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The space-charge potential can be a source of various resonances in high-intensity hadron bunches
traveling in linear accelerators at relatively low energy. Those natural resonances, which may occur even
without external driving fields, have to be avoided carefully to minimize undesired beam loss. We perform
self-consistent multiparticle simulations systematically to locate major resonance stop bands in the tune
diagram, starting from equipartitioned and nonequipartitioned beams. Serious excitation of synchrobeta-
tron resonances is confirmed, depending on the emittance condition at injection. It is demonstrated that a
synchrobetatron difference resonance of any order can be suppressed strongly by controlling the ratio of the
transverse and longitudinal projected emittances. The equipartitioned linac design is shown to broaden the
usable operating area in the tune space, though that has almost nothing to do with thermodynamic effects.
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I. INTRODUCTION

The natural Coulomb interaction among charged par-
ticles plays a crucial role in the performance of modern
accelerators that transport high-intensity hadron beams
[1,2]. The space-charge-induced effect is particularly
severe in an injector linac operating at relatively low
energy. Since the beam is exposed to periodic driving
potentials created by focusing magnets and radio-frequency
(rf) field, it may be resonantly unstable when the machine
working point is not properly chosen. Even if the external
driving forces are perfectly linear, a variety of nonlinear
resonances arise due to the nonlinear nature of the Coulomb
potential [3–10].
In a linac, the bunch length is often comparable to the

transverse beam size; the bunch is more or less spherical or
ellipsoidal unlike a typical long hadron beam accumulated
in the synchrotron that follows. The interplay between the
transverse betatron motion and longitudinal synchrotron
motion will then become more active, giving rise to
possible coupling instabilities. The most powerful and
effective approach to such a collective beam-dynamics
issue is the use of self-consistent simulation codes [11,12].
We here employ the particle-in-cell (PIC) code “WARP” to
explore the space-charge-driven resonance over a wide

parameter range, taking the standard drift-tube linac (DTL)
structure into account.
The transverse beam focusing is provided by arranging

quadrupole magnets along the beam line. The most popular
arrangement pattern for a DTL is the so-called “FODO”
(Focusing-Drift-Defocusing-Drift) consisting of two quad-
rupole magnets of opposite polarities [2,13]. In the longi-
tudinal direction, the beam is focused by the rf accelerating
field between the drift tubes.
As outlined in Sec. II, the simple sinusoidal focusing

potential is taken for this simulation study to model the
FODO lattice. The variation of the longitudinal focusing
force along the beam orbit is also approximated by the
sinusoidal waveform. After defining the root-mean-squared
(rms) tune depressions, i.e., a measure of the beam density
in phase space, we introduce incoherent and coherent
resonance conditions in Sec. III. A brief discussion of
the coherent quadrupole-mode stability is made in Sec. IV
by solving the three-dimensional (3D) rms envelope
equations. We then proceed in Sec. V to systematic
WARP simulations that reveal the existence of diverse
coupling and noncoupling resonance bands in the tune
diagram. Section VI is devoted to the demonstration of
difference-resonance suppression by conditioning the
initial beam distribution. The present numerical results,
summarized in Sec. VII, will be useful in designing next-
generation high-intensity linacs as well as in optimizing the
operating parameters of existing hadron linacs.

II. MODEL

For the sake of simplicity, we only consider the linear
external fields indispensable to focus the beam in all
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three dimensions. This allows us to concentrate upon
nonlinear effects induced solely by the space-charge
potential ϕsc. Nonlinearities originating from the linac
structure and mechanical errors unavoidable in reality will
enhance a part of the intrinsic space-charge-driven reso-
nances studied here.
The longitudinal linear focusing potential alone never

satisfies Maxwell’s equations; it is always accompanied by
an axisymmetric transverse defocusing term. The betatron
motion is thus affected by the gap field, which is known as
the rf defocusing (RFD). Leaving dominant linear terms
only, we reach the following simplified Hamiltonian for
the fundamental study of an intense hadron bunch traveling
in a DTL [14]:

H ¼ p2
x þ p2

y þ p2
z

2
þ K⊥ðsÞ

2
ðx2 − y2Þ

þ KkðsÞ
2

�
z2 −

x2 þ y2

2

�
þ Iqϕscðx; y; z; sÞ; ð1Þ

where the independent variable is the path length s along the
beam line,K⊥ andKk are the s-dependent periodic functions
determined by the lattice structure, and Iq is a constant
proportional to the generalized beam perveance. The period
of the transverse focusing function K⊥ðsÞ is equal to the
length of a unit FODO cell, denoted by L. Assuming that all
drift tubes contain a quadrupole magnet inside, we have two
rf gaps in every transverse focusing period. The period of
KkðsÞ is then L=2. The beam receives no linear defocusing
force in the longitudinal direction unless the principle of
alternating phase focusing is applied [15–17].
In the present work, we replace the stepwise functions

K⊥ and Kk by the most dominant sinusoidal harmonics to
model the standard FODO lattice. As illustrated in Fig. 1,
the wavelength of K⊥ is twice longer than that of Kk. The
longitudinal focusing function Kk is always positive. It has
been confirmed experimentally and numerically that the
sinusoidal lattice has the resonance feature very similar to
that of the FODO lattice [18,19]. The locations of major
stop bands do not essentially change depending on which
lattice is chosen.
According to our past experience, the WARP code has a

better convergence with the sinusoidal focusing, which is
most likely due to the smooth variation in the envelope
functions. It is unnecessary in this simple model to adjust
the step size of numerical integration at the entrance and
exit of each magnet, depending on extra parameters (not
very essential to the fundamental feature of resonances)
such as the quadrupole occupancy factor. In addition, we
are preparing for the novel tabletop experiment of space-
charge effects in short hadron bunches by means of the
ion-trap system called “Simulator of Particle Orbit
Dynamics” (S-POD) [18–21]. As the S-POD typically
employs the sinusoidal rf potential for ion confinement,

the use of the present model is most convenient for us to
make a direct comparison of PIC simulation results with
forthcoming experimental data.
The rms beam size in w-direction is defined by aw ¼ffiffiffiffiffiffiffiffiffi
hw2i

p
where w stands for either x or y or z, and the symbol

hw2i means taking the average of the quantity w2 over the
whole phase space. Sacherer proved that aw satisfies the
rms envelope equation

d2aw
ds2

þ ½KwðsÞ − ΓgwðsÞ�aw −
ε2w
a3w

¼ 0; ð2Þ

where Γ is the beam perveance, εw is the rms emittance
given by εw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw2ihp2

wi − hwpwi2
p

, and gwðsÞ depends
on the rms beam sizes of the three directions as follows:

gwðsÞ ¼
3

2
λ3

Z
∞

0

dξ

ða2w þ ξÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2x þ ξÞða2y þ ξÞða2z þ ξÞ

q ;

where λ3 is a constant that takes a value close to 1=5
ffiffiffi
5

p
regardless of the detail of the particle distribution function
[22]. The transverse and longitudinal focusing functions
are given by Kx ¼ K⊥ − Kk=2, Ky ¼ −K⊥ − Kk=2, and
Kz ¼ Kk according to Eq. (1). The effective phase advance
μw of w-direction, depressed by the space-charge potential,

FIG. 1. Sinusoidal focusing model.
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can be evaluated by substituting the stationary solution
of Eq. (2) in

μw ¼
Z

sþL

s

εw
a2w

ds: ð3Þ

μw converges to the bare phase advance μ0w at the zero
intensity where Γ ¼ 0. The rms tune depression of
w-direction is defined by ηw ¼ μw=μ0w that ranges from
0 (high-density limit) to 1 (low-density limit). ηw is almost
independent of what particle distribution the beam pos-
sesses in phase space, because of the insensitivity of Eq. (2)
to the distribution function.
In the following (except for an example in the

Appendix B), we take the symmetric transverse focusing
into account, requiring μ0x ¼ μ0yð≡μ0⊥Þ. This condition is
naturally fulfilled if the focusing and defocusing quadru-
pole magnets have an equal field gradient, in other words,
the two Q-magnets in a FODO cell are identical. The
symmetric focusing is a sort of standard choice in linacs,
but in synchrotrons, usually avoided for the reason that the
so-called “Montague resonance” may possibly occur at
high beam density [23]. Such a coupling resonance in the
transverse degrees of freedom can, however, be strongly
suppressed by choosing a proper emittance ratio at injec-
tion. PIC simulations have shown that no serious difference
resonance is activated under the Montague’s condition
as long as εx=εy ¼ 1 [24], which is confirmed even
experimentally with the S-POD system [19]. We thus
assume εx ¼ εyð≡ε⊥Þ throughout the present study.

Since μ0x ¼ μ0y and εx ¼ εy, the horizontal and vertical
tune depressions are also equal, namely, ηx ¼ ηyð≡η⊥Þ.
The transverse bare phase advance in the absence of

the rf field ðKk ¼ 0Þ, determined solely by the quadrupole
focusing magnets, is always greater than μ0⊥ that includes
the effect of RFD. The quadrupole magnets make no direct
effect on the synchrotron oscillation, so the longitudinal
bare phase advance σ0k is simply equal to μ0z defined by
Eq. (3). We use the symbols σk and εk, instead of μz and εz,
to express the space-charge-depressed synchrotron phase
advance and longitudinal rms emittance.
The matched envelopes ax, ay, and az calculated from

Eq. (2) are depicted in Fig. 2. We recognize that the
envelope variation is very similar between the sinusoidal
lattice and FODO lattice. This is a primary reason why
these two types of lattices have almost the same resonance
feature.

III. RESONANCE CONDITIONS

Before proceeding to numerical simulation data, we
propose a simple formula that hopefully predicts the
approximate locations of low-order resonance stop bands
in the stability map. The Coulomb force generated by
each individual particle reaches a long distance. It would,
therefore, be quite reasonable to presume that the par-
ticles forming the core of an intense beam act in a
collective manner.
The beam core has to be defined in the full phase

space. In the 3D case of interest to us here, six canonical
variables are usually needed to distinguish the core domain.

(a)

(b)

FIG. 2. Transverse and longitudinal rms envelopes matched to (a) the standard FODO lattice, and (b) the sinusoidal lattice in Fig. 1.
The operating phase advances are set at ðμ0⊥; σ0kÞ ¼ ð55°; 55°Þ in both cases. As an example, we have assumed an equipartitioned
proton beam propagating at the kinetic energy of 10 MeV through a unit cell of 1 m long. The transverse rms emittance and tune
depression are adjusted to ε⊥ ¼ 1.0 πmm · mrad and η⊥ ¼ 0.7.
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Particles with relatively high energies in the beam rest
frame stay outside the core, forming the tail or, in other
words, the halo. These tail particles will act more or less in
an incoherent manner because of their weak Coulomb
coupling with the core. No general formula is known to
define the core boundary as a function of beam density, but
the emittance growth of tail origin is separable by checking
the total energies of individual particles at injection, see
e.g., Ref. [25].
When the space-charge interaction is negligible, each

single particle resonates with the alternating gradient (AG)
lattice under the condition

n⊥μ0⊥ þ nkσ0k ¼ 2πn; ð4Þ

where n⊥, nk, and n are all integers. The driving term of this

resonance is proportional to xjnxjyjnyjzjnkj where nx and ny
are integers related to n⊥ as n⊥ ¼ nx þ ny. The resonance
order is m ¼ jnxj þ jnyj þ jnkj.
The single-particle resonance condition in Eq. (4) needs

to be modified at high-beam density. For this purpose, the
bare phase advances ðμ0⊥; σ0kÞ in Eq. (4) is often replaced
by the space-charge-depressed ones ðμ⊥; σkÞ, considering
the repulsive effect from the Coulomb potential:

n⊥μ⊥ þ nkσk ¼ 2πn: ð5Þ

Equation (5) is referred to as the incoherent resonance
condition. This type of resonance is expected to take
place in the beam tail where individual particles only
weakly couple with the core [25–27]. The shifts of the
effective phase advances from their design values, i.e.,
Δμ⊥ ≡ μ0⊥ − μ⊥ and Δσk ≡ σ0k − σk, are not measurable.
They depend on which particle we observe and generally
become larger for a particle sitting closer to the center
of the core.
The core stability will be affected by some kind of

collective mechanism due to the long-range nature of
Coulomb interaction. The oscillation amplitudes of par-
ticles in the core do not resonantly grow under the
incoherent condition in Eq. (5), which has been verified
repeatedly by self-consistent theories and numerical
simulations, at least in one-dimensional (1D) and two-
dimensional (2D) cases; linearized Vlasov theories do not
predict incoherent instabilities in a matched beam core
[3–6,27,28] and PIC simulations also show no significant
emittance blowup even when particles deep inside the core
satisfy the incoherent resonance condition [25,26,29,30].
The basic mechanisms of resonances in a matched beam
could thus be classified into two main categories, namely,
the coherent resonance in the core and incoherent reso-
nance in the tail. The coherent core resonance of high order
is very weak and believed to be Landau-damped or hardly
detectable in practice. Each coherent instability band of low

order is accompanied in many cases by the incoherent tail
resonances of twice the order. Since the incoherent tune
shifts of tail particles are usually not so large as those of
core particles, the tail-resonance region lies below the low-
tune boundary of the core-resonance band [25–27]. In a
strongly mismatched or already collapsed beam, however,
a part of tail particles may have large tune shifts in a
particular direction. As remarked above, it is vital to pay
attention to the particle distribution in six-dimensional
full phase space, rather than its projection onto a certain
degree of freedom, for the accurate identification of the
beam core and tail.
The core motion can be decomposed into collective

oscillation modes whose phase advances per cell depend on
the beam density. Theoretically, a coherent mode becomes
unstable when its oscillation tune is near a half integer [6].
We recently introduced a simple formula to locate the
coherent core-resonance bands quickly and easily in
betatron tune space [19,25–27]. The proposed 2D reso-
nance condition can be expressed as nxμ0x½1 − Cm0 ð1 −
ηxÞ� þ nyμ0y½1 − Cm0 ð1 − ηyÞ� ¼ πn0 where n0 is an integer,
m0 ¼ jnxj þ jnyj, and Cm0 is a positive constant depending
only on the resonance order m0. The coherent tune-shift
factor Cm0 is less than unity but gradually increases for a
higher order mode [6,28,30]. Notice that, unlike in Eqs. (4)
and (5), the right-hand side is π (180°) times integer instead
of 2πn. We have confirmed under a variety of initial
conditions that, in the beam-density range typical in
high-intensity hadron synchrotrons, this simple formula
well explains the Vlasov prediction based on the
Kapchinsky-Vladimirsky model [27,31–33].
The 2D coherent betatron resonance conjecture above

must be generalized to include the synchrotron resonance
when the beam is bunched. The most straightforward
generalization should be the following:

n⊥μ0⊥½1 − Cmð1 − η⊥Þ� þ nkσ0k½1 − Cmð1 − ηkÞ� ¼ πn0;

ð6Þ

where the symbol ηk, instead of ηz, is used for the
longitudinal rms tune depression. For even n0, Eq. (6)
naturally agrees with the single-particle resonance con-
dition (4) at the low beam-density limit, i.e., η⊥; ηk → 1.
According to the 1D Vlasov theory by Sacherer, the tune-
shift factors of low-order modes are given by C2 ¼ 0.750,
C3 ¼ 0.875, and C4 ¼ 0.922 [28]. Similar numbers are
reached in another Vlasov theory based on the waterbag
model [6]. We have also concluded, through systematic PIC
simulations for coasting beams, that C2 ≈ 0.7, C3 ≈ 0.8,
and C4 ≈ 0.9 [26]. These approximate values determined
numerically shall be adopted in the following sections.
Equation (6) has been linearized with respect to the

space-charge-induced rms tune shifts defined by Δμ̄⊥ ≡
ð1 − η⊥Þμ0⊥ and Δσ̄k ≡ ð1 − ηkÞσ0k, just like the previous
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2D resonance conjecture. This linearization impairs the
accuracy of locating resonance bands because the phase-
space density of a hadron bunch in a linear machine can be
much higher than that in a circular machine. The concise
resonance criterion as in Eq. (6) will nonetheless help to
make a crude but quick estimate of dangerous parameter
ranges where the possible beam-quality deterioration or
even serious particle losses may occur in linacs.

IV. RMS ENVELOPE ANALYSIS

Provided that the transverse density profile of a coasting
beam has elliptical symmetry, the 2D envelope equations
become totally independent of how the particles are
distributed in four-dimensional phase space [22]. Even
for a bunched beam, if its density has ellipsoidal symmetry
in real space, the 3D envelope equations depend only
very weakly on the phase-space distribution function. The
envelope equations could, therefore, be employed to
examine the stability of the linear (m ¼ 2) coherent modes
that actually possess such symmetry.
The stability of the stationary (matched) solution to the

2D envelope equations against perturbation was analyzed
in detail by Struckmeier and Reiser [34]. Their perturbative
approach was recently applied by Qiang to the 3D envelope
equations in order to explore the bunched-beam stability
[35]. We here follow his analysis to figure out the region of
the linear-mode instability in the so-called “tune diagram.”
A couple of typical diagrams on the basis of the sinusoidal
focusing model are presented in Fig. 3. Equation (6)
predicts a transverse noncoupling resonance and a syn-
chrobetatron resonance along solid lines. The former
resonance near the betatron phase advance of 90° per cell
is sometimes referred to as the “envelope instability”

studied previously by many researchers [1,4,34,36–39].
A detailed discussion about the latter type of sum resonance
can be found in Ref. [40]. Note that the envelope instability
band in the constant-intensity case of Fig. 3(b) is slightly
curved because the transverse tune depression varies
depending on the operating point.
The envelope equations cannot describe the effect of

the skew driving term, which is why the linear difference
resonance along μ0⊥ − σ0k ≈ 0 is missing in Fig. 3 [25].
The sum resonance observed here is a sort of confluent
instability that should be very weak and thus probably
causes no serious effect in reality. In PIC simulations, this
line appears much more clearly due to the existence of the
linear coupling terms proportional to xz and yz. Even the
linear difference resonance is excited when there exists an
emittance imbalance between the transverse and longi-
tudinal directions.
It is worth noting that no synchrotron resonance is

activated near σ0k ¼ 90°. Even when σ0k is as large as
μ0⊥, the longitudinal breathing motion turns out to be
almost negligible as is evident from the example in Fig. 2.
Another point, presumably more essential, is that the
longitudinal envelope modulation within the first half
of the unit cell looks identical to that within the latter
half. The synchrotron phase advance per actual oscillation
period is, therefore, a half of σ0k. These facts will explain
the weakness of the pure synchrotron resonance corre-
sponding to the n⊥ ¼ 0 case in Eq. (6).

V. SELF-CONSISTENT MULTIPARTICLE
SIMULATIONS

A detailed numerical study beyond the envelope analysis
was carried out by the help of the WARP code that enables

FIG. 3. Linear-mode stability predicted by the 3D rms envelope equations. Red lines indicate the positions of the second-order
(m ¼ 2) resonances expected from Eq. (6) with C2 ¼ 0.7. In the left panel (a), the equipartitioning condition is applied over the whole
tune space with the transverse tune depression η⊥ fixed at 0.8. In the right panel (b), the beam intensity (perveance) is kept unchanged.
η⊥ thus depends on the operating point. The intensity is determined so as to achieve η⊥ ¼ 0.8 at ðμ0⊥; σ0kÞ ¼ ð55°; 55°Þ.
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us to make a self-consistent exploration of bunched-beam
stability [12]. We again took the sinusoidal focusing model
introduced in Sec. II. The beam transport channel consid-
ered here is 100 AG cells long. The number of total
sinusoidal periods in the longitudinal direction is doubled
as each AG cell has two rf gaps. The initial particle
distribution is always matched to the periodic lattice,
including the Debye screening effect from the space-charge
potential. Such a fine-grained matching procedure is
strongly demanded at high-beam density to avoid mis-
match-induced emittance growth that obscures the signa-
tures of weak nonlinear resonances. The importance of the
self-consistent matching is illustrated in Appendix A.
Additional information about the case of asymmetric trans-
verse focusing ðμ0x ≠ μ0yÞ is also given in Appendix B.

A. Stop bands in initially equipartitioned beams

Let us start from the case where the initial beam
parameters satisfy the so-called “equipartitioning
condition” [41]:

εk
ε⊥

¼ η⊥μ0⊥
ηkσ0k

: ð7Þ

This condition is thought to broaden the stable operating
range of a linac while, from a thermodynamic point of view,
the energy equipartitioning should develop much more
slowly than the timescale considered in our WARP simu-
lations here. The DTL at the Japan Proton Accelerator
Research Complex (J-PARC) was designed to meet the
above requirement when necessary [42,43]. The equiparti-
tioning scheme is implemented even into the recent design
of an rf quadrupole linac [44].
The stability map in Fig. 4 is made up of 61 × 61 WARP

data points obtained with initially equipartitioned waterbag
beams. The abscissa is the bare phase advance μ0⊥ of the
single-particle betatron motion calculated together with
the RFD effect. The solid and dashed lines indicate the
locations of the second-order (m ¼ 2) and third-order
(m ¼ 3) coherent resonances predicted by the conjecture
in Eq. (6).
As expected, it is difficult to find a good operating area in

the range μ0⊥ > 90°. Considerable emittance growth has
also occurred along the linear synchrobetatron resonance
line with ðn⊥; nk; n0Þ ¼ ð1; 1; 1Þ discussed by Hofmann and
Boine-Frankenheim [40]. The linear betatron and synchro-
betatron instability bands become wider at higher beam
density, covering the regions μ0⊥ > 90° and μ0⊥ þ σ0k >
180° almost entirely. No serious synchrotron resonance
can be seen in Fig. 4, which supports the argument in
Ref. [40] as long as the lattice periodicity is maintained in a
sufficient level [45]. On the other hand, the excitation of
weak nonlinear betatron resonances is observed below μ0⊥
of 90° per cell along the lines with ðn⊥; nk; n0Þ ¼ ð3; 0; 1Þ
and (4, 0, 1).

Figure 5 shows the WARP data obtained at higher beam
density. The initial parameter setting is similar to the case in
Fig. 4, but η⊥ has been reduced to 0.7. At this density, the
high-μ0⊥ region above 90° is completely filled with wide
resonance bands. A couple of betatron resonance bands are
found again below 90°, which presumably correspond to
those seen in Fig. 4 along the third-order and fourth-order
coherent instability lines. These two emittance-growth bands
in the waterbag beam can actually be attributed to the core
instabilities of the low-order nonlinear modes. Figure 6
exhibits the transverse phase-space configurations at the exit
of the 60th AG cell when the bare phase advances are set
either at the point (A) or at the point (B) in Fig. 5(b). The
clear deformation pattern of the beam core indicates the
octupole-mode instability at the point (A) and the sextupole-
mode instability at the point (B). The deviations of the
observed betatron resonance bands from the theoretical
expectation (dashed lines), however, look significant espe-
cially in the Gaussian case, which suggests a possibility that
the incoherent mechanism in the beam tail might beworking.
The linearization of the resonance condition with respect the
rms tune shifts is also certainly an error source at such high
density. Further careful investigations are needed to resolve
this issue and improve the accuracy of stop-band prediction.

FIG. 4. WARP simulation result obtained with the equiparti-
tioned waterbag distribution. PIC simulations were done at
3721ð¼ 61 × 61Þ different operating points uniformly distributed
in the range 36° < μ0⊥; σ0k < 144°, which enables us to identify
instability bands wider than about 2°. The emittance-growth rates
evaluated at the exit of the 100th AG cell are color-coded in the
tune diagram. η⊥ is adjusted to 0.8 over the whole tune space. The
transverse emittances are also fixed at injection, while we choose
the initial longitudinal emittance so as to meet the equipartition-
ing condition. Black lines indicate the positions of low-order
coherent resonances predicted by Eq. (6) with C2 ¼ 0.7,
C3 ¼ 0.8, and C4 ¼ 0.9. Three numbers beside each line re-
present ðn⊥; nk; n0Þ.
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B. Stop bands in nonequipartitioned beams

The equipartitioning condition in Eq. (7) is not met in
many practical cases. It is thus important to ask what
happens when the condition is broken. A self-consistent
theory was developed by Hofmann to describe the stability
properties of an anisotropic uniform-density beam propa-
gating through a uniform focusing channel [5]. He derived
the dispersion relations of various eigenmodes and con-
cluded that beams in nonequipartitioned linac designs
with medium or weak space-charge tune depression
can be expected to be stable and thus not subject to
emittance exchange.
WARP simulations were performed with Gaussian beams

matched to the sinusoidal lattice but not equipartitioned

initially. The left panel (a) in Fig. 7 shows the horizontal or
vertical rms emittance growth at the exit of the 100th AG
cell, whichever is greater. The longitudinal emittance
growth is plotted in the right panel (b). Unlike in the
previous cases of Figs. 4 and 5, the rms emittances of all
three directions and the beam intensity are maintained in
Fig. 7, so Eq. (7) no longer holds. Additional synchrobeta-
tron resonances invisible in the equipartitioned case have
been activated clearly. We also recognize that, under the
initial condition adopted here, the emittance flows from the
synchrotron motion to the betatron motion in the region
σ0k > μ0⊥. The direction of the emittance flow is reversed
in the region σ0k < μ0⊥.
Figure 8 shows another nonequipartitioned case where

the initial rms emittances in the longitudinal and transverse
directions are fixed at the values that achieve a certain ratio
εk=ε⊥. In this simulation, the bunch intensity was deter-
mined first under the equipartitioning condition such that
η⊥ ¼ 0.7 at the operating point ðμ0⊥; σ0kÞ ¼ ð57.6°; 57.6°Þ
in the left panel and at the operating point ðμ0⊥; σ0kÞ ¼
ð57.6°; 36.0°Þ in the right panel. We then adjusted the
emittance ratio while keeping the intensity, and rematched
the anisotropic beam to the lattice. The resultant rms tune
depression corresponding to the case of Fig. 8(a) is shown
in Fig. 9. We see that η⊥ (ηk) tends to decrease at lower μ0⊥
(σ0k). In the case of Fig. 8(b), η⊥ varies similarly though ηk
comes somewhat closer to unity, in other words, the
longitudinal bunch density is a bit lower compared with
the case of Fig. 8(a). Several synchrobetatron difference
resonance bands are enhanced considerably in both
Figs. 8(a) and 8(b) by the initial emittance imbalance that
breaks the condition in Eq. (7). The primary source of the
strong diagonal band is believed to be the second-order
coupling term rather than the fourth-order.
According to the conjecture in Eq. (6), the instabilities of

the quadrupole (m ¼ 2) and sextupole (m ¼ 3) modes are
expected along the solid and dashed lines in Fig. 8, all of
which roughly agree with the PIC observations. We suspect
that particles in the Gaussian tail might be responsible for
some of weak emittance-growth bands [25–27], but in any
case, there seems to be no essentially new instability
mechanism peculiar to an anisotropic beam. All observed
instability bands should be interpreted as a consequence of
regular resonances that obey a simple formula like Eq. (6).

VI. SUPPRESSION OF SYNCHROBETATRON
DIFFERENCE RESONANCE

PIC data in the last section suggests that an exchange of
projected emittances between degrees of freedom takes
place more seriously in a bunch with a larger emittance
imbalance. The basic process seems to be simply an
emittance transfer on synchrobetatron difference resonan-
ces in a periodic lattice, rather than any strong thermody-
namic response toward the equipartitioned state (though

FIG. 6. Horizontal phase-space distributions after the waterbag
beam goes through 60 AG cells at the operating points (A) and
(B) in Fig. 5(b). As an example, we have assumed a 10 MeV
proton bunch whose horizontal emittance is 0.1355 πmm · mrad
at injection.

FIG. 5. WARP simulation results obtained with (a) the Gaussian
beam and (b) the waterbag beam. The emittance growth is
evaluated at the exit of the 100th AG cell. The initial value of
η⊥ is fixed at 0.7 everywhere. The transverse rms emittance ε⊥ is
also maintained in both cases, but the longitudinal parameters ηk
and εk are determined at each operating point so as to meet the
equipartitioning condition. The locations of the noncoupling
sextupole (m ¼ 3) and octupole (m ¼ 4) resonances expected
from Eq. (6) with C3 ¼ 0.8 and C4 ¼ 0.9 are indicated by dashed
lines. Three numbers in the picture represent ðn⊥; nk; n0Þ. The
phase-space distributions of the waterbag beam at the operating
points (A) and (B) are exhibited in Fig. 6.
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some weak emittance flow was observed in Fig. 7 without
resonance). The transport distance over 100 AG cells is
obviously too short for an anisotropic beam to reach a state
of thermodynamic equilibrium. Besides, the effect of
interparticle Coulomb collisions is not incorporated in
PIC simulations. The positions of the emittance-growth
bands enhanced by an initial anisotropy can be predicted
reasonably well by the simple resonance formula. If this
anisotropy-induced instability has nothing to do with the
natural thermodynamic process, we might be able to
mitigate it rather easily. In the case of coasting beams,
the emittance transfer between the two transverse directions
can actually be suppressed under the very simple condition
that εx=εy ¼ jnx=nyj [26], which applies to the coupling

resonances driven by the term xjnxjyjnyj with nxny < 0. We
anticipate that a similar argument should hold even for
synchrobetatron resonances in bunched beams.
Following the previous work, we define the emittance-

based quantity

Λðn⊥; nkÞ≡ ε⊥
n⊥

þ εk
nk

: ð8Þ

If our expectation is correct, the synchrobetatron difference
resonance with any combination of n⊥ and nk ðn⊥nk < 0Þ
could be eliminated under the condition Λðn⊥; nkÞ ¼ 0.
It does not matter whether the beam is initially

FIG. 8. WARP simulation results obtained with nonequipartitioned beams. The initial distribution is the Gaussian type that has the rms
emittance ratio of (a) εk=ε⊥ ¼ 3 and (b) εk=ε⊥ ¼ 10. The bunch intensity and all projected emittances at injection are fixed over the
whole tune space. The color is chosen based on largest emittance growth of the three directions at the exit of the 100th AG cell. The solid
and dashed lines are obtained from Eq. (6) for m ¼ 2 and 3. Three numbers in the left picture represent ðn⊥; nk; n0Þ.

FIG. 7. WARP simulation result obtained with a nonequipartitioned Gaussian distribution. The transverse and longitudinal emittance
growth rates at the exit of the 100th AG cell are plotted separately in the left panel (a) and the right panel (b). The beam intensity is fixed
at the value that gives η⊥ ¼ 0.7 at the operating point ðμ0⊥; σ0kÞ ¼ ð57.6°; 57.6°Þ.
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equipartitioned or anisotropic. This assertion has been
partially verified by the PIC data in the last section; the
difference resonance with n⊥ ¼ −nk was always very weak
when ε⊥ ¼ εk.
Let us try to carry out further verification, paying

attention to nonlinear stop bands in Figs. 7 and 8.
Third-order synchrobetatron difference resonances are
excited in both figures along the lines with ðn⊥; nk; n0Þ ¼
ð2;−1; 0Þ and ð1;−2; 0Þ. The condition Λðn⊥; nkÞ ¼ 0

leads to the emittance ratio εk=ε⊥ ¼ 0.5 for the former
resonance and εk=ε⊥ ¼ 2 for the latter. We performed
WARP simulations, adjusting the initial emittance ratio to
these specific values. The coupling instability along the line
ðn⊥; nk; n0Þ ¼ ð2;−1; 0Þ is successfully suppressed in the
right panel of Fig. 10 by setting ε⊥ twice larger than εk at
injection. Similarly, the emittance growth along the line
ðn⊥; nk; n0Þ ¼ ð1;−2; 0Þ has disappeared in Fig. 11 under
the condition εk=ε⊥ ¼ 2. Note, however, that the linear
synchrobetatron resonance with ðn⊥; nk; n0Þ ¼ ð1;−1; 0Þ

has become serious in both cases due to the breakdown
of the condition Λð1;−1Þ ¼ 0 satisfied originally in Fig. 7.
An important question is why the three major synchro-

betatron difference resonances with ðn⊥; nk; n0Þ ¼
ð1;−1; 0Þ, ð2;−1; 0Þ and ð1;−2; 0Þ, excited clearly in the
nonequipartitioned cases, have vanished simultaneously in
Figs. 4 and 5. This does not imply the thermodynamic
enhancement of beam stability in the equipartitioned state
but can readily be explained with Eq. (8). The condition
Λðn⊥; nkÞ ¼ 0 for resonance suppression requires the
emittance ratio εk=ε⊥ ¼ −nk=n⊥. Combining this magic
ratio with Eq. (7), we find

n⊥η⊥μ0⊥ þ nkηkσ0k ¼ 0 ð9Þ

that lies close to the lines defined by Eq. (6) with n0 ¼ 0
unless the beam density is extremely high. In fact, Eq. (9)
can be derived by putting Cm ¼ 1 and n0 ¼ 0 in Eq. (6).
Since Cm is only a bit smaller than unity for any collective
modes (except for the dipole), an equipartitioned bunch
automatically fulfills Λðn⊥; nkÞ ≈ 0, which considerably
weakens all synchrobetatron difference resonances with
n0 ¼ 0. The contour plots in Fig. 12, corresponding to the
case of Fig. 4, verify that Λðn⊥; nkÞ becomes close to zero
along all three difference resonance lines mentioned above.
Essentially the same resonance-suppression effect under
the equipartitioning condition has been confirmed for
coasting beams as well [26,27].

VII. CONCLUDING REMARKS

We have conducted a comprehensive numerical study of
resonant instability in an intense hadron bunch exposed to

FIG. 9. Rms tune depressions in (a) the transverse direction and
(b) the longitudinal direction, under the condition assumed in
Fig. 8(a).

FIG. 10. WARP simulation results obtained under the initial
conditions (a) εk=ε⊥ ¼ 1 and (b) εk=ε⊥ ¼ 0.5. The largest
emittance growth of the three directions is taken to choose the
color at each operating point. The result in Fig. 7 is replotted in
the left panel (a) for comparison. We have changed the initial
emittance ratio εk=ε⊥ from 1.0 to 0.5 in the right panel (b),
maintaining the beam intensity.
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periodic focusing forces in all three degrees of freedom. The
period of the AG potential in the transverse plane was set
twice longer than the longitudinal focusing period, assuming
a typical DTL situation. The simple sinusoidal waveform
was taken to model the standard FODO quadrupole lattice.
The longitudinal weak focusing effect from rf accelerating
gaps and resultant transverse RFD were also incorporated
on the basis of the equivalent sinusoidal model. As these
external driving forces have been linearized, all nonlinear
instabilities revealed in the WARP simulations here are
caused solely by the space-charge potential.
The excitation of various nonlinear resonances was

observed in both Gaussian and waterbag bunches, depend-
ing on the initial beam conditions. While the pure synchro-
tron resonance with n⊥ ¼ 0 did not appear seriously,
low-order betatron and synchrobetatron resonances turned
out to be problematic especially in a nonequipartitioned
bunch. We have confirmed in separate simulations that
nonlinear coupling resonances are enhanced in mismatched
beams as well. These space-charge-driven instability
bands are distributed even below the bare betatron and
synchrotron phase advances of 90° per cell, limiting the
usable operating area in the tune diagram. In the range
μ0⊥ > 90°, it is almost hopeless to find a sufficiently wide

resonance-free area at high-bunch density, which is con-
sistent with the conventional design criterion.
The 3D version of the coherent resonance conjecture in

Eq. (6) appears to be useful for predicting approximate
locations of stop bands, provided that the rms tune depres-
sion is not too far from unity. We could hence search for
optimum operating parameters of a high-intensity linac in a
similar way as recently proposed for the conceptual design
of a circular lattice [25–27]. It seems possible to establish a
universal picture of resonances in a matched beam, no matter
whether the machine is linear or circular [46].
The emittance exchange between the transverse and

longitudinal directions on a specific synchrobetatron differ-
ence resonance can be made inactive by imposing the
condition Λðn⊥; nkÞ ¼ 0 on the initial emittance ratio. This
is a natural generalization of the previously discovered
condition for the suppression of difference resonances in a
coasting beam [26]. As proved in Sec. VI, there exists the
magic emittance ratio that deactivates a particular synchro-
betatron resonance. Choosing such parameters as to meet
the condition in Eq. (7) is found to be advantageous
because that choice automatically makes Λðn⊥; nkÞ close
to zero along a few low-order synchrobetatron difference
resonance lines.

FIG. 11. WARP simulation results obtained with the initial emittance ratios (a) εk=ε⊥ ¼ 1 and (b) εk=ε⊥ ¼ 2. The simulation
conditions are the same as in Fig. 10 except for the value of εk=ε⊥ in the right panel.

FIG. 12. Contour plots of Λðn⊥; nkÞ in an equipartitioned case. The same initial beam conditions as considered in Fig. 4 are taken to
calculate the Λ-value at each operating point with (a) ðn⊥; nk; n0Þ ¼ ð1;−1; 0Þ, (b) ðn⊥; nk; n0Þ ¼ ð2;−1; 0Þ, and (c) ðn⊥; nk; n0Þ ¼
ð1;−2; 0Þ. A number on each contour line is the value of Λðn⊥; nkÞ divided by a normalization constant, i.e., the value of Λð1; 1Þ at the
operating point ðμ0⊥; σ0kÞ ¼ ð60°; 60°Þ. Black solid lines are obtained from Eq. (6) with C2 ¼ 0.7 or C3 ¼ 0.8.
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APPENDIX A: PHASE-SPACE MATCHING OF
AN INITIAL PARTICLE DISTRIBUTION AT

HIGH SPACE-CHARGE DENSITY

It is extremely important to construct an initial particle
distribution three-dimensionally matched to the AG lattice
as precisely as possible. In the old days, the concept of the
rms matching was often employed to generate an initial
distribution in the presence of space-charge interaction, but
such a crude matching procedure certainly fails at high-
beam density. Since the Coulomb self-field potential is
nonlinear, not only the second moments but also higher
order moments have to be adapted carefully to the lattice;
in other words, it is necessary to provide a phase-space
distribution corresponding to the stationary solution to the
Vlasov-Poisson equation system. As is well known, the
beam profile in real space is more and more homogenized
due to the Debye screening effect as the beam becomes
denser in phase space. A serious collective oscillation is
inevitably excited in the core of an rms matched beam at
high density, leading to an emittance blowup and resultant
halo formation [47–49]. This unwanted natural effect
makes it troublesome to identify the signatures of weak
resonances in PIC simulations.
It is possible to define a variety of stationary distribution

functions when the external focusing force is uniform. In
the case of AG focusing, however, a sophisticated matching
procedure is required to establish a stationary state adapted
to the periodic lattice. Lund and his co-workers developed
an efficient numerical technique for the construction of 2D
particle distributions well matched to an arbitrary AG
lattice at high space-charge density [50]. We generalized
their 2D prescription to 3D for the present simulation study
of bunched-beam stability.
The outline of the 3D matching procedure is the

following. As the first step, a spherical stationary state is
constructed based on the s-independent (smoothed)
Hamiltonian of the form

H̄b ¼
p2
x þ p2

y þ p2
z

2
þ 1

2
κbr2 þ IqϕscðrÞ; ðA1Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Considering the 3D rms

envelope equation, the coefficient κb of the linear focusing
term is defined as

κb ¼
3λ3Γ
2a3b

Z
∞

0

dζ

ð1þ ζÞ5=2 þ
ε2b
a4b

; ðA2Þ

where εb is a sort of average initial rms emittance given by
εb ¼ ðεxεyεzÞ1=3 and ab ¼ ðaxayazÞ1=3 with awðw¼x;y;zÞ
being the stationary solution to Eq. (2). Although ab varies
periodically along the beam line, the variation is generally
quite small under a typical operating condition. In Eq. (A2),
therefore, we use the value of ab at the entrance (s ¼ 0) to
evaluate κb. We then try to find a stationary distribution in
this smoothed system. Since H̄b is a constant of motion, an
arbitrary function of H̄b, i.e., fðH̄bÞ satisfies the Vlasov
equation. The scalar potential ϕsc of the stationary beam
can be derived from the Poisson equation

1

r2
d
dr

�
r2
dϕsc

dr

�
¼ −

q
ϵ0

ZZZ
fðH̄bÞdpxdpydpz; ðA3Þ

where q is the charge state of the particle and ϵ0 the
permittivity of vacuum. Finally, the spherical distribution
fðH̄bÞ is adapted to the AG lattice by transforming the
canonical variables of individual particles at s ¼ 0 as

w →

�
aw
ab

�
s¼0

w;

pw →

�
abεw
awεb

�
s¼0

pw þ
�
1

ab

daw
ds

�
s¼0

w: ðA4Þ

The pseudoequilibrium distribution constructed in this
way does not exactly reflect the self-consistent solution
to the Vlasov-Poisson equation system, but the matching is
remarkably well in the cases considered in the present
study. We, however, suspect that the matching error may be
enhanced under stronger focusing and/or in a bunch with
the aspect ratio far from unity.
Figure 13 displays an example of rms emittance evolu-

tions of the Gaussian bunches generated by the quasi-
selfconsistent 3D matching procedure (black line) and by
the classical rms matching procedure (red line). As expected,
the rms matched beam has experienced a significant emit-
tance jump right after the injection. In contrast, almost no
emittance growth has occurred in the beam produced by our
new stationary distribution generator.
The initial and final particle distributions in the hori-

zontal phase space are depicted in Fig. 14 for reference. The
pseudoequilibrium initial distribution in the upper left
panel, provided by the matching algorithm outline above,
is obviously different from the rms matched Gaussian in the
lower left. The former has a rectangularlike shape as a
result of the Debye screening effect. The latter has an
elliptical profile at the beginning but is eventually redis-
tributed into the rectangular configuration analogous to the
pseudoequilibrium beam.
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APPENDIX B: BETATRON STABILITY MAP
WITH A FIXED SYNCHROTRON

PHASE ADVANCE

The 3D coherent resonance conjecture applicable to the
case where μ0x ≠ μ0y may be written as

nxμ0x½1 − Cmð1 − ηxÞ� þ nyμ0y½1 − Cmð1 − ηyÞ�
þ nkσ0k½1 − Cmð1 − ηkÞ� ¼ πn0: ðB1Þ

This condition predicts many stop bands, but needless to
say, all of them are not equally important in practice. Some
might be almost invisible just like the pure synchrotron
resonance. It depends on several factors such as the initial
emittance condition, lattice design, transport distance, and
even phase-space configuration of the beam. Providing a
reliable guideline to judge resonances of high practical
importance is a future issue. We would, however, say that it
is most advisable to pay attention to all coherent stop bands
of up to the third order for safety in the conceptual design
stage of a high-intensity linac. This automatically covers
space-charge-driven incoherent tail resonances of up to the
sixth order.
An example of the betatron stability map obtained with a

fixed synchrotron phase advance is exhibited in Fig. 15.
The solid lines indicate the positions of the linear (m ¼ 2)
resonances predicted by Eq. (B1). The difference resonance
kμ0x − kμ0y ¼ 0 (k ¼ integer) is completely suppressed
because εx ¼ εy along the line. Two linear synchrobetatron
resonance bands with ðnx; ny; nk; n0Þ ¼ ð−1; 0; 1; 0Þ and
ð0;−1; 1; 0Þ also become negligible because the condition
Λðn⊥; nkÞ ¼ 0 is fulfilled along them in this simulation.
Other relatively weak instabilities recognizable in the map
can be interpreted as third-order coherent resonances with

FIG. 13. Time evolution of the projected rms emittances of a
10 MeV proton beam at the operating point ðμ0⊥; σ0kÞ ¼
ð60°; 60°Þ. The beam initially has the equipartitioned Gaussian
distribution whose transverse tune depression is adjusted to
η⊥ ¼ 0.6. Black curves correspond to the case where the
phase-space configuration is in the pseudoequilibrium, while
red curves to the case of rms matching.

FIG. 14. Initial and final particle distributions in the horizontal
phase space, corresponding to the WARP simulations in Fig. 13.
The transverse rms emittance has been assumed initially to be
about 0.05 πmm · mrad. In the upper panel (a), the beam is
initially in a pseudoequilibrium state while in the lower panel (b),
rms matched to the lattice at injection.

FIG. 15. WARP simulation results with the bare synchrotron
tune σ0k fixed at 55°. The initial phase-space distribution of
particles in the bunch is the Gaussian type. The projected rms
emittances in the three spatial directions are equalized every-
where in the diagram. The beam intensity is maintained at the
value that gives η⊥ ¼ 0.8 at the operating point ðμ0⊥; σ0kÞ ¼
ð60°; 60°Þ. Solid and dashed lines in the picture indicate the
locations of the possible second-order and third-order stop bands
obtained from Eq. (B1) with C2 ¼ 0.7 and C3 ¼ 0.8. Four
integers written beside each line represent ðnx; ny; nk; n0Þ.
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ðnx; ny; nk; n0Þ ¼ ð0; 3; 0; 2Þ, (3,0,0,2), ð0;2;−1;1Þ, ð2; 0;
−1; 1Þ, ð−1;2;0;1Þ, ð2;−1;0;1Þ, ð2;−1;0;0Þ, ð−1; 2; 0; 0Þ,
ð1;−1; 1; 0Þ, and ð1;−1;−1; 0Þ or as incoherent tail reso-
nances of twice the order. Dashed lines in the picture
indicate the positions of these nonlinear resonances
expected from Eq. (B1). Some of the third-order synchro-
betatron resonance lines, not drawn here, have overlapped
with the linear betatron resonances with ðnx; ny; nk; n0Þ ¼
ð2; 0; 0; 1Þ and (0, 2, 0, 1).
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