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It is known that dispersive coupling can be applied to realize three-dimensional cooling in stochastic
cooling and laser cooling. In electron cooling, the transverse cooling rate is usually smaller than the
longitudinal one, especially for high-energy beams. We find that dispersion can also be introduced into
electron cooling (dispersive electron cooling) to redistribute the cooling rate between the longitudinal and
transverse planes. In this paper, we present an analytical model to explain and estimate the rate
redistribution in dispersive electron cooling, in which both ion dispersion and electron dispersion are
included. It demonstrates that a small horizontal dispersion of the ions can enhance the horizontal
cooling at the expense of longitudinal cooling, and the electron dispersion is also of benefit to this effect.
We also find that this redistribution effect will be more significant when there is a large difference between
the horizontal and longitudinal cooling rates, which will be of great significance for high-energy electron
cooling in the future.
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I. INTRODUCTION

Since it was invented by Budker in 1967, electron cooling
has been a powerful method to reduce the beam emittance
andmomentumspread inmanyheavy-ion accelerators [1,2].
In the future, high-energy electron cooling is needed for
some facilities, such as electron ion colliders [3,4], which
requires electron beams with at least tens ofMeV. So far, the
highest energy electron cooling system with 4.3 MeV
electrons has been constructed and operated at Fermi
National Accelerator Laboratory, Batavia, Illinois [5].
Recently, world’s first rf-based electron cooler was success-
fully commissioned at Brookhaven National Laboratory
(BNL), Upton, NY [6], opening the possibility of electron
cooling at higher energies.
Usually, the difference in the strength of longitudinal and

transverse friction force is less severe in low-energy
electron coolers. Additionally, transverse angles can be
compensated by a longitudinal magnetic field created by a
reasonably simple solenoid [7]. For higher energies, the
transverse momenta of the electron beam in the comoving
frame will be much larger than the longitudinal momenta,
(p⊥=mc ¼ γθ⊥ ≫ σγ=γ ¼ pk=mc). This results in a very
weak transverse cooling at high energy. Although a longi-
tudinal magnetic field in the cooling section can increase the

cooling rates, the difference between transverse and longi-
tudinal cooling rates is often still large. Therefore, some
adjustments or compensations are needed to balance the three-
dimensional cooling rate in high-energy electron cooling.
It is known that longitudinal-horizontal coupling of ion

motion due to dispersion has been successfully applied to
stochastic cooling and laser cooling to realize cooling in
three dimensions [8–10], but it has never been used in
practice for electron cooling. However, dispersive electron
cooling with ion dispersion has been studied and measured
before [11,12]. Along with an ion dispersion function,
these methods also require a horizontal gradient of the
longitudinal cooling force, which is realized by a displace-
ment of the electron beam position. For high energies, this
gradient is due to a physical offset of the beams and the
ensuing density gradient. For low energies, the transverse
potential well generated by the space charge force supplies
an additional velocity gradient.
In this paper, we demonstrate that ion dispersion alone

can be used to redistribute the cooling rates between the
transverse and longitudinal planes. No electron beam offset
or electron beam dispersion is needed. Using a linearized
friction force, we derive an analytical model to explain and
estimate this redistribution effect. The ion dispersion can
enhance the horizontal cooling at the expense of longi-
tudinal cooling rate. We then add electron dispersion and
show it can be of benefit. An analytical model shows good
agreement with simulation results. This redistribution effect
will be of particular value when there is a large difference
between uncoupled horizontal and longitudinal cooling
rates, as occurs for high-energy beams.
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II. COOLING FORCE

The nonmagnetized cooling force on an ion is given
by [13]

Fðr; uiÞ ¼ −4πmer2eZ2c4
Z

lnΛ
ui − ue
jui − uej3

feðr; ueÞdue;

ð1Þ

where Z is the atomic number of the ion, me is the electron
mass, re is the classical electron radius, c is the speed of
light, lnΛ is the Coulomb logarithm, ui and ue are the
velocities of ion and electron in the rest frame, respectively,
and feðr; ueÞ is the electron beam distribution in six-
dimensional phase space. We assume that the coordinates
and velocity of electrons are not correlated and the beam
distribution remains unchanged along the cooling section,
the electron beam distribution can be written as feðr; ueÞ ¼
neðrÞfveðueÞ, where ne and fve are the number density
and velocity distribution of electrons in the rest frame.
Then, the integral in Eq. (1) depends only on the velocity
distribution. Because the dispersion on the ion beam will
only introduce the coupling between the horizontal position
and the energy spread of ions, this integral will not be
changed by the ion dispersion. If we take the Coulomb
logarithm outside the integral in Eq. (1) what is left has the
form of an electrostatic field. We take an isotropic electron
velocity distribution with rms spread σve and a Gaussian
distribution. The cooling force can be calculated analyti-
cally [14,15]

F ¼ K
Z

∞

0

ui
ðσ2ve þ λÞ5=2 exp

�
−

ui2

2ðσ2ve þ λÞ
�
dλ

¼ K

� ffiffiffiffiffiffi
2π

p

ui2
erf

�
uiffiffiffiffiffiffiffiffiffi
2σ2ve

p
�
−

2

σveui
exp

�
−

u2i
2σ2ve

��
; ð2Þ

where K ¼ −2
ffiffiffiffiffiffi
2π

p
mer2eZ2c4 lnΛneðrÞ and erf is the

error function. We only work on the leading order of the
velocity so that the cooling force can be expanded as

F ≃ K
2ui
3σ3ve

; ðjuij < σveÞ: ð3Þ

We see that this linear cooling force is the same as the result
in Ref. [13] for small ui. Based on this approximation, we
get the change of ui at the location r is

Δui ¼ −
4

ffiffiffiffiffiffi
2π

p
Z2r2ec3me lnΛneðrÞl

3βγσ3vemi
ui ¼ −CneðrÞui; ð4Þ

where l is the length of the cooling section. We see that the
cooling effect can be simply described by the coefficient C
and the number density of electron beam neðrÞ. This
expression also applies to the electron beam with

spherically symmetric velocity distribution. In the follow-
ing, we will use Eq. (4) to build the analytical model of
dispersive cooling. We will focus on the fundamental effect
and apply cooling in the form of a thin kick.

III. ION DISPERSION

Now, we consider an ion with the initial momentum
offset δ0 and horizontal dispersion Di, the initial horizontal
emittance is

ϵx0 ¼ ðx0 −Diδ0Þ2=2βx þ βxx020 =2: ð5Þ

After passing the cooling section,

ϵx1 ¼ ðx1 −Diδ1Þ2=2βx þ βxx021 =2: ð6Þ

Here, we did not consider the betatron motion along the
cooling section. Since the cooling effect is quite small for a
single pass, we have x0 ¼ x1 ¼ x, x01 − x00 ¼ −CneðrÞx00,
and δ1 − δ0 ¼ −CneðrÞδ0. Then the changes of emittance
and momentum spread due to cooling for a single particle
are

Δϵx ¼ −Cne
�
βxx02 −

Diδxβ
βx

�
þ C2n2e

�
D2

i δ
2

2βx
þ βxx02

2

�
;

Δδ2 ¼ −2Cneδ2 þ C2n2eδ2;

Δϵy ¼ −Cneβyy02; ð7Þ

where xβ ¼ x −Diδ is the betatron amplitude. All the
variables on the right-hand side correspond to the distri-
bution before the cooling section. The local number density
of electron beam (Gaussian) at the position ðx; y; sÞ ¼
ðxβ þDiδ; yβ; sÞ is given by

neðx; y; sÞ ¼
Ne0

ð2πÞ3=2σexσeyσes

· exp

�
−
ðxβ þDiδÞ2

2σ2ex
−

yβ2

2σ2ey
−

s2

2σ2es

�
; ð8Þ

where Ne0 is the total number of electrons. Now the
problem is to calculate the average changes of the ion
beam, which correspond to the cooling rates.
We assume the ion beam also has a Gaussian distribu-

tion, the joint probability density function is

Pi¼
1

ð2πÞ3σixσiyσisσix0σiy0δip

· exp

�
−

x2β
2σ2ix

−
y2β
2σ2iy

−
s2

2σ2is
−

x02

2σ2ix0
−

y02

2σ2iy0
−

δ2

2δ2ip

�
; ð9Þ

where σix; σiy; σis; σix0 ; σiy0 , and δip are the standard
deviation of the beam distribution. The derivation of the
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average changes is tedious, and we here only give an
example of the derivation on the horizontal emittance.
Consider the first line of Eq. (7). To first order, we have

hΔϵx1i ¼ −Cβxhnex02i þ
CDi

βx
hneδxβi; ð10Þ

where hi denotes averaging over the ion phase space. Based
on Ref. [16], we know

hnex02i ¼
Z

∞

−∞
nex02Pidxβdyβdsdx0dy0dδ;

hneδxβi ¼
Z

∞

−∞
neδxβPidxβdyβdsdx0dy0dδ: ð11Þ

The relevant integrals are straightforward and are relegated
to the Appendix. The details for the second-order are also
given in the Appendix. It shows that the second-order term
can be ignored. Based on these calculation, we finally get
the dispersive cooling rate

λx ¼
hΔϵxi
ϵix;rms

¼ −n̂e0
�
Cþ CD2

i δ
2
ip

σ2ex þ σ2ix þD2
i δ

2
ip

�
;

λp ¼ hδi
δip

¼ −n̂e0
�
C −

CD2
i δ

2
ip

σ2ex þ σ2ix þD2
i δ

2
ip

�
; and

λy ¼
hΔϵyi
ϵiy;rms

¼ −n̂e0C; ð12Þ

where ϵrms is the rms beam emittance with ϵix;iy;rms ¼
σ2ix;iy=βx;y ¼ σ2ix0;iy0βx;y, and

n̂e0 ¼
ð2πÞ−3=2Ne0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσ2ey þ σ2iyÞðσ2es þ σ2isÞðσ2ex þ σ2ix þD2
i δ

2
ipÞ

q :

It is clear that the transverse and longitudinal cooling
rates are modulated by dispersion. We see that the
dispersion on the one hand results in the reduction of

the cooling rate in all three dimensions, which is due to the
density change of ion beam in n̂e0. On the other hand, the
coupling effect of dispersion transfers the cooling rate from
longitudinal direction to horizontal direction. To estimate
the net effect of dispersion on cooling rate, we define the
gain factor as the ratio of the cooling rates with and without
dispersion

kx ¼
λx

λx;Di¼0

¼ σ2ex þ σ2ix þ 2D2
i δ

2
ip

ðσ2ex þ σ2ix þD2
i δ

2
ipÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ex þ σ2ix

q
;

kp ¼ λp
λp;Di¼0

¼ ðσ2ex þ σ2ixÞ3=2
ðσ2ex þ σ2ix þD2

i δ
2
ipÞ3=2

; and

ky ¼
λy

λy;Di¼0

¼ ðσ2ex þ σ2ixÞ1=2
ðσ2ex þ σ2ix þD2

i δ
2
ipÞ1=2

: ð13Þ

Its obvious that kp ≤ ky ≤ 1, which means longitudinal and
vertical cooling will always be weakened. The dependence
of kx on dispersion is not obvious from Eq. (13). We
calculate the gain factors under several conditions using
arbitrary parameters. The result is shown in Fig. 1. It shows
that for a small dispersion, the horizontal cooling rate is
increased, which is mainly from longitudinal direction due
to the coupling effect. When ion dispersion is large, both
transverse and longitudinal cooling will be reduced because
the ion beam size will be larger than the electron beam.
Based on Eq. (7), we also apply the Monte Carlo method to
check the gain factors, in which a group of particles with
Gaussian distribution are generated and cooled, and the
gain factors and its dependence on dispersion are calcu-
lated. As shown in Fig. 1, the Monte-Carlo method gives
the same result as the analytical model. The condition for
the maximum of kx is 2D2

i δ
2
ip ¼ σ2ex þ σ2ix, at which the

horizontal cooling rate is maximized by dispersion. The

maximum value of kx is kx;max ¼ 4
3

ffiffi
2
3

q
, which is indepen-

dent of beam parameters.
In above, we assume the coefficients of cooling force

in three dimensions are the same, which makes the

FIG. 1. The Monte Carlo and analytical results of the gain factor under different beam conditions.
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enhancement of horizontal cooling not obvious (up to
8.8%). At high energy, the horizontal temperature of
electron beam in the rest frame is usually higher than
the longitudinal temperature, which causes a big difference
between the horizontal and longitudinal cooling. We still
consider the linear cooling force but different strength in
horizontal and longitudinal planes: Δux;p ¼ −Cx;pneux;p.
Using the same method in the Appendix, we get the
updated cooling rates:

λx ¼ −n̂e0
�
Cx þ

CpD2
i δ

2
ip

σ2ex þ σ2ix þD2
i δ

2
ip

�
;

λp ¼ −n̂e0
�
Cp −

CpD2
i δ

2
ip

σ2ex þ σ2ix þD2
i δ

2
ip

�
: ð14Þ

and the gain factors

kx ¼
σ2ex þ σ2ix þ ð1þ Cp=CxÞD2

i δ
2
ip

ðσ2ex þ σ2ix þD2
i δ

2
ipÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ex þ σ2ix

q
and

kp ¼ ðσ2ex þ σ2ixÞ3=2
ðσ2ex þ σ2ix þD2

i δ
2
ipÞ3=2

: ð15Þ

We see that the redistribution effect is directly determined
by the ratio of the cooling coefficients Cp=Cx. So, this
effect would be much stronger if Cp is larger than Cx,
which is exactly corresponds to high-energy beam
cooling. The maximum value of kx is kx;max ¼
2

3
ffiffi
3

p ð1þ Cp

Cx
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Cx

Cp

q
. The calculation with Cp=Cx ¼ 3 is

shown in Fig. 2. It shows that the increase of horizontal
cooling rate is significant (up to ∼80%).

IV. ELECTRON DISPERSION

The effect of electron dispersion on cooling was well
described in Ref. [17]. Here, we include the contribution of
the electron beam density. Considering the electron
dispersion De, horizontal offset xoff and energy offset

δoff , the electron beam with Gaussian distribution can be
described by fe ∝ fexfeyfez where [17]

fex ¼ exp

�
−

1

2ϵex

�
1þ α2ex
βex

x̂2 þ 2αexx̂x0 þ βexx02
��

;

fey ¼ exp

�
−

1

2ϵey

�
1þ α2ey
βey

y2 þ 2αeyyy0 þ βeyy02
��

;

fez ¼ exp

�
−
ðδ − δoffÞ2

2σ2ep
−

s2

2σ2es

�
; ð16Þ

where x̂ ¼ x − xoff −Deδ, αe and βe are the Twiss param-
eters. Note that x0 and y0 are the coordinates in the lab
frame. In order to simplify the calculation of cooling force,
we still try to write the beam distribution into the form:
feðr; ueÞ ¼ neðrÞfveðueÞ. Based on Eq. (16), the density in
the rest frame can be expressed as

ne¼ne0exp
�
−
ðx−xoff−DeδoffÞ2
2ðϵexβexþD2

eδ
2
epÞ

−
y2

2ϵeyβey
−

s2

2σ2es

�
; ð17Þ

and the velocity distribution of electron beam in the rest
frame is

fve ¼
ð2πÞ−3=2

σ1σ2σ3
ffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2

p exp

�
−
ðuy− ūyÞ2

2σ22
−

1

2ð1−ρ2Þ ·

×

�ðux− ūxÞ2
σ21

þðup− ūpÞ2
σ23

−2ρ
ðux− ūxÞðup− ūpÞ

σ1σ3

��
;

ð18Þ

where ux ¼ βγx0, uy ¼ βγy0, and uz ¼ Δp=p are the
coordinates in the rest frame. The various parameters are
given by

FIG. 2. The Monte Carlo and analytical results of the gain factor with Cp=Cx ¼ 3.
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ūx ¼ −
γαexϵexðx − xoff −DeδoffÞ

ϵexβex þD2
eδ

2
ep

;

ūy ¼ −
γαeyy

βey
;

ūp ¼ Deδ
2
epðx − xoffÞ þ ϵexβexδoff
ϵexβex þD2

eδ
2
ep

;

σ21 ¼
ϵexγ

2

βex

�
1þ α2exD2

eδ
2
ep

ϵexβex þD2
eδ

2
ep

�
;

σ22 ¼
ϵeyγ

2

βey
;

σ23 ¼
δ2epϵexβex

ϵexβex þD2
eδ

2
ep
;

ρ ¼ αexDeδepffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵexβex þD2

eδ
2
epð1þ α2exÞ

q :

The equations above for cooling force calculation are
good for computer work but difficult analytically. To
simplify the model, we still consider the linear cooling
force and assume there are no phase shift and beam offsets
(αe ¼ 0, xoff ¼ 0, and δoff ¼ 0), then the cooling effect on a
single particle can be approximately described as

Δup ¼ gCpneðkx − upÞ Δux ¼ −Cxneux; ð19Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2exþD2

eδ
2
ep

p
σex

and k ¼ Deδ
2
ep

σ2exþD2
eδ

2
ep

are the coupling

factors due to electron dispersion. Considering this
approximation and ignoring high-order terms, Eq. (7)
becomes

Δϵx¼−Cxneβxx02−gCpne

�
kDix2β
βx

þDið1−kDiÞδxβ
βx

�
and

Δδ2¼−2gCpne½ð1−kDiÞδ2−kδxβ�: ð20Þ

Using the same method in the Appendix, the cooling rates
with both electron dispersion and ion dispersion are

λx ¼ −n̂e0
�
Cx þ

gCpðD2
i δ

2
ip þDiDeδ

2
epÞ

σ2ex þ σ2ix þD2
i δ

2
ip þD2

eδ
2
ep

�
;

λp ¼ −n̂e0
�
gCp −

gCpðD2
i δ

2
ip þDiDeδ

2
epÞ

σ2ex þ σ2ix þD2
i δ

2
ip þD2

eδ
2
ep

�
; ð21Þ

and λy ¼ −n̂e0Cy, where

n̂e0 ¼
Ne0

ð2πÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðσ2ey þ σ2iyÞðσ2es þ σ2isÞ

q ;

and L ¼ σ2ex þ σ2ix þD2
i δ

2
ip þD2

eδ
2
ep. The gain factors as a

function of Di and De are given by

kx ¼
�
Lþ gCp

Cx
D2

i δ
2
ip þ

gCp

Cx
DiDeδ

2
ep

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ex þ σ2ix

L3

r
and

kp ¼ gðL −D2
i δ

2
ip −DiDeδ

2
epÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ex þ σ2ix

L3

r
; ð22Þ

FromEqs. (21) and (22), we see that electron dispersion also
contributes to the redistribution effect, but onlywhen there is
ion dispersion. A simple explanation for this is that electron
dispersion reduces the local longitudinal energy spread [σ3
in Eq. (18)], thereby increasing the longitudinal cooling
force. At the same time, with the coupling effect due to ion
dispersion, the cooling rate redistribution effect is strength-
ened. The dependence of the gain factor on electron
dispersion and ion dispersion is shown in Fig. 3, in which

0 1 2 3 4
0

1

2

3

4

D
i(

m
)

De (m)

0.10

0.54

0.98

1.42

1.86

2.30

kx

0 1 2 3 4
0

1

2

3

4

D
i(

m
)

De (m)

0.10

0.54

0.98

1.42

1.86

2.30

kp

FIG. 3. Dependence of the gain factors on electron dispersion
and ion dispersion ðσex ¼ σix ¼ δep ¼ δip ¼ 1; Cp=Cx ¼ 3Þ.
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arbitrary parameters are used (σex ¼ σix ¼ δep ¼ δip ¼ 1;
Cp=Cx ¼ 3). It shows that the value of kx can be contin-
uously increased by electron dispersion and ion dispersion.
However, the assumption of cooling force in Eq. (19) is

simple since we only considered the coupling effect in
longitudinal direction. In fact, the coefficient Cx is also
related to the electron dispersion, which is not included in
the model.

V. SIMULATION

In Secs. III and IV, we present an analytical model to
study the cooling redistribution effect caused by dispersion,
in which the nonlinear cooling force and actual beam
parameters are not considered in detail. In this section, we
simulate the cooling process using actual beam parameters
and study the dependence of the cooling rate on dispersion.
The beam parameters in simulation are listed in Table I.

This electron beam setting is specially designed for the EIC
project at BNL [18,19], in which the electron beam with the
energy of 150 MeV is used to cool the 275 GeV proton
beam. At such high energy, transverse cooling is much
weaker than longitudinal cooling. Therefore, dispersive
electron cooling is desired in the design to balance the

cooling rate in three dimensions. In Table I, we see that
the rms velocity of the proton beam is less than that of the
electron beam, which means most of protons are in the
linear cooling force region. In addition, the beta function in
the cooling section is pretty large, so the phase advance is
small and beam distribution will not change too much along
the 170 m cooling section. Based on these parameters, we
believe that the analytical model can be used here to
estimate the dispersive cooling rates, and it can also be
compared with the simulation.
In the simulation, we use the multiparticle tracking code

TRACKIT, which has been benchmarked with the experiment
[14]. In the code, the cooling force is fully calculated by the
Eq. (2) in Ref. [14] without any approximation.
Particularly, the electron beam distribution with dispersion
[Eqs. (17) and (18)] is applied in this simulation, and the
cooling section is cut into three slices to include the
betatron motion of electron beam. Since we only focus
on the cooling rate, other effects such as IBS and space
charge are not considered during tracking. The cooling
rates are calculated based on the tracking result of the
cooling process. It is worth noting that the transverse
cooling rate corresponds to the beam emittance while
longitudinal rate to the momentum amplitude, as defined
in Eq. (12). The dependence of the cooling rate in three
dimensions on electron dispersionDe and ion dispersionDi

is shown in Fig. 4. We see that due to the electron and ion
dispersion, the horizontal cooling rate is increased, while
the longitudinal and vertical cooling rates are reduced,
which is consistent with the conclusion of the analyti-
cal model.
According to the simulation without dispersion, we

estimate the value of Cp=Cx is about 5.2. With this number,
the analytical model is compared with the simulation, as
shown in Fig. 5. It shows that the analytical model is in
good agreement with the simulation. The discrepancy in
Fig. 5 is mainly due to the nonlinear terms of the cooling
force, from which we see that the nonlinear cooling force
reenforces the redistribution effect.

TABLE I. Beam parameters in simulation.

Electron Proton

Energy (GeV) 0.15 275
Relativistic factor γ 293.2 293.2
Number of particles per bunch 3 × 1011 6.9 × 1010

RMS emittance x=y (nm) 21=18 9.6=1.5
RMS dp=p 8.9 × 10−4 6.6 × 10−4

RMS bunch length (m) 0.12 0.06
β�x=β�y function 153=275 100=100
σx=σy (mm) 1.8=2.2 1.0=0.4
σx0=σy0 (×10−5) 1.2=0.8 1.0=0.4
Longitudinal temperature (eV) 0.41 410
Transverse temperature x=y (eV) 6.0=2.9 7760=1210
Lcool (m) 170 170
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FIG. 4. Simulation results of the dependence of cooling rate on dispersion.
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VI. SUMMARY

We present a analytical model to explain and estimate the
redistribution effect of dispersion on the transverse and
longitudinal cooling rates. It demonstrates that the coupling
effect in dispersive electron cooling can redistribute the
cooling rates between the horizontal and longitudinal
directions. Although the change of beam density caused
by dispersion will reduce the cooling rates in all three
dimensions, the horizontal cooling rate still can be
enhanced by the coupling effect, as long as the dispersion
is not too large. This redistribution effect benefits from both
ion dispersion and electron dispersion, and is more sig-
nificant when there is a large difference between the
horizontal and longitudinal cooling rates, as occurs for
high-energy beams. As a result, the dispersive cooling
would be of particular value for high-energy electron
cooling in the future.
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APPENDIX: CALCULATION OF
THE COOLING RATE

In this section, we only give the details of the derivation
on the horizontal cooling rate. Based on the Eq. (7), the
mean values of the emittance change for the first order is

hΔϵx1i ¼ −Cβxhnex02i þ
CDi

βx
hneδxβi: ðA1Þ

Since neðxβ þDiδ; yβ; sÞ and x0 are irrelevant, hnex02i ¼
hneihx02i. We know that βxhx02i ¼ ϵx;rms and these variables
(xβ; yβ; s; x0; y0, and δ) are independent of each other, the
value of hnei can be calculated by

hnei ¼ M
Z

∞

−∞
exp

�
−
ðxβ þDiδÞ2

2σ2ex
−

yβ2

2σ2ey
−

s2

2σ2es

�

× exp

�
−

x2β
2σ2ix

−
y2β
2σ2iy

−
s2

2σ2is
−

δ2

2δ2ip

�
dxβdyβdsdδ

¼ M
Z

∞

−∞
exp

�
−

y2β
2σ2ey

−
y2β
2σ2iy

�
dyβ·

×
Z

∞

−∞
exp

�
−

s2

2σ2es
−

s2

2σ2is

�
ds·

×
Z

∞

−∞
exp

�
−
ðxβ þDiδÞ2

2σ2ex
−

x2β
2σ2ix

−
δ2

2δ2ip

�
dxβdδ;

ðA2Þ

where

M ¼ Ne0

ð2πÞ7=2σexσeyσesσixσiyσisδip
; ðA3Þ

also

hneδxβi¼M
Z

∞

−∞
exp

�
−

y2β
2σ2ey

−
y2β
2σ2iy

�
dyβ·

×
Z

∞

−∞
exp

�
−

s2

2σ2es
−

s2

2σ2is

�
ds·

×
Z

∞

−∞
δxβ exp

�
−
ðxβþDiδÞ2

2σ2ex
−

x2β
2σ2ix

−
δ2

2δ2ip

�
dxβdδ:

ðA4Þ

Base on the solutions in Ref. [20], the integrals are easy to
calculate

FIG. 5. Comparison between the simulation (dots) and ana-
lytical model (solid line) of the gain factor with Cp=Cx ¼ 5.2.

RATE REDISTRIBUTION IN DISPERSIVE ELECTRON … PHYS. REV. ACCEL. BEAMS 24, 083502 (2021)

083502-7



I1 ¼
Z

∞

−∞
exp

�
−

y2β
2σ2ey

−
y2β
2σ2iy

�
dyβ ¼

ffiffiffiffiffiffi
2π

p
σeyσiyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2ey þ σ2iy

q ;

I2 ¼
Z

∞

−∞
exp

�
−

s2

2σ2es
−

s2

2σ2is

�
ds ¼

ffiffiffiffiffiffi
2π

p
σesσisffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2es þ σ2is
p ;

I3 ¼
Z

∞

−∞
exp

�
−
ðxβ þDiδÞ2

2σ2ex
−

x2β
2σ2ix

−
δ2

2δ2ip

�
dxβdδ

¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab − c2

p ; and

I4 ¼
Z

∞

−∞
δxβ exp

�
−
ðxβ þDiδÞ2

2σ2ex
−

x2β
2σ2ix

−
δ2

2δ2ip

�
dxβdδ

¼ πc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðab − c2Þ3

p ; ðA5Þ

where a ¼ 1
2σ2ex

þ 1
2σ2ix

, b ¼ D2
i

2σ2ex
þ 1

2δ2ip
, and c ¼ − Di

2σ2ex
. Then,

hnei¼M

ffiffiffiffiffiffi
2π

p
σeyσiyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2eyþσ2iy

q
ffiffiffiffiffiffi
2π

p
σesσisffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2esþσ2is
p πffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ab−c2
p and

hneδxβi¼M

ffiffiffiffiffiffi
2π

p
σeyσiyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2eyþσ2iy

q
ffiffiffiffiffiffi
2π

p
σesσisffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2esþσ2is
p πc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðab−c2Þ3

p : ðA6Þ

And the final form of hΔϵx1i is

hΔϵx1i ¼ −Cϵx;rmshnei þ
CDi

βx
hnei

c
2ðab − c2Þ and

¼ −n̂e0ϵx;rms

�
Cþ CD2

i δ
2
ip

σ2ex þ σ2ix þD2
i δ

2
ip

�
; ðA7Þ

where

n̂e0 ¼
ð2πÞ−3=2Ne0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσ2ey þ σ2iyÞðσ2es þ σ2isÞðσ2ex þ σ2ix þD2
i δ

2
ipÞ

q :

On the other hand, the second order of emittance change
in Eq. (7) is

hΔϵx2i ¼
C2D2

i

2βx
hn2eδ2i þ

C2βx
2

hn2eihx02i: ðA8Þ

Using the same method, we obtain

hΔϵx2i¼C2n̂e1

�
ϵx;rms

2
þ D2

i δ
2
ipðσ2exþ2σ2ixÞ

2βxðσ2exþ2σ2ixþ2D2
i δ

2
ipÞ

�
; ðA9Þ

where

n̂e1 ¼
ð2πÞ−3N2

e0ðσexσeyσesÞ−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2ey þ 2σ2iyÞðσ2es þ 2σ2isÞðσ2ex þ 2σ2ix þ 2D2

i δ
2
ipÞ

q :

Comparing Eqs. (A7) and (A9), we get

				 hΔϵx2ihΔϵx1i
				⋍ CNe0

ð2πÞ3=2σexσeyσes
¼ Cne0; ðA10Þ

where ne0 is the maximum density of electron beam. We
know Cne0 ¼ j Δuiui

jmax is the maximum cooling gradient,

which is very small (roughly less than 10−3). So we
conclude that the contribution of the high order term in
Eq. (7) is such small that can be ignored, and we can finally
obtain Eq. (12). The calculation in longitudinal and vertical
planes are the same.
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