIH estimate is shown in Fig. 11. There are

three main features of this plot. First, there is an initial rise
in EDIH corresponding to the time it takes for the Coulomb
hole to form, i.e., the inverse plasma oscillation frequency
of the beam is

τ ≈ 0.3
2π

ωp
¼ 0.6π

�
n0e2

mϵ0

�−1=2
; ð6Þ

where n0 is the density of the electron beam [28]. After the
initial rise there is a plateau. The mean value of this plateau
is used for the value of EDIH of the simulation and the
standard deviation of these values is treated as an

uncertainty. The drop in EDIH corresponds to the transverse
focus of the beam. During this focusing, not only is the self-
similarity assumption violated, there is another microscopic
reorganization in which the Coulomb hole is filled. This is
shown in Fig. 12. Please note that this downstream filling in
the Coulomb hole does not have a significant impact on the
core emittance of the beam anymore. This is because near
the beam waist, the transverse temperature of the of the
beam mc2ðϵ=σxÞ2 is ∼12 meV and the energy per particle
required to fill the Coulomb hole is ∼0.3 meV.

D. DIH density dependence

For a stationary electron plasma with a starting temper-
ature of zero, the energy released by DIH can be calculated
via Eq. (2). To test the density dependence of Eq. (2) in the
realistic, nonstationary case, this procedure was repeated on
simulations of the same NCRF beam line with 0 MTE,
while changing the radius of the inital beam in order to alter
its density. The result is shown in Fig. 13.

FIG. 11. Energy from disorder-induced heating as calculated
from gðrÞ in the NCRF beam line with 0 MTE and a smaller
initial density of 1017 m−3. The density was reduced by increas-
ing the initial radial size of the electron beam at the cathode.

FIG. 12. Radial distribution function comparison between of
the NCRF beam line with an MTE of 0 meVand an initial density
of 1017 m−3 before and after the beam waist. For comparison, the
distances were normalized by the average interparticle distance,
a, and the radial distribution functions, gðr=aÞ, were normalized
such that gðr=a ¼ 1.25Þ ¼ 1.

FIG. 13. Disorder-induced heating as calculated from Eq. (2)
compared to the result calculated from simulation.
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For densities of 1016 m−3 and above, the simulation
results agree with the simple stationary theory within a
factor of 2. At a density near 1015 m−1=3, the timescale for
heating is ∼1 ns, which is approximately the time it takes
the beam to enter the first solenoid. Because the beam has
had time to change significantly in size and shape, there is
no reason to expect that the approximations used in
calculating EDIH remain true, thus it will be ignored in
the following analysis. We find a that EDIH in our
simulations scales with density to the power 0.39� 0.02,
close the value of 1=3 in Eq. (2).

E. Core emittance and rms emittance contributions
from DIH

From the calculated values of EDIH, we can estimate the
expected increase in the core emittance, and rms transverse
emittance from DIH alone. This will help determine to what
extent the Coulomb hole formation determines the growth
in core and rms emittance.
For the core emittance, starting from Eq. (3), the density

in x − px space at the transverse origin can be calculated
assuming a cylindrical beam shape and a Gaussian momen-
tum distribution,

ϵc ¼
ffiffiffiffiffiffi
2π

p

4
σxσpx

: ð7Þ

The initial spread of momenta can be written in terms of
the MTE in the standard way,

σpx
¼

ffiffiffiffiffiffiffiffiffiffiffi
MTE
mc2

r
: ð8Þ

For the presented simulations, the initial MTE is 0, but
some of the DIH energy will be released in the transverse
phase space, resulting in a nonzero momentum spread. In
general, the distribution of the heating will depend on the
shape of the beam. However, in the case that the average
interparticle distance is much less than the smallest length
scale of the beam, the bulk heating effect will dominate and
the edge effects can be ignored. In this approximation, the
heating is isotropic and 2=3 of the EDIH will contribute to
the MTE of the beam. Assuming that the initial and DIH
contributions can be added in quadrature, the core emit-
tance becomes approximately,

ϵc ≈
ffiffiffiffiffiffi
2π

p

4
σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTEþ 2

3
EDIH

mc2

s
: ð9Þ

In the case of the dc (NCRF) beam line with 0 meV
MTE, the initial transverse size of the beam is 8.2 μm
(2.6 μm) and the energy from DIH is 0.65 meV (1.4 meV),
so the resulting core emittance due to EDIH is 0.18 nm
(0.070 nm).

To compare these results to those found in the previous
sections, we must take into account the increase of the core
emittance in the mean-field space charge simulation from 0,
which is an effect of finite sampling. To do this, we will
assume the effects of point-to-point space charge can be
added in quadrature to the mean-field core emittance,
analogously to Eq. (9) and as is valid for independent
rms emittance contributions. With this assumption, the core
emittance contribution of point-to-point space charge,
ϵc;P2P, can be found through a quadrature subtraction of
the mean-field core emittance from the PMP core emit-
tance. For the dc (NCRF) gun beam line, ϵc;P2P at the
sample is 0.27 nm (0.12 nm). 67% of ϵc;P2P at the sample in
the dc case is explained by EDIH (0.27 nm vs 0.18 nm), and
in the rf case, 58% of ϵc;P2P at the sample is determined by
EDIH (0.12 nm vs 0.070 nm).
For the rms transverse emittance contribution, we will

use the intrinsic emittance of the beam line [6],

ϵi ¼ σx

ffiffiffiffiffiffiffiffiffiffiffi
MTE
mc2

r
: ð10Þ

As with the core emittance, adding in 2=3 of the DIH
energy, a modification is made to the intrinsic emittance
equation,

ϵi ≈ σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MTEþ 2

3
EDIH

mc2

s
: ð11Þ

In the dc (NCRF) beam line, the intrinsic 90% transverse
emittance including EDIH is 0.27 nm (0.11 nm). We will
compare this to the quadrature subtraction of the 90%
transverse emittance of the mean-field simulation from the
PMP simulation, which we will call ϵP2P. At the emittance
minimum, ϵP2P in the dc (NCRF) beam line is 0.40 nm
(0.18 nm). The intrinsic emittance contribution from DIH
in the dc (NCRF) beam line thus accounts for 68% (61%) of
ϵP2P. The remaining difference can be attributed to the
effect of large angle scatters which kick particles far from
the beam center, seen as the tails of the emittance fraction
curve in Fig. 7(a).

VI. CONCLUSION

In this work, we have shown that as photoemitted
electron beam temperatures are made ever smaller, the
effects of the point like nature of the Coulomb interaction
become crucial to understanding photoinjector beam
dynamics. We have introduced and benchmarked a simple
method to compute the image force in a point-to-point
beam dynamics simulations free of divergences and addi-
tional tuning parameters. Using this method, we have
quantified Coulomb scattering effects on the beam phase
space density in two UED beam line archetypes. Using a
photocathode with zero intrinsic emittance, the emittance of
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the beam in both the rf and dc UED beam lines studied was
larger by a factor of at least 2, see Figs. 4(b) and 5(b), and
the core emittance is larger by a factor of at least 3, see
Figs. 8 and 9, when compared to simulation on the same
beam line but assuming mean-field space charge. In
addition, the energy released by DIH was calculated using
the radial distribution function, and the heating was found
to scale with the density to the power of 0.39� 0.03, close
to the a simple theoretical estimate of 1=3, and was shown
to be the dominant effect in both core and 90% rms
emittance growth. We found DIH contributed to the
emittance of the beam lines studied as shown in Eq. (11).
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APPENDIX A: WARM BEAM COMPARISON

In this section, the same dc and NCRF UED beam lines
were simulated using a initial beam MTE of 150 meV. By
doing so, we aim to show that the PMP and mean-field
methods converge to the same result for a warm photo-
cathode, and that Debye screen effectively mitigates point-
to-point effects.
In Figs. 14(a) and 15(a), the spot size evolution is shown

for the dc and NCRF UED beam lines, respectively, each
with 150 meV MTE. At this higher MTE, the difference
between the point-to-point and mean-field spot size has
been significantly reduced. At the beams maximal size in
the first solenoid, the deviation has been reduced from
around 2 to 0.7 μm in the dc beam line and 1.2 to 0.5 μm in
the NCRF beam line.
The evolution of the transverse rms emittance for the dc

and NCRF beam lines is shown in Figs. 14(b) and 15(b),
respectively. With an MTE of 150 meV, there is no
significant deviation in the transverse rms emittance
between the implementations of space charge as observed
at 0 meV. This validates that phtocathodes with high
emission temperatures can be successfully modeled with-
out consideration of point-to-point space charge effects.
The evolution of the core emittance at an MTE of

150 meV is shown in Figs. 14(c) and 15(c) for the dc
and NCRF UED beam lines, respectively. Outside of
fluctuations near the solenoids the core emittance in all
simulations are approximately constant. No significant
difference exists between the core emittance between
point-to-point and mean-field simulations at 150 meV.

APPENDIX B: MODIFIED IMAGE CHARGE
METHOD

The majority of this manuscript employs a mean-field
model of the image force. In this Appendix, we show this to
be a valid approximation. To do this, we analytically
investigate a pointlike image model and compare it to PMP.

We first aim to show that for particles much closer to
the cathode compared to the average interparticle distance,
the Coulombic repulsion force will be predominantly

(a)

(b)

(c)

FIG. 14. (a) Spot size, (b) transverse normalized rms emittance,
and (c) core emittance comparison between the PMP method and
mean-field space charge simulations of the dc UED beamline
with 150 meV MTE.
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longitudinal, as the transverse fields from other charges and
their images will largely cancel.
The transverse electric field from an electron a

distance d away from an infinite conducting plane

and its image charge in cylindrical coordinates is
given by,

Er ¼
1

4πϵ0

�
−er

ðr2 þ ðz − dÞ2Þ3=2 þ
er

ðr2 þ ðzþ dÞ2Þ3=2
�
:

ðB1Þ

We first will consider the effects of particles far away
from the cathode on particles which are recently emitted. At
a position much closer to the cathode (z ≪ d), this
expression is approximately,

Er ≈
1

4πϵ0

−3ezrd
2ðr2 þ d2Þ5=2 : ðB2Þ

We compare this to the longitudinal field in cylindrical
coordinates,

Ez ¼
1

4πϵ0

�
−eðz − dÞ

ðr2 þ ðz − dÞ2Þ3=2 þ
eðzþ dÞ

ðr2 þ ðzþ dÞ2Þ3=2
�
:

ðB3Þ

In the same limit, z ≪ d,

Ez ≈
1

4πϵ0

2ed

ðr2 þ d2Þ3=2 : ðB4Þ

The magnitude of the ratio of the transverse and
longitudinal electric fields in this limit of z ≪ d is����Er

Ez

���� ≈ 3zr
4ðr2 þ d2Þ : ðB5Þ

This ratio tends to 0 for small or large r and has a
maximum at r ¼ d of����Er

Ez

����
max

≈
3z
8d

: ðB6Þ

Because z ≪ d the transverse electric field will be much
smaller than the longitudinal field, and thus proving the
Coulombic repulsion force will be predominantly
longitudinal.
For an electron beam with an average interparticle

distance a, this will apply as long as a ≫ d. Therefore,
for particles that have just been emitted, if we are to model
the effects of the cathode and to avoid divergent fields for
small z, we can ignore transverse effects, and only need to
find the time it takes for a particle to travel a longitudinal
distance on the order of the interparticle distance, and its
energy at that point.
From dynamical image charge theory, a semiclassical

image potential can be computed [33], in the approximation
that the electron has no velocity parallel to the conducting
surface, the potential energy V is

(a)

(b)

(c)

FIG. 15. (a) Spot size, (b) transverse normalized rms emittance,
and (c) core emittance comparison between the PMP method and
mean-field space charge simulations of the NCRF UED beamline
with 150 meV MTE.
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Vðv; zÞ ¼ −
1

4πϵ0

e2ω2
p

4vωs
f
�
2zωs

v

�
;

fðxÞ ¼
Z

∞

0

e−αx

1þ α2
dα; ðB7Þ

where ωp is the plasma frequency of the material,
ω2
p ¼ 2ω2

s , v is the velocity of the electron, and z is its
distance from the cathode.
The energy of an electron moving at a velocity v a

distance z from the cathode with an applied electric field Ez
is thus,

E ¼ mv2

2
−

1

4πϵ0

e2ω2
p

4vωs
f

�
2zωs

v

�
− eEzz: ðB8Þ

The applied electric field will consist of the field from the
gun as well as an approximation to the longitudinal effects
of other particles. The field from the particles in front of a
given particle will be approximated as a uniformly charged
cylinder with a transverse size, R, equal to that of the beam,
and longitudinal size, L, equal to the initial bunch length
multiplied by the beam fraction that has left the cathode
previously. The image charge contribution from other
particles will be approximated as a positively charged
cylinder with equal dimensions placed directly behind
the particle. With this, the equation for the applied electric
field on the jth particle emitted is

EzðjÞ ¼ EgunðzÞ þ
eðj − 1Þ
πR2ϵ0

 
1þ R

LðjÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

LðjÞ2

s !

ðB9Þ

where LðjÞ is the length of the bunch in front of the jth
particle.
These equations can be self-consistently solved to find

the velocity and potential at any longitudinal position for a
given energy E. Calculating the velocity at several locations
near the cathode, the time it takes to reach a given distance
can be calculated as well. Because the transverse effects of
space charge can be ignored in this regime, the external
transverse field near the cathode can be used to approxi-
mate the transverse position of particle at a later distance,
although we find this effect to be insignificant for the cases
considered in this manuscript.
With this information, the beam can be initialized in

simulation at a position away from the cathode divergence
and thereafter can be modeled using a standard, pointlike
image charge method. As long as the position is chosen to
be sufficiently far from the cathode and less than the
average particle distance, the resulting simulation should
not depend heavily on the starting distance choice.
Through this analysis, we have shown that the image

charges have little effect on the transverse dynamics of

particles until a distance away from the cathode on the
order of the average interparticle distance. Because point-
to-point effects are most important for interactions at a
distance less than the average interparticle distance, a
mean-field implementation of the image charge, such as
is done through the PMP method used in this paper, should
produce correct results as long as the energy modulation of
the produced particles by their images is correct.
In Figs. 16 and 17, the 0 meV MTE transverse

normalized rms emittance results for the DC and NCRF
beam line are shown, respectively, now including results
from the modified image charge method discussed in this
Appendix. E was chosen such that the minimum kinetic
energy of an electron was 5 meV, on the order of the
smallest MTE measured today. The particles were started at
a distance 0.5 μm away from the cathode. Deviations in the
emittance from the PMP method are less than 10%
throughout the simulations.

FIG. 16. Transverse normalized rms emittance comparison for
point-to-point, mean-field, and modified image charge simula-
tions of the dc UED beam line with 0 meV MTE.

FIG. 17. Transverse normalized rms emittance comparison for
point-to-point, mean-field, and modified image charge simula-
tions for the NCRF UED beam line with 0 meV MTE.
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